1
|
Pharmacological properties of indirubin and its derivatives. Biomed Pharmacother 2022; 151:113112. [PMID: 35598366 DOI: 10.1016/j.biopha.2022.113112] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/23/2022] [Accepted: 05/10/2022] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Indirubin is the main bioactive component of the traditional Chinese medicine Indigo naturalis and is a bisindole alkaloid. Multiple studies have shown that indirubin exhibits good anticancer, anti-inflammatory and neuroprotective properties. METHODS The purpose of this review is to provide a summary of the pharmacological mechanisms of indirubin and its derivatives. RESULTS Indirubin and its derivatives exert anticancer effects by regulating the expression of cyclin-dependent kinases (CDKs), GSK-3β, Bax, Bcl-2, C-MYC, matrix metalloproteinases (MMPs), and focal adhesion kinase (FAK) through the PI3K/AKT/mTOR, nuclear factor (NF)-κB, mitogen-activated protein kinase (MAPK), JAK/signal transducer and activator of transcription 3 (STAT3) pathways and other signaling pathways. We also reviewed the anti-inflammatory and neuroprotective properties of indirubin and its derivatives. CONCLUSION The findings of recent studies assessing indirubin and its derivatives suggest that these compounds can be used as potential drugs to treat tumors, inflammation, neuropathy and bacterial infection.
Collapse
|
2
|
Li Y, Han F, Shi Y. Changes in integrin αv, vinculin and connexin43 in the medial prefrontal cortex in rats under single-prolonged stress. Mol Med Rep 2014; 11:2520-6. [PMID: 25483027 PMCID: PMC4337628 DOI: 10.3892/mmr.2014.3030] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 10/24/2014] [Indexed: 11/06/2022] Open
Abstract
Post‑traumatic stress disorder (PTSD) is a stress‑accociated mental disorder that occurs as a result of exposure to a traumatic event, with characteristic symptoms, including intrusive memories, hyperarousal and avoidance. The medial prefrontal cortex (mPFC) is known to be significantly involved in emotional adjustment, particularly introspection, inhibition of the amygdala and emotional memory. Previous structural neuroimaging studies have revealed that the mPFC of PTSD patients was significantly smaller when compared with that of controls and their emotional adjustment function was weakened. However, the mechanisms that cause such atrophy remain to be elucidated. The aim of the present study was to elucidate the possible mechanisms involved in apoptosis induced by single‑prolonged stress (SPS) in the mPFC of PTSD rats. SPS is an animal model reflective of PTSD. Of the proposed animal models of PTSD, SPS is one that has been shown to be reliably reproducible in patients with PTSD. Wistar rats were sacrificed at 1, 4, 7 and 14 days after exposure to SPS. Apoptotic cells were assessed using electron microscopy and the TUNEL method. Expression of integrin αv, vinculin and connexin43 were detected using immunohistochemistry, western blotting and reverse transcription polymerase chain reaction. The present results demonstrated that apoptotic cells significantly increased in the mPFC of SPS rats, accompanied with changes in expression of integrin αv, vinculin and connexin43. The present results indicated that SPS‑induced apoptosis in the mPFC of PTSD rats and the mitochondrial pathway were involved in the process of SPS‑induced apoptosis.
Collapse
Affiliation(s)
- Yana Li
- Department of Histology and Embryology, Institute of Pathology and Pathophysiology, Basic Medical Sciences College, China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Fang Han
- Department of Histology and Embryology, Institute of Pathology and Pathophysiology, Basic Medical Sciences College, China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Yuxiu Shi
- Department of Histology and Embryology, Institute of Pathology and Pathophysiology, Basic Medical Sciences College, China Medical University, Shenyang, Liaoning 110001, P.R. China
| |
Collapse
|
3
|
Effect of staurosporine in the morphology and viability of cerebellar astrocytes: role of reactive oxygen species and NADPH oxidase. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2014; 2014:678371. [PMID: 25215174 PMCID: PMC4151592 DOI: 10.1155/2014/678371] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 06/20/2014] [Accepted: 06/23/2014] [Indexed: 01/08/2023]
Abstract
Cell death implies morphological changes that may contribute to the progression of this process. In astrocytes, the mechanisms involving the cytoskeletal changes during cell death are not well explored. Although NADPH oxidase (NOX) has been described as being a critical factor in the production of ROS, not much information is available about the participation of NOX-derived ROS in the cell death of astrocytes and their role in the alterations of the cytoskeleton during the death of astrocytes. In this study, we have evaluated the participation of ROS in the death of cultured cerebellar astrocytes using staurosporine (St) as death inductor. We found that astrocytes express NOX1, NOX2, and NOX4. Also, St induced an early ROS production and NOX activation that participate in the death of astrocytes. These findings suggest that ROS produced by St is generated through NOX1 and NOX4. Finally, we showed that the reorganization of tubulin and actin induced by St is ROS independent and that St did not change the level of expression of these cytoskeletal proteins. We conclude that ROS produced by a NOX is required for cell death in astrocytes, but not for the morphological alterations induced by St.
Collapse
|
4
|
Qu G, Liu S, Zhang S, Wang L, Wang X, Sun B, Yin N, Gao X, Xia T, Chen JJ, Jiang GB. Graphene oxide induces toll-like receptor 4 (TLR4)-dependent necrosis in macrophages. ACS NANO 2013; 7:5732-45. [PMID: 23734789 DOI: 10.1021/nn402330b] [Citation(s) in RCA: 197] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Graphene and graphene-based nanomaterials display novel and beneficial chemical, electrical, mechanical, and optical characteristics, which endow these nanomaterials with promising applications in a wide spectrum of areas such as electronics and biomedicine. However, its toxicity on health remains unknown and is of great concern. In the present study, we demonstrated that graphene oxide (GO) induced necrotic cell death to macrophages. This toxicity is mediated by activation of toll-like receptor 4 (TLR4) signaling and subsequently in part via autocrine TNF-α production. Inhibition of TLR4 signaling with a selective inhibitor prevented cell death nearly completely. Furthermore, TLR4-deficient bone marrow-derived macrophages were resistant to GO-triggered necrosis. Similarly, GO did not induce necrosis of HEK293T/TLR4-null cells. Macrophagic cell death upon GO treatment was partially attributed to RIP1-RIP3 complex-mediated programmed necrosis downstream of TNF-α induction. Additionally, upon uptake into macrophages, GO accumulated primarily in cytoplasm causing dramatic morphologic alterations and a significant reduction of the macrophagic ability in phagocytosis. However, macrophagic uptake of GO may not be required for induction of necrosis. GO exposure also caused a large increase of intracellular reactive oxygen species (ROS), which contributed to the cause of cell death. The combined data reveal that interaction of GO with TLR4 is the predominant molecular mechanism underlying GO-induced macrophagic necrosis; also, cytoskeletal damage and oxidative stress contribute to decreased viability and function of macrophages upon GO treatment.
Collapse
Affiliation(s)
- Guangbo Qu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Ye Z, Wang Y, Quan X, Li J, Hu X, Huang J, Luo Z. Effects of mechanical force on cytoskeleton structure and calpain-induced apoptosis in rat dorsal root ganglion neurons in vitro. PLoS One 2012; 7:e52183. [PMID: 23284927 PMCID: PMC3527405 DOI: 10.1371/journal.pone.0052183] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Accepted: 11/09/2012] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND A sudden mechanical insult to the spinal cord is usually caused by changing pressure on the surface of the spinal cord. Most of these insults are mechanical force injuries, and their mechanism of injury to the spinal cord is largely unknown. METHODS Using a compression-driven instrument to simulate mechanical force, we applied mechanical pressure of 0.5 MPa to rat dorsal root ganglion (DRG) neurons for 10 min to investigate cytoskeletal alterations and calpain-induced apoptosis after the mechanical force injury. RESULTS The results indicated that mechanical forces affect the structure of the cytoskeleton and cell viability, induce early apoptosis, and affect the cell cycle of DRG neurons. In addition, the calpain inhibitor PD150606 reduced cytoskeletal degradation and the rate of apoptosis after mechanical force injury. CONCLUSION Thus, calpain may play an important role in DRG neurons in the regulation of apoptosis and cytoskeletal alterations induced by mechanical force. Moreover, cytoskeletal alterations may be substantially involved in the mechanotransduction process in DRG neurons after mechanical injury and may be induced by activated calpain. To our knowledge, this is the first report to demonstrate a relationship between cytoskeletal degradation and apoptosis in DRG neurons.
Collapse
Affiliation(s)
- Zhengxu Ye
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Yuqing Wang
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Xin Quan
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Jing Li
- Department of Pathology, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Xueyu Hu
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Jinghui Huang
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Zhuojing Luo
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi, China
| |
Collapse
|
6
|
Liu YH, Ho CC, Cheng CC, Chao WT, Pei RJ, Hsu YH, Lai YS. Cytokeratin 18-mediated disorganization of intermediate filaments is induced by degradation of plectin in human liver cells. Biochem Biophys Res Commun 2011; 407:575-80. [DOI: 10.1016/j.bbrc.2011.03.066] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2011] [Accepted: 03/15/2011] [Indexed: 01/02/2023]
|
7
|
Role of Cytoskeleton Proteins in the Morphological Changes During Apoptotic Cell Death of Cerebellar Granule Neurons. Neurochem Res 2010; 36:93-102. [DOI: 10.1007/s11064-010-0269-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/08/2010] [Indexed: 11/26/2022]
|
8
|
Takadera T, Nakajima Y, Kanai Y. Colchicine-induced apoptosis was prevented by glycogen synthase kinase-3 inhibitors in PC12 cells. Cell Mol Neurobiol 2010; 30:863-8. [PMID: 20300959 PMCID: PMC11498876 DOI: 10.1007/s10571-010-9514-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2010] [Accepted: 03/06/2010] [Indexed: 11/27/2022]
Abstract
The purpose of this study was to examine whether glycogen synthase kinase-3 (GSK-3) is involved in colchicine-induced cell death in PC12 cells by using GSK inhibitors. Colchicine increased apoptotic cell death with morphological changes characterized by cell shrinkage and nuclear condensation or fragmentation. GSK-3 inhibitors such as alsterpaullone, SB216763, and AR-A014418 prevented colchicine-induced cell death and caspase-3 activation. These results suggest that colchicine induces caspase-dependent apoptotic cell death and that GSK-3 activation is involved in cell death in PC12 cells.
Collapse
Affiliation(s)
- Tsuneo Takadera
- Department of Clinical Chemistry, Faculty of Pharmaceutical Sciences, Hokuriku University, Kanazawa, Japan.
| | | | | |
Collapse
|
9
|
Hemendinger RA, Armstrong EJ, Persinski R, Todd J, Mougeot JL, Volvovitz F, Rosenfeld J. Huperzine a provides neuroprotection against several cell death inducers usingin vitro model systems of motor neuron cell death. Neurotox Res 2008; 13:49-61. [DOI: 10.1007/bf03033367] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
10
|
Lomasko T, Clarke G, Lumsden CJ. One-hit stochastic decline in a mechanochemical model of cytoskeleton-induced neuron death I: Cell-fate arrival times. J Theor Biol 2007; 249:1-17. [PMID: 17697688 DOI: 10.1016/j.jtbi.2007.05.031] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2006] [Revised: 05/18/2007] [Accepted: 05/24/2007] [Indexed: 11/30/2022]
Abstract
Much experimental evidence shows that the cytoskeleton is a downstream target and effector during cell death in numerous neurodegenerative diseases, including Parkinson's, Huntington's, and Alzheimer's diseases. However, recent evidence indicates that cytoskeletal dysfunction can also trigger neuronal death, by mechanisms as yet poorly understood. This is the first of two papers in which we study a mathematical model of cytoskeleton-induced neuron death. In our model, assembly control of the neuronal cytoskeleton interacts with both cellular stress levels and cytosolic free radical concentrations to trigger neurodegeneration. This trigger mechanism is further modulated by the presence of cell interactions in the form of a diffusible toxic factor released by dying neurons. We find that, consistent with empirical observations, our model produces one-hit exponential and sigmoid patterns of cell dropout. In all cases, cell dropout is exponential-tailed and described accurately by a gamma distribution. The transition between exponential and sigmoidal is gradual, and determined by a synergetic interaction between the magnitude of fluctuations in cytoskeleton assembly control and by the degree of cell coupling. We conclude that a single mechanism involving neuron interactions and fluctuations in cytoskeleton assembly control is compatible with the experimentally observed range of neuronal attrition kinetics.
Collapse
Affiliation(s)
- Tatiana Lomasko
- Department of Medicine, Institute of Medical Science, University of Toronto, Room 7313, Medical Science Building, 1 Kings College Circle, Toronto, Ontario, Canada M5S 1A8
| | | | | |
Collapse
|
11
|
Sharma M, Hanchate NK, Tyagi RK, Sharma P. Cyclin dependent kinase 5 (Cdk5) mediated inhibition of the MAP kinase pathway results in CREB down regulation and apoptosis in PC12 cells. Biochem Biophys Res Commun 2007; 358:379-84. [PMID: 17498664 DOI: 10.1016/j.bbrc.2007.04.149] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2007] [Accepted: 04/11/2007] [Indexed: 10/23/2022]
Abstract
Cyclin dependent kinase 5 (cdk5) is active mainly in postmitotic cells like neurons and regulates important cellular functions by phosphorylating a wide variety of targets. Nerve growth factor stimulates the MEK-ERK MAP kinase pathway and causes neuronal differentiation and survival. It was reported previously that Cdk5 inhibits the MAP kinase pathway by phosphorylating Map kinase kinase-1 (MEK1) [1]. We have delineated the functional consequence of this cross talk and found that the cdk5 mediated inhibition of MEK1 results in apoptosis. We also demonstrate that the activity of transcription factor CREB, which is known to play pro-survival roles in neuronal cells, is attenuated as a result of this cross-talk.
Collapse
Affiliation(s)
- Monica Sharma
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India.
| | | | | | | |
Collapse
|
12
|
Lin HL, Yang JS, Yang JH, Fan SS, Chang WC, Li YC, Chung JG. The role of Ca2+ on the DADS-induced apoptosis in mouse-rat hybrid retina ganglion cells (N18). Neurochem Res 2006; 31:383-93. [PMID: 16733814 DOI: 10.1007/s11064-005-9035-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/30/2005] [Indexed: 02/06/2023]
Abstract
Diallyl disulfide (DADS), a component of garlic, has been shown to induce growth inhibition and apoptosis in human cancer cell types. The present studies were designed to investigate the effects of DADS on mouse-rat hybrid retina ganglion cells (N18) to better understand its effect on apoptosis and apoptosis-related genes in vitro. Cell viability, cell cycle analysis, reactive oxygen species (ROS), Ca2+ production, mitochondria membrane potential, apoptosis induction, associated gene expression and caspases-3 activity were examined by flow cytometric assay and/or Western blot. After 24-h treatment with DADS, a dose- and time-dependent decrease in the viability of N18 cells was observed and the approximate IC50 was 27.6 microM. The decreased percentage of viable cells are associated with the production of ROS then followed by the production of Ca2+ which is induced by DADS. DADS induced apoptosis in N18 cells via the activation of caspase-3. DADS increased the protein levels of p53, cytochrome c and phosphated JNK within 24 h of treatment and it decreased the levels of Bcl-2 and those factors may have led to the mitochondria depolarization of N18 cells. DADS induced apoptosis were accompanied by increased levels of Ca2+ and decreased mitochondrial membrane potential which then led to release the cytochrome c, cleavage of pro-caspase-3. Deleted levels of Ca2+ by BAPTA-AM 10 microM (intracellular calcium chelator) then led to decrease DADS-induced apoptosis. Inhibition of caspase-3 activation by inhibitor (z-VAD-fmk) completely blocked DADS-induced apoptosis on N18 cells. The results indicated that oxidative stress modulates cell proliferation and Ca2+ modulates the cell death induced by DADS.
Collapse
Affiliation(s)
- Hui-Lu Lin
- Department of Ophthalmology, China Medical University Hospital, Taichung, Taiwan, ROC
| | | | | | | | | | | | | |
Collapse
|