1
|
Liu C, Li X, Chen M, Liu Y, Li K, Wang D, Yang Z, Guo Y, Zhao Y, Zhao H, Zhang C. Characterization and neurotherapeutic evaluation of venom polypeptides identified from Vespa magnifica: The role of Mastoparan-M in Parkinson's disease intervention. JOURNAL OF ETHNOPHARMACOLOGY 2025; 343:119481. [PMID: 39947367 DOI: 10.1016/j.jep.2025.119481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 01/24/2025] [Accepted: 02/10/2025] [Indexed: 02/21/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Parkinson's disease (PD) is a common neurodegenerative disorder in the elderly, characterized by the loss of dopaminergic neurons in the substantia nigra and the formation of Lewy bodies. Hufeng Jiu from Vespa magnifica Smith, a traditional remedy used by the Chinese Jingpo minority, is documented in the Pharmacopoeia of China (2020) for treating rheumatic arthritis. Notably, recent research suggests that components of wasp venom (WV) from Vespa magnifica Smith, particularly polypeptides such as Mastoparan-M (Mast-M) and Vespakinin-M, may have potential therapeutic effects for neurological disorders. However, the specific polypeptide components of WV and their therapeutic effects on PD models remain insufficiently understood. AIM OF THE STUDY This study aims to characterize the neuroactive polypeptides in Vespa magnifica Smith venom and investigate the therapeutic potential of Mast-M for PD. MATERIALS AND METHODS Neuroactive polypeptides in WV were identified using LC/MS, and Mast-M derived from venom of Vespa magnifica Smith was verified with HPLC. The neuroprotective effects of WV and its peptides were assessed using the CCK-8 assay in 1-methyl-4- phenylpyridinium (MPP+)-induced SH-SY5Y human neuroblastoma cells. Mast-M was identified as a potent antagonist against MPP+-induced neurotoxicity. The toxicity, hemolytic activity, and blood-brain-barrier (BBB) permeability of Mast-M were evaluated in mice, and its therapeutic effects were assessed in an MPTP-induced PD mouse model, focusing on motor function and tyrosine hydroxylase (TH) levels. Additionally, Mast-M's impact on mitochondrial membrane potential (MMP), autophagy, and the AMP-activated protein kinase (AMPK)/mammalian target of rapamycin (mTOR) signling pathway was investigated. RESULTS A total of 1007 peptides were identified in the WV, including 187 UniProtKB unreviewed, with 185 predicted to be BBB-permeability. Our results show that Mast-M exhibits a time-dependent distribution in mice, initially localizing in the peritoneal region and subsequently accumulating in the brain, liver, and kidney. Cellular uptake studies reveal that Mast-M penetrates cell membranes and accumulates intracellularly over time. In the MPP+-induced neurotoxicity model using SH-SY5Y cells, Mast-M significantly enhances cell viability and MMP. In vivo safety assessments indicate that Mast-M is well-tolerated at doses up to 100 μg/kg, with no significant toxicological effects observed. However, higher doses induce hepatic distress, necessitating dose optimization. Hemolysis was absent at concentrations ≤37 μg/mL, with an EC50 for hemolytic activity of 197 μg/mL. In MPTP-induced PD models, Mast-M partially ameliorates motor deficits and preserves TH expression in dopaminergic neurons, supporting its neuroprotective role. Mechanistically, Mast-M activates autophagic pathways, as evidenced by the upregulation of autophagy-related protein LC3 in MPP+-challenged SH-SY5Y cells. Furthermore, Mast-M promotes mitophagy and mitochondrial biogenesis, modulating the AMPK/mTOR signaling axis to facilitate mitochondrial turnover. CONCLUSION Mast-M emerges as a promising therapeutic candidate for PD, capable of crossing the BBB, enhancing autophagy, and providing neuroprotection in PD models. Further studies are warranted to optimize dosing and elucidate its full therapeutic potential.
Collapse
Affiliation(s)
- Chaojie Liu
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali, Yunnan, PR China; National-Local Joint Engineering Research Center of Entomoceutics, Dali, PR China
| | - Xiaoyu Li
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali, Yunnan, PR China; National-Local Joint Engineering Research Center of Entomoceutics, Dali, PR China
| | - Mingran Chen
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali, Yunnan, PR China; National-Local Joint Engineering Research Center of Entomoceutics, Dali, PR China
| | - Yunyun Liu
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali, Yunnan, PR China; National-Local Joint Engineering Research Center of Entomoceutics, Dali, PR China
| | - Kunkun Li
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali, Yunnan, PR China; National-Local Joint Engineering Research Center of Entomoceutics, Dali, PR China
| | - Dexiao Wang
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali, Yunnan, PR China; National-Local Joint Engineering Research Center of Entomoceutics, Dali, PR China
| | - Zhibin Yang
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali, Yunnan, PR China; National-Local Joint Engineering Research Center of Entomoceutics, Dali, PR China
| | | | - Yu Zhao
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali, Yunnan, PR China; National-Local Joint Engineering Research Center of Entomoceutics, Dali, PR China
| | - Hairong Zhao
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali, Yunnan, PR China; National-Local Joint Engineering Research Center of Entomoceutics, Dali, PR China.
| | - Chenggui Zhang
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali, Yunnan, PR China; National-Local Joint Engineering Research Center of Entomoceutics, Dali, PR China.
| |
Collapse
|
2
|
Biji CA, Balde A, Nazeer RA. Anti-inflammatory peptide therapeutics and the role of sulphur containing amino acids (cysteine and methionine) in inflammation suppression: A review. Inflamm Res 2024; 73:1203-1221. [PMID: 38769154 DOI: 10.1007/s00011-024-01893-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/09/2024] [Accepted: 05/10/2024] [Indexed: 05/22/2024] Open
Abstract
BACKGROUND Inflammation serves as our body's immune response to combat infections, pathogens, viruses, and external stimuli. Inflammation can be classified into two types: acute inflammation and chronic inflammation. Non-steroidal anti-inflammatory medications (NSAIDs) are used to treat both acute and chronic inflammatory disorders. However, these treatments have various side effects such as reduced healing efficiency, peptic ulcers, gastrointestinal toxicities, etc. METHOD: This review assesses the potential of anti-inflammatory peptides (AIPs) derived from various natural sources, such as algae, fungi, plants, animals, and marine organisms. Focusing on peptides rich in cysteines and methionine, sulphur-containing amino acids known for their role in suppression of inflammation. RESULT Due to their varied biological activity, ability to penetrate cells, and low cytotoxicity, bioactive peptides have garnered interest as possible therapeutic agents. The utilisation of AIPs has shown great potential in the treatment of disorders associated with inflammation. AIPs can be obtained from diverse natural sources such as algae, fungi, plants, and animals. Cysteine and methionine are sulphur-containing amino acids that aid in the elimination of free radicals, hence assisting in the treatment of inflammatory diseases. CONCLUSION This review specifically examines several sources of AIPs including peptides that contain numerous cysteines and methionine. In addition, the biological characteristics of these amino acids and advancements in peptide delivery are also discussed.
Collapse
Affiliation(s)
- Catherin Ann Biji
- Biopharmaceuticals Lab, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Chennai, 603 203, Tamilnadu, India
| | - Akshad Balde
- Biopharmaceuticals Lab, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Chennai, 603 203, Tamilnadu, India
| | - Rasool Abdul Nazeer
- Biopharmaceuticals Lab, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Chennai, 603 203, Tamilnadu, India.
| |
Collapse
|
3
|
Duque HM, Dos Santos C, Brango-Vanegas J, Díaz-Martín RD, Dias SC, Franco OL. Unwrapping the structural and functional features of antimicrobial peptides from wasp venoms. Pharmacol Res 2024; 200:107069. [PMID: 38218356 DOI: 10.1016/j.phrs.2024.107069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/07/2024] [Accepted: 01/09/2024] [Indexed: 01/15/2024]
Abstract
The study of wasp venoms has captured attention due to the presence of a wide variety of active compounds, revealing a diverse array of biological effects. Among these compounds, certain antimicrobial peptides (AMPs) such as mastoparans and chemotactic peptides have emerged as significant players, characterized by their unique amphipathic short linear alpha-helical structure. These peptides exhibit not only antibiotic properties but also a range of other biological activities, which are related to their ability to interact with biological membranes to varying degrees. This review article aims to provide updated insights into the structure/function relationships of AMPs derived from wasp venoms, linking this knowledge to the potential development of innovative treatments against infections.
Collapse
Affiliation(s)
- Harry Morales Duque
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, PC: (CEP) 70.790-160 Brasília, DF, Brazil.
| | - Cristiane Dos Santos
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, PC: (CEP) 79117-010 Campo Grande, MS, Brazil
| | - José Brango-Vanegas
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, PC: (CEP) 70.790-160 Brasília, DF, Brazil; S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, PC: (CEP) 79117-010 Campo Grande, MS, Brazil
| | - Ruben Dario Díaz-Martín
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, PC: (CEP) 70.790-160 Brasília, DF, Brazil
| | - Simoni Campos Dias
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, PC: (CEP) 70.790-160 Brasília, DF, Brazil; Program in Animal Biology, Universidade de Brasília, Brasília, DF70910-900, Brazil
| | - Octávio Luiz Franco
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, PC: (CEP) 70.790-160 Brasília, DF, Brazil; S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, PC: (CEP) 79117-010 Campo Grande, MS, Brazil
| |
Collapse
|
4
|
Fux AC, Casonato Melo C, Michelini S, Swartzwelter BJ, Neusch A, Italiani P, Himly M. Heterogeneity of Lipopolysaccharide as Source of Variability in Bioassays and LPS-Binding Proteins as Remedy. Int J Mol Sci 2023; 24:ijms24098395. [PMID: 37176105 PMCID: PMC10179214 DOI: 10.3390/ijms24098395] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 05/03/2023] [Accepted: 05/05/2023] [Indexed: 05/15/2023] Open
Abstract
Lipopolysaccharide (LPS), also referred to as endotoxin, is the major component of Gram-negative bacteria's outer cell wall. It is one of the main types of pathogen-associated molecular patterns (PAMPs) that are known to elicit severe immune reactions in the event of a pathogen trespassing the epithelial barrier and reaching the bloodstream. Associated symptoms include fever and septic shock, which in severe cases, might even lead to death. Thus, the detection of LPS in medical devices and injectable pharmaceuticals is of utmost importance. However, the term LPS does not describe one single molecule but a diverse class of molecules sharing one common feature: their characteristic chemical structure. Each bacterial species has its own pool of LPS molecules varying in their chemical composition and enabling the aggregation into different supramolecular structures upon release from the bacterial cell wall. As this heterogeneity has consequences for bioassays, we aim to examine the great variability of LPS molecules and their potential to form various supramolecular structures. Furthermore, we describe current LPS quantification methods and the LPS-dependent inflammatory pathway and show how LPS heterogeneity can affect them. With the intent of overcoming these challenges and moving towards a universal approach for targeting LPS, we review current studies concerning LPS-specific binders. Finally, we give perspectives for LPS research and the use of LPS-binding molecules.
Collapse
Affiliation(s)
- Alexandra C Fux
- Division of Allergy & Immunology, Department of Biosciences & Medical Biology, Paris Lodron University of Salzburg (PLUS), Hellbrunnerstraße 34, 5020 Salzburg, Austria
- Chemical Biology Department, R&D Reagents, Miltenyi Biotec B.V. & Co. KG, Friedrich-Ebert-Straße 68, 51429 Bergisch Gladbach, Germany
| | - Cristiane Casonato Melo
- Division of Allergy & Immunology, Department of Biosciences & Medical Biology, Paris Lodron University of Salzburg (PLUS), Hellbrunnerstraße 34, 5020 Salzburg, Austria
- Chemical Biology Department, R&D Reagents, Miltenyi Biotec B.V. & Co. KG, Friedrich-Ebert-Straße 68, 51429 Bergisch Gladbach, Germany
| | - Sara Michelini
- Biotechnical Faculty, Department of Biology, University of Ljubljana, Večna pot 111, 1000 Ljubljana, Slovenia
| | - Benjamin J Swartzwelter
- Department of Microbiology, Immunology, and Pathology, 1601 Campus Delivery, Colorado State University, Fort Collins, CO 80523, USA
| | - Andreas Neusch
- Experimental Medical Physics, Heinrich-Heine University Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Paola Italiani
- Institute of Biochemistry and Cell Biology, Consiglio Nazionale delle Ricerche (CNR), Via P. Castellino 111, 80131 Naples, Italy
- Stazione Zoologica Anton Dohrn (SZN), Villa Comunale, 80121 Naples, Italy
| | - Martin Himly
- Division of Allergy & Immunology, Department of Biosciences & Medical Biology, Paris Lodron University of Salzburg (PLUS), Hellbrunnerstraße 34, 5020 Salzburg, Austria
| |
Collapse
|
5
|
Bioactive Peptides and Proteins from Wasp Venoms. Biomolecules 2022; 12:biom12040527. [PMID: 35454116 PMCID: PMC9025469 DOI: 10.3390/biom12040527] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/26/2022] [Accepted: 03/28/2022] [Indexed: 02/06/2023] Open
Abstract
Wasps, members of the order Hymenoptera, use their venom for predation and defense. Accordingly, their venoms contain various constituents acting on the circulatory, immune and nervous systems. Wasp venom possesses many allergens, enzymes, bioactive peptides, amino acids, biogenic amines, and volatile matters. In particular, some peptides show potent antimicrobial, anti-inflammatory, antitumor, and anticoagulant activity. Additionally, proteinous components from wasp venoms can cause tissue damage or allergic reactions in organisms. These bioactive peptides and proteins involved in wasp predation and defense may be potential sources of lead pharmaceutically active molecules. In this review, we focus on the advances in bioactive peptides and protein from the venom of wasps and their biological effects, as well as the allergic reactions and immunotherapy induced by the wasp venom.
Collapse
|
6
|
dos Santos AT, Cruz GS, Baptista GR. Anti-inflammatory activities of arthropod peptides: a systematic review. J Venom Anim Toxins Incl Trop Dis 2021; 27:e20200152. [PMID: 34795699 PMCID: PMC8564866 DOI: 10.1590/1678-9199-jvatitd-2020-0152] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 04/09/2021] [Indexed: 01/21/2023] Open
Abstract
Peptides obtained from different animal species have gained importance recently due to research that aims to develop biopharmaceuticals with therapeutic potential. In this sense, arthropod venoms have drawn attention, not only because of their toxicity but mainly for the search for molecules with various bioactivities, including anti-inflammatory activity. The purpose of the present study is to gather data available in the literature on new peptides derived from arthropod species with anti-inflammatory potential. This systematic review followed the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines. Studies on peptides from arthropods that display anti-inflammatory activity were retrieved from PubMed, Scopus, Web of Science, and Google Scholar databases. The bibliographic research started in 2020 and searched papers without a limit on the publication date. The articles were analyzed using a search string containing the following terms: "Peptides" and "Anti-inflammatory", in combinations such as "Ant", "Bee", "Wasp", "Crab", "Shrimp", "Scorpion", "Spider", "Tick" and "Centipedes". Besides, a search was carried out in the databases with the terms: "Peptides", "Antitumor", or "Anticancer", and "Arthropods". Articles that met the inclusion and exclusion criteria totalized 171, and these served for data extraction. Additionally, the present review included anti-inflammatory peptides with anticancer properties. Peptides with confirmed anti-inflammatory activity were from insects (ants, bees, and wasps), crustaceans (shrimp and crabs), arachnids (scorpions, spiders, and ticks), and centipedes. These arthropod peptides act mainly by decreasing pro-inflammatory cytokines as analyzed in vitro and in vivo. Some showed significant antineoplastic activity, working in essential cellular pathways against malignant neoplasms.
Collapse
Affiliation(s)
- Ariane Teixeira dos Santos
- Graduate Program in Pharmaceutical Sciences, School of Pharmacy, Dentistry and Nursing, Federal University of Ceará (UFC), Fortaleza, CE, Brazil
| | - Gabriela Silva Cruz
- Graduate Program in Pharmaceutical Sciences, School of Pharmacy, Dentistry and Nursing, Federal University of Ceará (UFC), Fortaleza, CE, Brazil
| | - Gandhi Rádis Baptista
- Graduate Program in Pharmaceutical Sciences, School of Pharmacy, Dentistry and Nursing, Federal University of Ceará (UFC), Fortaleza, CE, Brazil
- Laboratory of Biochemistry and Biotechnology, Institute for Marine Sciences, Federal University of Ceará (UFC), Fortaleza, CE, Brazil
| |
Collapse
|
7
|
Ligands and Signaling of Mas-Related G Protein-Coupled Receptor-X2 in Mast Cell Activation. Rev Physiol Biochem Pharmacol 2021; 179:139-188. [PMID: 33479839 DOI: 10.1007/112_2020_53] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Mas-related G protein-coupled receptor-X2 (MRGPRX2) is known as a novel receptor to activate mast cells (MCs). MRGPRX2 plays a dual role in promoting MC-dependent host defense and immunomodulation and contributing to the pathogenesis of pseudo-allergic drug reactions, pain, itching, and inflammatory diseases. In this article, we discuss the possible signaling pathways of MCs activation mediated by MRGPRX2 and summarize and classify agonists and inhibitors of MRGPRX2 in MCs activation. MRGPRX2 is a low-affinity and low-selectivity receptor, which allows it to interact with a diverse group of ligands. Diverse MRGPRX2 ligands utilize conserved residues in its transmembrane (TM) domains and carboxyl-terminus Ser/Thr residues to undergo ligand binding and G protein coupling. The coupling likely initiates phosphorylation cascades, induces Ca2+ mobilization, and causes degranulation and generation of cytokines and chemokines via MAPK and NF-κB pathways, resulting in MCs activation. Agonists of MRGPRX2 on MCs are divided into peptides (including antimicrobial peptides, neuropeptides, MC degranulating peptides, peptide hormones) and nonpeptides (including FDA-approved drugs). Inhibitors of MRGPRX2 include non-selective GPCR inhibitors, herbal extracts, small-molecule MRGPRX2 antagonists, and DNA aptamer drugs. Screening and classifying MRGPRX2 ligands and summarizing their signaling pathways would improve our understanding of MRGPRX2-mediated physiological and pathological effects on MCs.
Collapse
|
8
|
Lamiyan AK, Dalal R, Kumar NR. Venom peptides in association with standard drugs: a novel strategy for combating antibiotic resistance - an overview. J Venom Anim Toxins Incl Trop Dis 2020; 26:e20200001. [PMID: 32843888 PMCID: PMC7416788 DOI: 10.1590/1678-9199-jvatitd-2020-0001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 07/08/2020] [Indexed: 01/03/2023] Open
Abstract
Development of antibiotic resistance that leads to resurgence of bacterial infections poses a threat to disease-free existence for humankind and is a challenge for the welfare of the society at large. Despite research efforts directed towards treatment of pathogens, antibiotics within new improved classes have not emerged for years, a fact largely attributable to the pharmacological necessities compelling drug development. Recent reversion to the use of natural products alone or in combination with standard drugs has opened up new vistas for alternative therapeutics. The success of this strategy is evident in the sudden interest in plant extracts as additives/synergists for treatment of maladies caused by drug-resistant bacterial strains. Animal venoms have long fascinated scientists as sources of pharmacologically active components that can be exploited for the treatment of specific ailments and should be promoted further to clinical trials. In the present review, we outline the scope and possible methods for the applications of animal venoms in combination with commercial antibiotics to offer a better treatment approach against antibiotic-resistant infections.
Collapse
Affiliation(s)
| | - Ramkesh Dalal
- Department of Zoology, Panjab University, Chandigarh, India
| | | |
Collapse
|
9
|
Veloso Júnior PHDH, Simon KS, de Castro RJA, Coelho LC, Erazo FAH, de Souza ACB, das Neves RC, Lozano VF, Schwartz EF, Tavares AH, Mortari MR, Junqueira-Kipnis AP, Silva-Pereira I, Bocca AL. Peptides ToAP3 and ToAP4 decrease release of inflammatory cytokines through TLR-4 blocking. Biomed Pharmacother 2019; 118:109152. [PMID: 31376652 DOI: 10.1016/j.biopha.2019.109152] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 06/08/2019] [Accepted: 06/17/2019] [Indexed: 10/26/2022] Open
Abstract
Antimicrobial peptides (AMPs) are small molecules with microbicidal and immunoregulatory activities. In this study we evaluated the anti-inflammatory and antimicrobial activities of peptides ToAP3 and ToAP4, AMPs from the venom of the Brazilian scorpion Tityus obscurus. To test the peptides' activity, murine bone marrow-derived macrophages (BMDMs) or dendritic cells (BMDCs) were stimulated with peptides plus LPS to analyze their ability to modulate cytokine release as well as phenotypic markers. For antimicrobial analysis, we evaluated the indirect activity against macrophage-internalized Cryptococcus neoformans and direct activity against Mycobacterium massiliense. Our data demonstrate that they were able to reduce TNF-α and IL-1β transcript levels and protein levels for BMDM and BMDC. Furthermore, the reduction of TNF-α secretion, before LPS- inflammatory stimuli, is associated with peptide interaction with TLR-4. ToAP4 increased MHC-II expression in BMDC, while ToAP3 decreased co-stimulatory molecules such as CD80 and CD86. Although these peptides were able to modulate the production of cytokines and molecules associated with antigen presentation, they did not increase the ability of clearance of C. neoformans by macrophages. In antimicrobial analysis, only ToAP3 showed potent action against bacteria. Altogether, these results demonstrate a promising target for the development of new immunomodulatory and anti-bacterial therapies.
Collapse
Affiliation(s)
| | - Karina Smidt Simon
- Department of Cell Biology, Institute of Biological Sciences, University of Brasília, Brasília, Brazil
| | | | - Luísa Coutinho Coelho
- Department of Cell Biology, Institute of Biological Sciences, University of Brasília, Brasília, Brazil
| | | | | | - Rogério Coutinho das Neves
- Department of Biosciences and Technologies, Institute of Tropical Diseases and Public Health, Federal University of Goiás, Goiânia, Brazil
| | - Viviane Furlan Lozano
- Public Health Central Laboratory, Secretary of Health of Distrito Federal, Brasilia, Brazil
| | - Elizabeth Ferroni Schwartz
- Department of Physiological Sciences, Institute of Biological Sciences, University of Brasília, Brasília, Brazil
| | - Aldo Henrique Tavares
- Department of Cell Biology, Institute of Biological Sciences, University of Brasília, Brasília, Brazil
| | - Márcia Renata Mortari
- Department of Physiological Sciences, Institute of Biological Sciences, University of Brasília, Brasília, Brazil
| | - Ana Paula Junqueira-Kipnis
- Department of Biosciences and Technologies, Institute of Tropical Diseases and Public Health, Federal University of Goiás, Goiânia, Brazil
| | - Ildinete Silva-Pereira
- Department of Cell Biology, Institute of Biological Sciences, University of Brasília, Brasília, Brazil
| | - Anamelia Lorenzetti Bocca
- Department of Cell Biology, Institute of Biological Sciences, University of Brasília, Brasília, Brazil.
| |
Collapse
|
10
|
Antiinflammatory peptides: current knowledge and promising prospects. Inflamm Res 2018; 68:125-145. [PMID: 30560372 DOI: 10.1007/s00011-018-1208-x] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 10/19/2018] [Accepted: 12/12/2018] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Inflammation is part of the regular host reaction to injury or infection caused by toxic factors, pathogens, damaged cells, irritants, and allergens. Antiinflammatory peptides (AIPs) are present in all living organisms, and many peptides from herbal, mammalian, bacterial, and marine origins have been shown to have antimicrobial and/or antiinflammatory properties. METHODS In this study, we investigated the effects of antiinflammatory peptides on inflammation, and highlighted the underlying mechanisms responsible for these effects. RESULTS In multicellular organisms, including humans, AIPs constitute an essential part of their immune system. In addition, numerous natural and synthetic AIPs are effective immunomodulators and can interfere with signal transduction pathways involved in inflammatory cytokine expression. Among them, some peptides such as antiflammin, N-acetyl-seryl-aspartyl-lysyl-proline (Ac-SDKP), and those derived from velvet antler proteins, bee venom, horse fly salivary gland, and bovine β-casein have received considerable attention over the past few years. CONCLUSION This article presents an overview on the major properties and mechanisms of action associated with AIPs as immunomodulatory, chemotactic, antioxidant, and antimicrobial agents. In addition, the results of various studies dealing with effects of AIPs on numerous classical models of inflammation are reviewed and discussed.
Collapse
|
11
|
Lee MW, Lee EY, Wong GCL. What Can Pleiotropic Proteins in Innate Immunity Teach Us about Bioconjugation and Molecular Design? Bioconjug Chem 2018; 29:2127-2139. [PMID: 29771496 DOI: 10.1021/acs.bioconjchem.8b00176] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A common bioengineering strategy to add function to a given molecule is by conjugation of a new moiety onto that molecule. Adding multiple functions in this way becomes increasingly challenging and leads to composite molecules with larger molecular weights. In this review, we attempt to gain a new perspective by looking at this problem in reverse, by examining nature's strategies of multiplexing different functions into the same pleiotropic molecule using emerging analysis techniques such as machine learning. We concentrate on examples from the innate immune system, which employs a finite repertoire of molecules for a broad range of tasks. An improved understanding of how diverse functions are multiplexed into a single molecule can inspire new approaches for the deterministic design of multifunctional molecules.
Collapse
|
12
|
Memariani H, Memariani M, Pourmand MR. Venom-derived peptide Mastoparan-1 eradicates planktonic and biofilm-embedded methicillin-resistant Staphylococcus aureus isolates. Microb Pathog 2018; 119:72-80. [DOI: 10.1016/j.micpath.2018.04.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 02/14/2018] [Accepted: 04/03/2018] [Indexed: 01/10/2023]
|
13
|
Daniele-Silva A, Machado RJ, Monteiro NK, Estrela AB, Santos EC, Carvalho E, Araújo Júnior RF, Melo-Silveira RF, Rocha HAO, Silva-Júnior AA, Fernandes-Pedrosa MF. Stigmurin and TsAP-2 from Tityus stigmurus scorpion venom: Assessment of structure and therapeutic potential in experimental sepsis. Toxicon 2016; 121:10-21. [DOI: 10.1016/j.toxicon.2016.08.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 07/29/2016] [Accepted: 08/23/2016] [Indexed: 02/08/2023]
|
14
|
A novel nitro-dexamethasone inhibits agr system activity and improves therapeutic effects in MRSA sepsis models without antibiotics. Sci Rep 2016; 6:20307. [PMID: 26839286 PMCID: PMC4738243 DOI: 10.1038/srep20307] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 12/30/2015] [Indexed: 12/13/2022] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) sepsis is a life-threatening medical condition that involves systemic inflammation throughout the body. Glucocorticoids are widely used in combination with antibiotics in the treatment of MRSA sepsis to fight the overwhelming inflammation. Here, we describe the improved anti-inflammatory properties of a nitric oxide (NO)-releasing derivative of dexamethasone, ND8008. ND8008 affected MRSA biofilm formation, caused biofilm cell death, and reduced the effects of virulence factors, such as α-toxin, by inhibiting the activity of the Staphylococcus aureus accessory gene regulator (agr) system. Dosing of mice with ND8008 (127.4 nmol/kg, i.p.) alone greatly reduced the inflammatory response caused by MRSA blood stream infection and considerably increased the survival rate of septic mice. These findings suggest that this novel NO-releasing derivative of dexamethasone ND8008 could be helpful in the treatment of MRSA sepsis.
Collapse
|
15
|
Zong X, Song D, Wang T, Xia X, Hu W, Han F, Wang Y. LFP-20, a porcine lactoferrin peptide, ameliorates LPS-induced inflammation via the MyD88/NF-κB and MyD88/MAPK signaling pathways. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2015; 52:123-131. [PMID: 26003437 DOI: 10.1016/j.dci.2015.05.006] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 05/17/2015] [Accepted: 05/18/2015] [Indexed: 06/04/2023]
Abstract
LFP-20 is one of the 20 amino acid anti-microbial peptides identified in the N terminus of porcine lactoferrin. Apart from its extensively studied direct anti-bacterial activity, its potential as an activator of immune-related cellular functions is unknown. Therefore, this study investigated its anti-inflammatory effects in lipopolysaccharide (LPS)-stimulated pig alveolar macrophages in vitro and systemic inflammation in an in vivo mouse model. We found that the inhibitory effects of LFP-20 on production of pro-inflammatory cytokines were independent of its LPS-binding activity. However, they were associated with NF-κB and MAPK-dependent signaling. Furthermore, LFP-20 might directly influence MyD88 levels to block its interaction with NF-κB and MAPK-dependent signaling molecules that might alter LPS-mediated inflammatory responses in activated macrophages. Taken together, our data indicated that LFP-20 prevents the LPS-induced inflammatory response by inhibiting MyD88/NF-κB and MyD88/MAPK signaling pathways, and sheds light on the potential use of LFP-20 in the therapy of LPS-mediated sepsis.
Collapse
Affiliation(s)
- Xin Zong
- Key Laboratory of Animal Nutrition and Feed Science in Eastern China, Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Deguang Song
- Key Laboratory of Animal Nutrition and Feed Science in Eastern China, Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Tenghao Wang
- Key Laboratory of Animal Nutrition and Feed Science in Eastern China, Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xi Xia
- Key Laboratory of Animal Nutrition and Feed Science in Eastern China, Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Wangyang Hu
- Key Laboratory of Animal Nutrition and Feed Science in Eastern China, Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Feifei Han
- Key Laboratory of Animal Nutrition and Feed Science in Eastern China, Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yizhen Wang
- Key Laboratory of Animal Nutrition and Feed Science in Eastern China, Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
16
|
Moreno M, Giralt E. Three valuable peptides from bee and wasp venoms for therapeutic and biotechnological use: melittin, apamin and mastoparan. Toxins (Basel) 2015; 7:1126-50. [PMID: 25835385 PMCID: PMC4417959 DOI: 10.3390/toxins7041126] [Citation(s) in RCA: 215] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 03/18/2015] [Accepted: 03/25/2015] [Indexed: 12/14/2022] Open
Abstract
While knowledge of the composition and mode of action of bee and wasp venoms dates back 50 years, the therapeutic value of these toxins remains relatively unexploded. The properties of these venoms are now being studied with the aim to design and develop new therapeutic drugs. Far from evaluating the extensive number of monographs, journals and books related to bee and wasp venoms and the therapeutic effect of these toxins in numerous diseases, the following review focuses on the three most characterized peptides, namely melittin, apamin, and mastoparan. Here, we update information related to these compounds from the perspective of applied science and discuss their potential therapeutic and biotechnological applications in biomedicine.
Collapse
Affiliation(s)
- Miguel Moreno
- Chemistry and Molecular Pharmacology, Institute for Research in Biomedicine (IRB Barcelona), Baldiri i Reixac, 10, Barcelona 08028, Spain.
| | - Ernest Giralt
- Chemistry and Molecular Pharmacology, Institute for Research in Biomedicine (IRB Barcelona), Baldiri i Reixac, 10, Barcelona 08028, Spain.
| |
Collapse
|
17
|
Shukla P, Rao GM, Pandey G, Sharma S, Mittapelly N, Shegokar R, Mishra PR. Therapeutic interventions in sepsis: current and anticipated pharmacological agents. Br J Pharmacol 2014; 171:5011-31. [PMID: 24977655 PMCID: PMC4253453 DOI: 10.1111/bph.12829] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 04/29/2014] [Accepted: 06/13/2014] [Indexed: 12/14/2022] Open
Abstract
Sepsis is a clinical syndrome characterized by a multisystem response to a pathogenic assault due to underlying infection that involves a combination of interconnected biochemical, cellular and organ-organ interactive networks. After the withdrawal of recombinant human-activated protein C (rAPC), researchers and physicians have continued to search for new therapeutic approaches and targets against sepsis, effective in both hypo- and hyperinflammatory states. Currently, statins are being evaluated as a viable option in clinical trials. Many agents that have shown favourable results in experimental sepsis are not clinically effective or have not been clinically evaluated. Apart from developing new therapeutic molecules, there is great scope for for developing a variety of drug delivery strategies, such as nanoparticulate carriers and phospholipid-based systems. These nanoparticulate carriers neutralize intracorporeal LPS as well as deliver therapeutic agents to targeted tissues and subcellular locations. Here, we review and critically discuss the present status and new experimental and clinical approaches for therapeutic intervention in sepsis.
Collapse
Affiliation(s)
- Prashant Shukla
- Pharmaceutics Division, Preclinical South PCS 002/011, CSIR – Central Drug Research InstituteLucknow, India
| | - G Madhava Rao
- Pharmaceutics Division, Preclinical South PCS 002/011, CSIR – Central Drug Research InstituteLucknow, India
| | - Gitu Pandey
- Pharmaceutics Division, Preclinical South PCS 002/011, CSIR – Central Drug Research InstituteLucknow, India
| | - Shweta Sharma
- Pharmaceutics Division, Preclinical South PCS 002/011, CSIR – Central Drug Research InstituteLucknow, India
| | - Naresh Mittapelly
- Pharmaceutics Division, Preclinical South PCS 002/011, CSIR – Central Drug Research InstituteLucknow, India
| | - Ranjita Shegokar
- Department of Pharmaceutics, Biopharmaceutics & NutriCosmetics, Institute of Pharmacy, Freie Universität BerlinBerlin, Germany
| | - Prabhat Ranjan Mishra
- Pharmaceutics Division, Preclinical South PCS 002/011, CSIR – Central Drug Research InstituteLucknow, India
| |
Collapse
|
18
|
Abstract
LPS (lipopolysaccharide), an outer membrane component of Gram-negative bacteria, plays an important role in the pathogenesis of sepsis and lipid A is known to be essential for its toxicity. Therefore it could be an effective measure to prevent sepsis by neutralizing or destroying LPS. Numerous studies have indicated that many traditional Chinese medicines are natural antagonists of LPS in vitro and in vivo. The goal of this study is to develop a rapid method to screen anti-sepsis components from Chinese herbs by use of a direct lipid A-based affinity biosensor technology based on a resonant mirror. The detergent OG (n-octyl β-D-glucopyranoside) was immobilized on a planar non-derivatized cuvette which provided an alternative surface to bind the terminal hydrophilic group of lipid A. A total of 78 herbs were screened based on the affinity biosensor with a target of lipid A. The aqueous extract of PSA (Paeonia suffruticosa Andr) was found to possess the highest capability of binding lipid A. Therefore an aqueous extraction from this plant was investigated further by our affinity biosensor, polyamide chromatography and IEC–HPLC. Finally, we obtained a component (PSA-I-3) from Paeonia suffruticosa Andr that was evaluated with the affinity biosensor. We also studied the biological activities of PSA-I-3 against sepsis in vitro and in vivo to further confirm the component we screened with the biosensor. In vitro, we found that PSA-I-3 could decrease TNFα (tumour necrosis factor α) release from RAW264.7 cells induced by LPS in a dose-dependent manner. In vivo, it increased remarkably the survival of KM (KunMing) mice by challenging both lethal-dose LPS and heat-killed Escherichia coli compared with control groups. Our results suggest that the constructed affinity biosensor can successfully screen the anti-sepsis component from Chinese herbs.
Collapse
|
19
|
Kaushik DK, Thounaojam MC, Mitra A, Basu A. Vespa tropica venom suppresses lipopolysaccharide-mediated secretion of pro-inflammatory cyto-chemokines by abrogating nuclear factor-κ B activation in microglia. Inflamm Res 2014; 63:657-65. [PMID: 24781802 DOI: 10.1007/s00011-014-0738-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Revised: 03/03/2014] [Accepted: 04/13/2014] [Indexed: 12/16/2022] Open
Abstract
OBJECTIVE AND DESIGN The present study was aimed to evaluate the anti-inflammatory potentials of Vespa tropica (VT) venom and its isolated peptides. Effects of whole venom and its two peptides (Vt1512 and Vt1386) on lipopolysaccharide (LPS) challenged BV-2 murine microglial cells was evaluated. MATERIALS Mouse microglial cell line, BV-2 and crude venom extract as well as purified peptides from VT along with LPS from Salmonella enterica were used for the studies. TREATMENT BV-2 cells were treated with 500 ng/ml of LPS and different doses of crude wasp venom as well as purified peptides. METHODS We used immunoblotting, cytokine bead arrays and fluorescence activated cell sorter (FACS) to evaluate the levels of various proteins, cytokines and reactive oxygen species (ROS). RESULTS Our studies suggest that treatment with whole venom significantly reduces oxidative stress and LPS-stimulated activation of microglia. Also, purified peptides from crude venom exhibited potential anti-inflammatory properties. Further, whole venom was found to be targeting Akt and p38 MAPK pathways, leading to suppressed NF-κB phosphorylation in LPS challenged BV-2 cells. CONCLUSIONS VT venom possesses anti-inflammatory properties and can be further explored for their therapeutic potential in treating various inflammatory conditions of the central nervous system (CNS).
Collapse
Affiliation(s)
- Deepak Kumar Kaushik
- National Brain Research Centre, Near NSG campus, Manesar-122050, Gurgaon, Haryana, 122051, India,
| | | | | | | |
Collapse
|
20
|
Li B, Yu M, Pan X, Ren C, Peng W, Li X, Jiang W, Zheng J, Zhou H. Artesunate reduces serum lipopolysaccharide in cecal ligation/puncture mice via enhanced LPS internalization by macrophages through increased mRNA expression of scavenger receptors. Int J Mol Sci 2014; 15:1143-61. [PMID: 24441569 PMCID: PMC3907860 DOI: 10.3390/ijms15011143] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Revised: 01/02/2014] [Accepted: 01/09/2014] [Indexed: 11/24/2022] Open
Abstract
Innate immunity is the first line of defense in human beings against pathogen infection; monocytes/macrophages are the primary cells of the innate immune system. Recently, macrophages/monocytes have been discovered to participate in LPS clearance, and the clearance efficiency determines the magnitude of the inflammatory response and subsequent organ injury. Previously, we reported that artesunate (AS) protected sepsis mice against heat-killed E. coli challenge. Herein, we further confirmed that AS protected cecal ligation/puncture (CLP) sepsis mice. Its protection on sepsis mice was related to not only reduction of pro-inflammatory cytokines and serum LPS levels but also improvement of liver function. Based on the fact that AS did not directly bind and neutralize LPS, we hypothesized that the reduction of serum LPS level might be related to enhancement of LPS internalization and subsequent detoxification. Our results showed that AS increased FITC-LPS internalization by peritoneal macrophage and liver Kupffer cell, but enhancement of LPS internalization by AS was not related to the clathrin-dependent pathway. However, AS induced mRNA expression of important scavenger receptors (SRs); SR-A and MARCO mRNA expression was upregulated, suggesting that AS enhancement of LPS internalization and inhibition of pro-inflammatory cytokines was related to changes in mRNA expression of SRs.
Collapse
Affiliation(s)
- Bin Li
- Department of Pharmacology, College of Pharmacy, Third Military Medical University, Chongqing 400038, China.
| | - Mengchen Yu
- Department of Pharmacology, College of Pharmacy, Third Military Medical University, Chongqing 400038, China.
| | - Xichun Pan
- Department of Pharmacology, College of Pharmacy, Third Military Medical University, Chongqing 400038, China.
| | - Chuanliang Ren
- Department of Pharmacology, College of Pharmacy, Third Military Medical University, Chongqing 400038, China.
| | - Wei Peng
- Department of Pharmacology, College of Pharmacy, Third Military Medical University, Chongqing 400038, China.
| | - Xiaoli Li
- Department of Pharmacology, College of Pharmacy, Third Military Medical University, Chongqing 400038, China.
| | - Weiwei Jiang
- Department of Pharmacology, College of Pharmacy, Third Military Medical University, Chongqing 400038, China.
| | - Jiang Zheng
- Department of Pharmacology, College of Pharmacy, Third Military Medical University, Chongqing 400038, China.
| | - Hong Zhou
- Department of Pharmacology, College of Pharmacy, Third Military Medical University, Chongqing 400038, China.
| |
Collapse
|
21
|
NADPH oxidase as a therapeutic target for oxalate induced injury in kidneys. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2013; 2013:462361. [PMID: 23840917 PMCID: PMC3690252 DOI: 10.1155/2013/462361] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2013] [Accepted: 05/14/2013] [Indexed: 02/07/2023]
Abstract
A major role of the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase family of enzymes is to catalyze the production of superoxides and other reactive oxygen species (ROS). These ROS, in turn, play a key role as messengers in cell signal transduction and cell cycling, but when they are produced in excess they can lead to oxidative stress (OS). Oxidative stress in the kidneys is now considered a major cause of renal injury and inflammation, giving rise to a variety of pathological disorders. In this review, we discuss the putative role of oxalate in producing oxidative stress via the production of reactive oxygen species by isoforms of NADPH oxidases expressed in different cellular locations of the kidneys. Most renal cells produce ROS, and recent data indicate a direct correlation between upregulated gene expressions of NADPH oxidase, ROS, and inflammation. Renal tissue expression of multiple NADPH oxidase isoforms most likely will impact the future use of different antioxidants and NADPH oxidase inhibitors to minimize OS and renal tissue injury in hyperoxaluria-induced kidney stone disease.
Collapse
|
22
|
Keitel U, Schilling E, Knappe D, Al-Mekhlafi M, Petersen F, Hoffmann R, Hauschildt S. Effect of antimicrobial peptides from Apis mellifera hemolymph and its optimized version Api88 on biological activities of human monocytes and mast cells. Innate Immun 2012; 19:355-67. [PMID: 23112010 DOI: 10.1177/1753425912462045] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Apidaecin peptides are produced by the honeybee Apis mellifera as a major part of its non-specific defense system against infections. Having verified that the peptides apidaecin 1b and Api88-a designer peptide based on the native apidaecin 1b sequence-are highly active against Gram-negative bacteria, we studied their ability to modulate biological activities of human monocytes and mast cells (MC), two important cell types of the human innate immune system. We could show that both peptides are nontoxic and fairly resistant to degradation in cell culture medium containing 10% FBS. Among the peptides tested we found Api88 to inhibit LPS-induced TNF-α production in a concentration-dependent manner. Resting monocytes did not respond to Api88. Whilst Api88 neither induced migration nor affected the phagocytic activity of monocytes it partially inhibited the generation of reactive oxygen intermediates produced in response to LPS. In human MC, however, Api88 triggered degranulation and the mobilization of intracellular Ca(2+)-ions. Taken together these data clearly indicate that Api88 is a multifunctional molecule that can modulate biological responses of human monocytes and MC in addition to its antimicrobial activity.
Collapse
|
23
|
Hildebrand D, Sahr A, Wölfle SJ, Heeg K, Kubatzky KF. Regulation of Toll-like receptor 4-mediated immune responses through Pasteurella multocida toxin-induced G protein signalling. Cell Commun Signal 2012; 10:22. [PMID: 22852877 PMCID: PMC3441383 DOI: 10.1186/1478-811x-10-22] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Accepted: 07/20/2012] [Indexed: 12/24/2022] Open
Abstract
Background Lipopolysaccharide (LPS)-triggered Toll-like receptor (TLR) 4-signalling belongs to the key innate defence mechanisms upon infection with Gram-negative bacteria and triggers the subsequent activation of adaptive immunity. There is an active crosstalk between TLR4-mediated and other signalling cascades to secure an effective immune response, but also to prevent excessive inflammation. Many pathogens induce signalling cascades via secreted factors that interfere with TLR signalling to modify and presumably escape the host response. In this context heterotrimeric G proteins and their coupled receptors have been recognized as major cellular targets. Toxigenic strains of Gram-negative Pasteurella multocida produce a toxin (PMT) that constitutively activates the heterotrimeric G proteins Gαq, Gα13 and Gαi independently of G protein-coupled receptors through deamidation. PMT is known to induce signalling events involved in cell proliferation, cell survival and cytoskeleton rearrangement. Results Here we show that the activation of heterotrimeric G proteins through PMT suppresses LPS-stimulated IL-12p40 production and eventually impairs the T cell-activating ability of LPS-treated monocytes. This inhibition of TLR4-induced IL-12p40 expression is mediated by Gαi-triggered signalling as well as by Gβγ-dependent activation of PI3kinase and JNK. Taken together we propose the following model: LPS stimulates TLR4-mediated activation of the NFĸB-pathway and thereby the production of TNF-α, IL-6 and IL-12p40. PMT inhibits the production of IL-12p40 by Gαi-mediated inhibition of adenylate cyclase and cAMP accumulation and by Gβγ-mediated activation of PI3kinase and JNK activation. Conclusions On the basis of the experiments with PMT this study gives an example of a pathogen-induced interaction between G protein-mediated and TLR4-triggered signalling and illustrates how a bacterial toxin is able to interfere with the host’s immune response.
Collapse
Affiliation(s)
- Dagmar Hildebrand
- Department für Infektiologie, Medizinische Mikrobiologie und Hygiene, Im Neuenheimer, Feld 324, D-69120, Heidelberg, Germany.
| | | | | | | | | |
Collapse
|
24
|
Pan X, Yue J, Ding G, Li B, Liu X, Zheng X, Yu M, Li J, Jiang W, Wu C, Zheng J, Zhou H. Leucine-rich repeat 11 of Toll-like receptor 9 can tightly bind to CpG-containing oligodeoxynucleotides, and the positively charged residues are critical for the high affinity. J Biol Chem 2012; 287:30596-609. [PMID: 22822061 DOI: 10.1074/jbc.m112.396432] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
TLR9 is a receptor for sensing bacterial DNA/CpG-containing oligonucleotides (CpG ODN). The extracellular domain (ECD) of human TLR9 (hTLR9) is composed of 25 leucine-rich repeats (LRR) contributing to the binding of CpG ODN. Herein, we showed that among LRR2, -5, -8, and -11, LRR11 of hTLR9 had the highest affinity for CpG ODN followed by LRR2 and -5, whereas LRR8 had almost no affinity. In vitro, preincubation with LRR11 more significantly decreased CpG ODN internalization, subsequent NF-κB activation, and cytokine release than with LRR2 and -5 in mouse peritoneal macrophages treated with CpG ODN. The LRR11 deletion mutant of hTLR9 conferred decreased cellular responses to CpG ODN. Single- or multiple-site mutants at five positively charged residues of LRR11 (LRR11m1-9), especially Arg-337 and Lys-367, were shown to contribute to hTLR9 binding of CpG ODN. LRR11m1-9 showed reduced inhibition of CpG ODN internalization and CpG ODN/TLR9 signaling, supporting the above findings. Prediction of whole hTLR9 ECD-CpG ODN interactions revealed that Arg-337 and Lys-338 directly contact CpG ODN through hydrogen bonding, whereas Lys-347, Arg-348, and His-353 contribute to stabilizing the shape of the ligand binding region. These findings suggested that although all five positively charged residues within LRR11 contributed to its high affinity, only Arg-337 and Lys-338 directly interacted with CpG ODN. In conclusion, the results suggested that LRR11 could strongly bind to CpG ODN, whereas mutations at the five positively charge residues reduced this high affinity. LRR11 may be further investigated as an antagonist of hTLR9.
Collapse
Affiliation(s)
- Xichun Pan
- Department of Pharmacology, College of Pharmacy, the Third Military Medical University, 400038 Chongqing, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
The NADPH oxidase family and its inhibitors. Arch Immunol Ther Exp (Warsz) 2012; 60:277-94. [PMID: 22696046 DOI: 10.1007/s00005-012-0176-z] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Accepted: 03/27/2012] [Indexed: 12/16/2022]
Abstract
The classical nicotinamide adenine dinucleotide phosphate (NADPH) oxidase was originally detected in neutrophils as a multicomponent enzyme that catalyzes the generation of superoxide from oxygen and the reduced form of NADPH. This enzyme is composed of two membrane-bound subunits (p22phox and gp91phox), three cytosolic subunits (p67phox, p47phox, and p40phox) and a small G-protein Rac (Rac1 and Rac2). Recently, it has been demonstrated that there are several isoforms of nonphagocytic NADPH oxidase. Endothelial cells, vascular smooth muscle cells or adventitial fibroblasts possess multiple isoforms of this enzyme. The new homologs, along with gp91phox are now designated the Nox family of NADPH oxidases and are key sources of reactive oxygen species in the vasculature. Reactive oxygen species play a significant role in regulating endothelial function and vascular tone. However, besides the participation in the processes of physiological cell, these enzymes can also be the perpetrator of oxidative stress that causes endothelial dysfunction. This review summarizes the current state of knowledge of the structure and functions of NADPH oxidase and NADPH oxidase inhibitors in the treatment of disorders with endothelial damage.
Collapse
|
26
|
Dauphinee SM, Voelcker V, Tebaykina Z, Wong F, Karsan A. Heterotrimeric Gi/Go proteins modulate endothelial TLR signaling independent of the MyD88-dependent pathway. Am J Physiol Heart Circ Physiol 2011; 301:H2246-53. [PMID: 21949112 DOI: 10.1152/ajpheart.01194.2010] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The innate immune recognition of bacterial lipopolysaccharide (LPS) is mediated by Toll-like receptor 4 (TLR4) and results in activation of proinflammatory signaling including NF-κB and MAPK pathways. Heterotrimeric G proteins have been previously implicated in LPS signaling in macrophages and monocytes. In the present study, we show that pertussis toxin sensitive heterotrimeric G proteins (Gα(i/o)) are involved in the activation of MAPK and Akt downstream of TLR2, TLR3, and TLR4 in endothelial cells. Gα(i/o) are also required for full activation of interferon signaling downstream of TLR3 and TLR4 but are not required for the activation of NF-κB. We find that Gα(i/o)-mediated activation of the MAPK is independent of the canonical MyD88, interleukin-1 receptor-associated kinase, and tumor necrosis factor receptor-associated factor 6 signaling cascade in LPS-stimulated cells. Taken together, the data presented here suggest that heterotrimeric G proteins are widely involved in TLR pathways along a signaling cascade that is distinct from MyD88-TRAF6.
Collapse
|
27
|
Ren J, Gao H, Tang M, Gu J, Xia P, Xiao G. Lipopolysaccharide (LPS) detoxification of analogue peptides derived from limulus anti-LPS factor. Peptides 2010; 31:1853-9. [PMID: 20624438 DOI: 10.1016/j.peptides.2010.07.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2010] [Revised: 07/01/2010] [Accepted: 07/01/2010] [Indexed: 11/17/2022]
Abstract
Lipopolysaccharide (LPS) plays a critical role in the pathogenesis of sepsis due to gram-negative bacterial infections. Therefore, LPS-neutralizing molecules could have important clinical applications. Our previous work showed, CLP19, an analogue peptide derived from limulus anti-LPS factor (LALF), possessed the capacity to neutralize LPS and thereby inhibit the LPS-induced responses. However, potential cytotoxicity of CLP19 was also found, especially when added to human red blood cells. Accordingly we further developed two peptides (designated as CLP19-1 and CLP19-2) by single- and double-point amino acid substitution of CLP19, respectively, in order to reduce its toxicity and meanwhile retain the anti-LPS activity. In this study, the LPS-detoxifying effectiveness of these peptides was evaluated both in vitro and in vivo. CLP19-1 was found to dose-dependently neutralize LPS in vitro, with significantly lower hemolysis of red blood cells as compared with CLP19. Further in vivo tests verified that CLP19-1 exerted significant protective effects on mice against LPS, characterized by significantly improved survival, decreasing of tumor necrosis factor alpha (TNF-α) serum level and alleviation of tissue injury. Our work indicates that CLP19-1 is worthy of further study as potential anti-LPS agents for the management of sepsis.
Collapse
Affiliation(s)
- Jiandong Ren
- Department of General Surgery, General Hospital of Chengdu Military Command, Chengdu 610083, China
| | | | | | | | | | | |
Collapse
|
28
|
Artesunate protects sepsis model mice challenged with Staphylococcus aureus by decreasing TNF-alpha release via inhibition TLR2 and Nod2 mRNA expressions and transcription factor NF-kappaB activation. Int Immunopharmacol 2009; 10:344-50. [PMID: 20005985 DOI: 10.1016/j.intimp.2009.12.006] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2009] [Revised: 11/08/2009] [Accepted: 12/04/2009] [Indexed: 01/13/2023]
Abstract
Gram-positive bacteria have become the most common organisms responsible for the development of sepsis. Staphylococcus aureus (S. aureus) is the major gram-positive pathogen in both community-acquired and nosocomial infections. The Mortality associated with nosocomial infections caused by S. aureus may vary but are generally high. In the present study, we found that artesunate (AS) could protect mice against a lethal challenge with heat-killed S. aureus in a dose-dependent manner, and AS in combination with ampicillin sodium-sulbactam sodium (AMPS) could further increase survival of mice challenged with live S. aureus than AMPS alone. This protection was associated with reductions of serum at TNF-alpha level. In in vitro experiments, AS-pretreatment strongly inhibited TNF-alpha release from murine peritoneal macrophage induced by heat-killed S. aureus or peptidoglycan in a dose-dependent manner. AS reduced the Toll like receptor 2 (TLR2) and nucleotide-binding oligomerization domain containing 2 (Nod2) mRNA expressions up-regulated by heat-killed S. aureus and inhibited NF-kappaB activation induced by heat-killed S. aureus. In conclusion, our results demonstrated that AS-mediated protection on septic mice challenged with S. aureus was associated with its reduction on TNF-alpha release via inhibition of TLR2 and Nod2 mRNA expressions and transcription factor NF-kappaB activation.
Collapse
|
29
|
Shpakov AO. Polycationic peptides as nonhormonal regulators of chemosignal systems. J EVOL BIOCHEM PHYS+ 2009. [DOI: 10.1134/s002209300904001x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
30
|
Lai Y, Gallo RL. AMPed up immunity: how antimicrobial peptides have multiple roles in immune defense. Trends Immunol 2009; 30:131-41. [PMID: 19217824 DOI: 10.1016/j.it.2008.12.003] [Citation(s) in RCA: 870] [Impact Index Per Article: 54.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2008] [Revised: 12/19/2008] [Accepted: 12/22/2008] [Indexed: 12/24/2022]
Abstract
Antimicrobial peptides (AMPs) are widely expressed and rapidly induced at epithelial surfaces to repel assault from diverse infectious agents including bacteria, viruses, fungi and parasites. Much information suggests that AMPs act by mechanisms that extend beyond their capacity to serve as gene-encoded antibiotics. For example, some AMPs alter the properties of the mammalian membrane or interact with its receptors to influence diverse cellular processes including cytokine release, chemotaxis, antigen presentation, angiogenesis and wound healing. These functions complement their antimicrobial action and favor resolution of infection and repair of damaged epithelia. Opposing this, some microbes have evolved mechanisms to inactivate or avoid AMPs and subsequently become pathogens. Thus, AMPs are multifunctional molecules that have a central role in infection and inflammation.
Collapse
Affiliation(s)
- Yuping Lai
- Division of Dermatology, Departments of Medicine and Pediatrics, University of California, San Diego, VA San Diego Healthcare System, 3350 La Jolla Village Drive, San Diego, CA 92161, USA
| | | |
Collapse
|
31
|
Selemidis S, Sobey CG, Wingler K, Schmidt HH, Drummond GR. NADPH oxidases in the vasculature: Molecular features, roles in disease and pharmacological inhibition. Pharmacol Ther 2008; 120:254-91. [DOI: 10.1016/j.pharmthera.2008.08.005] [Citation(s) in RCA: 175] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2008] [Accepted: 08/06/2008] [Indexed: 02/07/2023]
|
32
|
Abstract
Innate immune response and its effector molecules have received growing attention in research. Host defense peptides are known to be antimicrobially active. Recently, the peptides have been recognized as potent signaling molecules for cellular effectors of both innate and adaptive immunity. Mammalian peptides in particular revealed immunomodulatory functions, including endotoxin-binding and -neutralizing capacity, chemotactic activities, induction of cytokines and chemokines, promotion of wound healing, and angiogenesis. In sepsis, they present a family of natural substances that can be used in combination with antibiotics to complete a broad-spectrum antimicrobial regimen with endotoxin-neutralizing properties. Although there are side effects, host defense peptides have the potential to be significant reinforcements to the currently available therapeutic options in the future. In this review, we analyze the role of host defense peptides in infection and immune response, and discuss recent efforts to establish host defense peptides as potent novel therapeutic agents for the treatment of sepsis.
Collapse
|
33
|
Fu J, Cao H, Wang N, Zheng X, Lu Y, Liu X, Yang D, Li B, Zheng J, Zhou H. An anti-sepsis monomer, 2',5,6',7-tetrahydroxyflavanonol (THF), identified from Scutellaria baicalensis Georgi neutralizes lipopolysaccharide in vitro and in vivo. Int Immunopharmacol 2008; 8:1652-7. [PMID: 18755299 DOI: 10.1016/j.intimp.2008.07.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2008] [Revised: 07/16/2008] [Accepted: 07/23/2008] [Indexed: 10/21/2022]
Abstract
Lipopolysaccharide (LPS) is a known trigger in the pathogenesis of sepsis, lipid A being the toxic component. One of several adjuvant therapeutic approaches for severe sepsis is currently focusing on the neutralization of LPS. In order to obtain the components from traditional Chinese herbs that can neutralize the endotoxin, aqueous extractions of twelve herbs were tested using affinity biosensor technology. From twelve herbs, Scutellaria baicalensis Georgi (Huang Qin) found to possess high lipid A-binding abilities, and was selected in subsequent experiments. After subjected to macroporous adsorptive resins and HPLC, we obtained 2',5,6',7-tetrahydroxyflavanonol (THF) from S. baicalensis Georgi under the direction of neutralization of LPS and reducing proinflammatory cytokines. In vitro, THF directly bound to LPS and neutralized its activity. THF not only down-regulated TNF-alpha mRNA expression but also decreased TNF-alpha and IL-6 release from RAW264.7 cells induced by LPS in a dose-dependent manner. THF-mediated inhibition on proinflammatory cytokine release is probably associated with downregulation of LPS-induced TLR4 mRNA augmentation. In vivo, THF could significantly protect mice against a lethal challenge with heat-killed E. coli 35218 (E. coli 35218) in a dose-dependent manner, and decreased the plasma LPS level in endotoxemia mice. These findings provide compelling evidence that THF may be an important potential drug for sepsis treatment. Considering the inhibitory effects of THF on LPS-induced cytokine release are unlikely due to its nonspecific cellular toxicity, THF should be considered as a safe putative candidate for development as a drug for sepsis treatment.
Collapse
Affiliation(s)
- Jianfeng Fu
- Medical Research Center, Southwestern Hospital, Third Military Medical University, Chongqing 400038, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Mora P, De La Paz ML, Pérez-Payá E. Bioactive peptides derived from theLimulusanti-lipopolysaccharide factor: structure-activity relationships and formation of mixed peptide/lipid complexes. J Pept Sci 2008; 14:963-71. [DOI: 10.1002/psc.1033] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
35
|
Ren JD, Gu JS, Gao HF, Xia PY, Xiao GX. A synthetic cyclic peptide derived from Limulus anti-lipopolysaccharide factor neutralizes endotoxin in vitro and in vivo. Int Immunopharmacol 2008; 8:775-81. [PMID: 18442780 DOI: 10.1016/j.intimp.2008.01.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2007] [Revised: 01/03/2008] [Accepted: 01/18/2008] [Indexed: 11/27/2022]
Abstract
Endotoxin, also known as lipopolysaccharide (LPS), is the major mediator of septic shock due to Gram-negative bacterial infections. Recently, much attention has been focused on cationic peptides which possess the potential to detoxify LPS. Limulus anti-LPS factor (LALF), a protein found in the horseshoe crab (Limulus polyphemus), has been proved with striking anti-LPS effects. We synthesized a cyclic peptide (CLP-19), and then investigated its bioactivity both in vitro and in vivo. The ability of CLP-19 to neutralize LPS in vitro was tested using a Limulus amebocyte lysate (LAL) assay and the LPS-binding affinity was measured with an affinity biosensor method. The synthetic peptide LALF31-52 (residues 31 to 52 of LALF) was used as the positive control peptide in this study. It was found that CLP-19 exhibited the significant activity to antagonize LPS without observable cytotoxicity effect on mouse macrophages. CLP-19 directly bound to LPS, and neutralized it in a dose-dependent manner in the LAL assay. Moreover, CLP-19 also showed the remarkable ability to protect mice from lethal LPS attack and to inhibit the LPS-induced tumor necrosis factor alpha (TNF-alpha) release by decreasing serum LPS in vivo. Our work suggests that this peptide is worthy of further investigation as a potential anti-LPS agent in the treatment of septic shock.
Collapse
Affiliation(s)
- Jian-Dong Ren
- Department of Pharmacy, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | | | | | | | | |
Collapse
|
36
|
Li B, Zhang R, Li J, Zhang L, Ding G, Luo P, He S, Dong Y, Jiang W, Lu Y, Cao H, Zheng J, Zhou H. Antimalarial artesunate protects sepsis model mice against heat-killed Escherichia coli challenge by decreasing TLR4, TLR9 mRNA expressions and transcription factor NF-kappa B activation. Int Immunopharmacol 2007; 8:379-89. [PMID: 18279792 DOI: 10.1016/j.intimp.2007.10.024] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2007] [Revised: 10/25/2007] [Accepted: 10/25/2007] [Indexed: 12/13/2022]
Abstract
Bacterial DNA (bDNA) and lipopolysaccharide (LPS) are potent activators of immune cells such as monocytes and macrophages, which contribute to systemic inflammatory response syndrome (SIRS) and sepsis. Unfortunately, many experimental inflammatory antagonist-based therapies have failed in sepsis trials, and currently there is only one adjuvant therapy in clinical use, e.g. activated protein C. Artesunate (AS), a water-soluble derivative of dihydroartemisinin, has recently been demonstrated to protect against LPS-induced human umbilical vein endothelial cell (HUVEC) activation and injury by inhibiting tumor necrosis factor-alpha (TNF-alpha) mRNA expression. In the present study, heat-killed Escherichia coli was used to induce sepsis in the animal models. We observed that AS could protect mice against a lethal challenge with heat-killed E. coli in a dose-dependent manner. This protection was associated with reductions in serum TNF-alpha and measurable endotoxin levels. In addition, the treatment of murine peritoneal macrophage cells with AS strongly inhibited the release of TNF-alpha and IL-6 induced by CpG oligodeoxynucleotide (CpG ODN), LPS, or heat-killed E. coli in a dose-dependent manner. Experiments using affinity sensor technology revealed that AS could not directly bind to CpG ODN or LPS. Moreover, AS could not neutralize LPS in vitro. Further, flow cytometry revealed that AS could not alter the binding of CpG ODN to cell surfaces but could promote CpG ODN accumulation within RAW264.7 cells. Furthermore, AS reduced the expressions of TLR4 and TLR9 mRNA that were stimulated by LPS, CpG ODN, or heat-killed E. coli and inhibited heat killed E. coli-induced NF-kappaB activation. In conclusion, our results demonstrated that AS-mediated protection against a lethal heat-killed E. coli challenge was associated with a reduction in proinflammatory cytokine release and endotoxin levels via a mechanism involving a decrease in TLR4, TLR9 mRNA expression and NF-kappaB activation.
Collapse
Affiliation(s)
- Bin Li
- Department of Pharmacology, College of Pharmaceutical, Third Military Medical University, Chongqing 400038, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Ghiselli R, Cirioni O, Giacometti A, Mocchegiani F, Orlando F, Silvestri C, Licci A, Della Vittoria A, Scalise G, Saba V. The cathelicidin-derived tritrpticin enhances the efficacy of ertapenem in experimental rat models of septic shock. Shock 2006; 26:195-200. [PMID: 16878029 DOI: 10.1097/01.shk.0000225407.24479.3f] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Sepsis remains a serious clinical problem despite intense efforts to improve survival. In this study, the efficacy of ertapenem combined with the cathelicidin tritrpticin was investigated in two rat models of septic shock. Main outcome measures were bacterial growth in blood, peritoneum, spleen, liver, and mesenteric lymph nodes; endotoxin, interleukin 6, and tumor necrosis factor alpha concentrations in plasma; and lethality. Adult male Wistar rats were given (1) an intraperitoneal injection of 1 mg Escherichia coli serotype 0111:B4 LPS or (2) intra-abdominal sepsis induced via cecal ligation and puncture. For each model, all animals were randomized to receive intraperitoneally isotonic sodium chloride solution, 1 mg/kg tritrpticin, 15 mg/kg ertapenem, and 1 mg/kg tritrpticin combined with 15 mg/kg ertapenem. Each group included 20 animals. All compounds significantly reduced bacterial growth and lethality as compared with saline treatment. Treatment with tritrpticin resulted in significant decrease in plasma endotoxin and cytokine levels, whereas ertapenem exerted opposite effect. The combination between tritrpticin and ertapenem proved to be the most effective treatment in reducing all variables measured. In conclusion, tritrpticin enhances ertapenem efficacy in gram-negative septic shock rat models.
Collapse
Affiliation(s)
- Roberto Ghiselli
- Department of General Surgery, I.N.R.C.A. I.R.R.C.S., Università Politecnica delle Marche, Ancona, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Cirioni O, Giacometti A, Ghiselli R, Bergnach C, Orlando F, Silvestri C, Mocchegiani F, Licci A, Skerlavaj B, Rocchi M, Saba V, Zanetti M, Scalise G. LL-37 protects rats against lethal sepsis caused by gram-negative bacteria. Antimicrob Agents Chemother 2006; 50:1672-1679. [PMID: 16641434 PMCID: PMC1472226 DOI: 10.1128/aac.50.5.1672-1679.2006] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2005] [Revised: 11/29/2005] [Accepted: 01/17/2006] [Indexed: 02/04/2023] Open
Abstract
We investigated the efficacy of LL-37, the C-terminal part of the only cathelicidin in humans identified to date (termed human cationic antimicrobial protein), in three experimental rat models of gram-negative sepsis. Adult male Wistar rats (i) were given an intraperitoneal injection of 1 mg Escherichia coli 0111:B4 LPS, (ii) were given 2 x 10(10) CFU of Escherichia coli ATCC 25922, or (iii) had intra-abdominal sepsis induced via cecal ligation and puncture. For each model, all animals were randomized to receive intravenously isotonic sodium chloride solution, 1-mg/kg LL-37, 1-mg/kg polymyxin B, 20-mg/kg imipenem, or 60-mg/kg piperacillin. Lethality; growth of bacteria in blood, peritoneum, spleen, liver, and mesenteric lymph nodes; and endotoxin and tumor necrosis factor alpha (TNF-alpha) concentrations in plasma were evaluated. All compounds reduced lethality compared to levels in controls. Endotoxin and TNF-alpha plasma levels were significantly higher in conventional antibiotic-treated rats than in LL-37- and polymyxin B-treated animals. All drugs tested significantly reduced bacterial growth compared to saline treatment. No statistically significant differences between LL-37 and polymyxin B were noted for antimicrobial and antiendotoxin activities. LL-37 and imipenem proved to be the most effective treatments in reducing all variables measured. Due to its multifunctional properties, LL-37 may become an important future consideration for the treatment of sepsis.
Collapse
Affiliation(s)
- Oscar Cirioni
- Università Politecnica delle Marche, Clinica Malattie Infettive, c/o Ospedale Regionale, Via Conca 71, 60020 Torrette, Ancona, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Wei L, Hong Z, Jiang Z, Guofu D, Hongwei C, Liangxi W, Yongling L, Bin L, Ping L. Decreased intracellular TLR9 confers hyporesponsiveness of RAW264.7 cells to subsequent CpG ODN challenge. Int Immunopharmacol 2006; 6:935-46. [PMID: 16644479 DOI: 10.1016/j.intimp.2006.01.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2005] [Revised: 12/30/2005] [Accepted: 01/04/2006] [Indexed: 10/25/2022]
Abstract
Low-dose CpG ODN pretreatment is known to induce effective protective immunity against acute infectious diseases. In the present study, using primary murine peritoneal macrophages and the macrophage-like cell line, RAW264.7, we investigated whether low-dose CpG ODN pretreatment would induce hyporesponsiveness in response to a subsequent high-dose CpG ODN challenge and further investigated the molecular mechanisms underlying this event. Our results showed that pretreatment with a low dose of CpG ODN inhibits TNF-alpha production stimulated by later high-dose CpG ODN stimulation in a dose- and time-dependent manner. Interestingly, anti-mouse TLR9 blocking antibody added prior to CpG ODN pretreatment did not affect TNF-alpha release, but antibody added after CpG ODN pretreatment augmented the pretreatment effect of CpG ODN. This difference suggests that cell-surface TLR9 is indeed functional on activated cells. Flow cytometry revealed that low-dose CpG ODN pretreatment decreased cell-surface binding and internalization of a subsequent high-dose stimulation, suggesting that decreased internalization of succeeding CpG ODN is associated with reduced TNF-alpha release. Although both intracellular and cell-surface TLR9 expression are observed, low dose of CpG ODN pretreatment increased only cell-surface TLR9 levels. Importantly, low-dose CpG ODN pretreatment also significantly inhibited the activation of NF-kappaB, an important downstream regulator of various proinflammatory cytokines. In summary, our results demonstrate that suppression of TNF-alpha production by low dose of CpG ODN pretreatment correlates with decreased binding and internalization of subsequent CpG ODN, decreased intracellular content of TLR9, and inhibition of NF-kappaB activation.
Collapse
Affiliation(s)
- Liu Wei
- Department of Pharmacology, College of Medicine, The Third Military Medical University, Chongqing 400038, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Abstract
We identified 1113 articles (103 reviews, 1010 primary research articles) published in 2005 that describe experiments performed using commercially available optical biosensors. While this number of publications is impressive, we find that the quality of the biosensor work in these articles is often pretty poor. It is a little disappointing that there appears to be only a small set of researchers who know how to properly perform, analyze, and present biosensor data. To help focus the field, we spotlight work published by 10 research groups that exemplify the quality of data one should expect to see from a biosensor experiment. Also, in an effort to raise awareness of the common problems in the biosensor field, we provide side-by-side examples of good and bad data sets from the 2005 literature.
Collapse
Affiliation(s)
- Rebecca L Rich
- Center for Biomolecular Interaction Analysis, University of Utah, Salt Lake City, UT 84132, USA
| | | |
Collapse
|