1
|
Morales F, Vargas D, Palma-Jiménez M, Rodríguez EJ, Azofeifa G, Hernández-Hernández O. Natural Antioxidants Reduce Oxidative Stress and the Toxic Effects of RNA-CUG (exp) in an Inducible Glial Myotonic Dystrophy Type 1 Cell Model. Antioxidants (Basel) 2025; 14:260. [PMID: 40227219 PMCID: PMC11939792 DOI: 10.3390/antiox14030260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/31/2025] [Accepted: 02/10/2025] [Indexed: 04/15/2025] Open
Abstract
The toxic gain-of-function of RNA-CUG(exp) in DM1 has been largely studied in skeletal muscle, with little focus on its effects on the central nervous system (CNS). This study aimed to study if oxidative stress is present in DM1, its relationship with the toxic RNA gain-of-function and if natural antioxidants can revert some of the RNA-CUG(exp) toxic effects. Using an inducible glial DM1 model (MIO-M1 cells), we compared OS in expanded vs. unexpanded cells and investigated whether antioxidants can mitigate OS and RNA-CUG(exp) toxicity. OS was measured via superoxide anion and lipid peroxidation assays. RNA foci were identified using FISH, and the mis-splicing of selected exons was analyzed using semi-quantitative RT-PCR. Cells were treated with natural antioxidants, and the effects on OS, foci formation, and mis-splicing were compared between treated and untreated cells. The results showed significantly higher superoxide anion and lipid peroxidation levels in untreated DM1 cells, which decreased after antioxidant treatment (ANOVA, p < 0.001). Foci were present in 51% of the untreated cells but were reduced in a dose-dependent manner following treatment (ANOVA, p < 0.001). Antioxidants also improved the splicing of selected exons (ANOVA, p < 0.001), suggesting OS plays a role in DM1, and antioxidants may offer therapeutic potential.
Collapse
Affiliation(s)
- Fernando Morales
- Instituto de Investigaciones en Salud (INISA), Universidad de Costa Rica, San José 2060, Costa Rica; (D.V.); (M.P.-J.); (E.J.R.)
| | - Dayana Vargas
- Instituto de Investigaciones en Salud (INISA), Universidad de Costa Rica, San José 2060, Costa Rica; (D.V.); (M.P.-J.); (E.J.R.)
| | - Melissa Palma-Jiménez
- Instituto de Investigaciones en Salud (INISA), Universidad de Costa Rica, San José 2060, Costa Rica; (D.V.); (M.P.-J.); (E.J.R.)
| | - Esteban J. Rodríguez
- Instituto de Investigaciones en Salud (INISA), Universidad de Costa Rica, San José 2060, Costa Rica; (D.V.); (M.P.-J.); (E.J.R.)
| | - Gabriela Azofeifa
- Departamento de Bioquímica, Escuela de Medicina, Universidad de Costa Rica, San José 2060, Costa Rica;
| | - Oscar Hernández-Hernández
- Laboratorio de Medicina Genómica, Departamento de Genética, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, INR-LGII, Mexico City 14389, Mexico;
| |
Collapse
|
2
|
Mishra SK, Hicks SM, Frias JA, Vangaveti S, Nakamori M, Cleary JD, Reddy K, Berglund JA. Quercetin selectively reduces expanded repeat RNA levels in models of myotonic dystrophy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.02.526846. [PMID: 36778282 PMCID: PMC9915578 DOI: 10.1101/2023.02.02.526846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Myotonic dystrophy is a multisystemic neuromuscular disease caused by either a CTG repeat expansion in DMPK (DM1) or a CCTG repeat expansion in CNBP (DM2). Transcription of the expanded alleles produces toxic gain-of-function RNA that sequester the MBNL family of alternative splicing regulators into ribonuclear foci, leading to pathogenic mis-splicing. There are currently no approved treatments that target the root cause of disease which is the production of the toxic expansion RNA molecules. In this study, using our previously established HeLa DM1 repeat selective screening platform, we identified the natural product quercetin as a selective modulator of toxic RNA levels. Quercetin treatment selectively reduced toxic RNA levels and rescued MBNL dependent mis-splicing in DM1 and DM2 patient derived cell lines and in the HSALR transgenic DM1 mouse model where rescue of myotonia was also observed. Based on our data and its safety profile for use in humans, we have identified quercetin as a priority disease-targeting therapeutic lead for clinical evaluation for the treatment of DM1 and DM2.
Collapse
Affiliation(s)
- Subodh K. Mishra
- The RNA Institute, University at Albany, State University of New York, Albany, NY 12222, USA
| | - Sawyer M. Hicks
- The RNA Institute, University at Albany, State University of New York, Albany, NY 12222, USA
- Department of Biological Sciences, University at Albany, State University of New York, Albany, NY 12222, USA
| | - Jesus A. Frias
- The RNA Institute, University at Albany, State University of New York, Albany, NY 12222, USA
- Department of Biological Sciences, University at Albany, State University of New York, Albany, NY 12222, USA
| | - Sweta Vangaveti
- The RNA Institute, University at Albany, State University of New York, Albany, NY 12222, USA
| | - Masayuki Nakamori
- Department of Neurology, Osaka University Graduate School of Medicine; Osaka, Japan, 565-0871
| | - John D. Cleary
- The RNA Institute, University at Albany, State University of New York, Albany, NY 12222, USA
| | - Kaalak Reddy
- The RNA Institute, University at Albany, State University of New York, Albany, NY 12222, USA
- Department of Biological Sciences, University at Albany, State University of New York, Albany, NY 12222, USA
| | - J. Andrew Berglund
- The RNA Institute, University at Albany, State University of New York, Albany, NY 12222, USA
- Department of Biological Sciences, University at Albany, State University of New York, Albany, NY 12222, USA
| |
Collapse
|
3
|
Drira R, Sakamoto K. Isosakuranetin, a 4'-O-methylated flavonoid, stimulates melanogenesis in B16BL6 murine melanoma cells. Life Sci 2015; 143:43-9. [PMID: 26524968 DOI: 10.1016/j.lfs.2015.10.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 09/11/2015] [Accepted: 10/09/2015] [Indexed: 11/24/2022]
Abstract
AIMS The beneficial effects of 4'-O-methylated flavonoids on induction of melanogenesis are well established. Here, we report the effect of isosakuranetin (Iso) on melanogenesis in B16BL6 melanoma cells and an analysis of the signaling pathways involved in this activity. METHODS B16BL6 melanoma cells were treated with several concentrations of Iso and melanin content was measured. Activation and expression of factors involved in melanogenesis were assessed via western blotting. KEY FINDINGS Iso (15 and 30μmol/L) strongly stimulated melanogenesis in a dose-dependent manner. Iso increased tyrosinase activity and up-regulated tyrosinase (Tyr), tyrosinase related protein 1 (TRP1), and tyrosinase related protein 2 (TRP2) in a time-dependent manner. Iso decreased B16 cell proliferation at a concentration above 45μmol/L, and had no effect on cell viability as revealed by MTT and trypan blue assays. Iso up-regulated expression of microphthalmia transcription factor (MITF), with a maximum effect after 12h. H89, a specific inhibitor of PKA, showed that MITF up-regulation is mediated through PKA/CREB activation. Furthermore, Iso decreased phosphorylation of MITF at Ser73 after 24h and 48h of exposure, activating MITF and leading to up-regulation of Tyr, TRP1, and TRP2. Iso inhibited phosphorylation and activation of ERK1/2 after 12h, while no significant effects on p38 and JNK phosphorylation were observed. Iso inhibited AKT phosphorylation and led to activation of GSK3β. SIGNIFICANCE Iso stimulates melanogenesis in B16 melanoma cells via up-regulation of MITF. Furthermore, Iso-induced inhibition of ERK1/2 and PI3K/AKT signaling pathways activate MITF and subsequent expression of Tyr, TRP1, and TRP2.
Collapse
Affiliation(s)
- Riadh Drira
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
| | - Kazuichi Sakamoto
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan.
| |
Collapse
|
4
|
Effect of Astragalus membranaceus in Rats on Peripheral Nerve Regeneration: In Vitro and In Vivo Studies. ACTA ACUST UNITED AC 2010; 68:434-40. [DOI: 10.1097/ta.0b013e31819adb38] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
5
|
Chen IC, Lin HY, Lee GC, Kao SH, Chen CM, Wu YR, Hsieh-Li HM, Su MT, Lee-Chen GJ. Spinocerebellar ataxia type 8 larger triplet expansion alters histone modification and induces RNA foci. BMC Mol Biol 2009; 10:9. [PMID: 19203395 PMCID: PMC2647542 DOI: 10.1186/1471-2199-10-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2008] [Accepted: 02/10/2009] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Spinocerebellar ataxia type 8 (SCA8) involves the expression of an expanded CTG/CAG combined repeats (CR) from opposite strands producing CUG expansion transcripts (ataxin 8 opposite strand, ATXN8OS) and a polyglutamine expansion protein (ataxin 8, ATXN8). The pathogenesis of SCA8 is complex and the spectrum of clinical presentations is broad. RESULTS Using stably induced cell models expressing 0, 23, 88 and 157 CR, we study the role of ATXN8OS transcripts in SCA8 pathogenesis. In the absence of doxycycline, the stable ATXN8OS CR cell lines exhibit low levels of ATXN8OS expression and a repeat length-related increase in staurosporine sensitivity and in the number of annexin positive cells. A repeat length-dependent repression of ATXN8OS expression was also notable. Addition of doxycycline leads to 25 approximately 50 times more ATXN8OS RNA expression with a repeat length-dependent increase in fold of ATXN8OS RNA induction. ChIP-PCR assay using anti-dimethyl-histone H3-K9 and anti-acetyl-histone H3-K14 antibodies revealed increased H3-K9 dimethylation and reduced H3-K14 acetylation around the ATXN8OS cDNA gene in 157 CR line. The repeat length-dependent increase in induction fold is probably due to the increased RNA stability as demonstrated by monitoring ATXN8OS RNA decay in cells treated with the transcriptional inhibitor, actinomycin D. In cells stably expressing ATXN8OS, RNA FISH experiments further revealed ribonuclear foci formation in cells carrying expanded 88 and 157 CR. CONCLUSION The present study demonstrates that the expanded CUG-repeat tracts are toxic to human cells and may affect ATXN8OS RNA expression and stability through epigenetic and post-transcriptional mechanisms.
Collapse
Affiliation(s)
- I-Cheng Chen
- Department of Life Science, National Taiwan Normal University, Taipei 116, Taiwan
| | - Hsuan-Yuan Lin
- Department of Life Science, National Taiwan Normal University, Taipei 116, Taiwan
| | - Ghin-Chueh Lee
- Department of Life Science, National Taiwan Normal University, Taipei 116, Taiwan
| | - Shih-Huan Kao
- Department of Life Science, National Taiwan Normal University, Taipei 116, Taiwan
| | - Chiung-Mei Chen
- Department of Neurology, Chang Gung Memorial Hospital, Chang-Gung University College of Medicine, Taipei 105, Taiwan
| | - Yih-Ru Wu
- Department of Neurology, Chang Gung Memorial Hospital, Chang-Gung University College of Medicine, Taipei 105, Taiwan
| | - Hsiu-Mei Hsieh-Li
- Department of Life Science, National Taiwan Normal University, Taipei 116, Taiwan
| | - Ming-Tsan Su
- Department of Life Science, National Taiwan Normal University, Taipei 116, Taiwan
| | - Guey-Jen Lee-Chen
- Department of Life Science, National Taiwan Normal University, Taipei 116, Taiwan
| |
Collapse
|
6
|
Mitochondria-derived reactive oxygen species mediate sympathoexcitation induced by angiotensin II in the rostral ventrolateral medulla. J Hypertens 2008; 26:2176-84. [DOI: 10.1097/hjh.0b013e32830dd5d3] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
7
|
Vega-Villa KR, Remsberg CM, Podelnyk KL, Davies NM. Stereospecific high-performance liquid chromatographic assay of isosakuranetin in rat urine. J Chromatogr B Analyt Technol Biomed Life Sci 2008; 875:142-7. [PMID: 18514595 PMCID: PMC2917051 DOI: 10.1016/j.jchromb.2008.05.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2008] [Revised: 04/30/2008] [Accepted: 05/11/2008] [Indexed: 10/22/2022]
Abstract
A stereospecific method of analysis of racemic isosakuranetin (5,7-dihydroxy-4'-methoxyflavanone) in biological fluids is necessary to study pharmacokinetics. A simple high-performance liquid chromatographic method was developed for the determination of isosakuranetin enantiomers. Separation was achieved on a Chiralpak AD-RH column with ultraviolet (UV)-detection at 286 nm. The standard curves in urine were linear ranging from 0.5 to 100.0 microg/ml for each enantiomer. The mean extraction efficiency was >88.0%. Precision of the assay was <15% (CV) and was within 12% at the limit of quantitation (0.5 microg/ml). Bias of the assay was <15% and was within 6% at the limit of quantitation. The assay was applied successfully to stereospecific disposition of isosakuranetin enantiomers in rat urine.
Collapse
Affiliation(s)
- Karina R. Vega-Villa
- College of Pharmacy, Department of Pharmaceutical Sciences and Pharmacology Toxicology Graduate Program, Washington State University, Pullman, Washington 99164-6534, USA
| | - Connie M. Remsberg
- College of Pharmacy, Department of Pharmaceutical Sciences and Pharmacology Toxicology Graduate Program, Washington State University, Pullman, Washington 99164-6534, USA
| | - Kristy L. Podelnyk
- College of Pharmacy, Department of Pharmaceutical Sciences and Pharmacology Toxicology Graduate Program, Washington State University, Pullman, Washington 99164-6534, USA
| | - Neal M. Davies
- College of Pharmacy, Department of Pharmaceutical Sciences and Pharmacology Toxicology Graduate Program, Washington State University, Pullman, Washington 99164-6534, USA
| |
Collapse
|
8
|
Garcia-Lopez A, Monferrer L, Garcia-Alcover I, Vicente-Crespo M, Alvarez-Abril MC, Artero RD. Genetic and chemical modifiers of a CUG toxicity model in Drosophila. PLoS One 2008; 3:e1595. [PMID: 18270582 PMCID: PMC2220037 DOI: 10.1371/journal.pone.0001595] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2007] [Accepted: 01/18/2008] [Indexed: 11/19/2022] Open
Abstract
Non-coding CUG repeat expansions interfere with the activity of human Muscleblind-like (MBNL) proteins contributing to myotonic dystrophy 1 (DM1). To understand this toxic RNA gain-of-function mechanism we developed a Drosophila model expressing 60 pure and 480 interrupted CUG repeats in the context of a non-translatable RNA. These flies reproduced aspects of the DM1 pathology, most notably nuclear accumulation of CUG transcripts, muscle degeneration, splicing misregulation, and diminished Muscleblind function in vivo. Reduced Muscleblind activity was evident from the sensitivity of CUG-induced phenotypes to a decrease in muscleblind genetic dosage and rescue by MBNL1 expression, and further supported by the co-localization of Muscleblind and CUG repeat RNA in ribonuclear foci. Targeted expression of CUG repeats to the developing eye and brain mushroom bodies was toxic leading to rough eyes and semilethality, respectively. These phenotypes were utilized to identify genetic and chemical modifiers of the CUG-induced toxicity. 15 genetic modifiers of the rough eye phenotype were isolated. These genes identify putative cellular processes unknown to be altered by CUG repeat RNA, and they include mRNA export factor Aly, apoptosis inhibitor Thread, chromatin remodelling factor Nurf-38, and extracellular matrix structural component Viking. Ten chemical compounds suppressed the semilethal phenotype. These compounds significantly improved viability of CUG expressing flies and included non-steroidal anti-inflammatory agents (ketoprofen), muscarinic, cholinergic and histamine receptor inhibitors (orphenadrine), and drugs that can affect sodium and calcium metabolism such as clenbuterol and spironolactone. These findings provide new insights into the DM1 phenotype, and suggest novel candidates for DM1 treatments.
Collapse
Affiliation(s)
| | - Lidon Monferrer
- Department of Genetics, University of Valencia, Burjasot, Spain
| | | | | | | | - Ruben D. Artero
- Department of Genetics, University of Valencia, Burjasot, Spain
- *E-mail:
| |
Collapse
|
9
|
Rudnicki DD, Holmes SE, Lin MW, Thornton CA, Ross CA, Margolis RL. Huntington's disease--like 2 is associated with CUG repeat-containing RNA foci. Ann Neurol 2007; 61:272-82. [PMID: 17387722 DOI: 10.1002/ana.21081] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
OBJECTIVE Huntington's disease-like 2 (HDL2) is caused by a CAG/CTG expansion mutation on chromosome 16q24.3. The repeat falls, in the CTG orientation, within a variably spliced exon of junctophilin-3 (JPH3). The existence of a JPH3 splice variant with the CTG repeat in 3' untranslated region suggested that transcripts containing an expanded CUG repeat could play a role in the pathogenesis of HDL2, similar to the proposed pathogenic role of expanded CUG repeats in myotonic dystrophy type 1 (DM1). The goal of this study, therefore, was to test the plausibility of an RNA gain-of-function component in the pathogenesis of HDL2. METHODS The presence and composition of RNA foci in frontal cortex from HDL2, Huntington's disease, DM1, and control brains were investigated by in situ hybridization and immunohistochemistry. An untranslatable JPH3 transcript containing either a normal or an expanded CUG repeat was engineered and expressed in human embryonic kidney 293 and HT22 cells to further test the toxic RNA hypothesis. The formation of RNA foci and the extent of cell death were quantified. RESULTS RNA foci resembling DM1 foci were detected in neurons in HDL2 cortex and other brain regions. Similar to DM1, the foci colocalize with muscleblind-like protein 1, and nuclear muscleblind-like protein 1 in HDL2 cortical neurons is decreased relative to controls. In cell experiments, expression of a JPH3 transcript with an expanded CUG repeat resulted in the formation of RNA foci that colocalized with muscleblind-like protein 1 and in cell toxicity. INTERPRETATION These results imply that RNA toxicity may contribute to the pathogenesis of HDL2.
Collapse
Affiliation(s)
- Dobrila D Rudnicki
- Division of Neurobiology, Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | | | | | | | | |
Collapse
|
10
|
Cho DH, Tapscott SJ. Myotonic dystrophy: Emerging mechanisms for DM1 and DM2. Biochim Biophys Acta Mol Basis Dis 2007; 1772:195-204. [PMID: 16876389 DOI: 10.1016/j.bbadis.2006.05.013] [Citation(s) in RCA: 129] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2006] [Revised: 05/26/2006] [Accepted: 05/26/2006] [Indexed: 01/27/2023]
Abstract
Myotonic dystrophy (DM) is a complex multisystemic disorder linked to two different genetic loci. Myotonic dystrophy type 1 (DM1) is caused by an expansion of a CTG repeat located in the 3' untranslated region (UTR) of DMPK (myotonic dystrophy protein kinase) on chromosome 19q13.3. Myotonic dystrophy type 2 (DM2) is caused by an unstable CCTG repeat in intron 1 of ZNF9 (zinc finger protein 9) on chromosome 3q21. Therefore, both DM1 and DM2 are caused by a repeat expansion in a region transcribed into RNA but not translated into protein. The discovery that these two distinct mutations cause largely similar clinical syndromes put emphasis on the molecular properties they have in common, namely, RNA transcripts containing expanded, non-translated repeats. The mutant RNA transcripts of DM1 and DM2 aberrantly affect the splicing of the same target RNAs, such as chloride channel 1 (ClC-1) and insulin receptor (INSR), resulting in their shared myotonia and insulin resistance. Whether the entire disease pathology of DM1 and DM2 is caused by interference in RNA processing remains to be seen. This review focuses on the molecular significance of the similarities and differences between DM1 and DM2 in understanding the disease pathology of myotonic dystrophy.
Collapse
Affiliation(s)
- Diane H Cho
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109-1024, USA
| | | |
Collapse
|
11
|
Furuya H, Yamada T, Ikezoe K, Ohyagi Y, Fukumaki Y, Fujii N. An improved method for Southern DNA and Northern RNA blotting using a Mupid®-2 Mini-Gel electrophoresis unit. ACTA ACUST UNITED AC 2006; 68:139-43. [PMID: 16769124 DOI: 10.1016/j.jbbm.2006.04.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2005] [Revised: 04/21/2006] [Accepted: 04/21/2006] [Indexed: 11/25/2022]
Abstract
An improved method for Southern DNA and Northern RNA blotting using the Mupid-2 Mini-Gel System is described. We get sharp and clear bands in Southern and Northern blotting after only 30 min short gel electrophoresis instead of the several hours large gel electrophoresis of conventional methods. The high electrical voltage with a pulse-like current of the Mupid-2 Mini-Gel System also allows reduction of the amount of formaldehyde, a harmful reagent, from the gel running buffer in RNA blotting. This minor modification of DNA and RNA blotting technique enables us to perform the complete experimental procedure more quickly economically in less space, than conventional Southern and Northern blotting, as well as using an extremely small amount of formaldehyde in RNA blotting.
Collapse
|
12
|
|
13
|
Di Prospero NA, Fischbeck KH. Therapeutics development for triplet repeat expansion diseases. Nat Rev Genet 2005; 6:756-65. [PMID: 16205715 DOI: 10.1038/nrg1690] [Citation(s) in RCA: 115] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The underlying genetic mutations for many inherited neurodegenerative disorders have been identified in recent years. One frequent type of mutation is trinucleotide repeat expansion. Depending on the location of the repeat expansion, the mutation might result in a loss of function of the disease gene, a toxic gain of function or both. Disease gene identification has led to the development of model systems for investigating disease mechanisms and evaluating treatments. Examination of experimental findings reveals similarities in disease mechanisms as well as possibilities for treatment.
Collapse
Affiliation(s)
- Nicholas A Di Prospero
- Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892-3705, USA.
| | | |
Collapse
|