1
|
Belinsky G, Ruan J, Fattahi N, Mehta S, Boddupalli CS, Mistry PK, Nair S. Modeling bone marrow microenvironment and hematopoietic dysregulation in Gaucher disease through VavCre mediated Gba deletion. Hum Mol Genet 2025; 34:952-966. [PMID: 40197748 PMCID: PMC12085781 DOI: 10.1093/hmg/ddaf045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 03/13/2025] [Accepted: 03/21/2025] [Indexed: 04/10/2025] Open
Abstract
Biallelic mutations in Gba cause Gaucher disease (GD), a lysosomal disorder characterized by deficient glucocerebrosidase activity and the accumulation of glucosylceramide (GlcCer) and glucosylsphingosine (GlcSph), primarily in macrophages. Beyond macrophages, GD pathology affects additional hematopoietic lineages, contributing to immune dysregulation. Existing Mx1-Cre Gba knockout models require induction protocols that lead to gene deletion outside hematopoietic cells, limiting the study of hematopoietic-specific effects. To overcome these limitations, we generated a hematopoietic-specific Gba knockout model by crossing Gbafl/fl mice with Vav-Cre, enabling early deletion of Gba exons 8-11 in hematopoietic stem and progenitor cells. These mice were backcrossed to 129X1/SvJ and C57BL/6 J backgrounds, revealing that genetic background significantly influences disease severity. Efficient Gba excision was confirmed in bone marrow, spleen, and thymus, with minimal recombination in the liver. In VavCre 129 GD mice, glucocerebrosidase activity in the spleen was severely reduced, leading to GlcCer and GlcSph accumulation and Gaucher cell infiltration in the spleen and femurs. Transcriptomic analysis identified upregulation of inflammatory and lysosomal pathways. Immune cell deconvolution from RNA-seq data further revealed an expansion of monocytes, dendritic cells, and pro-inflammatory macrophage subsets, suggesting an altered immune landscape. Additionally, GPNMB, a potential GD biomarker, was significantly elevated in both spleens and sera of VavCre 129 GD mice. This hematopoietic-specific GD model provides a powerful platform for studying GD pathophysiology, modifier genes, and immune dysregulation. It offers new opportunities for biomarker discovery and for developing strategies targeting hematopoietic and immune mechanisms in GD and related lysosomal storage disorders.
Collapse
Affiliation(s)
- Glenn Belinsky
- Department of Medicine (Digestive Diseases), Yale School of Medicine, The Anylan Center, 300 Cedar St, New Haven, Connecticut 06519, United States
| | - Jiapeng Ruan
- Department of Medicine (Digestive Diseases), Yale School of Medicine, The Anylan Center, 300 Cedar St, New Haven, Connecticut 06519, United States
| | - Nima Fattahi
- Department of Medicine (Digestive Diseases), Yale School of Medicine, The Anylan Center, 300 Cedar St, New Haven, Connecticut 06519, United States
| | - Sameet Mehta
- Yale Center for Genome Analysis, Department of Medicine (Digestive Diseases), Yale School of Medicine, The Anylan Center, 300 Cedar St, New Haven, Connecticut 06519, United States
| | - Chandra Sekhar Boddupalli
- Department of Medicine (Digestive Diseases), Yale School of Medicine, The Anylan Center, 300 Cedar St, New Haven, Connecticut 06519, United States
| | - Pramod K Mistry
- Department of Medicine (Digestive Diseases), Yale School of Medicine, The Anylan Center, 300 Cedar St, New Haven, Connecticut 06519, United States
| | - Shiny Nair
- Department of Medicine (Digestive Diseases), Yale School of Medicine, The Anylan Center, 300 Cedar St, New Haven, Connecticut 06519, United States
| |
Collapse
|
2
|
Liu M, Zhu J, Zheng J, Han X, Jiang L, Tong X, Ke Y, Guo Z, Huang W, Cong J, Liu M, Lin SY, Zhu S, Mei L, Zhang X, Zhang W, Xin WJ, Zhang Z, Guo Y, Chen R. GPNMB and ATP6V1A interact to mediate microglia phagocytosis of multiple types of pathological particles. Cell Rep 2025; 44:115343. [PMID: 39992792 DOI: 10.1016/j.celrep.2025.115343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 10/14/2024] [Accepted: 01/31/2025] [Indexed: 02/26/2025] Open
Abstract
Pronounced elevation of glycoprotein non-metastatic melanoma B (GPNMB) is a common phenomenon in a variety of brain diseases, but the expression patterns, functions, and molecular signaling of GPNMB have not been well studied. Here, we showed that pathological factors, including neuronal degeneration caused by seizures, caspase-3-induced neuronal apoptosis, neuronal debris, and β-amyloid, induced "on-demand" GPNMB expression in hippocampal microglia. Genetic ablation of GPNMB did not affect acute seizures but worsened chronic epileptogenesis. We found that GPNMB functioned in phagocytosis, deficiency of which resulted in defects in both phagocytic engulfment and degradation. GPNMB could be internalized into cells, where it wrapped engulfed pathogenic particles and presented them to lysosomes through interaction with lysosomal vacuolar-type proton ATPase catalytic subunit A (ATP6V1A). Activating ATP6V1A was able to rescue GPNMB-deficiency-caused phagocytosis impairment. Thus, microglial GPNMB-ATP6V1A might be a common treatment target of a batch of chronic neurological disorders, and clearing the degenerative neurons might be more valuable than reserving them to protect the brain.
Collapse
Affiliation(s)
- Mei Liu
- Guangdong Province Key Laboratory of Psychiatric Disorders, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jianping Zhu
- Guangdong Province Key Laboratory of Psychiatric Disorders, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jiawei Zheng
- The National Key Clinic Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China; Guangdong Province Key Laboratory of Psychiatric Disorders, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Xuan Han
- Guangdong Province Key Laboratory of Psychiatric Disorders, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Lijuan Jiang
- Guangdong Province Key Laboratory of Psychiatric Disorders, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Xiangzhen Tong
- Guangdong Province Key Laboratory of Psychiatric Disorders, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yue Ke
- Guangdong Province Key Laboratory of Psychiatric Disorders, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Zhipeng Guo
- Guangdong Province Key Laboratory of Psychiatric Disorders, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Weiyuan Huang
- Guangdong Province Key Laboratory of Psychiatric Disorders, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jin Cong
- Guangdong Province Key Laboratory of Psychiatric Disorders, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Meiqiu Liu
- Guangdong Province Key Laboratory of Psychiatric Disorders, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Su-Yan Lin
- Guangdong Province Key Laboratory of Brain Function and Disease, Department of Physiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China
| | - Shuang Zhu
- Department of Joint and Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Li Mei
- Department of Anesthesiology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou 519041, China
| | - Xingmei Zhang
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Wangming Zhang
- The National Key Clinic Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Wen-Jun Xin
- Guangdong Province Key Laboratory of Brain Function and Disease, Department of Physiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China
| | - Zhenhai Zhang
- Center for Precision Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou 519041, China.
| | - Yanwu Guo
- The National Key Clinic Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China.
| | - Rongqing Chen
- The National Key Clinic Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China; Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
3
|
Luettel DM, Terluk MR, Roh J, Weinreb NJ, Kartha RV. Emerging biomarkers in Gaucher disease. Adv Clin Chem 2025; 124:1-56. [PMID: 39818434 DOI: 10.1016/bs.acc.2024.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
Gaucher disease (GD) is a rare lysosomal disorder characterized by the accumulation of glycosphingolipids in macrophages resulting from glucocerebrosidase (GCase) deficiency. The accumulation of toxic substrates, which causes the hallmark symptoms of GD, is dependent on the extent of enzyme dysfunction. Accordingly, three distinct subtypes have been recognized, with type 1 GD (GD1) as the common and milder form, while types 2 (GD2) and 3 (GD3) are categorized as neuronopathic and severe. Manifestations variably include hepatosplenomegaly, anemia, thrombocytopenia, easy bruising, inflammation, bone pain and other skeletal pathologies, abnormal eye movements and neuropathy. Although the molecular basis of GD is relatively well understood, currently used biomarkers are nonspecific and inadequate for making finer distinctions between subtypes and in evaluating changes in disease status and guiding therapy. Thus, there is continued effort to investigate and identify potential biomarkers to improve GD diagnosis, monitoring and potential identification of novel therapeutic targets. Here, we provide a comprehensive review of emerging biomarkers in GD that can enhance current understanding and improve quality of life through better testing, disease management and treatment.
Collapse
Affiliation(s)
- Danielle M Luettel
- Center for Orphan Drug Research, Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN, United States
| | - Marcia R Terluk
- Center for Orphan Drug Research, Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN, United States
| | - Jaehyeok Roh
- Center for Orphan Drug Research, Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN, United States
| | - Neal J Weinreb
- Department of Human Genetics, Leonard Miller School of Medicine of University of Miami, Miami, FL, United States
| | - Reena V Kartha
- Center for Orphan Drug Research, Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN, United States.
| |
Collapse
|
4
|
Yu X, Li M, Wang C, Guan X. Glycoprotein non-metastatic melanoma protein B (GPNMB): An attractive target in atherosclerosis. Biochem Biophys Res Commun 2024; 732:150386. [PMID: 39024681 DOI: 10.1016/j.bbrc.2024.150386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/30/2024] [Accepted: 07/09/2024] [Indexed: 07/20/2024]
Abstract
Atherosclerosis (AS), the leading cause of cardiovascular diseases, is heavily influenced by inflammation, lipid accumulation, autophagy, and aging. The expression of glycoprotein non-metastatic melanoma B (GPNMB) has been observed to correlate with lipid content, inflammation, and aging, progressively increasing as atherosclerosis advances through its various stages, from baseline to early and advanced phases. However, the interaction between GPNMB and AS is controversial. Knockout of GPNMB has been shown to increase atherosclerotic plaque burden in mice. Conversely, targeted elimination of GPNMB-positive cells reduced atherosclerotic burden. These seemingly contradictory findings underscore the complexity of the issue and highlight the need for further research to reconcile these discrepancies and to elucidate the precise role of GPNMB in the pathogenesis of AS.
Collapse
Affiliation(s)
- Xiaochen Yu
- Department of Laboratory Diagnostics, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Nangang, Harbin, Heilongjiang, 150001, PR China
| | - Min Li
- Department of Laboratory Diagnostics, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Nangang, Harbin, Heilongjiang, 150001, PR China
| | - Chao Wang
- Department of Laboratory Diagnostics, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Nangang, Harbin, Heilongjiang, 150001, PR China
| | - Xiuru Guan
- Department of Laboratory Diagnostics, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Nangang, Harbin, Heilongjiang, 150001, PR China.
| |
Collapse
|
5
|
Zhu XC, Mizutani Y, Ohdake R, Tatebe H, Maeda T, Shima S, Ueda A, Ito M, Ito S, Tokuda T, Watanabe H. CSF GPNMB in Parkinson's disease: A potential association with age and microglial activation. JOURNAL OF PARKINSON'S DISEASE 2024; 14:1533-1542. [PMID: 39957200 DOI: 10.1177/1877718x241288712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2025]
Abstract
BACKGROUND Recent evidence suggests a link between glycoprotein non-metastatic melanoma protein B (GPNMB) and Parkinson's disease (PD) pathogenesis. Although elevated plasma GPNMB levels associated with disease severity have been reported in PD, cerebrospinal fluid (CSF) alterations remain elusive. OBJECTIVE To explore CSF GPNMB alterations and its clinical significance in PD. METHODS This study enrolled 118 sporadic PD patients and 40 controls. We examined the potential associations between CSF GPNMB levels and the clinical characteristics or biomarkers of neurodegenerative pathogenesis. RESULTS PD patients had higher CSF GPNMB levels than controls (p = 0.0159). In the PD group, CSF GPNMB levels correlated with age (age at examination: rs = 0.2511, p = 0.0061; age at onset: rs = 0.2800, p = 0.0021) and the severity of motor and cognitive dysfunction (MDS-UPDRS III score: rs = 0.1998, p = 0.0347; Mini-Mental State Examination score: rs = -0.1922, p = 0.0370). After correcting for multiple comparisons, the correlation with age at onset remained significant. CSF GPNMB levels were also positively correlated with CSF soluble triggering receptor expressed on myeloid cells 2 (sTREM2) levels in both the PD (rs = 0.3582, p < 0.0001) and control (rs = 0.4743, p = 0.0023) groups. Furthermore, multiple regression analysis revealed CSF sTREM2 level as the strongest determinant of CSF GPNMB levels in the PD group (t-value = 3.49, p = 0.0007). CONCLUSIONS Elevated CSF GPNMB levels, linked with age and microglial activation, may be a valuable marker for understanding the interplay between aging, neuroinflammation, and PD pathology.
Collapse
Affiliation(s)
- Xi-Chen Zhu
- Department of Neurology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
- Department of Neurology, the Wuxi No.2 People's Hospital, Jiangnan University Medical Center, Wuxi, Jiangsu Province, China
| | - Yasuaki Mizutani
- Department of Neurology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| | - Reiko Ohdake
- Department of Neurology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| | - Harutsugu Tatebe
- Department of Functional Brain Imaging, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Chiba, Japan
| | - Toshiki Maeda
- Department of Neurology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| | - Sayuri Shima
- Department of Neurology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| | - Akihiro Ueda
- Department of Neurology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| | - Mizuki Ito
- Department of Neurology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| | - Shinji Ito
- Department of Neurology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| | - Takahiko Tokuda
- Department of Functional Brain Imaging, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Chiba, Japan
| | - Hirohisa Watanabe
- Department of Neurology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| |
Collapse
|
6
|
Gibbons E, Taya M, Wu H, Lopa SH, Moss J, Henske EP, McCormack FX, Hammes SR. Glycoprotein non-metastatic melanoma protein B promotes tumor growth and is a biomarker for lymphangioleiomyomatosis. Endocr Relat Cancer 2024; 31:e230312. [PMID: 38614127 PMCID: PMC11103253 DOI: 10.1530/erc-23-0312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 04/11/2024] [Indexed: 04/15/2024]
Abstract
Lymphangioleiomyomatosis (LAM) is a rare, progressive cystic lung disease affecting almost exclusively female-sexed individuals. The cysts represent regions of lung destruction caused by smooth muscle tumors containing mutations in one of the two tuberous sclerosis (TSC) genes. mTORC1 inhibition slows but does not stop LAM advancement. Furthermore, monitoring disease progression is hindered by insufficient biomarkers. Therefore, new treatment options and biomarkers are needed. LAM cells express melanocytic markers, including glycoprotein non-metastatic melanoma protein B (GPNMB). The function of GPNMB in LAM is currently unknown; however, GPNMB's unique cell surface expression on tumor versus benign cells makes GPNMB a potential therapeutic target, and persistent release of its extracellular ectodomain suggests potential as a serum biomarker. Here, we establish that GPNMB expression is dependent on mTORC1 signaling, and that GPNMB regulates TSC2-null tumor cell invasion in vitro. Further, we demonstrate that GPNMB enhances TSC2-null xenograft tumor growth in vivo, and that ectodomain release is required for this xenograft growth. We also show that GPNMB's ectodomain is released from the cell surface of TSC2-null cells by proteases ADAM10 and 17, and we identify the protease target sequence on GPNMB. Finally, we demonstrate that GPNMB's ectodomain is present at higher levels in LAM patient serum compared to healthy controls and that ectodomain levels decrease with mTORC1 inhibition, making it a potential LAM biomarker.
Collapse
Affiliation(s)
- Erin Gibbons
- Department of Microbiology and Immunology University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Manisha Taya
- Division of Hematology and Oncology, UT Southwestern, Dallas, TX 75390, USA
| | - Huixing Wu
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Cincinnati, Cincinnati, Ohio 45267, USA
| | - Samia H Lopa
- Department of Biostatistics and Computational Biology, University of Rochester
| | - Joel Moss
- Pulmonary Branch, National Heart, Lung, and Blood Institute (NHLBI), NIH, Bethesda, Maryland 20892, USA
| | - Elizabeth P Henske
- Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Francis X McCormack
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Cincinnati, Cincinnati, Ohio 45267, USA
| | - Stephen R Hammes
- Department of Microbiology and Immunology University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| |
Collapse
|
7
|
Brody EM, Seo Y, Suh E, Amari N, Hartstone WG, Skrinak RT, Zhang H, Diaz-Ortiz ME, Weintraub D, Tropea TF, Van Deerlin VM, Chen-Plotkin AS. GPNMB Biomarker Levels in GBA1 Carriers with Lewy Body Disorders. Mov Disord 2024; 39:1065-1070. [PMID: 38610104 PMCID: PMC11209810 DOI: 10.1002/mds.29773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/13/2024] [Accepted: 02/20/2024] [Indexed: 04/14/2024] Open
Abstract
BACKGROUND The GPNMB single-nucleotide polymorphism rs199347 and GBA1 variants both associate with Lewy body disorder (LBD) risk. GPNMB encodes glycoprotein nonmetastatic melanoma protein B (GPNMB), a biomarker for GBA1-associated Gaucher's disease. OBJECTIVE The aim of this study was to determine whether GPNMB levels (1) differ in LBD with and without GBA1 variants and (2) associate with rs199347 genotype. METHODS We quantified GPNMB levels in plasma and cerebrospinal fluid (CSF) from 124 individuals with LBD with one GBA1 variant (121 plasma, 14 CSF), 631 individuals with LBD without GBA1 variants (626 plasma, 41 CSF), 9 neurologically normal individuals with one GBA1 variant (plasma), and 2 individuals with two GBA1 variants (plasma). We tested for associations between GPNMB levels and rs199347 or GBA1 status. RESULTS GPNMB levels associate with rs199347 genotype in plasma (P = 0.022) and CSF (P = 0.007), but not with GBA1 status. CONCLUSIONS rs199347 is a protein quantitative trait locus for GPNMB. GPNMB levels are unaltered in individuals carrying one GBA1 variant. © 2024 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Eliza M. Brody
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Yunji Seo
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - EunRan Suh
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Noor Amari
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Whitney G. Hartstone
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - R. Tyler Skrinak
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Hanwen Zhang
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Maria E. Diaz-Ortiz
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Daniel Weintraub
- Center for Neurodegenerative Disease Research, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Thomas F. Tropea
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Vivianna M. Van Deerlin
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Alice S. Chen-Plotkin
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
8
|
Bianco V, Kratky D. Glycoprotein Non-Metastatic Protein B (GPNMB): The Missing Link Between Lysosomes and Obesity. Exp Clin Endocrinol Diabetes 2023; 131:639-645. [PMID: 37956971 PMCID: PMC10700020 DOI: 10.1055/a-2192-0101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 10/06/2023] [Indexed: 11/21/2023]
Abstract
As a result of an unhealthy diet and limited physical activity, obesity has become a widespread pandemic worldwide and is an important predictor for the development of cardiovascular disease. Obesity is often characterized by a pro-inflammatory environment in white adipose tissue (WAT), mainly due to increased macrophage infiltration. These immune cells boost their lipid concentrations by accumulating the content of dying adipocytes. As the lysosome is highly involved in lipid handling, the progressive lipid accumulation may result in lysosomal stress and a metabolic shift. Recent studies have identified glycoprotein non-metastatic melanoma protein B (GPNMB) as a novel marker of inflammatory diseases. GPNMB is a type I transmembrane protein on the cell surface of various cell types, such as macrophages, dendritic cells, osteoblasts, and microglia, from which it can be proteolytically cleaved into a soluble molecule. It is induced by lysosomal stress via microphthalmia-associated transcription factor and thus has been found to be upregulated in many lysosomal storage disorders. In addition, a clear connection between GPNMB and obesity was recently established. GPNMB was shown to have protective and anti-inflammatory effects in most cases, preventing the progression of obesity-related metabolic disorders. In contrast, soluble GPNMB likely has the opposite effect and promotes lipogenesis in WAT. This review aims to summarize and clarify the role of GPNMB in the progression of obesity and to highlight its potential use as a biomarker for lipid-associated disorders.
Collapse
Affiliation(s)
- Valentina Bianco
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry,
Medical University of Graz, Graz, Austria
| | - Dagmar Kratky
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry,
Medical University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| |
Collapse
|
9
|
Gillett DA, Wallings RL, Uriarte Huarte O, Tansey MG. Progranulin and GPNMB: interactions in endo-lysosome function and inflammation in neurodegenerative disease. J Neuroinflammation 2023; 20:286. [PMID: 38037070 PMCID: PMC10688479 DOI: 10.1186/s12974-023-02965-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 11/21/2023] [Indexed: 12/02/2023] Open
Abstract
BACKGROUND Alterations in progranulin (PGRN) expression are associated with multiple neurodegenerative diseases (NDs), including frontotemporal dementia (FTD), Alzheimer's disease (AD), Parkinson's disease (PD), and lysosomal storage disorders (LSDs). Recently, the loss of PGRN was shown to result in endo-lysosomal system dysfunction and an age-dependent increase in the expression of another protein associated with NDs, glycoprotein non-metastatic B (GPNMB). MAIN BODY It is unclear what role GPNMB plays in the context of PGRN insufficiency and how they interact and contribute to the development or progression of NDs. This review focuses on the interplay between these two critical proteins within the context of endo-lysosomal health, immune function, and inflammation in their contribution to NDs. SHORT CONCLUSION PGRN and GPNMB are interrelated proteins that regulate disease-relevant processes and may have value as therapeutic targets to delay disease progression or extend therapeutic windows.
Collapse
Affiliation(s)
- Drew A Gillett
- Center for Translational Research in Neurodegenerative Disease (CTRND), University of Florida, Gainesville, FL, USA
- Department of Neuroscience, University of Florida, Gainesville, FL, USA
- McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Rebecca L Wallings
- Center for Translational Research in Neurodegenerative Disease (CTRND), University of Florida, Gainesville, FL, USA
- Department of Neuroscience, University of Florida, Gainesville, FL, USA
- McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Oihane Uriarte Huarte
- Center for Translational Research in Neurodegenerative Disease (CTRND), University of Florida, Gainesville, FL, USA
- Department of Neuroscience, University of Florida, Gainesville, FL, USA
- McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Malú Gámez Tansey
- Center for Translational Research in Neurodegenerative Disease (CTRND), University of Florida, Gainesville, FL, USA.
- Department of Neuroscience, University of Florida, Gainesville, FL, USA.
- McKnight Brain Institute, University of Florida, Gainesville, FL, USA.
- Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
10
|
Spanos F, Deleidi M. Glycolipids in Parkinson's disease: beyond neuronal function. FEBS Open Bio 2023; 13:1558-1579. [PMID: 37219461 PMCID: PMC10476577 DOI: 10.1002/2211-5463.13651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/10/2023] [Accepted: 05/22/2023] [Indexed: 05/24/2023] Open
Abstract
Glycolipid balance is key to normal body function, and its alteration can lead to a variety of diseases involving multiple organs and tissues. Glycolipid disturbances are also involved in Parkinson's disease (PD) pathogenesis and aging. Increasing evidence suggests that glycolipids affect cellular functions beyond the brain, including the peripheral immune system, intestinal barrier, and immunity. Hence, the interplay between aging, genetic predisposition, and environmental exposures could initiate systemic and local glycolipid changes that lead to inflammatory reactions and neuronal dysfunction. In this review, we discuss recent advances in the link between glycolipid metabolism and immune function and how these metabolic changes can exacerbate immunological contributions to neurodegenerative diseases, with a focus on PD. Further understanding of the cellular and molecular mechanisms that control glycolipid pathways and their impact on both peripheral tissues and the brain will help unravel how glycolipids shape immune and nervous system communication and the development of novel drugs to prevent PD and promote healthy aging.
Collapse
Affiliation(s)
- Fokion Spanos
- Institut Imagine, INSERM UMR1163Paris Cité UniversityFrance
- Aligning Science Across Parkinson's (ASAP) Collaborative Research NetworkChevy ChaseMDUSA
| | - Michela Deleidi
- Institut Imagine, INSERM UMR1163Paris Cité UniversityFrance
- Aligning Science Across Parkinson's (ASAP) Collaborative Research NetworkChevy ChaseMDUSA
- Department of Neurodegenerative Diseases, Center of Neurology, Hertie Institute for Clinical Brain ResearchUniversity of TübingenGermany
| |
Collapse
|
11
|
Eskes ECB, van der Lienden MJC, Sjouke B, van Vliet L, Brands MMMG, Hollak CEM, Aerts JMFG. Glycoprotein non-metastatic protein B (GPNMB) plasma values in patients with chronic visceral acid sphingomyelinase deficiency. Mol Genet Metab 2023; 139:107631. [PMID: 37453187 DOI: 10.1016/j.ymgme.2023.107631] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/23/2023] [Accepted: 06/23/2023] [Indexed: 07/18/2023]
Abstract
Acid sphingomyelinase deficiency (ASMD) is a rare LSD characterized by lysosomal accumulation of sphingomyelin, primarily in macrophages. With the recent availability of enzyme replacement therapy, the need for biomarkers to assess severity of disease has increased. Glycoprotein non-metastatic protein B (GPNMB) plasma levels were demonstrated to be elevated in Gaucher disease. Given the similarities between Gaucher disease and ASMD, the hypothesis was that GPNMB might be a potential biochemical marker for ASMD as well. Plasma samples of ASMD patients were analyzed and GPNMB plasma levels were compared to those of healthy volunteers. Visceral disease severity was classified as severe when splenic, hepatic and pulmonary manifestations were all present and as mild to moderate if this was not the case. Median GPNMB levels in 67 samples of 19 ASMD patients were 185 ng/ml (range 70-811 ng/ml) and were increased compared to 10 healthy controls (median 36 ng/ml, range 9-175 ng/ml, p < 0.001). Median plasma GPNMB levels of ASMD patients with mild to moderate visceral disease compared to patients with severe visceral disease differed significantly and did not overlap (respectively 109 ng/ml, range 70-304 ng/ml and 325 ng/ml, range 165-811 ng/ml, p < 0.001). Correlations with other biochemical markers of ASMD (i.e. chitotriosidase activity, CCL18 and lysosphingomyelin, respectively R = 0.28, p = 0.270; R = 0.34, p = 0.180; R = 0.39, p = 0.100) and clinical parameters (i.e. spleen volume, liver volume, diffusion capacity and forced vital capacity, respectively R = 0.59, p = 0.061, R = 0.5, p = 0.100, R = 0.065, p = 0.810, R = -0.38, p = 0.160) could not be established within this study. The results of this study suggest that GPNMB might be suitable as a biomarker of visceral disease severity in ASMD. Correlations between GPNMB and biochemical or clinical markers of ASMD and response to therapy have to be studied in a larger cohort.
Collapse
Affiliation(s)
- Eline C B Eskes
- Amsterdam UMC, University of Amsterdam, Department of Endocrinology and Metabolism, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands; Amsterdam Gastroenterology Endocrinology Metabolism, Inborn Errors of Metabolism, Amsterdam, the Netherlands
| | - Martijn J C van der Lienden
- Leiden Institute of Chemistry, University of Leiden, Department of Medical Biochemistry, Einsteinweg 55, 2333 CC Leiden, the Netherlands
| | - Barbara Sjouke
- Amsterdam UMC, University of Amsterdam, Department of Endocrinology and Metabolism, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands; Amsterdam Gastroenterology Endocrinology Metabolism, Inborn Errors of Metabolism, Amsterdam, the Netherlands
| | - Laura van Vliet
- Leiden Institute of Chemistry, University of Leiden, Department of Medical Biochemistry, Einsteinweg 55, 2333 CC Leiden, the Netherlands
| | - Marion M M G Brands
- Amsterdam Gastroenterology Endocrinology Metabolism, Inborn Errors of Metabolism, Amsterdam, the Netherlands; Amsterdam UMC, University of Amsterdam, Emma Children's Hospital, Department of Pediatrics, Division of Metabolic Diseases, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
| | - Carla E M Hollak
- Amsterdam UMC, University of Amsterdam, Department of Endocrinology and Metabolism, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands; Amsterdam Gastroenterology Endocrinology Metabolism, Inborn Errors of Metabolism, Amsterdam, the Netherlands
| | - Johannes M F G Aerts
- Leiden Institute of Chemistry, University of Leiden, Department of Medical Biochemistry, Einsteinweg 55, 2333 CC Leiden, the Netherlands.
| |
Collapse
|
12
|
Zhang C, Gawri R, Lau YK, Spruce LA, Fazelinia H, Jiang Z, Jo SY, Scanzello CR, Mai W, Dodge GR, Casal ML, Smith LJ. Proteomics identifies novel biomarkers of synovial joint disease in a canine model of mucopolysaccharidosis I. Mol Genet Metab 2023; 138:107371. [PMID: 36709534 PMCID: PMC9918716 DOI: 10.1016/j.ymgme.2023.107371] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 01/01/2023] [Accepted: 01/02/2023] [Indexed: 01/05/2023]
Abstract
Mucopolysaccharidosis I is a lysosomal storage disorder characterized by deficient alpha-L-iduronidase activity, leading to abnormal accumulation of glycosaminoglycans in cells and tissues. Synovial joint disease is prevalent and significantly reduces patient quality of life. There is a critical need for improved understanding of joint disease pathophysiology in MPS I, including specific biomarkers to predict and monitor joint disease progression, and response to treatment. The objective of this study was to leverage the naturally-occurring MPS I canine model and undertake an unbiased proteomic screen to identify systemic biomarkers predictive of local joint disease in MPS I. Synovial fluid and serum samples were collected from MPS I and healthy dogs at 12 months-of-age, and protein abundance characterized using liquid chromatography tandem mass spectrometry. Stifle joints were evaluated postmortem using magnetic resonance imaging (MRI) and histology. Proteomics identified 40 proteins for which abundance was significantly correlated between serum and synovial fluid, including markers of inflammatory joint disease and lysosomal dysfunction. Elevated expression of three biomarker candidates, matrix metalloproteinase 19, inter-alpha-trypsin inhibitor heavy-chain 3 and alpha-1-microglobulin, was confirmed in MPS I cartilage, and serum abundance of these molecules was found to correlate with MRI and histological degenerative grades. The candidate biomarkers identified have the potential to improve patient care by facilitating minimally-invasive, specific assessment of joint disease progression and response to therapeutic intervention.
Collapse
Affiliation(s)
- Chenghao Zhang
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, 3450 Hamilton Walk, Philadelphia, PA 19104, USA
| | - Rahul Gawri
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, 3450 Hamilton Walk, Philadelphia, PA 19104, USA
| | - Yian Khai Lau
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, 3450 Hamilton Walk, Philadelphia, PA 19104, USA
| | - Lynn A Spruce
- Proteomics Core Facility, Children's Hospital of Philadelphia, 3401 Civic Center Blvd, Philadelphia, PA 19104, United States of America
| | - Hossein Fazelinia
- Proteomics Core Facility, Children's Hospital of Philadelphia, 3401 Civic Center Blvd, Philadelphia, PA 19104, United States of America
| | - Zhirui Jiang
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, 3450 Hamilton Walk, Philadelphia, PA 19104, USA
| | - Stephanie Y Jo
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, USA
| | - Carla R Scanzello
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, USA; Department of Medicine, Corporal Michael J. Crescenz VA Medical Center, 3900 Woodland Ave, Philadelphia, PA 19104, USA
| | - Wilfried Mai
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, 3900 Spruce St, Philadelphia, PA 19104, USA
| | - George R Dodge
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, 3450 Hamilton Walk, Philadelphia, PA 19104, USA
| | - Margret L Casal
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, 3900 Spruce St, Philadelphia, PA 19104, USA
| | - Lachlan J Smith
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, 3450 Hamilton Walk, Philadelphia, PA 19104, USA; Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, USA.
| |
Collapse
|
13
|
Dardis A, Michelakakis H, Rozenfeld P, Fumic K, Wagner J, Pavan E, Fuller M, Revel-Vilk S, Hughes D, Cox T, Aerts J. Patient centered guidelines for the laboratory diagnosis of Gaucher disease type 1. Orphanet J Rare Dis 2022; 17:442. [PMID: 36544230 PMCID: PMC9768924 DOI: 10.1186/s13023-022-02573-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 11/20/2022] [Indexed: 12/24/2022] Open
Abstract
Gaucher disease (GD) is an autosomal recessive lysosomal storage disorder due to the deficient activity of the acid beta-glucosidase (GCase) enzyme, resulting in the progressive lysosomal accumulation of glucosylceramide (GlcCer) and its deacylated derivate, glucosylsphingosine (GlcSph). GCase is encoded by the GBA1 gene, located on chromosome 1q21 16 kb upstream from a highly homologous pseudogene. To date, more than 400 GBA1 pathogenic variants have been reported, many of them derived from recombination events between the gene and the pseudogene. In the last years, the increased access to new technologies has led to an exponential growth in the number of diagnostic laboratories offering GD testing. However, both biochemical and genetic diagnosis of GD are challenging and to date no specific evidence-based guidelines for the laboratory diagnosis of GD have been published. The objective of the guidelines presented here is to provide evidence-based recommendations for the technical implementation and interpretation of biochemical and genetic testing for the diagnosis of GD to ensure a timely and accurate diagnosis for patients with GD worldwide. The guidelines have been developed by members of the Diagnostic Working group of the International Working Group of Gaucher Disease (IWGGD), a non-profit network established to promote clinical and basic research into GD for the ultimate purpose of improving the lives of patients with this disease. One of the goals of the IWGGD is to support equitable access to diagnosis of GD and to standardize procedures to ensure an accurate diagnosis. Therefore, a guideline development group consisting of biochemists and geneticists working in the field of GD diagnosis was established and a list of topics to be discussed was selected. In these guidelines, twenty recommendations are provided based on information gathered through a systematic review of the literature and two different diagnostic algorithms are presented, considering the geographical differences in the access to diagnostic services. Besides, several gaps in the current diagnostic workflow were identified and actions to fulfill them were taken within the IWGGD. We believe that the implementation of recommendations provided in these guidelines will promote an equitable, timely and accurate diagnosis for patients with GD worldwide.
Collapse
Affiliation(s)
- A Dardis
- Regional Coordinator Centre for Rare Disease, University Hospital of Udine, P.Le Santa Maria Della Misericordia 15, 33100, Udine, Italy.
| | - H Michelakakis
- Department of Enzymology and Cellular Function, Institute of Child Health, Athens, Greece
| | - P Rozenfeld
- Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Instituto de Estudios Inmunológicos Y Fisiopatológicos (IIFP), UNLP, CONICET, Asociado CIC PBA, La Plata, Argentina
| | - K Fumic
- Department for Laboratory Diagnostics, University Hospital Centre Zagreb and School of Medicine, Zagreb, Croatia
| | - J Wagner
- Department of Medical Biology and Genetics, Faculty of Medicine, J.J. Strossmayer University, Osijek, Croatia
- International Gaucher Alliance, Dursley, UK
| | - E Pavan
- Regional Coordinator Centre for Rare Disease, University Hospital of Udine, P.Le Santa Maria Della Misericordia 15, 33100, Udine, Italy
| | - M Fuller
- Genetics and Molecular Pathology, SA Pathology at Women's and Children's Hospital and Adelaide Medical School, University of Adelaide, Adelaide, SA, 5005, Australia
| | - S Revel-Vilk
- Gaucher Unit, Shaare Zedek Medical Center, Jerusalem, Israel
- Faculty of Medicine, Hebrew University, Jerusalem, Israel
| | - D Hughes
- Lysosomal Storage Disorders Unit, Royal Free London NHS Foundation Trust and University College London, London, UK
| | - T Cox
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - J Aerts
- Department of Medical Biochemistry, Leiden Institute of Chemistry, Leiden, The Netherlands
| |
Collapse
|
14
|
Weinreb NJ, Goker-Alpan O, Kishnani PS, Longo N, Burrow TA, Bernat JA, Gupta P, Henderson N, Pedro H, Prada CE, Vats D, Pathak RR, Wright E, Ficicioglu C. The diagnosis and management of Gaucher disease in pediatric patients: Where do we go from here? Mol Genet Metab 2022; 136:4-21. [PMID: 35367141 DOI: 10.1016/j.ymgme.2022.03.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 03/04/2022] [Accepted: 03/04/2022] [Indexed: 02/07/2023]
Abstract
Gaucher disease (GD) is an autosomal recessive inherited lysosomal storage disease that often presents in early childhood and is associated with damage to multiple organ systems. Many challenges associated with GD diagnosis and management arise from the considerable heterogeneity of disease presentations and natural history. Phenotypic classification has traditionally been based on the absence (in type 1 GD) or presence (in types 2 and 3 GD) of neurological involvement of varying severity. However, patient management and prediction of prognosis may be best served by a dynamic, evolving definition of individual phenotype rather than by a rigid system of classification. Patients may experience considerable delays in diagnosis, which can potentially be reduced by effective screening programs; however, program implementation can involve ethical and practical challenges. Variation in the clinical course of GD and an uncertain prognosis also complicate decisions concerning treatment initiation, with differing stakeholder perspectives around efficacy and acceptable cost/benefit ratio. We review the challenges faced by physicians in the diagnosis and management of GD in pediatric patients. We also consider future directions and goals, including acceleration of accurate diagnosis, improvements in the understanding of disease heterogeneity (natural history, response to treatment, and prognosis), the need for new treatments to address unmet needs for all forms of GD, and refinement of the tools for monitoring disease progression and treatment efficacy, such as specific biomarkers.
Collapse
Affiliation(s)
- Neal J Weinreb
- Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, USA.
| | - Ozlem Goker-Alpan
- Lysosomal and Rare Disorders Research and Treatment Center, Fairfax, VA, USA.
| | - Priya S Kishnani
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, USA.
| | - Nicola Longo
- Division of Medical Genetics, University of Utah, Salt Lake City, UT, USA.
| | - T Andrew Burrow
- Department of Pediatrics, University of Arkansas for Medical Sciences and Arkansas Children's Hospital, Little Rock, AR, USA.
| | - John A Bernat
- Division of Medical Genetics and Genomics, Stead Family Department of Pediatrics, University of Iowa, Iowa City, IA, USA.
| | - Punita Gupta
- St Joseph's University Hospital, Paterson, NJ, USA.
| | - Nadene Henderson
- Division of Genetic and Genomic Medicine, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA.
| | - Helio Pedro
- Center for Genetic and Genomic Medicine, Hackensack University Medical Center, Hackensack, NJ, USA.
| | - Carlos E Prada
- Division of Genetics, Birth Defects & Metabolism, Ann & Robert H. Lurie Children's Hospital and Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| | - Divya Vats
- Kaiser Permanente Southern California, Los Angeles, CA, USA.
| | - Ravi R Pathak
- Takeda Pharmaceuticals USA, Inc., Lexington, MA, USA.
| | | | - Can Ficicioglu
- Division of Human Genetics and Metabolism, The Children's Hospital of Philadelphia, Philadelphia and the Perelman School of Medicine at the University of Pennsylvania, PA, USA.
| |
Collapse
|
15
|
GBA Variants and Parkinson Disease: Mechanisms and Treatments. Cells 2022; 11:cells11081261. [PMID: 35455941 PMCID: PMC9029385 DOI: 10.3390/cells11081261] [Citation(s) in RCA: 105] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/01/2022] [Accepted: 04/05/2022] [Indexed: 01/01/2023] Open
Abstract
The GBA gene encodes for the lysosomal enzyme glucocerebrosidase (GCase), which maintains glycosphingolipid homeostasis. Approximately 5–15% of PD patients have mutations in the GBA gene, making it numerically the most important genetic risk factor for Parkinson disease (PD). Clinically, GBA-associated PD is identical to sporadic PD, aside from the earlier age at onset (AAO), more frequent cognitive impairment and more rapid progression. Mutations in GBA can be associated with loss- and gain-of-function mechanisms. A key hallmark of PD is the presence of intraneuronal proteinaceous inclusions named Lewy bodies, which are made up primarily of alpha-synuclein. Mutations in the GBA gene may lead to loss of GCase activity and lysosomal dysfunction, which may impair alpha-synuclein metabolism. Models of GCase deficiency demonstrate dysfunction of the autophagic-lysosomal pathway and subsequent accumulation of alpha-synuclein. This dysfunction can also lead to aberrant lipid metabolism, including the accumulation of glycosphingolipids, glucosylceramide and glucosylsphingosine. Certain mutations cause GCase to be misfolded and retained in the endoplasmic reticulum (ER), activating stress responses including the unfolded protein response (UPR), which may contribute to neurodegeneration. In addition to these mechanisms, a GCase deficiency has also been associated with mitochondrial dysfunction and neuroinflammation, which have been implicated in the pathogenesis of PD. This review discusses the pathways associated with GBA-PD and highlights potential treatments which may act to target GCase and prevent neurodegeneration.
Collapse
|
16
|
Consequences of excessive glucosylsphingosine in glucocerebrosidase-deficient zebrafish. J Lipid Res 2022; 63:100199. [PMID: 35315333 PMCID: PMC9058576 DOI: 10.1016/j.jlr.2022.100199] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 02/26/2022] [Accepted: 03/08/2022] [Indexed: 12/01/2022] Open
Abstract
In Gaucher disease (GD), the deficiency of glucocerebrosidase causes lysosomal accumulation of glucosylceramide (GlcCer), which is partly converted by acid ceramidase to glucosylsphingosine (GlcSph) in the lysosome. Chronically elevated blood and tissue GlcSph is thought to contribute to symptoms in GD patients as well as to increased risk for Parkinson’s disease. On the other hand, formation of GlcSph may be beneficial since the water soluble sphingoid base is excreted via urine and bile. To study the role of excessive GlcSph formation during glucocerebrosidase deficiency, we studied zebrafish that have two orthologs of acid ceramidase, Asah1a and Asah1b. Only the latter is involved in the formation of GlcSph in glucocerebrosidase-deficient zebrafish as revealed by knockouts of Asah1a or Asah1b with glucocerebrosidase deficiency (either pharmacologically induced or genetic). Comparison of zebrafish with excessive GlcSph (gba1-/- fish) and without GlcSph (gba1-/-:asah1b-/- fish) allowed us to study the consequences of chronic high levels of GlcSph. Prevention of excessive GlcSph in gba1-/-:asah1b-/- fish did not restrict storage cells, GlcCer accumulation, or neuroinflammation. However, GD fish lacking excessive GlcSph show an ameliorated course of disease reflected by significantly increased lifespan, delayed locomotor abnormality, and delayed development of an abnormal curved back posture. The loss of tyrosine hydroxylase 1 (th1) mRNA, a marker of dopaminergic neurons, is slowed down in brain of GD fish lacking excessive GlcSph. In conclusion, in the zebrafish GD model, excess GlcSph has little impact on (neuro)inflammation or the presence of GlcCer-laden macrophages but rather seems harmful to th1-positive dopaminergic neurons.
Collapse
|
17
|
Glycomic and Glycoproteomic Techniques in Neurodegenerative Disorders and Neurotrauma: Towards Personalized Markers. Cells 2022; 11:cells11030581. [PMID: 35159390 PMCID: PMC8834236 DOI: 10.3390/cells11030581] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/22/2022] [Accepted: 02/03/2022] [Indexed: 12/16/2022] Open
Abstract
The proteome represents all the proteins expressed by a genome, a cell, a tissue, or an organism at any given time under defined physiological or pathological circumstances. Proteomic analysis has provided unparalleled opportunities for the discovery of expression patterns of proteins in a biological system, yielding precise and inclusive data about the system. Advances in the proteomics field opened the door to wider knowledge of the mechanisms underlying various post-translational modifications (PTMs) of proteins, including glycosylation. As of yet, the role of most of these PTMs remains unidentified. In this state-of-the-art review, we present a synopsis of glycosylation processes and the pathophysiological conditions that might ensue secondary to glycosylation shortcomings. The dynamics of protein glycosylation, a crucial mechanism that allows gene and pathway regulation, is described. We also explain how-at a biomolecular level-mutations in glycosylation-related genes may lead to neuropsychiatric manifestations and neurodegenerative disorders. We then analyze the shortcomings of glycoproteomic studies, putting into perspective their downfalls and the different advanced enrichment techniques that emanated to overcome some of these challenges. Furthermore, we summarize studies tackling the association between glycosylation and neuropsychiatric disorders and explore glycoproteomic changes in neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, Huntington disease, multiple sclerosis, and amyotrophic lateral sclerosis. We finally conclude with the role of glycomics in the area of traumatic brain injury (TBI) and provide perspectives on the clinical application of glycoproteomics as potential diagnostic tools and their application in personalized medicine.
Collapse
|
18
|
Nickl B, Qadri F, Bader M. Anti-inflammatory role of Gpnmb in adipose tissue of mice. Sci Rep 2021; 11:19614. [PMID: 34608215 PMCID: PMC8490452 DOI: 10.1038/s41598-021-99090-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 09/20/2021] [Indexed: 12/31/2022] Open
Abstract
Obesity can cause a chronic, low-grade inflammation, which is a critical step in the development of type II diabetes and cardiovascular diseases. Inflammation is associated with the expression of glycoprotein nonmetastatic melanoma protein b (Gpnmb), which is mainly expressed by macrophages and dendritic cells. We generated a Gpnmb-knockout mouse line using Crispr-Cas9 to assess the role of Gpnmb in a diet-induced obesity. The absence of Gpnmb did not affect body weight gain and blood lipid parameters. While wildtype animals became obese but remained otherwise metabolically healthy, Gpnmb-knockout animals developed, in addition to obesity, symptoms of metabolic syndrome such as adipose tissue inflammation, insulin resistance and liver fibrosis. We observed a strong Gpnmb expression in adipose tissue macrophages in wildtype animals and a decreased expression of most macrophage-related genes independent of their inflammatory function. This was corroborated by in vitro data showing that Gpnmb was mostly expressed by reparative macrophages while only pro-inflammatory stimuli induced shedding of Gpnmb. The data suggest that Gpnmb is ameliorating adipose tissue inflammation independent of the polarization of macrophages. Taken together, the data suggest an immune-balancing function of Gpnmb that could delay the metabolic damage caused by the induction of obesity.
Collapse
Affiliation(s)
- Bernadette Nickl
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Robert-Rössle-Str. 10, 13125, Berlin, Germany.,Berlin Institute of Health at Charité - Universitätsmedizin Berlin, 10178, Berlin, Germany
| | - Fatimunnisa Qadri
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Robert-Rössle-Str. 10, 13125, Berlin, Germany
| | - Michael Bader
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Robert-Rössle-Str. 10, 13125, Berlin, Germany. .,Berlin Institute of Health at Charité - Universitätsmedizin Berlin, 10178, Berlin, Germany. .,German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany. .,Charité University Medicine, 10117, Berlin, Germany. .,Institute for Biology, University of Lübeck, 23538, Lübeck, Germany.
| |
Collapse
|
19
|
Kleytman N, Ruan J, Ruan A, Zhang B, Murugesan V, Lin H, Guo L, Klinger K, Mistry PK. Incremental biomarker and clinical outcomes after switch from enzyme therapy to eliglustat substrate reduction therapy in Gaucher disease. Mol Genet Metab Rep 2021; 29:100798. [PMID: 34485083 PMCID: PMC8408524 DOI: 10.1016/j.ymgmr.2021.100798] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 08/24/2021] [Indexed: 11/28/2022] Open
Abstract
In Gaucher disease (GD), genetic deficiency of acid β-glucosidase leads to accumulation of its substrate glucosylceramide (GlcCer) and glucosylsphingosine (GlcSph). Lipid-laden cells, most prominently seen as macrophages engorged with GlcCer and GlcSph-laden lysosomes, trigger chronic metabolic inflammation and multisystemic phenotypes. Among the pleiotropic effects of inflammatory cascades, the induction of glucosylceramide synthase accentuates the primary metabolic defect. First-line therapies for adults with GD type 1 include Enzyme Replacement Therapy (ERT) and eliglustat Substrate Reduction Therapy (SRT). The ENCORE phase 3 clinical trial of eliglustat demonstrated non-inferiority compared to ERT. It is not known whether switching stable patients from long-term ERT to SRT results in the incremental reversal of the disease phenotype and its surrogate indicators. Herein, we report real-world experience from a single tertiary referral center of 38 adult GD type 1 patients, stable on long-term ERT (mean 13.3 years), who switched to eliglustat SRT (mean 3.1 years). After switch to SRT, there was significant reduction in spleen volume (P = 0.003) while liver volume, which was normal at baseline, remained unchanged. Platelet counts increased significantly (P = 0.026). Concomitantly, there was reduction of three validated biomarkers of Gaucher disease activity: plasma GlcSph decreased from 63.7 ng/ml (95% CI, 37.6-89.8) to 26.1 ng/ml (95% CI, 15.7-36.6) (P < 0.0001); chitotriosidase fell from 1136.6 nmol/ml/h (95% CI, 144.7-2128.6) to 466.9 nmol/ml/h (95% CI, 209.9-723.9) (P = 0.002); and glycoprotein non-metastatic melanoma B (gpNMB) decreased from 59.3 ng/ml (95% CI, 39.7-78.9) to 43.6 ng/ml (95% CI, 30.7-56.6) (P = 0.0006). There were no episodes of avascular necrosis or fractures in patients on SRT. Patients reported favorable experiences of switching from alternate week infusions to oral therapy. Collectively, these results demonstrate that the switch to eliglustat SRT from ERT leads to incremental response, even in stable patients after long-term ERT.
Collapse
Affiliation(s)
| | - Jiapeng Ruan
- Yale Internal Medicine: Digestive Diseases, New Haven, CT, USA
| | - Audrey Ruan
- Yale Internal Medicine: Digestive Diseases, New Haven, CT, USA
| | - Bailin Zhang
- Translational Sciences, Sanofi Genzyme, Cambridge, MA, USA
| | | | - Haiqun Lin
- Yale School of Public Health, New Haven, CT, USA
| | - Lilu Guo
- Translational Sciences, Sanofi Genzyme, Cambridge, MA, USA
| | | | - Pramod K Mistry
- Yale Internal Medicine: Digestive Diseases, New Haven, CT, USA
| |
Collapse
|
20
|
Rodriguez-Gil JL, Baxter LL, Watkins-Chow DE, Johnson NL, Davidson CD, Carlson SR, Incao AA, Wallom KL, Farhat NY, Platt FM, Dale RK, Porter FD, Pavan WJ. Transcriptome of HPβCD-treated Niemann-pick disease type C1 cells highlights GPNMB as a biomarker for therapeutics. Hum Mol Genet 2021; 30:2456-2468. [PMID: 34296265 DOI: 10.1093/hmg/ddab194] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/20/2021] [Accepted: 06/29/2021] [Indexed: 11/12/2022] Open
Abstract
The rare, fatal neurodegenerative disorder Niemann-Pick disease type C1 (NPC1) arises from lysosomal accumulation of unesterified cholesterol and glycosphingolipids. These subcellular pathologies lead to phenotypes of hepatosplenomegaly, neurological degeneration and premature death. The timing and severity of NPC1 clinical presentation is extremely heterogeneous. This study analyzed RNA-Seq data from 42 NPC1 patient-derived, primary fibroblast cell lines to determine transcriptional changes induced by treatment with 2-hydroxypropyl-β-cyclodextrin (HPβCD), a compound currently under investigation in clinical trials. A total of 485 HPβCD-responsive genes were identified. Pathway enrichment analysis of these genes showed significant involvement in cholesterol and lipid biosynthesis. Furthermore, immunohistochemistry of the cerebellum as well as measurements of serum from Npc1m1N null mice treated with HPβCD and adeno-associated virus (AAV) gene therapy suggests that one of the identified genes, GPNMB, may serve as a useful biomarker of treatment response in NPC1 disease. Overall, this large NPC1 patient-derived dataset provides a comprehensive foundation for understanding the genomic response to HPβCD treatment.
Collapse
Affiliation(s)
- Jorge L Rodriguez-Gil
- Genomics, Development and Disease Section, Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health.,Medical Scientist Training Program, University of Wisconsin-Madison School of Medicine and Public Health
| | - Laura L Baxter
- Genomics, Development and Disease Section, Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health
| | - Dawn E Watkins-Chow
- Genomics, Development and Disease Section, Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health
| | - Nicholas L Johnson
- Bioinformatics and Scientific Programming Core, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health
| | - Cristin D Davidson
- Genomics, Development and Disease Section, Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health
| | - Steven R Carlson
- Genomics, Development and Disease Section, Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health
| | - Arturo A Incao
- Genomics, Development and Disease Section, Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health
| | | | | | - Nicole Y Farhat
- Division of Translational Medicine, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health
| | | | - Ryan K Dale
- Bioinformatics and Scientific Programming Core, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health
| | - Forbes D Porter
- Division of Translational Medicine, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health
| | - William J Pavan
- Genomics, Development and Disease Section, Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health
| |
Collapse
|
21
|
van Eijk M, Aerts JMFG. The Unique Phenotype of Lipid-Laden Macrophages. Int J Mol Sci 2021; 22:ijms22084039. [PMID: 33919858 PMCID: PMC8070766 DOI: 10.3390/ijms22084039] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/10/2021] [Accepted: 04/12/2021] [Indexed: 12/16/2022] Open
Abstract
Macrophages are key multi-talented cells of the innate immune system and are equipped with receptors involved in damage and pathogen recognition with connected immune response guiding signaling systems. In addition, macrophages have various systems that are involved in the uptake of extracellular and intracellular cargo. The lysosomes in macrophages play a central role in the digestion of all sorts of macromolecules and the entry of nutrients to the cytosol, and, thus, the regulation of endocytic processes and autophagy. Simplistically viewed, two macrophage phenotype extremes exist. On one end of the spectrum, the classically activated pro-inflammatory M1 cells are present, and, on the other end, alternatively activated anti-inflammatory M2 cells. A unique macrophage population arises when lipid accumulation occurs, either caused by flaws in the catabolic machinery, which is observed in lysosomal storage disorders, or as a result of an acquired condition, which is found in multiple sclerosis, obesity, and cardiovascular disease. The accompanying overload causes a unique metabolic activation phenotype, which is discussed here, and, consequently, a unifying phenotype is proposed.
Collapse
|
22
|
Hamada K, Ferguson LB, Mayfield RD, Krishnan HR, Maienschein-Cline M, Lasek AW. Binge-like ethanol drinking activates anaplastic lymphoma kinase signaling and increases the expression of STAT3 target genes in the mouse hippocampus and prefrontal cortex. GENES, BRAIN, AND BEHAVIOR 2021; 20:e12729. [PMID: 33641239 PMCID: PMC8944393 DOI: 10.1111/gbb.12729] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/04/2021] [Accepted: 02/26/2021] [Indexed: 02/03/2023]
Abstract
Alcohol use disorder (AUD) has a complex pathogenesis, making it a difficult disorder to treat. Identifying relevant signaling pathways in the brain may be useful for finding new pharmacological targets to treat AUD. The receptor tyrosine kinase anaplastic lymphoma kinase (ALK) activates the transcription factor STAT3 in response to ethanol in cell lines. Here, we show ALK activation and upregulation of known STAT3 target genes (Socs3, Gfap and Tnfrsf1a) in the prefrontal cortex (PFC) and ventral hippocampus (HPC) of mice after 4 days of binge-like ethanol drinking. Mice treated with the STAT3 inhibitor stattic drank less ethanol than vehicle-treated mice, demonstrating the behavioral importance of STAT3. To identify novel ethanol-induced target genes downstream of the ALK and STAT3 pathway, we analyzed the NIH LINCS L1000 database for gene signature overlap between ALK inhibitor (alectinib and NVP-TAE684) and STAT3 inhibitor (niclosamide) treatments on cell lines. These genes were then compared with differentially expressed genes in the PFC of mice after binge-like drinking. We found 95 unique gene candidates, out of which 57 had STAT3 binding motifs in their promoters. We further showed by qPCR that expression of the putative STAT3 genes Nr1h2, Smarcc1, Smarca4 and Gpnmb were increased in either the PFC or HPC after binge-like drinking. Together, these results indicate activation of the ALK-STAT3 signaling pathway in the brain after binge-like ethanol consumption, identify putative novel ethanol-responsive STAT3 target genes, and suggest that STAT3 inhibition may be a potential method to reduce binge drinking in humans.
Collapse
Affiliation(s)
- Kana Hamada
- Graduate Program in Neuroscience, University of Illinois at Chicago, Chicago, IL 60612 USA
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL 60612 USA
| | - Laura B. Ferguson
- Waggoner Center for Alcohol Addiction Research and Department of Neuroscience, University of Texas at Austin, Austin, TX 78712 USA
- Department of Neurology, Dell Medical School, The University of Texas at Austin, Austin, TX 78712, USA
| | - R. Dayne Mayfield
- Waggoner Center for Alcohol Addiction Research and Department of Neuroscience, University of Texas at Austin, Austin, TX 78712 USA
| | - Harish R. Krishnan
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL 60612 USA
| | | | - Amy W. Lasek
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL 60612 USA
| |
Collapse
|
23
|
Canet-Pons J, Sen NE, Arsović A, Almaguer-Mederos LE, Halbach MV, Key J, Döring C, Kerksiek A, Picchiarelli G, Cassel R, René F, Dieterlé S, Fuchs NV, König R, Dupuis L, Lütjohann D, Gispert S, Auburger G. Atxn2-CAG100-KnockIn mouse spinal cord shows progressive TDP43 pathology associated with cholesterol biosynthesis suppression. Neurobiol Dis 2021; 152:105289. [PMID: 33577922 DOI: 10.1016/j.nbd.2021.105289] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 12/11/2020] [Accepted: 02/03/2021] [Indexed: 12/12/2022] Open
Abstract
Large polyglutamine expansions in Ataxin-2 (ATXN2) cause multi-system nervous atrophy in Spinocerebellar Ataxia type 2 (SCA2). Intermediate size expansions carry a risk for selective motor neuron degeneration, known as Amyotrophic Lateral Sclerosis (ALS). Conversely, the depletion of ATXN2 prevents disease progression in ALS. Although ATXN2 interacts directly with RNA, and in ALS pathogenesis there is a crucial role of RNA toxicity, the affected functional pathways remain ill defined. Here, we examined an authentic SCA2 mouse model with Atxn2-CAG100-KnockIn for a first definition of molecular mechanisms in spinal cord pathology. Neurophysiology of lower limbs detected sensory neuropathy rather than motor denervation. Triple immunofluorescence demonstrated cytosolic ATXN2 aggregates sequestrating TDP43 and TIA1 from the nucleus. In immunoblots, this was accompanied by elevated CASP3, RIPK1 and PQBP1 abundance. RT-qPCR showed increase of Grn, Tlr7 and Rnaset2 mRNA versus Eif5a2, Dcp2, Uhmk1 and Kif5a decrease. These SCA2 findings overlap well with known ALS features. Similar to other ataxias and dystonias, decreased mRNA levels for Unc80, Tacr1, Gnal, Ano3, Kcna2, Elovl5 and Cdr1 contrasted with Gpnmb increase. Preterminal stage tissue showed strongly activated microglia containing ATXN2 aggregates, with parallel astrogliosis. Global transcriptome profiles from stages of incipient motor deficit versus preterminal age identified molecules with progressive downregulation, where a cluster of cholesterol biosynthesis enzymes including Dhcr24, Msmo1, Idi1 and Hmgcs1 was prominent. Gas chromatography demonstrated a massive loss of crucial cholesterol precursor metabolites. Overall, the ATXN2 protein aggregation process affects diverse subcellular compartments, in particular stress granules, endoplasmic reticulum and receptor tyrosine kinase signaling. These findings identify new targets and potential biomarkers for neuroprotective therapies.
Collapse
Affiliation(s)
- Júlia Canet-Pons
- Experimental Neurology, Medical Faculty, Goethe University, 60590 Frankfurt am Main, Germany
| | - Nesli-Ece Sen
- Experimental Neurology, Medical Faculty, Goethe University, 60590 Frankfurt am Main, Germany; Faculty of Biosciences, Goethe University, 60438 Frankfurt am Main, Germany
| | - Aleksandar Arsović
- Experimental Neurology, Medical Faculty, Goethe University, 60590 Frankfurt am Main, Germany
| | - Luis-Enrique Almaguer-Mederos
- Experimental Neurology, Medical Faculty, Goethe University, 60590 Frankfurt am Main, Germany; Center for Investigation and Rehabilitation of Hereditary Ataxias (CIRAH), Holguín, Cuba
| | - Melanie V Halbach
- Experimental Neurology, Medical Faculty, Goethe University, 60590 Frankfurt am Main, Germany
| | - Jana Key
- Experimental Neurology, Medical Faculty, Goethe University, 60590 Frankfurt am Main, Germany; Faculty of Biosciences, Goethe University, 60438 Frankfurt am Main, Germany
| | - Claudia Döring
- Dr. Senckenberg Institute of Pathology, Medical Faculty, Goethe University, 60590 Frankfurt am Main, Germany
| | - Anja Kerksiek
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, 53127 Bonn, Nordrhein-Westfalen, Germany
| | - Gina Picchiarelli
- UMRS-1118 INSERM, Faculty of Medicine, University of Strasbourg, 67000 Strasbourg, France
| | - Raphaelle Cassel
- UMRS-1118 INSERM, Faculty of Medicine, University of Strasbourg, 67000 Strasbourg, France
| | - Frédérique René
- UMRS-1118 INSERM, Faculty of Medicine, University of Strasbourg, 67000 Strasbourg, France
| | - Stéphane Dieterlé
- UMRS-1118 INSERM, Faculty of Medicine, University of Strasbourg, 67000 Strasbourg, France
| | - Nina V Fuchs
- Host-Pathogen Interactions, Paul-Ehrlich-Institute, 63225 Langen, Germany
| | - Renate König
- Host-Pathogen Interactions, Paul-Ehrlich-Institute, 63225 Langen, Germany
| | - Luc Dupuis
- UMRS-1118 INSERM, Faculty of Medicine, University of Strasbourg, 67000 Strasbourg, France
| | - Dieter Lütjohann
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, 53127 Bonn, Nordrhein-Westfalen, Germany
| | - Suzana Gispert
- Experimental Neurology, Medical Faculty, Goethe University, 60590 Frankfurt am Main, Germany
| | - Georg Auburger
- Experimental Neurology, Medical Faculty, Goethe University, 60590 Frankfurt am Main, Germany.
| |
Collapse
|
24
|
Cherian P, Al-Khairi I, Jamal M, Al-Sabah S, Ali H, Dsouza C, Alshawaf E, Al-Ali W, Al-Khaledi G, Al-Mulla F, Abu-Farha M, Abubaker J. Association Between Factors Involved in Bone Remodeling (Osteoactivin and OPG) With Plasma Levels of Irisin and Meteorin-Like Protein in People With T2D and Obesity. Front Endocrinol (Lausanne) 2021; 12:752892. [PMID: 34777249 PMCID: PMC8588843 DOI: 10.3389/fendo.2021.752892] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 10/08/2021] [Indexed: 01/05/2023] Open
Abstract
The musculoskeletal system consisting of bones and muscles have been recognized as endocrine organs secreting hormones that are involved in regulating metabolic and inflammatory pathways. Obesity and type 2 diabetes (T2D) are associated with several musculoskeletal system complications. We hypothesized that an interaction exists between adipomyokines namely, irisin and METRNL, and various molecules involved in bone remodeling in individuals with obesity and T2D. A total of 228 individuals were enrolled in this study, including 124 non-diabetic (ND) and 104 T2D. A Multiplex assay was used to assess the level of various osteogenic molecules namely osteoactivin, Syndecan, osteoprotegerin (OPG) and osteonectin/SPARC. Our data shows elevated levels of Osteoactivin, Syndecan, OPG and SPARC in T2D as compared to ND individuals (p ≤ 0.05). Using Spearman's correlation, a positive correlation was observed between irisin and Osteoactivin as well as OPG (p < 0.05). Similarly, a positive association was observed between METRNL and Osteoactivin (p < 0.05). The strong positive association shown in this study between irisin, METRNL and various molecules with osteogenic properties emphasize a possible interaction between these organs. This report suggests that having a dysregulation in the level of the aforementioned molecules could potentially affect the development of bone and muscle related complications that are associated with obesity and T2D.
Collapse
Affiliation(s)
- Preethi Cherian
- Department of Biochemistry and Molecular Biology, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Irina Al-Khairi
- Department of Biochemistry and Molecular Biology, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Mohammad Jamal
- Department of Surgery, Faculty of Medicine, Health Sciences Centre, Kuwait University, Sulaibekhat, Kuwait
| | - Suleiman Al-Sabah
- Department of Pharmacology & Toxicology, Faculty of Medicine, Kuwait University, Safat, Kuwait
| | - Hamad Ali
- Department of Genetic and Bioinformatics, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Carol Dsouza
- Department of Surgery, Faculty of Medicine, Health Sciences Centre, Kuwait University, Sulaibekhat, Kuwait
| | - Eman Alshawaf
- Department of Biochemistry and Molecular Biology, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Waleed Al-Ali
- Department of Surgery, Faculty of Medicine, Health Sciences Centre, Kuwait University, Sulaibekhat, Kuwait
| | - Ghanim Al-Khaledi
- Department of Pharmacology & Toxicology, Faculty of Medicine, Kuwait University, Safat, Kuwait
| | - Fahd Al-Mulla
- Department of Genetic and Bioinformatics, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Mohamed Abu-Farha
- Department of Biochemistry and Molecular Biology, Dasman Diabetes Institute, Kuwait City, Kuwait
- *Correspondence: Mohamed Abu-Farha, ; Jehad Abubaker,
| | - Jehad Abubaker
- Department of Biochemistry and Molecular Biology, Dasman Diabetes Institute, Kuwait City, Kuwait
- *Correspondence: Mohamed Abu-Farha, ; Jehad Abubaker,
| |
Collapse
|
25
|
Brekk OR, Honey JR, Lee S, Hallett PJ, Isacson O. Cell type-specific lipid storage changes in Parkinson's disease patient brains are recapitulated by experimental glycolipid disturbance. Proc Natl Acad Sci U S A 2020; 117:27646-27654. [PMID: 33060302 PMCID: PMC7959493 DOI: 10.1073/pnas.2003021117] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Neurons are dependent on proper trafficking of lipids to neighboring glia for lipid exchange and disposal of potentially lipotoxic metabolites, producing distinct lipid distribution profiles among various cell types of the central nervous system. Little is known of the cellular distribution of neutral lipids in the substantia nigra (SN) of Parkinson's disease (PD) patients and its relationship to inflammatory signaling. This study aimed to determine human PD SN neutral lipid content and distribution in dopaminergic neurons, astrocytes, and microglia relative to age-matched healthy subject controls. The results show that while total neutral lipid content was unchanged relative to age-matched controls, the levels of whole SN triglycerides were correlated with inflammation-attenuating glycoprotein non-metastatic melanoma protein B (GPNMB) signaling in human PD SN. Histological localization of neutral lipids using a fluorescent probe (BODIPY) revealed that dopaminergic neurons and midbrain microglia significantly accumulated intracellular lipids in PD SN, while adjacent astrocytes had a reduced lipid load overall. This pattern was recapitulated by experimental in vivo inhibition of glucocerebrosidase activity in mice. Agents or therapies that restore lipid homeostasis among neurons, astrocytes, and microglia could potentially correct PD pathogenesis and disease progression.
Collapse
Affiliation(s)
- Oeystein Roed Brekk
- Neuroregeneration Institute, McLean Hospital/Departments of Neurology and Psychiatry, Harvard Medical School, Belmont, MA 02478
| | - Jonathan R Honey
- Neuroregeneration Institute, McLean Hospital/Harvard Medical School, Belmont, MA 02478
| | - Seungil Lee
- Neuroregeneration Institute, McLean Hospital/Harvard Medical School, Belmont, MA 02478
| | - Penelope J Hallett
- Neuroregeneration Institute, McLean Hospital/Departments of Neurology and Psychiatry, Harvard Medical School, Belmont, MA 02478
| | - Ole Isacson
- Neuroregeneration Institute, McLean Hospital/Departments of Neurology and Psychiatry, Harvard Medical School, Belmont, MA 02478
| |
Collapse
|
26
|
Huang M, Modeste E, Dammer E, Merino P, Taylor G, Duong DM, Deng Q, Holler CJ, Gearing M, Dickson D, Seyfried NT, Kukar T. Network analysis of the progranulin-deficient mouse brain proteome reveals pathogenic mechanisms shared in human frontotemporal dementia caused by GRN mutations. Acta Neuropathol Commun 2020; 8:163. [PMID: 33028409 PMCID: PMC7541308 DOI: 10.1186/s40478-020-01037-x] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 09/13/2020] [Indexed: 02/08/2023] Open
Abstract
Heterozygous, loss-of-function mutations in the granulin gene (GRN) encoding progranulin (PGRN) are a common cause of frontotemporal dementia (FTD). Homozygous GRN mutations cause neuronal ceroid lipofuscinosis-11 (CLN11), a lysosome storage disease. PGRN is a secreted glycoprotein that can be proteolytically cleaved into seven bioactive 6 kDa granulins. However, it is unclear how deficiency of PGRN and granulins causes neurodegeneration. To gain insight into the mechanisms of FTD pathogenesis, we utilized Tandem Mass Tag isobaric labeling mass spectrometry to perform an unbiased quantitative proteomic analysis of whole-brain tissue from wild type (Grn+/+) and Grn knockout (Grn-/-) mice at 3- and 19-months of age. At 3-months lysosomal proteins (i.e. Gns, Scarb2, Hexb) are selectively increased indicating lysosomal dysfunction is an early consequence of PGRN deficiency. Additionally, proteins involved in lipid metabolism (Acly, Apoc3, Asah1, Gpld1, Ppt1, and Naaa) are decreased; suggesting lysosomal degradation of lipids may be impaired in the Grn-/- brain. Systems biology using weighted correlation network analysis (WGCNA) of the Grn-/- brain proteome identified 26 modules of highly co-expressed proteins. Three modules strongly correlated to Grn deficiency and were enriched with lysosomal proteins (Gpnmb, CtsD, CtsZ, and Tpp1) and inflammatory proteins (Lgals3, GFAP, CD44, S100a, and C1qa). We find that lysosomal dysregulation is exacerbated with age in the Grn-/- mouse brain leading to neuroinflammation, synaptic loss, and decreased markers of oligodendrocytes, myelin, and neurons. In particular, GPNMB and LGALS3 (galectin-3) were upregulated by microglia and elevated in FTD-GRN brain samples, indicating common pathogenic pathways are dysregulated in human FTD cases and Grn-/- mice. GPNMB levels were significantly increased in the cerebrospinal fluid of FTD-GRN patients, but not in MAPT or C9orf72 carriers, suggesting GPNMB could be a biomarker specific to FTD-GRN to monitor disease onset, progression, and drug response. Our findings support the idea that insufficiency of PGRN and granulins in humans causes neurodegeneration through lysosomal dysfunction, defects in autophagy, and neuroinflammation, which could be targeted to develop effective therapies.
Collapse
|
27
|
Value of Glucosylsphingosine (Lyso-Gb1) as a Biomarker in Gaucher Disease: A Systematic Literature Review. Int J Mol Sci 2020; 21:ijms21197159. [PMID: 32998334 PMCID: PMC7584006 DOI: 10.3390/ijms21197159] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 09/24/2020] [Accepted: 09/25/2020] [Indexed: 12/17/2022] Open
Abstract
The challenges in the diagnosis, prognosis, and monitoring of Gaucher disease (GD), an autosomal recessive inborn error of glycosphingolipid metabolism, can negatively impact clinical outcomes. This systematic literature review evaluated the value of glucosylsphingosine (lyso-Gb1), as the most reliable biomarker currently available for the diagnosis, prognosis, and disease/treatment monitoring of patients with GD. Literature searches were conducted using MEDLINE, Embase, PubMed, ScienceOpen, Science.gov, Biological Abstracts, and Sci-Hub to identify original research articles relevant to lyso-Gb1 and GD published before March 2019. Seventy-four articles met the inclusion criteria, encompassing 56 related to pathology and 21 related to clinical biomarkers. Evidence for lyso-Gb1 as a pathogenic mediator of GD was unequivocal, although its precise role requires further elucidation. Lyso-Gb1 was deemed a statistically reliable diagnostic and pharmacodynamic biomarker in GD. Evidence supports lyso-Gb1 as a disease-monitoring biomarker for GD, and some evidence supports lyso-Gb1 as a prognostic biomarker, but further study is required. Lyso-Gb1 meets the criteria for a biomarker as it is easily accessible and reliably quantifiable in plasma and dried blood spots, enables the elucidation of GD molecular pathogenesis, is diagnostically valuable, and reflects therapeutic responses. Evidentiary standards appropriate for verifying inter-laboratory lyso-Gb1 concentrations in plasma and in other anatomical sites are needed.
Collapse
|
28
|
Liu J, Li G, He Y, He G, Zhang P, Shen X, Zhang W, Chen S, Cui S, Tan Y. The Association Analysis of GPNMB rs156429 With Clinical Manifestations in Chinese Population With Parkinson's Disease. Front Genet 2020; 11:952. [PMID: 32983228 PMCID: PMC7492656 DOI: 10.3389/fgene.2020.00952] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 07/29/2020] [Indexed: 11/13/2022] Open
Affiliation(s)
- Jin Liu
- Department of Neurology & Collaborative Innovation Center for Brain Science, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Gen Li
- Department of Neurology & Collaborative Innovation Center for Brain Science, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yixi He
- Department of Neurology & Collaborative Innovation Center for Brain Science, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guiying He
- Department of Neurology & Collaborative Innovation Center for Brain Science, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Pingchen Zhang
- Department of Neurology & Collaborative Innovation Center for Brain Science, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xin Shen
- Department of Neurology & Collaborative Innovation Center for Brain Science, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weishan Zhang
- Department of Neurology & Collaborative Innovation Center for Brain Science, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shengdi Chen
- Department of Neurology & Collaborative Innovation Center for Brain Science, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Shengdi Chen,
| | - Shishuang Cui
- Department of Geriatrics, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shishuang Cui,
| | - Yuyan Tan
- Department of Neurology & Collaborative Innovation Center for Brain Science, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Yuyan Tan,
| |
Collapse
|
29
|
Novel biomarkers for lysosomal storage disorders: Metabolomic and proteomic approaches. Clin Chim Acta 2020; 509:195-209. [PMID: 32561345 DOI: 10.1016/j.cca.2020.06.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 06/13/2020] [Accepted: 06/15/2020] [Indexed: 12/20/2022]
Abstract
Lysosomal storage disorders (LSDs) are characterized by the accumulation of specific disease substrates inside the lysosomes of various cells, eventually leading to the deterioration of cellular function and multisystem organ damage. With the continuous discovery and validation of novel and advanced therapies for most LSDs, there is an urgent need to discover more versatile and clinically relevant biomarkers. The utility of these biomarkers should ideally extend beyond the screening and diagnosis of LSDs to the evaluation of disease severity and monitoring of therapy. Metabolomic and proteomic approaches provide the means to the discovery and validation of such novel biomarkers. This is achieved mainly through the application of various mass spectrometric techniques to common and easily accessible biological samples, such as plasma, urine and dried blood spots. In this review, we tried to summarize the complexity of the lysosomal disorders phenotypes, their current diagnostic and therapeutic approaches, the various techniques supporting metabolomic and proteomic studies and finally we tried to explore the newly discovered biomarkers for most LSDs and their reported clinical values.
Collapse
|
30
|
Tsou PS, Sawalha AH. Glycoprotein nonmetastatic melanoma protein B: A key mediator and an emerging therapeutic target in autoimmune diseases. FASEB J 2020; 34:8810-8823. [PMID: 32445534 DOI: 10.1096/fj.202000651] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 05/04/2020] [Indexed: 12/21/2022]
Abstract
The glycoprotein nonmetastatic melanoma protein B (GPNMB, also known as osteoactivin) is highly expressed in many cell types and regulates the homeostasis in various tissues. In different physiological contexts, it functions as a melanosome-associated protein, membrane-bound surface receptor, soluble ligand, or adhesion molecule. Therefore, GPNMB is involved in cell differentiation, migration, inflammation, metabolism, and neuroprotection. Because of its various involvement in different physiological conditions, GPNMB has been implicated in many diseases, including cancer, neurological disorders, and more recently immune-mediated diseases. This review summarizes the regulation and function of GPNMB in normal physiology, and discusses the involvement of GPNMB in disease conditions with a particular focus on its potential role and therapeutic implications in autoimmunity.
Collapse
Affiliation(s)
- Pei-Suen Tsou
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Amr H Sawalha
- Division of Rheumatology, Department of Pediatrics, University of Pittsburgh School of Medicine, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA.,Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Lupus Center of Excellence, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
31
|
Eskes ECB, Sjouke B, Vaz FM, Goorden SMI, van Kuilenburg ABP, Aerts JMFG, Hollak CEM. Biochemical and imaging parameters in acid sphingomyelinase deficiency: Potential utility as biomarkers. Mol Genet Metab 2020; 130:16-26. [PMID: 32088119 DOI: 10.1016/j.ymgme.2020.02.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 02/03/2020] [Accepted: 02/04/2020] [Indexed: 12/19/2022]
Abstract
Acid Sphingomyelinase Deficiency (ASMD), or Niemann-Pick type A/B disease, is a rare lipid storage disorder leading to accumulation of sphingomyelin and its precursors primarily in macrophages. The disease has a broad phenotypic spectrum ranging from a fatal infantile form with severe neurological involvement (the infantile neurovisceral type) to a primarily visceral form with different degrees of pulmonary, liver, spleen and skeletal involvement (the chronic visceral type). With the upcoming possibility of treatment with enzyme replacement therapy, the need for biomarkers that predict or reflect disease progression has increased. Biomarkers should be validated for their use as surrogate markers of clinically relevant endpoints. In this review, clinically important endpoints as well as biochemical and imaging markers of ASMD are discussed and potential new biomarkers are identified. We suggest as the most promising biomarkers that may function as surrogate endpoints in the future: diffusion capacity measured by spirometry, spleen volume, platelet count, low-density lipoprotein cholesterol, liver fibrosis measured with a fibroscan, lysosphingomyelin and walked distance in six minutes. Currently, no biomarkers have been validated. Several plasma markers of lipid-laden cells, fibrosis or inflammation are of high potential as biomarkers and deserve further study. Based upon current guidelines for biomarkers, recommendations for the validation process are provided.
Collapse
Affiliation(s)
- Eline C B Eskes
- Amsterdam UMC, University of Amsterdam, Department of Endocrinology and Metabolism, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Barbara Sjouke
- Amsterdam UMC, University of Amsterdam, Department of Endocrinology and Metabolism, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Frédéric M Vaz
- Amsterdam UMC, University of Amsterdam, Department of Clinical Chemistry, Laboratory Genetic Metabolic Diseases, Gastroenterology & Metabolism, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Susan M I Goorden
- Amsterdam UMC, University of Amsterdam, Department of Clinical Chemistry, Laboratory Genetic Metabolic Diseases, Gastroenterology & Metabolism, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - André B P van Kuilenburg
- Amsterdam UMC, University of Amsterdam, Department of Clinical Chemistry, Laboratory Genetic Metabolic Diseases, Gastroenterology & Metabolism, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Johannes M F G Aerts
- Leiden Institute of Chemistry, University of Leiden, Department of Medical Biochemistry, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Carla E M Hollak
- Amsterdam UMC, University of Amsterdam, Department of Endocrinology and Metabolism, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands.
| |
Collapse
|
32
|
Glucocerebrosidase: Functions in and Beyond the Lysosome. J Clin Med 2020; 9:jcm9030736. [PMID: 32182893 PMCID: PMC7141376 DOI: 10.3390/jcm9030736] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 03/03/2020] [Accepted: 03/04/2020] [Indexed: 02/07/2023] Open
Abstract
Glucocerebrosidase (GCase) is a retaining β-glucosidase with acid pH optimum metabolizing the glycosphingolipid glucosylceramide (GlcCer) to ceramide and glucose. Inherited deficiency of GCase causes the lysosomal storage disorder named Gaucher disease (GD). In GCase-deficient GD patients the accumulation of GlcCer in lysosomes of tissue macrophages is prominent. Based on the above, the key function of GCase as lysosomal hydrolase is well recognized, however it has become apparent that GCase fulfills in the human body at least one other key function beyond lysosomes. Crucially, GCase generates ceramides from GlcCer molecules in the outer part of the skin, a process essential for optimal skin barrier property and survival. This review covers the functions of GCase in and beyond lysosomes and also pays attention to the increasing insight in hitherto unexpected catalytic versatility of the enzyme.
Collapse
|
33
|
Aerts JMFG, Kuo CL, Lelieveld LT, Boer DEC, van der Lienden MJC, Overkleeft HS, Artola M. Glycosphingolipids and lysosomal storage disorders as illustrated by gaucher disease. Curr Opin Chem Biol 2019; 53:204-215. [PMID: 31783225 DOI: 10.1016/j.cbpa.2019.10.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 10/02/2019] [Accepted: 10/24/2019] [Indexed: 02/06/2023]
Abstract
Glycosphingolipids are important building blocks of the outer leaflet of the cell membrane. They are continuously recycled, involving fragmentation inside lysosomes by glycosidases. Inherited defects in degradation cause lysosomal glycosphingolipid storage disorders. The relatively common glycosphingolipidosis Gaucher disease is highlighted here to discuss new insights in the molecular basis and pathophysiology of glycosphingolipidoses reached by fundamental research increasingly using chemical biology tools. We discuss improvements in the detection of glycosphingolipid metabolites by mass spectrometry and review new developments in laboratory diagnosis and disease monitoring as well as therapeutic interventions.
Collapse
Affiliation(s)
- Johannes M F G Aerts
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2300 RA, Leiden, the Netherlands.
| | - Chi-Lin Kuo
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2300 RA, Leiden, the Netherlands
| | - Lindsey T Lelieveld
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2300 RA, Leiden, the Netherlands
| | - Daphne E C Boer
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2300 RA, Leiden, the Netherlands
| | | | - Herman S Overkleeft
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2300 RA, Leiden, the Netherlands
| | - Marta Artola
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2300 RA, Leiden, the Netherlands
| |
Collapse
|
34
|
Peck SH, Tobias JW, Shore EM, Malhotra NR, Haskins ME, Casal ML, Smith LJ. Molecular profiling of failed endochondral ossification in mucopolysaccharidosis VII. Bone 2019; 128:115042. [PMID: 31442675 PMCID: PMC6813906 DOI: 10.1016/j.bone.2019.115042] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 08/14/2019] [Accepted: 08/19/2019] [Indexed: 12/11/2022]
Abstract
Mucopolysaccharidosis (MPS) VII is a lysosomal storage disorder characterized by deficient activity of β-glucuronidase, leading to progressive accumulation of incompletely degraded heparan, dermatan, and chondroitin sulfate glycosaminoglycans (GAGs). Patients with MPS VII exhibit progressive skeletal deformity including kyphoscoliosis and joint dysplasia, which decrease quality of life and increase mortality. Previously, using the naturally-occurring canine model, we demonstrated that one of the earliest skeletal abnormalities to manifest in MPS VII is failed initiation of secondary ossification in vertebrae and long bones at the requisite postnatal developmental stage. The objective of this study was to obtain global insights into the molecular mechanisms underlying this failed initiation of secondary ossification. Epiphyseal tissue was isolated postmortem from the vertebrae of control and MPS VII-affected dogs at 9 and 14 days-of-age (n = 5 for each group). Differences in global gene expression across this developmental window for both cohorts were measured using whole-transcriptome sequencing (RNA-Seq). Principal Component Analysis revealed clustering of samples within each group, indicating clear effects of both age and disease state. At 9 days-of-age, 1375 genes were significantly differentially expressed between MPS VII and control, and by 14 days-of-age, this increased to 4719 genes. A targeted analysis focused on signaling pathways important in the regulation of endochondral ossification was performed, and a subset of gene expression differences were validated using qPCR. Osteoactivin (GPNMB) was the top upregulated gene in MPS VII at both ages. In control samples, temporal changes in gene expression from 9 to 14 days-of-age were consistent with chondrocyte maturation, cartilage resorption, and osteogenesis. In MPS VII samples, however, elements of key osteogenic pathways such as Wnt/β-catenin and BMP signaling were not upregulated during this same developmental window suggesting that important bone formation pathways are not activated. In conclusion, this study represents an important step towards identifying therapeutic targets and biomarkers for bone disease in MPS VII patients during postnatal growth.
Collapse
Affiliation(s)
- Sun H Peck
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, 3450 Hamilton Walk, Philadelphia, PA, USA; Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, 3450 Hamilton Walk, Philadelphia, PA, USA
| | - John W Tobias
- Penn Genomic Analysis Core, University of Pennsylvania, 3620 Hamilton Walk, Philadelphia, PA, USA
| | - Eileen M Shore
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, 3450 Hamilton Walk, Philadelphia, PA, USA; Department of Genetics, Perelman School of Medicine, University of Pennsylvania, 415 Curie Boulevard, Philadelphia, PA, USA
| | - Neil R Malhotra
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, 3450 Hamilton Walk, Philadelphia, PA, USA; Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, 3450 Hamilton Walk, Philadelphia, PA, USA
| | - Mark E Haskins
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, 3800 Spruce St, Philadelphia, PA, USA
| | - Margret L Casal
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, 3800 Spruce St, Philadelphia, PA, USA
| | - Lachlan J Smith
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, 3450 Hamilton Walk, Philadelphia, PA, USA; Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, 3450 Hamilton Walk, Philadelphia, PA, USA.
| |
Collapse
|
35
|
Afinogenova Y, Ruan J, Yang R, Kleytman N, Pastores G, Lischuk A, Mistry PK. Aberrant progranulin, YKL-40, cathepsin D and cathepsin S in Gaucher disease. Mol Genet Metab 2019; 128:62-67. [PMID: 31358474 PMCID: PMC6864269 DOI: 10.1016/j.ymgme.2019.07.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 07/22/2019] [Accepted: 07/22/2019] [Indexed: 11/21/2022]
Abstract
In Gaucher disease, several macrophage-specific biomarkers have been validated for use in the clinic. However, Gaucher disease is more complex involving system-wide pathophysiology beyond the macrophage, and based on gene array analysis in our Gaucher disease mouse model and other emerging pathophysiologic insights, we evaluated serum levels of cathepsins D and S, YKL-40 and progranulin in Gaucher disease patients. We assessed their biomarker potential in Gaucher disease and compared them to established Gaucher disease biomarkers, chitotriosidase, chemokine ligand 18 (CCL18), and other indicators of disease severity and response to therapy. Mean YKL-40 and cathepsin D and S levels were significantly higher in Gaucher disease patients compared to healthy controls; in contrast, mean progranulin levels were lower in Gaucher disease patients compared to healthy controls. Enzyme replacement therapy resulted in a significant reversal of elevated cathepsin D and S but there was no change in progranulin and YKL-40 levels. Patients with persistent splenomegaly after long-term enzyme replacement therapy had significantly higher serum YKL-40 than patients with smaller spleens (63.0 ± 6.4 ng/ml vs. 46.4 ± 4.3 ng/ml, p = .03). Serum YKL-40 levels were higher in subjects with severe bone involvement (Hermann Score 3 to 5) compared to those with milder bone involvement (Hermann Score 1 to 2) (70.1 ± 4.3 ng/ml vs. 48.1 ± 3.7 ng/ml, p = .0002). YKL-40 was only weakly associated with chitotriosidase (r = 0.2, p = .008) and CCL18 (r = 0.3, p = .0004), and cathepsin S was moderately associated with chitotriosidase (r = 0.4, p = .01) and CCL18 (r = 0.6, p < .0001). Receiver operating curves for progranulin and YKL-40 demonstrated areas under the curves of 0.80 and 0.70, respectively. In conclusion, while these biomarkers do not meet robust properties of established macrophage-specific biomarkers, they may inform severity of skeletal disease, contribution of fibrosis to residual splenomegaly, and other disease manifestations. These findings, including markedly low progranulin levels that do not change upon enzyme replacement therapy, are intriguing to prompt further investigations to decipher their role in pathophysiology and relevance to diverse phenotypes of Gaucher disease.
Collapse
Affiliation(s)
- Yuliya Afinogenova
- Yale Department of Rheumatology, Allergy and Immunology, New Haven, CT, United States of America
| | - Jiapeng Ruan
- Yale Department of Digestive Diseases, New Haven, CT, United States of America
| | - Ruhua Yang
- Yale Department of Digestive Diseases, New Haven, CT, United States of America
| | - Nathaniel Kleytman
- Yale Department of Digestive Diseases, New Haven, CT, United States of America
| | - Gregory Pastores
- University College Dublin Department of Medicine, Dublin, Ireland
| | - Andrew Lischuk
- Yale Department of Musculoskeletal Radiology, New Haven, CT, United States of America
| | - Pramod K Mistry
- Yale Department of Digestive Diseases, New Haven, CT, United States of America.
| |
Collapse
|
36
|
Ługowska A, Hetmańczyk-Sawicka K, Iwanicka-Nowicka R, Fogtman A, Cieśla J, Purzycka-Olewiecka JK, Sitarska D, Płoski R, Filocamo M, Lualdi S, Bednarska-Makaruk M, Koblowska M. Gene expression profile in patients with Gaucher disease indicates activation of inflammatory processes. Sci Rep 2019; 9:6060. [PMID: 30988500 PMCID: PMC6465595 DOI: 10.1038/s41598-019-42584-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 04/01/2019] [Indexed: 01/26/2023] Open
Abstract
Gaucher disease (GD) is a rare inherited metabolic disease caused by pathogenic variants in the GBA1 gene. So far, the pathomechanism of GD was investigated mainly in animal models. In order to delineate the molecular changes in GD cells we analysed gene expression profile in cultured skin fibroblasts from GD patients, control individuals and, additionally, patients with Niemann-Pick type C disease (NPC). We used expression microarrays with subsequent validation by qRT-PCR method. In the comparison GD patients vs. controls, the most pronounced relative fold change (rFC) in expression was observed for genes IL13RA2 and IFI6 (up-regulated) and ATOH8 and CRISPLD2 (down-regulated). Products of up-regulated and down-regulated genes were both enriched in genes associated with immune response. In addition, products of down-regulated genes were associated with cell-to-cell and cell-to-matrix interactions, matrix remodelling, PI3K-Akt signalling pathway and a neuronal survival pathway. Up-regulation of PLAU, IFIT1, TMEM158 and down-regulation of ATOH8 and ISLR distinguished GD patients from both NPC patients and healthy controls. Our results emphasize the inflammatory character of changes occurring in human GD cells indicating that further studies on novel therapeutics for GD should consider anti-inflammatory agents.
Collapse
Affiliation(s)
- Agnieszka Ługowska
- Department of Genetics, Institute of Psychiatry and Neurology, Warsaw, Poland.
| | | | - Roksana Iwanicka-Nowicka
- Laboratory of Microarray Analysis, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
- Laboratory of Systems Biology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Anna Fogtman
- Laboratory of Microarray Analysis, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Jarosław Cieśla
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | | | - Dominika Sitarska
- Department of Genetics, Institute of Psychiatry and Neurology, Warsaw, Poland
| | - Rafał Płoski
- Department of Medical Genetics, Warsaw Medical University, Warsaw, Poland
| | - Mirella Filocamo
- Laboratorio di Genetica Molecolare e Biobanche, Istituto G. Gaslini, L.go G. Gaslini -16147, Genova, Italy
| | - Susanna Lualdi
- Laboratorio di Genetica Molecolare e Biobanche, Istituto G. Gaslini, L.go G. Gaslini -16147, Genova, Italy
| | | | - Marta Koblowska
- Laboratory of Microarray Analysis, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
- Laboratory of Systems Biology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| |
Collapse
|
37
|
Wang L, Li NN, Lu ZJ, Li JY, Peng JX, Duan LR, Peng R. Association of three candidate genetic variants in ACMSD/TMEM163, GPNMB and BCKDK /STX1B with sporadic Parkinson's disease in Han Chinese. Neurosci Lett 2019; 703:45-48. [PMID: 30880162 DOI: 10.1016/j.neulet.2019.03.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 02/18/2019] [Accepted: 03/12/2019] [Indexed: 02/05/2023]
Abstract
Large-scale meta-analyses of genome-wide association studies have identified that polymorphisms ACMSD/TMEM163 rs6430538, GPNMB rs199347 and BCKDK /STX1B rs14235 to be the risk loci for Parkinson's disease (PD) in a Caucasian population. However, the role of these three polymorphisms in a Han Chinese population from mainland China still remains to be clarified. We conducted a large sample study to examine genetic associations of rs6430538, rs199347 and rs14235 with PD in a Han Chinese population of 989 sporadic PD patients and 1058 healthy controls. All subjects were genotyped for these loci using the Sequenom iPLEX Assay. In addition, we conducted further stratified analysis according to age at onset and compared the clinical characteristics between minor allele carriers and non-carriers for each locus. However, no significant differences were found in genotype and allele frequency distribution between PD patients and controls for the three loci, even after being stratified by age at onset. Moreover, we demonstrated that minor allele carriers cannot be distinguished from non-carriers based on their clinical features. Our study is the first to demonstrate that ACMSD/TMEM163 rs6430538, GPNMB rs199347 and BCKDK /STX1B rs14235 do not confer a significant risk for sporadic PD in mainland China. Therefore, more replication studies in additional Chinese population and other cohorts and functional studies are warranted to further clarify the role of the three loci in PD susceptibility.
Collapse
Affiliation(s)
- Ling Wang
- Department of Neurology, West China Hospital, Sichuan University, Sichuan, China
| | - Nan-Nan Li
- Department of Neurology, West China Hospital, Sichuan University, Sichuan, China
| | - Zhong-Jiao Lu
- Department of Neurology, West China Hospital, Sichuan University, Sichuan, China
| | - Jun-Ying Li
- Department of Neurology, West China Hospital, Sichuan University, Sichuan, China
| | - Jia-Xin Peng
- Department of Neurology, West China Hospital, Sichuan University, Sichuan, China
| | - Li-Ren Duan
- Department of Neurology, West China Hospital, Sichuan University, Sichuan, China
| | - Rong Peng
- Department of Neurology, West China Hospital, Sichuan University, Sichuan, China.
| |
Collapse
|
38
|
van der Lienden MJC, Gaspar P, Boot R, Aerts JMFG, van Eijk M. Glycoprotein Non-Metastatic Protein B: An Emerging Biomarker for Lysosomal Dysfunction in Macrophages. Int J Mol Sci 2018; 20:E66. [PMID: 30586924 PMCID: PMC6337583 DOI: 10.3390/ijms20010066] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 12/20/2018] [Accepted: 12/21/2018] [Indexed: 12/18/2022] Open
Abstract
Several diseases are caused by inherited defects in lysosomes, the so-called lysosomal storage disorders (LSDs). In some of these LSDs, tissue macrophages transform into prominent storage cells, as is the case in Gaucher disease. Here, macrophages become the characteristic Gaucher cells filled with lysosomes laden with glucosylceramide, because of their impaired enzymatic degradation. Biomarkers of Gaucher cells were actively searched, particularly after the development of costly therapies based on enzyme supplementation and substrate reduction. Proteins selectively expressed by storage macrophages and secreted into the circulation were identified, among which glycoprotein non-metastatic protein B (GPNMB). This review focusses on the emerging potential of GPNMB as a biomarker of stressed macrophages in LSDs as well as in acquired pathologies accompanied by an excessive lysosomal substrate load in macrophages.
Collapse
Affiliation(s)
| | - Paulo Gaspar
- Leiden Institute of Chemistry, Leiden University, 2333 CC Leiden, The Netherlands.
| | - Rolf Boot
- Leiden Institute of Chemistry, Leiden University, 2333 CC Leiden, The Netherlands.
| | - Johannes M F G Aerts
- Leiden Institute of Chemistry, Leiden University, 2333 CC Leiden, The Netherlands.
| | - Marco van Eijk
- Leiden Institute of Chemistry, Leiden University, 2333 CC Leiden, The Netherlands.
| |
Collapse
|
39
|
Moloney EB, Moskites A, Ferrari EJ, Isacson O, Hallett PJ. The glycoprotein GPNMB is selectively elevated in the substantia nigra of Parkinson's disease patients and increases after lysosomal stress. Neurobiol Dis 2018; 120:1-11. [PMID: 30149180 PMCID: PMC6748034 DOI: 10.1016/j.nbd.2018.08.013] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 08/01/2018] [Accepted: 08/23/2018] [Indexed: 01/24/2023] Open
Abstract
GPNMB is a glycoprotein observed upon tissue damage and inflammation and is associated with astrocytes, microglia, and macrophages. Gene variations in GPNMB are linked with Parkinson's disease (PD) risk, and changes in protein levels of GPNMB have been found in lysosomal storage disorders, including Gaucher's disease with glucocerebrosidase (GCase) deficiency. In the current study, GPNMB increases were seen in the substantia nigra (SN) of PD patients compared to age-matched controls. Such PD patients have a decrease in GCase activity and corresponding elevation of glycosphingolipids in the SN (Rocha et al., 2015a). Interestingly, transgenic mice modelling synucleinopathy did not show GPNMB elevations or altered GCase activity levels compared to wild-type mice. However, upon CBE-induced GCase lysosomal dysfunction with elevated glycosphingolipids in wild-type mice, there were similar changes in GPNMB levels in the brain as seen in PD patient brains. These results indicate that GPNMB levels do not depend on alpha-synuclein load per se but relate directly to the lipidopathy changes induced by CBE-mediated GCase inhibition. The experimental modelling of elevating glycolipids resulted in GPNMB elevations with glial activation in several brain regions in mice. This is the first demonstration of region-specific elevations of GPNMB protein in Parkinson's disease. The presence of GPNMB in PD patient substantia nigra, the induction of GPNMB after experimental glycosphingolipid increases, but not with pure alpha-synucleinopathy, point towards the potential for primary lipid-induced degeneration in PD.
Collapse
Affiliation(s)
- Elizabeth B Moloney
- Neuroregeneration Research Institute, McLean Hospital, Harvard Medical School, 115 Mill Street, Belmont 02478, USA
| | - Alyssa Moskites
- Neuroregeneration Research Institute, McLean Hospital, Harvard Medical School, 115 Mill Street, Belmont 02478, USA
| | - Eliza J Ferrari
- Neuroregeneration Research Institute, McLean Hospital, Harvard Medical School, 115 Mill Street, Belmont 02478, USA
| | - Ole Isacson
- Neuroregeneration Research Institute, McLean Hospital, Harvard Medical School, 115 Mill Street, Belmont 02478, USA.
| | - Penelope J Hallett
- Neuroregeneration Research Institute, McLean Hospital, Harvard Medical School, 115 Mill Street, Belmont 02478, USA.
| |
Collapse
|
40
|
Chen Y, Sud N, Hettinghouse A, Liu CJ. Molecular regulations and therapeutic targets of Gaucher disease. Cytokine Growth Factor Rev 2018; 41:65-74. [PMID: 29699937 DOI: 10.1016/j.cytogfr.2018.04.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Accepted: 04/09/2018] [Indexed: 02/07/2023]
Abstract
Gaucher disease (GD) is the most common lysosomal storage disease caused by deficiency of beta-glucocerebrosidase (GCase) resulting in lysosomal accumulation of its glycolipid substrate glucosylceramide. The activity of GCase depends on many factors such as proper folding and lysosomal localization, which are influenced by mutations in GCase encoding gene, and regulated by various GCase-binding partners including Saposin C, progranulin and heat shock proteins. In addition, proinflammatory molecules also contribute to pathogenicity of GD. In this review, we summarize the molecules that are known to be important for the pathogenesis of GD, particularly those modulating GCase lysosomal appearance and activity. In addition, small molecules that inhibit inflammatory mediators, calcium ion channels and other factors associated with GD are also described. Discovery and characterization of novel molecules that impact GD are not only important for deciphering the pathogenic mechanisms of the disease, but they also provide new targets for drug development to treat the disease.
Collapse
Affiliation(s)
- Yuehong Chen
- Department of Orthopaedic Surgery, New York University Medical Center, New York, NY 10003, USA; Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Neetu Sud
- Department of Orthopaedic Surgery, New York University Medical Center, New York, NY 10003, USA
| | - Aubryanna Hettinghouse
- Department of Orthopaedic Surgery, New York University Medical Center, New York, NY 10003, USA
| | - Chuan-Ju Liu
- Department of Orthopaedic Surgery, New York University Medical Center, New York, NY 10003, USA; Department of Cell Biology, New York University School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
41
|
Abstract
INTRODUCTION Gaucher disease, the autosomal recessive deficiency of the lysosomal enzyme glucocerebrosidase, is associated with wide phenotypic diversity including non-neuronopathic, acute neuronopathic, and chronic neuronopathic forms. Overlap between types can render definitive diagnoses difficult. However, differentiating between the different phenotypes is essential due to the vast differences in clinical outcomes and response to therapy. Genotypic information is helpful, but cannot always be used to make clinical predictions. Current treatments for Gaucher disease, including enzyme replacement therapy and substrate reduction therapy, can reverse many of the non-neurological manifestations, but these therapies must be administered continually and are extremely costly. AREAS COVERED We reviewed the literature concerning the varied clinical presentations of Gaucher disease throughout the lifetime, along with treatment options, management goals, and current and future research challenges. A PubMed literature search was performed for relevant publications between 1991 to January 2018. EXPERT COMMENTARY Interest and research in the field of Gaucher disease is rapidly expanding. However, significant barriers remain in our ability to predict phenotype, assess disease progression using objective biomarkers, and determine optimal treatment strategy on an individual basis. As the field grows, we anticipate identification of genetic modifiers, new biomarkers, and small-molecule chaperone therapies, which may improve patient quality of life.
Collapse
Affiliation(s)
- Sam E Gary
- a Medical Genetics Branch , NHGRI, NIH , Bethesda , MD , USA
| | - Emory Ryan
- a Medical Genetics Branch , NHGRI, NIH , Bethesda , MD , USA
| | - Alta M Steward
- a Medical Genetics Branch , NHGRI, NIH , Bethesda , MD , USA
| | - Ellen Sidransky
- a Medical Genetics Branch , NHGRI, NIH , Bethesda , MD , USA
| |
Collapse
|
42
|
Hendrickx DAE, van Scheppingen J, van der Poel M, Bossers K, Schuurman KG, van Eden CG, Hol EM, Hamann J, Huitinga I. Gene Expression Profiling of Multiple Sclerosis Pathology Identifies Early Patterns of Demyelination Surrounding Chronic Active Lesions. Front Immunol 2017; 8:1810. [PMID: 29312322 PMCID: PMC5742619 DOI: 10.3389/fimmu.2017.01810] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 12/01/2017] [Indexed: 01/22/2023] Open
Abstract
In multiple sclerosis (MS), activated microglia and infiltrating macrophages phagocytose myelin focally in (chronic) active lesions. These demyelinating sites expand in time, but at some point turn inactive into a sclerotic scar. To identify molecular mechanisms underlying lesion activity and halt, we analyzed genome-wide gene expression in rim and peri-lesional regions of chronic active and inactive MS lesions, as well as in control tissue. Gene clustering revealed patterns of gene expression specifically associated with MS and with the presumed, subsequent stages of lesion development. Next to genes involved in immune functions, we found regulation of novel genes in and around the rim of chronic active lesions, such as NPY, KANK4, NCAN, TKTL1, and ANO4. Of note, the presence of many foamy macrophages in active rims was accompanied by a congruent upregulation of genes related to lipid binding, such as MSR1, CD68, CXCL16, and OLR1, and lipid uptake, such as CHIT1, GPNMB, and CCL18. Except CCL18, these genes were already upregulated in regions around active MS lesions, showing that such lesions are indeed expanding. In vitro downregulation of the scavenger receptors MSR1 and CXCL16 reduced myelin uptake. In conclusion, this study provides the gene expression profile of different aspects of MS pathology and indicates that early demyelination, mediated by scavenger receptors, is already present in regions around active MS lesions. Genes involved in early demyelination events in regions surrounding chronic active MS lesions might be promising therapeutic targets to stop lesion expansion.
Collapse
Affiliation(s)
- Debbie A E Hendrickx
- Neuroimmunology Research Group, Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, Netherlands
| | - Jackelien van Scheppingen
- Neuroimmunology Research Group, Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, Netherlands
| | - Marlijn van der Poel
- Neuroimmunology Research Group, Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, Netherlands
| | - Koen Bossers
- Neurodegeneration Research Group, Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, Netherlands
| | - Karianne G Schuurman
- Neuroimmunology Research Group, Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, Netherlands
| | - Corbert G van Eden
- Neuroimmunology Research Group, Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, Netherlands
| | - Elly M Hol
- Neuroimmunology Research Group, Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, Netherlands.,Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, Netherlands.,Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, Amsterdam, Netherlands
| | - Jörg Hamann
- Neuroimmunology Research Group, Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, Netherlands.,Department of Experimental Immunology, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Inge Huitinga
- Neuroimmunology Research Group, Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, Netherlands
| |
Collapse
|
43
|
Beaton B, Monzón JLS, Hughes DA, Pastores GM. Gaucher disease: risk stratification and comorbidities. Expert Opin Orphan Drugs 2017. [DOI: 10.1080/21678707.2017.1385455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Brendan Beaton
- Lysosomal Storage Disorder Unit, Royal Free NHS FT and University College London, London, UK
| | | | - Derralynn A. Hughes
- Lysosomal Storage Disorder Unit, Royal Free NHS FT and University College London, London, UK
- Department of Haematology and Palliative Care, Royal Free NHS FT, University College London, London, UK
| | - Gregory M. Pastores
- Department of Medicine/National Centre for Inherited Metabolic Disorders, Mater Misericordiae University Hospital and University College Dublin, Dublin, Ireland
| |
Collapse
|