1
|
Chickpea Peptide: A Nutraceutical Molecule Corroborating Neurodegenerative and ACE-I Inhibition. Nutrients 2022; 14:nu14224824. [PMID: 36432511 PMCID: PMC9692729 DOI: 10.3390/nu14224824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/03/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022] Open
Abstract
Chickpea seeds are the source of proteins in human nutrition and attribute some nutraceutical properties. Herein, we report the effects of chickpea seed bioactive peptide on albumin, insulin, lactoglobulin and lysozyme amyloid fibril formation. Employing thioflavin T (ThT) assays and circular dichroism (CD), amyloid structural binding transition was experimented to analyze the inhibition of amyloid fibril formation. The purified active peptide with a molecular mass of 934.53 Da was evaluated in vitro for its ACE-I inhibitory, antibacterial, antifungal and antidiabetic activities. Further, in vivo animal studies were carried out in wistar rats for blood pressure lowering action. In hypertensive rats, chickpea peptide decreased 131 ± 3.57 mm of Hg for systolic blood pressure and 86 ± 1.5 mm of Hg for diastolic blood pressure after 8 h intraperitoneal administration. Additionally, the peptide suppressed the fibrillation of amyloid and destabilized the preformed mature fibrils. Data emphasize efficacy of chickpea peptide vis-a-vis ACE-Inhibitory, antibacterial, antifungal, antidiabetic and anti-amyloidogenic activities, allowing us to propose this novel peptide as a suitable candidate for nutraceutical-based drugs and seems the first kind of its nature.
Collapse
|
2
|
Tavares CAM, Bailey MA, Girardi ACC. Biological Context Linking Hypertension and Higher Risk for COVID-19 Severity. Front Physiol 2020; 11:599729. [PMID: 33329052 PMCID: PMC7710931 DOI: 10.3389/fphys.2020.599729] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 10/28/2020] [Indexed: 01/08/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), represents a public health crisis of major proportions. Advanced age, male gender, and the presence of comorbidities have emerged as risk factors for severe illness or death from COVID-19 in observation studies. Hypertension is one of the most common comorbidities in patients with COVID-19. Indeed, hypertension has been shown to be associated with increased risk for mortality, acute respiratory distress syndrome, need for intensive care unit admission, and disease progression in COVID-19 patients. However, up to the present time, the precise mechanisms of how hypertension may lead to the more severe manifestations of disease in patients with COVID-19 remains unknown. This review aims to present the biological plausibility linking hypertension and higher risk for COVID-19 severity. Emphasis is given to the role of the renin-angiotensin system and its inhibitors, given the crucial role that this system plays in both viral transmissibility and the pathophysiology of arterial hypertension. We also describe the importance of the immune system, which is dysregulated in hypertension and SARS-CoV-2 infection, and the potential involvement of the multifunctional enzyme dipeptidyl peptidase 4 (DPP4), that, in addition to the angiotensin-converting enzyme 2 (ACE2), may contribute to the SARS-CoV-2 entrance into target cells. The role of hemodynamic changes in hypertension that might aggravate myocardial injury in the setting of COVID-19, including endothelial dysfunction, arterial stiffness, and left ventricle hypertrophy, are also discussed.
Collapse
Affiliation(s)
- Caio A M Tavares
- Geriatric Cardiology Unit, Heart Institute (InCor), University of São Paulo Medical School, São Paulo, Brazil
| | - Matthew A Bailey
- Centre for Cardiovascular Science, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom
| | - Adriana C C Girardi
- Laboratory of Genetics and Molecular Cardiology, Heart Institute (InCor), University of São Paulo Medical School, São Paulo, Brazil
| |
Collapse
|
3
|
Vargas F, Wangesteen R, Rodríguez-Gómez I, García-Estañ J. Aminopeptidases in Cardiovascular and Renal Function. Role as Predictive Renal Injury Biomarkers. Int J Mol Sci 2020; 21:E5615. [PMID: 32764495 PMCID: PMC7460675 DOI: 10.3390/ijms21165615] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/23/2020] [Accepted: 08/03/2020] [Indexed: 01/08/2023] Open
Abstract
Aminopeptidases (APs) are metalloenzymes that hydrolyze peptides and polypeptides by scission of the N-terminus amino acid and that also participate in the intracellular final digestion of proteins. APs play an important role in protein maturation, signal transduction, and cell-cycle control, among other processes. These enzymes are especially relevant in the control of cardiovascular and renal functions. APs participate in the regulation of the systemic and local renin-angiotensin system and also modulate the activity of neuropeptides, kinins, immunomodulatory peptides, and cytokines, even contributing to cholesterol uptake and angiogenesis. This review focuses on the role of four key APs, aspartyl-, alanyl-, glutamyl-, and leucyl-cystinyl-aminopeptidases, in the control of blood pressure (BP) and renal function and on their association with different cardiovascular and renal diseases. In this context, the effects of AP inhibitors are analyzed as therapeutic tools for BP control and renal diseases. Their role as urinary biomarkers of renal injury is also explored. The enzymatic activities of urinary APs, which act as hydrolyzing peptides on the luminal surface of the renal tubule, have emerged as early predictive renal injury biomarkers in both acute and chronic renal nephropathies, including those induced by nephrotoxic agents, obesity, hypertension, or diabetes. Hence, the analysis of urinary AP appears to be a promising diagnostic and prognostic approach to renal disease in both research and clinical settings.
Collapse
Affiliation(s)
- Félix Vargas
- Depto. Fisiologia, Fac. Medicina, Universidad de Granada, 18071 Granada, Spain
| | | | | | - Joaquín García-Estañ
- Depto. Fisiologia, Fac. Medicina, IMIB, Universidad de Murcia, 30120 Murcia, Spain
| |
Collapse
|
4
|
Choi B, Lee S, Kim SM, Lee EJ, Lee SR, Kim DH, Jang JY, Kang SW, Lee KU, Chang EJ, Song JK. Dipeptidyl Peptidase-4 Induces Aortic Valve Calcification by Inhibiting Insulin-Like Growth Factor-1 Signaling in Valvular Interstitial Cells. Circulation 2017; 135:1935-1950. [DOI: 10.1161/circulationaha.116.024270] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Accepted: 01/31/2017] [Indexed: 01/08/2023]
Abstract
Background:
Calcification of the aortic valve leads to increased leaflet stiffness and consequently to the development of calcific aortic valve disease. However, the underlying molecular and cellular mechanisms of calcification remain unclear. Here, we identified that dipeptidyl peptidase-4 (DPP-4, also known as CD26) increases valvular calcification and promotes calcific aortic valve disease progression.
Methods:
We obtained the aortic valve tissues from humans and murine models (wild-type and endothelial nitric oxide synthase-deficient-mice) and cultured the valvular interstitial cells (VICs) and valvular endothelial cells from the cusps. We induced osteogenic differentiation in the primary cultured VICs and examined the effects of the DPP-4 inhibitor on the osteogenic changes in vitro and aortic valve calcification in endothelial nitric oxide synthase-deficient-mice. We also induced calcific aortic stenosis in male New Zealand rabbits (weight, 2.5–3.0 kg) by a cholesterol-enriched diet+vitamin D2 (25 000 IU, daily). Echocardiography was performed to assess the aortic valve area and the maximal and mean transaortic pressure gradients at baseline and 3-week intervals thereafter. After 12 weeks, we harvested the heart and evaluated the aortic valve tissue using immunohistochemistry.
Results:
We found that nitric oxide depletion in human valvular endothelial cells activates NF-κB in human VICs. Consequently, the NF-κB promotes DPP-4 expression, which then induces the osteogenic differentiation of VICs by limiting autocrine insulin-like growth factor-1 signaling. The inhibition of DPP-4 enzymatic activity blocked the osteogenic changes in VICs in vitro and reduced the aortic valve calcification in vivo in a mouse model. Sitagliptin administration in a rabbit calcific aortic valve disease model led to significant improvements in the rate of change in aortic valve area, transaortic peak velocity, and maximal and mean pressure gradients over 12 weeks. Immunohistochemistry staining confirmed the therapeutic effect of Sitagliptin in terms of reducing the calcium deposits in the rabbit aortic valve cusps. In rabbits receiving Sitagliptin, the plasma insulin-like growth factor-1 levels were significantly increased, in line with DPP-4 inhibition.
Conclusions:
DPP-4-dependent insulin-like growth factor-1 inhibition in VICs contributes to aortic valve calcification, suggesting that DPP-4 could serve as a potential therapeutic target to inhibit calcific aortic valve disease progression.
Collapse
Affiliation(s)
- Bongkun Choi
- From Department of Biomedical Sciences (B.C., S.-M.K., E.- J.L., S.R.L., S.-W.K., E.-J.C.), Division of Cardiology (S.L., D.- H.K., J.Y.J., J.-K.S.), and Division of Endocrinology and Metabolism, Department of Internal Medicine (K.-U.L.), Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Sahmin Lee
- From Department of Biomedical Sciences (B.C., S.-M.K., E.- J.L., S.R.L., S.-W.K., E.-J.C.), Division of Cardiology (S.L., D.- H.K., J.Y.J., J.-K.S.), and Division of Endocrinology and Metabolism, Department of Internal Medicine (K.-U.L.), Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Sang-Min Kim
- From Department of Biomedical Sciences (B.C., S.-M.K., E.- J.L., S.R.L., S.-W.K., E.-J.C.), Division of Cardiology (S.L., D.- H.K., J.Y.J., J.-K.S.), and Division of Endocrinology and Metabolism, Department of Internal Medicine (K.-U.L.), Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Eun-Jin Lee
- From Department of Biomedical Sciences (B.C., S.-M.K., E.- J.L., S.R.L., S.-W.K., E.-J.C.), Division of Cardiology (S.L., D.- H.K., J.Y.J., J.-K.S.), and Division of Endocrinology and Metabolism, Department of Internal Medicine (K.-U.L.), Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Sun Ro Lee
- From Department of Biomedical Sciences (B.C., S.-M.K., E.- J.L., S.R.L., S.-W.K., E.-J.C.), Division of Cardiology (S.L., D.- H.K., J.Y.J., J.-K.S.), and Division of Endocrinology and Metabolism, Department of Internal Medicine (K.-U.L.), Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Dae-Hee Kim
- From Department of Biomedical Sciences (B.C., S.-M.K., E.- J.L., S.R.L., S.-W.K., E.-J.C.), Division of Cardiology (S.L., D.- H.K., J.Y.J., J.-K.S.), and Division of Endocrinology and Metabolism, Department of Internal Medicine (K.-U.L.), Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Jeong Yoon Jang
- From Department of Biomedical Sciences (B.C., S.-M.K., E.- J.L., S.R.L., S.-W.K., E.-J.C.), Division of Cardiology (S.L., D.- H.K., J.Y.J., J.-K.S.), and Division of Endocrinology and Metabolism, Department of Internal Medicine (K.-U.L.), Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Sang-Wook Kang
- From Department of Biomedical Sciences (B.C., S.-M.K., E.- J.L., S.R.L., S.-W.K., E.-J.C.), Division of Cardiology (S.L., D.- H.K., J.Y.J., J.-K.S.), and Division of Endocrinology and Metabolism, Department of Internal Medicine (K.-U.L.), Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Ki-Up Lee
- From Department of Biomedical Sciences (B.C., S.-M.K., E.- J.L., S.R.L., S.-W.K., E.-J.C.), Division of Cardiology (S.L., D.- H.K., J.Y.J., J.-K.S.), and Division of Endocrinology and Metabolism, Department of Internal Medicine (K.-U.L.), Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Eun-Ju Chang
- From Department of Biomedical Sciences (B.C., S.-M.K., E.- J.L., S.R.L., S.-W.K., E.-J.C.), Division of Cardiology (S.L., D.- H.K., J.Y.J., J.-K.S.), and Division of Endocrinology and Metabolism, Department of Internal Medicine (K.-U.L.), Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Jae-Kwan Song
- From Department of Biomedical Sciences (B.C., S.-M.K., E.- J.L., S.R.L., S.-W.K., E.-J.C.), Division of Cardiology (S.L., D.- H.K., J.Y.J., J.-K.S.), and Division of Endocrinology and Metabolism, Department of Internal Medicine (K.-U.L.), Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|
5
|
Changes in the expression of α 1B -adrenoceptor in peripheral mononuclear cells correlates with blood pressure and plasmatic homocysteine. Biomed Pharmacother 2017; 88:721-727. [DOI: 10.1016/j.biopha.2017.01.061] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 01/02/2017] [Accepted: 01/10/2017] [Indexed: 11/22/2022] Open
|
6
|
Yandle TG, Richards AM. B-type Natriuretic Peptide circulating forms: Analytical and bioactivity issues. Clin Chim Acta 2015; 448:195-205. [PMID: 26160054 DOI: 10.1016/j.cca.2015.07.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 07/04/2015] [Accepted: 07/05/2015] [Indexed: 02/05/2023]
Abstract
B-type Natriuretic Peptide (BNP), A-type and C-type Natriuretic Peptides (ANP and CNP) comprise a family of peptides that retain a common ring structure and conserved amino acid sequences. All are present in the heart, but only BNP and ANP are regarded as primarily cardiac secretory products. BNP and ANP, acting through a guanylyl cyclase receptor, increase sodium and water excretion by the kidney, induce vasodilation, reduce blood pressure, counteract the bioactivity of the renin-angiotensin-aldosterone and sympathetic nervous systems and possess anti-hypertrophic and anti-fibrotic properties. BNP is synthesised in cardiomyocytes first as the precursor peptide preproBNP. Removal of the signal peptide from preproBNP produces proBNP which is cleaved to produce the biologically active carboxy-terminal BNP peptide and the inactive N-terminal fragment, NT-proBNP. BNP, NT-proBNP, proBNP and the C-terminal portion of the BNP signal peptide have been detected in human plasma as well as multiple sub-forms including truncated forms of BNP and NT-proBNP, as well as variable glycosylation of NT-proBNP and proBNP. The origin of these circulating forms, their potential bioactivity and their detection by current analytical methods are presented in this review.
Collapse
Affiliation(s)
- Tim G Yandle
- Department of Medicine, Christchurch Heart Institute, University of Otago, Christchurch, 2 Riccarton Avenue, Christchurch 8140, New Zealand.
| | - A Mark Richards
- Department of Medicine, Christchurch Heart Institute, University of Otago, Christchurch, 2 Riccarton Avenue, Christchurch 8140, New Zealand; Cardiac Department, Cardiovascular Research Institute, National University Heart Centre, National University of Singapore, 1E Kent Ridge Road, NUHS Tower Block, Level 9, Singapore 119228, Singapore
| |
Collapse
|
7
|
KRISTEK F, DROBNA M, CACANYIOVA C. Different Effects of 7-nitroindazole and L-NAME Administered Both Individually and Together on the Cardiovascular System of the Rat. Physiol Res 2015; 64:1-10. [DOI: 10.33549/physiolres.932777] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
We evaluated the effects of NG-nitro-L-arginine methylester (L-NAME) (50 mg/kg/day) and 7-nitroindazole (7NI) (10 mg/kg/day) administered from 10th-16th week of age either individually or together on cardiovascular system of Wistar rats and SHR. Systolic blood pressure (sBP) was measured weekly by the plethysmographic method. For morphological studies, the animals (n=10) were perfused with a fixative (120 mm Hg), and thoracic aorta and carotid and coronary arteries were processed for electron microscopy. For functional investigation (n=10), aortic rings were used in an organ bath. In Wistar rats, L-NAME evoked an increase of sBP; hypertrophy of the heart and arterial walls; an increase in cross-sectional areas (CSA) of endothelial cells (EC), muscle cells (SMC), extracellular matrix (ECM), and a decrease in acetylcholine-induced endothelial-dependent relaxation (EDR). 7NI evoked sBP-independent hypotrophy of the heart and arterial walls, a decrease in CSA of EC and SMC without affecting the CSA of ECM, and a mild decrease in acetylcholine-induced EDR. 7NI and L-NAME administered together evoked lower effect on BP and trophicity of the heart and all arteries, and a similar decrease in acetylcholine-induced EDR compared to L-NAME alone. In SHR, 7NI did not evoke any effect on the studied parameters.
Collapse
Affiliation(s)
- F. KRISTEK
- Institute of Normal and Pathological Physiology, Centre of Excellence for Examination of Regulatory Role of Nitric Oxide in Civilisation Diseases, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | | | | |
Collapse
|
8
|
Oliver E, Flacco N, Arce C, Ivorra MD, D'Ocon MP, Noguera MA. Changes in adrenoceptors and G-protein-coupled receptor kinase 2 in L-NAME-induced hypertension compared to spontaneous hypertension in rats. J Vasc Res 2014; 51:209-20. [PMID: 24942010 DOI: 10.1159/000360400] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Accepted: 01/31/2014] [Indexed: 11/19/2022] Open
Abstract
This work compares the expression of adrenoceptors (ARs) and G-protein-coupled receptor kinase (GRK) 2 (RT-PCR and immunoblotting) and functional responses in conductance (aorta) and resistance vessels (mesenteric resistance arteries; MRA) in two different models of rat hypertension: hypertension induced by chronic treatment with L-NAME (N(G)-nitro-L-arginine methyl-ester) (L-NAME-treated rats; LNHR), and genetically induced hypertension (spontaneously hypertensive rats; SHR). Changes found in the aorta, but not in the MRA, were: (1) a loss of contractile capacity, more evidently in α1-AR-mediated contraction, and an impairment of endothelium-dependent vasorelaxation, with both changes occurring independently of the hypertensive model; (2) a diminished sensitivity to α1-AR-induced vasoconstriction along with increased β2-AR-mediated vasodilation in LNHR, and (3) a lower expression of ARs and GRK2 in LNHR. The two latter changes are the opposite of those previously found in aortas of SHR. In the MRA of LNHR, a diminished sensitivity to isoprenaline, in parallel with a reduced expression of β1-AR, was observed without changes in GRK2 expression. In the MRA of SHR, the increased GRK2 expression was not accompanied by significant changes in either β-AR expression or the vasorelaxant potency of isoprenaline. The present results highlight that changes in AR function differ not only between vessels but also between hypertensive models. Moreover, they suggest that changes in GRK2 expression could contribute to regulating β2-AR function in conductance vessels but not β1-AR function in resistance vessels.
Collapse
Affiliation(s)
- Eduardo Oliver
- Departamento de Farmacología, Facultad de Farmacia, Universitat de València, Valencia, Spain
| | | | | | | | | | | |
Collapse
|
9
|
Dipeptidyl peptidase IV inhibition attenuates blood pressure rising in young spontaneously hypertensive rats. J Hypertens 2011; 29:520-8. [PMID: 21150640 DOI: 10.1097/hjh.0b013e328341939d] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVES The present study aimed to assess the effect of the specific dipeptidyl peptidase IV (DPPIV) inhibitor sitagliptin on blood pressure and renal function in young prehypertensive (5-week-old) and adult spontaneously hypertensive rats (SHRs; 14-week-old). METHODS Sitagliptin (40 mg/kg twice daily) was given by oral gavage to young (Y-SHR + IDPPIV) and adult (A-SHR + IDPPIV) SHRs for 8 days. Kidney function was assessed daily and compared with age-matched vehicle-treated SHR (Y-SHR and A-SHR) and with normotensive Wistar-Kyoto rats (Y-WKY and A-WKY). Arterial blood pressure was measured in these animals at the end of the experimental protocol. Additionally, Na/H exchanger isoform 3 (NHE3) function and expression in microvilli membrane vesicles were assessed in young animals. RESULTS Mean arterial blood pressure of Y-SHR + IDPPIV was significantly lower than that of Y-SHR (104 ± 3 vs. 123 ± 5 mmHg, P < 0.01) and was similar to Y-WKY (94 ± 4 mmHg, P > 0.05). Compared to Y-SHR, Y-SHR + IDPPIV exhibited enhanced cumulative urinary flow and sodium excretion and decreased NHE3 activity and expression in proximal tubule microvilli. In the A-SHR, sitagliptin treatment had no significant effect on either renal function or arterial blood pressure. CONCLUSION Our data suggest that DPPIV inhibition attenuates blood pressure rising in young prehypertensive SHRs, partially by inhibiting NHE3 activity in renal proximal tubule.
Collapse
|
10
|
Lee J, Cho HS, Park S, Kim WK. Regular Exercise Produced Cardioprotective Effects on Rat's Heart with Hypertension Induced by L-NAME Administration. Clin Exp Hypertens 2009; 31:364-75. [DOI: 10.1080/10641960902977924] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
11
|
The Effect of Organ-Specific CD26/DPP IV Enzymatic Activity Inhibitor-Preconditioning on Acute Pulmonary Allograft Rejection. Transplantation 2009; 88:478-85. [DOI: 10.1097/tp.0b013e3181b08e77] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
12
|
Abstract
Aminopeptidase N (APN) or CD13 is a conserved type II integral membrane zinc-dependent metalloprotease in the M1 family of ectoenzymes. APN is abundant in the kidneys and central nervous system. Identified substrates include Angiotensin III (Ang III); neuropeptides, including enkephalins and endorphins; and homones, including kallidan and somatostatin. It is developmentally expressed, a myelomonocytic marker for leukemias, and a receptor for coronovirus. There is evolving support for APN in the regulation of arterial blood pressure and the pathogenesis of hypertension. In rodent strains, intracerebraventricular (i.c.v.) infusions of APN reduces, while inhibitors of APN activity have a pressor effect on blood pressure. Dysregulation of central APN has been linked to the pathogenesis of hypertension in the spontaneously hypertensive rat. There is evidence that renal tubule APN inhibits Na flux and plays a mechanistic role in salt-adaptation. A functional polymorphism of the ANP gene has been identified in the Dahl salt-sensitive rat. Signaling by APN impacting on blood pressure is likely mediated by regulation of the metabolism of Ang III to Ang IV. Whether APN regulates arterial blood pressure in humans or is a therapeutic target for hypertension are subjects for future exploration.
Collapse
Affiliation(s)
- Robert S Danziger
- Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA.
| |
Collapse
|
13
|
Paschoalin T, Carmona AK, Rodrigues EG, Oliveira V, Monteiro HP, Juliano MA, Juliano L, Travassos LR. Characterization of thimet oligopeptidase and neurolysin activities in B16F10-Nex2 tumor cells and their involvement in angiogenesis and tumor growth. Mol Cancer 2007; 6:44. [PMID: 17620116 PMCID: PMC1965469 DOI: 10.1186/1476-4598-6-44] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2007] [Accepted: 07/09/2007] [Indexed: 01/01/2023] Open
Abstract
Background Angiogenesis is a fundamental process that allows tumor growth by providing nutrients and oxygen to the tumor cells. Beyond the oxygen diffusion limit from a capillary blood vessel, tumor cells become apoptotic. Angiogenesis results from a balance of pro- and anti-angiogenic stimuli. Endogenous inhibitors regulate enzyme activities that promote angiogenesis. Tumor cells may express pro-angiogenic factors and hydrolytic enzymes but also kinin-degrading oligopeptidases which have been investigated. Results Angiogenesis induced by B16F10-Nex2 melanoma cells was studied in a co-culture with HUVEC on Matrigel. A stimulating effect on angiogenesis was observed in the presence of B16F10-Nex2 lysate and plasma membrane. In contrast, the B16F10-Nex2 culture supernatant inhibited angiogenesis in a dose-dependent manner. This effect was abolished by the endo-oligopeptidase inhibitor, JA-2. Thimet oligopeptidase (TOP) and neurolysin activities were then investigated in B16F10-Nex2 melanoma cells aiming at gene sequencing, enzyme distribution and activity, influence on tumor development, substrate specificity, hydrolytic products and susceptibility to inhibitors. Fluorescence resonance energy transfer (FRET) peptides as well as neurotensin and bradykinin were used as substrates. The hydrolytic activities in B16F10-Nex2 culture supernatant were totally inhibited by o-phenanthrolin, JA-2 and partially by Pro-Ile. Leupeptin, PMSF, E-64, Z-Pro-Prolinal and captopril failed to inhibit these hydrolytic activities. Genes encoding M3A enzymes in melanoma cells were cloned and sequenced being highly similar to mouse genes. A decreased proliferation of B16F10-Nex2 cells was observed in vitro with specific inhibitors of these oligopeptidases. Active rTOP but not the inactive protein inhibited melanoma cell development in vivo increasing significantly the survival of mice challenged with the tumor cells. On Matrigel, rTOP inhibited the bradykinin – induced angiogenesis. A possible regulation of the homologous tumor enzyme in the perivascular microenvironment is suggested based on the observed rTOP inhibition by an S-nitrosothiol NO donor. Conclusion Data show that melanoma cells secrete endo-oligopeptidases which have an important role in tumor proliferation in vitro and in vivo. rTOP inhibited growth of subcutaneously injected B16F10-Nex2 cells in mice. TOP from tumor cells and bradykinin in endothelial cells are two antagonist factors that may control angiogenesis essential for melanoma growth. A regulatory role of NO or S-nitrosothiols is suggested.
Collapse
MESH Headings
- Angiogenic Proteins/antagonists & inhibitors
- Angiogenic Proteins/metabolism
- Animals
- Antineoplastic Agents/metabolism
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/therapeutic use
- Bradykinin/metabolism
- Cell Extracts
- Cell Line, Tumor
- Cell Membrane/enzymology
- Cell Proliferation/drug effects
- Cloning, Molecular
- Coculture Techniques
- Collagen
- Culture Media, Conditioned/metabolism
- Dipeptides/pharmacology
- Dose-Response Relationship, Drug
- Drug Combinations
- Endothelial Cells/drug effects
- Endothelial Cells/metabolism
- Female
- Hydrolysis
- Laminin
- Leucine/analogs & derivatives
- Leucine/pharmacology
- Melanoma, Experimental/blood supply
- Melanoma, Experimental/drug therapy
- Melanoma, Experimental/enzymology
- Melanoma, Experimental/genetics
- Melanoma, Experimental/pathology
- Metalloendopeptidases/antagonists & inhibitors
- Metalloendopeptidases/genetics
- Metalloendopeptidases/metabolism
- Mice
- Mice, Inbred C57BL
- Neovascularization, Pathologic/enzymology
- Neovascularization, Pathologic/pathology
- Neovascularization, Pathologic/prevention & control
- Neurotensin/metabolism
- Nitric Oxide/metabolism
- Nitric Oxide Donors/pharmacology
- Oligopeptides/pharmacology
- Peptides/metabolism
- Phenanthrolines/pharmacology
- Protease Inhibitors/pharmacology
- Proteoglycans
- S-Nitroso-N-Acetylpenicillamine/pharmacology
- Substrate Specificity
Collapse
Affiliation(s)
- Thaysa Paschoalin
- Department of Microbiology, Immunology and Parasitology, Experimental Oncology Unit (UNONEX), Federal University of São Paulo, São Paulo, Brazil
| | - Adriana K Carmona
- Department of Biophysics Federal University of São Paulo, São Paulo, Brazil
| | - Elaine G Rodrigues
- Department of Microbiology, Immunology and Parasitology, Experimental Oncology Unit (UNONEX), Federal University of São Paulo, São Paulo, Brazil
| | - Vitor Oliveira
- Department of Biophysics Federal University of São Paulo, São Paulo, Brazil
| | - Hugo P Monteiro
- Department of Biochemistry, Federal University of São Paulo, São Paulo, Brazil
| | - Maria A Juliano
- Department of Biophysics Federal University of São Paulo, São Paulo, Brazil
| | - Luiz Juliano
- Department of Biophysics Federal University of São Paulo, São Paulo, Brazil
| | - Luiz R Travassos
- Department of Microbiology, Immunology and Parasitology, Experimental Oncology Unit (UNONEX), Federal University of São Paulo, São Paulo, Brazil
- UNONEX, Department of Microbiology, Immunology and Parasitology (UNIFESP), Rua Botucatu, 862, 8° andar, São Paulo, SP 04023-062, Brazil
| |
Collapse
|
14
|
Vlahović P, Cvetković T, Nikolić J, Sokolović D. Ethanol inhibitory effect on rat kidney brush border aminopeptidases. Nephron Clin Pract 2007; 106:e73-6. [PMID: 17519555 DOI: 10.1159/000103019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND/AIM Confusing data have been reported about the effect of ethanol or its metabolic products on blood pressure. The pressor agent, angiotensin II (Ang II), is found to be susceptible to degradation by different enzymes known as angiotensinases. We have studied the effects of ethanol and L-NAME, an inhibitor of nitric oxide synthase, consumption on rat serum and kidney ectoenzymes: aminopeptidase N (APN) and aminopeptidase A (APA). METHODS Enzymatic activity of both enzymes was determined spectrophotometrically in serum and 10% homogenates of the rat kidney cortex using appropriate chromogenic substrates. RESULTS After 2 weeks of treatment with ethanol and L-NAME, blood urea and creatinine levels were significantly increased. The activities of APN (EC 3.4.11.2) and APA (EC 3.4.11.7) were reduced in serum as well as in kidney tissue during this period. L-NAME significantly attenuated activities of both enyzmes. Ethanol and L-NAME given simultaneously did not have an additional effect on the activity of investigated enzymes. CONCLUSION Hypertension caused by chronic ethanol treatment as well as L-NAME administration could be associated with the reduction of APN and APA activity. Possible ethanol- and L-NAME-mediated inhibition of angiotensins degrading aminopeptidases could potentiate their effects on blood pressure.
Collapse
Affiliation(s)
- Predrag Vlahović
- Institute of Nephrology and Hemodialysis, Clinical Center Nis, Nis, Serbia.
| | | | | | | |
Collapse
|