1
|
Fan TWM, Winnike J, Al-Attar A, Belshoff AC, Lorkiewicz PK, Tan JL, Wu M, Higashi RM, Lane AN. Differential Inhibition of Anaplerotic Pyruvate Carboxylation and Glutaminolysis-Fueled Anabolism Underlies Distinct Toxicity of Selenium Agents in Human Lung Cancer. Metabolites 2023; 13:774. [PMID: 37512481 PMCID: PMC10383978 DOI: 10.3390/metabo13070774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 06/05/2023] [Accepted: 06/13/2023] [Indexed: 07/30/2023] Open
Abstract
Past chemopreventive human trials on dietary selenium supplements produced controversial outcomes. They largely employed selenomethionine (SeM)-based diets. SeM was less toxic than selenite or methylseleninic acid (MSeA) to lung cancer cells. We thus investigated the toxic action of these Se agents in two non-small cell lung cancer (NSCLC) cell lines and ex vivo organotypic cultures (OTC) of NSCLC patient lung tissues. Stable isotope-resolved metabolomics (SIRM) using 13C6-glucose and 13C5,15N2-glutamine tracers with gene knockdowns were employed to examine metabolic dysregulations associated with cell type- and treatment-dependent phenotypic changes. Inhibition of key anaplerotic processes, pyruvate carboxylation (PyC) and glutaminolysis were elicited by exposure to MSeA and selenite but not by SeM. They were accompanied by distinct anabolic dysregulation and reflected cell type-dependent changes in proliferation/death/cell cycle arrest. NSCLC OTC showed similar responses of PyC and/or glutaminolysis to the three agents, which correlated with tissue damages. Altogether, we found differential perturbations in anaplerosis-fueled anabolic pathways to underlie the distinct anti-cancer actions of the three Se agents, which could also explain the failure of SeM-based chemoprevention trials.
Collapse
Affiliation(s)
- Teresa W.-M. Fan
- Center for Environmental and Systems Biochemistry, Department Toxicology & Cancer Biology and Markey Cancer Center, University of Kentucky, Lexington, KY 40506, USA; (A.A.-A.); (R.M.H.); (A.N.L.)
| | - Jason Winnike
- Department of Chemistry, University of Louisville, Louisville, KY 40202, USA; (J.W.); (A.C.B.); (P.K.L.)
| | - Ahmad Al-Attar
- Center for Environmental and Systems Biochemistry, Department Toxicology & Cancer Biology and Markey Cancer Center, University of Kentucky, Lexington, KY 40506, USA; (A.A.-A.); (R.M.H.); (A.N.L.)
| | - Alexander C. Belshoff
- Department of Chemistry, University of Louisville, Louisville, KY 40202, USA; (J.W.); (A.C.B.); (P.K.L.)
| | - Pawel K. Lorkiewicz
- Department of Chemistry, University of Louisville, Louisville, KY 40202, USA; (J.W.); (A.C.B.); (P.K.L.)
| | - Jin Lian Tan
- Department of Medicine, University of Louisville, Louisville, KY 40202, USA;
| | - Min Wu
- Seahorse Bioscience, Billerica, MA 01862, USA
| | - Richard M. Higashi
- Center for Environmental and Systems Biochemistry, Department Toxicology & Cancer Biology and Markey Cancer Center, University of Kentucky, Lexington, KY 40506, USA; (A.A.-A.); (R.M.H.); (A.N.L.)
| | - Andrew N. Lane
- Center for Environmental and Systems Biochemistry, Department Toxicology & Cancer Biology and Markey Cancer Center, University of Kentucky, Lexington, KY 40506, USA; (A.A.-A.); (R.M.H.); (A.N.L.)
| |
Collapse
|
2
|
Liu S, Wei W, Wang J, Chen T. Theranostic applications of selenium nanomedicines against lung cancer. J Nanobiotechnology 2023; 21:96. [PMID: 36935493 PMCID: PMC10026460 DOI: 10.1186/s12951-023-01825-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 02/18/2023] [Indexed: 03/21/2023] Open
Abstract
The incidence and mortality rates of lung cancer are among the highest in the world. Traditional treatment methods include surgery, chemotherapy, and radiotherapy. Although rapid progress has been achieved in the past decade, treatment limitations remain. It is therefore imperative to identify safer and more effective therapeutic methods, and research is currently being conducted to identify more efficient and less harmful drugs. In recent years, the discovery of antitumor drugs based on the essential trace element selenium (Se) has provided good prospects for lung cancer treatments. In particular, compared to inorganic Se (Inorg-Se) and organic Se (Org-Se), Se nanomedicine (Se nanoparticles; SeNPs) shows much higher bioavailability and antioxidant activity and lower toxicity. SeNPs can also be used as a drug delivery carrier to better regulate protein and DNA biosynthesis and protein kinase C activity, thus playing a role in inhibiting cancer cell proliferation. SeNPs can also effectively activate antigen-presenting cells to stimulate cell immunity, exert regulatory effects on innate and regulatory immunity, and enhance lung cancer immunotherapy. This review summarizes the application of Se-based species and materials in lung cancer diagnosis, including fluorescence, MR, CT, photoacoustic imaging and other diagnostic methods, as well as treatments, including direct killing, radiosensitization, chemotherapeutic sensitization, photothermodynamics, and enhanced immunotherapy. In addition, the application prospects and challenges of Se-based drugs in lung cancer are examined, as well as their forecasted future clinical applications and sustainable development.
Collapse
Affiliation(s)
- Shaowei Liu
- Pulmonary and Critical Care Medicine, Guangzhou Institute of Respiratory Health, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, State Key Laboratory of Respiratory Diseases, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Weifeng Wei
- Pulmonary and Critical Care Medicine, Guangzhou Institute of Respiratory Health, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, State Key Laboratory of Respiratory Diseases, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Jinlin Wang
- Pulmonary and Critical Care Medicine, Guangzhou Institute of Respiratory Health, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, State Key Laboratory of Respiratory Diseases, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China.
| | - Tianfeng Chen
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
3
|
Romero I, de Francisco P, Gutiérrez JC, Martín-González A. Selenium cytotoxicity in Tetrahymena thermophila: New clues about its biological effects and cellular resistance mechanisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 671:850-865. [PMID: 30947056 DOI: 10.1016/j.scitotenv.2019.03.115] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 03/07/2019] [Accepted: 03/08/2019] [Indexed: 06/09/2023]
Abstract
Selenium is an essential micronutrient but at high concentrations can produce severe cytotoxicity and genomic damage. We have evaluated the cytotoxicity, ultrastructural and mitochondrial alterations of the two main selenium inorganic species; selenite and selenate, in the eukaryotic microorganism Tetrahymena thermophila. In this ciliate, selenite is more toxic than selenate. Their LC50 values were calculated as 27.65 μM for Se(IV) and 56.88 mM for Se(VI). Significant levels of peroxides/hydroperoxides are induced under low-moderate selenite or selenate concentrations. Se(VI) exposures induce an immediate mitochondrial membrane depolarization. Selenium treated cells show an intense vacuolization and some of them present numerous discrete and small electrondense particles, probably selenium deposits. Mitochondrial fusion, an intense swelling in peripheral mitochondria and mitophagy are detected in selenium treated cells, especially in those exposed to Se (IV). qRT-PCR analysis of diverse genes, encoding relevant antioxidant enzymes or other proteins, like metallothioneins, involved in an environmental general stress response, have shown that they may be crucial against Se(IV) and/or Se (VI) cytotoxicity.
Collapse
Affiliation(s)
- Ivan Romero
- Dpto. Genética, Fisiología y Microbiología, Facultad de Biología, C/. José Antonio Novais, 12, Universidad Complutense (UCM), 28040 Madrid, Spain
| | - Patricia de Francisco
- Dpto. Genética, Fisiología y Microbiología, Facultad de Biología, C/. José Antonio Novais, 12, Universidad Complutense (UCM), 28040 Madrid, Spain
| | - Juan Carlos Gutiérrez
- Dpto. Genética, Fisiología y Microbiología, Facultad de Biología, C/. José Antonio Novais, 12, Universidad Complutense (UCM), 28040 Madrid, Spain
| | - Ana Martín-González
- Dpto. Genética, Fisiología y Microbiología, Facultad de Biología, C/. José Antonio Novais, 12, Universidad Complutense (UCM), 28040 Madrid, Spain..
| |
Collapse
|
4
|
Scalcon V, Tonolo F, Folda A, Bindoli A, Rigobello MP. Dimers of glutaredoxin 2 as mitochondrial redox sensors in selenite-induced oxidative stress. Metallomics 2019; 11:1241-1251. [DOI: 10.1039/c9mt00090a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Grx2 coordinates an iron–sulfur cluster, forming inactive dimers. In mitochondria, Grx2 monomerization, after oxidative stress, determines iron release triggering apoptosis.
Collapse
Affiliation(s)
- Valeria Scalcon
- Dipartimento di Scienze Biomediche
- Università degli Studi di Padova
- 35131 Padova
- Italy
| | - Federica Tonolo
- Dipartimento di Scienze Biomediche
- Università degli Studi di Padova
- 35131 Padova
- Italy
| | - Alessandra Folda
- Dipartimento di Scienze Biomediche
- Università degli Studi di Padova
- 35131 Padova
- Italy
| | - Alberto Bindoli
- Istituto di Neuroscienze (CNR)
- Sezione di Padova
- c/o Dipartimento di Scienze Biomediche
- 35131 Padova
- Italy
| | - Maria Pia Rigobello
- Dipartimento di Scienze Biomediche
- Università degli Studi di Padova
- 35131 Padova
- Italy
| |
Collapse
|
5
|
Collery P. Strategies for the development of selenium-based anticancer drugs. J Trace Elem Med Biol 2018; 50:498-507. [PMID: 29548612 DOI: 10.1016/j.jtemb.2018.02.024] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Revised: 02/20/2018] [Accepted: 02/26/2018] [Indexed: 02/07/2023]
Abstract
Many experimental models demonstrated that inorganic and organic selenium (Se) compounds may have an anticancer activity. However, large clinical studies failed to demonstrate that Se supplementations may prevent the outcome of cancers. Moreover, there are few randomized trials in cancer patients and there is not yet any Se compound recognized as anticancer drug. There is still a need to develop new Se compounds with new strategies. For that, it may be necessary to consider that Se compounds may have a dual role, either as anti-oxidant or as pro-oxidant. Experimental studies demonstrated that it is as pro-oxidant that Se compounds have anticancer effects, even though cancer cells have a pro-oxidant status. The oxidative status differs according to the type of cancer, the stage of the disease and to other parameters. We propose to adapt the doses of the Se compounds to markers of the oxidative stress, but also to markers of angiogenesis, which is strongly related with the oxidative status. A dual role of Se on angiogenesis has also been noted, either as pro-angiogenesis or as anti-angiogenesis. The objective for the development of new Se compounds, having a great selectivity on cancer cells, could be to try to normalize these oxidative and angiogenic markers in cancer patients, with an individual adaptation of doses.
Collapse
Affiliation(s)
- Philippe Collery
- Society for the Coordination of Therapeutic Researches, 20220 Algajola, France.
| |
Collapse
|
6
|
Synergism between thioredoxin reductase inhibitor ethaselen and sodium selenite in inhibiting proliferation and inducing death of human non-small cell lung cancer cells. Chem Biol Interact 2017; 275:74-85. [DOI: 10.1016/j.cbi.2017.07.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 07/12/2017] [Accepted: 07/25/2017] [Indexed: 01/10/2023]
|
7
|
Affiliation(s)
- Joohyun Woo
- Department of Surgery, Ewha Womans University Mokdong Hospital, Ewha Womans University School of Medicine, Seoul, Korea
| | - Woosung Lim
- Department of Surgery, Ewha Womans University Mokdong Hospital, Ewha Womans University School of Medicine, Seoul, Korea
| |
Collapse
|
8
|
The Combination of α-Tocopheryl Succinate and Sodium Selenite on Breast Cancer: A Merit or a Demerit? OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:4741694. [PMID: 27127548 PMCID: PMC4834195 DOI: 10.1155/2016/4741694] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 02/05/2016] [Accepted: 02/07/2016] [Indexed: 01/11/2023]
Abstract
α-Tocopheryl succinate (α-TOS), a mitochondria-targeting agent, induces apoptosis in malignant cells in vitro and in vivo. Selenite is a nutritional supplement that has been shown to stimulate apoptosis in cancer cells. This study was designed to investigate the cytotoxic effect of combined treatment of α-TOS and sodium selenite (SSe) in vitro and in vivo and to explore their effect on apoptosis and autophagy in breast cancer. The type of interaction between α-TOS and SSe was evaluated and levels of oxidative stress and apoptotic and autophagic markers were determined. SSe alone showed varying degrees of cytotoxicity on all the tested cell lines. Its combination with α-TOS was antagonistic in vitro in MCF7 and in vivo in mice bearing Ehrlich tumor compared to α-TOS-treated one. Combination of TOS with 2 μM of SSe increased the level of glutathione without changes in antiapoptotic markers Bcl-2 and Mcl-1 at 16 and 48 hrs. SSe decreased caspase 3 activity and protein level of caspases 7 and 9, while it increased autophagic markers beclin-1 and LC3B protein levels of MCF7 cells treated with α-TOS. In conclusion, SSe antagonizes α-TOS-induced apoptosis via inhibition of oxidative stress and promoting prosurvival machinery of autophagy.
Collapse
|
9
|
van Zelst M, Hesta M, Gray K, Staunton R, Du Laing G, Janssens GPJ. Biomarkers of selenium status in dogs. BMC Vet Res 2016; 12:15. [PMID: 26785793 PMCID: PMC4717652 DOI: 10.1186/s12917-016-0639-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 01/14/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Inadequate dietary selenium (Se) intake in humans and animals can lead to long term health problems, such as cancer. In view of the owner's desire for healthy longevity of companion animals, the impact of dietary Se provision on long term health effects warrants investigation. Little is currently known regards biomarkers, and rate of change of such biomarkers in relation to dietary selenium intake in dogs. In this study, selected biomarkers were assessed for their suitability to detect changes in dietary Se in adult dogs within eight weeks. RESULTS Twenty-four dogs were fed a semi-purified diet with an adequate amount of Se (46.1 μg/MJ) over an 8 week period. They were then divided into two groups. The first group remained on the adequate Se diet, the second were offered a semi-purified diet with a low Se concentration (6.5 μg/MJ; 31% of the FEDIAF minimum) for 8 weeks. Weekly urine and blood was collected and hair growth measurements were performed. The urinary Se to creatinine ratio and serum Se concentration were significantly lower in dogs consuming the low Se diet from week 1 onwards, by 84% (adequate 25.3, low 4.1) and 7% (adequate 257 μg/L, low 238 μg/L) respectively. Serum and whole blood glutathione peroxidase were also significantly lower in dogs consuming the low Se diet from weeks 6 and 8 respectively. None of the other biomarkers (mRNA expression and serum copper, creatine kinase, triiodothyronine:thyroxine ratio and hair growth) responded significantly to the low Se diet over the 8 week period. CONCLUSIONS This study demonstrated that urinary Se to creatinine ratio, serum Se and serum and whole blood glutathione peroxidase can be used as biomarkers of selenium status in dogs. Urinary Se to creatinine ratio and serum Se concentrations responded faster to decreased dietary Se than the other parameters. This makes these biomarkers candidates for early screening of long term effects of dietary Se provision on canine health.
Collapse
Affiliation(s)
- Mariëlle van Zelst
- Department of Nutrition, Genetics and Ethology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium.
| | - Myriam Hesta
- Department of Nutrition, Genetics and Ethology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium.
| | - Kerry Gray
- WALTHAM® Centre for Pet Nutrition, Waltham-on-the-Wolds, Leicestershire, UK.
| | - Ruth Staunton
- WALTHAM® Centre for Pet Nutrition, Waltham-on-the-Wolds, Leicestershire, UK.
| | - Gijs Du Laing
- Department of Applied Analytical & Physical Chemistry, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium.
| | - Geert P J Janssens
- Department of Nutrition, Genetics and Ethology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium.
| |
Collapse
|
10
|
Abstract
Adjuvant Nutritional Intervention in Cancer (ANICA) was a clinical study carried out in Denmark in the 1990s with 32 typical patients with breast cancer, aged 32-81 yr and classified high risk because of tumor spread to the lymph nodes. The patients received standard therapy for their breast cancer, but got from the start additionally an adjuvant therapy in form of a cocktail consisting of vitamin C (2,850 mg/day), vitamin E (2,500 IU/day), beta-carotene (32.5 IU/day), selenium (Se; 387 micrograms/day), various other vitamins and essential trace elements, essential fatty acids (1.2 g gamma-linolenic acid/day and 3.5 g omega-3 PUFAs/day), and coenzyme Q10 (CoQ10, 90 mg/day). The protocol was later changed, with reduction of the Se intake and more coenzyme Q10 than when the study was started. The average survival of high-risk breast patients in the study was 50% after 5 yr, whereas for low-risk breast cancer patients (without metastases in the axilla when treatment was started), the average survival was 90% after ten years. The main investigator died, and the final report from the ANICA study was therefore never written. However, the published preliminary results from the trial were very promising; it seems, therefore, important to follow-up this study.
Collapse
Affiliation(s)
- Geir Bjørklund
- a Council for Nutritional and Environmental Medicine , Mo i Rana , Norway
| |
Collapse
|
11
|
Bao P, Chen Z, Tai RZ, Shen HM, Martin FL, Zhu YG. Selenite-induced toxicity in cancer cells is mediated by metabolic generation of endogenous selenium nanoparticles. J Proteome Res 2015; 14:1127-36. [PMID: 25567070 DOI: 10.1021/pr501086e] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Selenite has been a touted cancer chemopreventative agent but generates conflicting outcomes. Multiple mechanisms of selenite cytotoxicity in cancer cells are thought to be induced by metabolites of selenite. We observed that intracellular metabolism of selenite generates endogenous selenium nanoparticles (SeNPs) in cancer cells. Critical proteins that bind with high affinity to elemental selenium during SeNPs self-assembly were identified through proteomics analysis; these include glycolytic enzymes, insoluble tubulin, and heat shock proteins 90 (HSP90). Sequestration of glycolytic enzymes by SeNPs dramatically inhibits ATP generation, which leads to functional and structural disruption of mitochondria. Transcriptome sequencing showed tremendous down-regulation of mitochondrial respiratory NADH dehydrogenase (complex I), cytochrome c oxidase (complex IV), and ATP synthase (complex V) in response to glycolysis-dependent mitochondrial dysfunction. Sequestration of insoluble tubulin led to microtubule depolymerization, altering microtubule dynamics. HSP90 sequestration led to degradation of its downstream effectors via autophagy, ultimately resulting in a cell-signaling switch to apoptosis. Additionally, the surface effects of SeNPs generated oxidative stress, thus contributing to selenite cytotoxicity. Herein, we reveal that the multiple mechanisms of selenite-induced cytotoxicity are caused by endogenous protein-assisted self-assembly of SeNPs and suggest that endogenous SeNPs could potentially be the primary cause of selenite-induced cytotoxicity.
Collapse
Affiliation(s)
- Peng Bao
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , 18 Shuangqing Road, Haidian District, Beijing 100085, P.R. China
| | | | | | | | | | | |
Collapse
|
12
|
Selenium-Functionalized Molecules (SeFMs) as Potential Drugs and Nutritional Supplements. TOPICS IN MEDICINAL CHEMISTRY 2015. [DOI: 10.1007/7355_2015_87] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
13
|
Fernandes AP, Gandin V. Selenium compounds as therapeutic agents in cancer. Biochim Biophys Acta Gen Subj 2014; 1850:1642-60. [PMID: 25459512 DOI: 10.1016/j.bbagen.2014.10.008] [Citation(s) in RCA: 301] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 10/06/2014] [Accepted: 10/08/2014] [Indexed: 11/24/2022]
Abstract
BACKGROUND With cancer cells encompassing consistently higher production of reactive oxygen species (ROS) and with an induced antioxidant defense to counteract the increased basal ROS production, tumors have a limited reserve capacity resulting in an increased vulnerability of some cancer cells to ROS. Based on this, oxidative stress has been recognized as a tumor-specific target for the rational design of new anticancer agents. Among redox modulating compounds, selenium compounds have gained substantial attention due to their promising chemotherapeutic potential. SCOPE OF REVIEW This review aims in summarizing and providing the recent developments of our understanding of the molecular mechanisms that underlie the potential anticancer effects of selenium compounds. MAJOR CONCLUSIONS It is well established that selenium at higher doses readily can turn into a prooxidant and thereby exert its potential anticancer properties. However, the biological activity of selenium compounds and the mechanism behind these effects are highly dependent on its speciation and the specific metabolic pathways of cells and tissues. Conversely, the chemical properties and the main molecular mechanisms of the most relevant inorganic and organic selenium compounds as well as selenium-based nanoparticles must be taken into account and are discussed herein. GENERAL SIGNIFICANCE Elucidating and deepening our mechanistic knowledge of selenium compounds will help in designing and optimizing compounds with more specific antitumor properties for possible future application of selenium compounds in the treatment of cancer. This article is part of a Special Issue entitled Redox regulation of differentiation and de-differentiation.
Collapse
Affiliation(s)
- Aristi P Fernandes
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics (MBB), Karolinska Institutet, SE-171 77 Stockholm, Sweden.
| | - Valentina Gandin
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, 35131 Padova, Italy
| |
Collapse
|
14
|
Epigenetic mechanisms underlying arsenic-associated lung carcinogenesis. Arch Toxicol 2014; 89:1959-69. [DOI: 10.1007/s00204-014-1351-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2014] [Accepted: 08/25/2014] [Indexed: 12/21/2022]
|
15
|
Sun HJ, Rathinasabapathi B, Wu B, Luo J, Pu LP, Ma LQ. Arsenic and selenium toxicity and their interactive effects in humans. ENVIRONMENT INTERNATIONAL 2014; 69:148-58. [PMID: 24853282 DOI: 10.1016/j.envint.2014.04.019] [Citation(s) in RCA: 232] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 04/29/2014] [Accepted: 04/29/2014] [Indexed: 05/15/2023]
Abstract
Arsenic (As) and selenium (Se) are unusual metalloids as they both induce and cure cancer. They both cause carcinogenesis, pathology, cytotoxicity, and genotoxicity in humans, with reactive oxygen species playing an important role. While As induces adverse effects by decreasing DNA methylation and affecting protein 53 expression, Se induces adverse effects by modifying thioredoxin reductase. However, they can react with glutathione and S-adenosylmethionine by forming an As-Se complex, which can be secreted extracellularly. We hypothesize that there are two types of interactions between As and Se. At low concentration, Se can decrease As toxicity via excretion of As-Se compound [(GS3)2AsSe](-), but at high concentration, excessive Se can enhance As toxicity by reacting with S-adenosylmethionine and glutathione, and modifying the structure and activity of arsenite methyltransferase. This review is to summarize their toxicity mechanisms and the interaction between As and Se toxicity, and to provide suggestions for future investigations.
Collapse
Affiliation(s)
- Hong-Jie Sun
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210046, China
| | - Bala Rathinasabapathi
- Horticultural Sciences Department, University of Florida, Gainesville, FL 32611, United States
| | - Bing Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210046, China
| | - Jun Luo
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210046, China
| | - Li-Ping Pu
- Suzhou Health College, Suzhou, Jiangsu 215000, China
| | - Lena Q Ma
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210046, China; Soil and Water Science Department, University of Florida, Gainesville, FL 32611, USA.
| |
Collapse
|
16
|
Forceville X, Touati S, Le Toumelin P, Ducros V, Laporte F, Chancerelle Y, Agay D. Elements of margin of safety, toxicity and action of sodium selenite in a lipopolysaccharide rat model. J Trace Elem Med Biol 2014; 28:303-10. [PMID: 24813451 DOI: 10.1016/j.jtemb.2014.03.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Revised: 02/20/2014] [Accepted: 03/31/2014] [Indexed: 12/25/2022]
Abstract
PROJECT Both septic shock and sodium selenite (Na2SeO3) lead to multiple organ failure through oxidation. Na2SeO3 has direct oxidant effects above the nutritional level and indirect anti-oxidant properties. In a lipopolysaccharide (LPS) rat model we assessed margin of safety, toxicity and beneficial effect of pentahydrate Na2SeO3 (5H2O·Na2SeO3) at oxidant doses. PROCEDURE In a three-step study on 204 rats we: (i) observed toxic effects of Na2SeO3 injected intraperitoneously (IP) and determined its Minimum Dose Without Toxic effect (MDWT) 0.25-0.35 mg/kg selenium (Se) content; (ii) injected IP LPS at 70% lethal dose (LD) followed, or not, one hour later by IP Na2SeO3 at MDWT and (iii) by doses>MDWT. At 48 h, in survivors, we measured plasma creatinine, lactate, aspartate and alanine aminotransferase (AST, ALT), nitric oxide (NO) and Se concentrations. RESULTS (i) Na2SeO3 alone did not increase NO and lactate. Encephalopathy appeared at 1mg Se/kg. Creatinine increased at 1-1.75 mg Se/kg, AST, ALT at 3-4.5 mg Se/kg, and the minimum LD was 3 mg Se/kg. (ii) Mortality after LPS was 37/50 (74%, [62-86%]) vs. 20/30 (67%, [50-84%]) when followed by Na2SeO3 at MDWT (p=0.483) with a decreased in NO (-31%, p=0.038) a trend for lactate decrease (-19%, p=0.068) and an increased Se in plasma of survivals. (iii) All rats died at doses ≥0.6 mg/kg (p<0.001). CONCLUSION Mechanisms of LPS and Na2SeO3 toxicity differ (i.e. NO, lactate). In septic shock 5H2O·Na2SeO3 toxicity increased, margin of safety decrease, but IP administration of dose considered as oxidant of 5H2O·Na2SeO3 showed beneficial effects.
Collapse
Affiliation(s)
- Xavier Forceville
- Centre Hospitalier de Meaux, Réanimation Polyvalente, 77104 Meaux, France.
| | - Samia Touati
- Centre Hospitalier de Meaux, Réanimation Polyvalente, 77104 Meaux, France
| | | | - Véronique Ducros
- CHU de Grenoble, Département de Biochimie Toxicologie & Pharmacologie, UF de Biochimie Hormonologie & Nutrition, BP 217, 38043 Grenoble cedex 9, France
| | - François Laporte
- CHU de Grenoble, Département de Biochimie Toxicologie & Pharmacologie, UF de Biochimie Hormonologie & Nutrition, BP 217, 38043 Grenoble cedex 9, France
| | - Yves Chancerelle
- Institut de Recherche Biomédicale des Armées, Département des Effets Biologiques des Rayonnements, 24 avenue des Maquis du Grésivaudan - BP 87, 38702 La Tronche, France
| | - Diane Agay
- Institut de Recherche Biomédicale des Armées, Département des Effets Biologiques des Rayonnements, 24 avenue des Maquis du Grésivaudan - BP 87, 38702 La Tronche, France
| |
Collapse
|
17
|
Lee S, Kim SM, Lee RT. Thioredoxin and thioredoxin target proteins: from molecular mechanisms to functional significance. Antioxid Redox Signal 2013; 18:1165-207. [PMID: 22607099 PMCID: PMC3579385 DOI: 10.1089/ars.2011.4322] [Citation(s) in RCA: 312] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The thioredoxin (Trx) system is one of the central antioxidant systems in mammalian cells, maintaining a reducing environment by catalyzing electron flux from nicotinamide adenine dinucleotide phosphate through Trx reductase to Trx, which reduces its target proteins using highly conserved thiol groups. While the importance of protecting cells from the detrimental effects of reactive oxygen species is clear, decades of research in this field revealed that there is a network of redox-sensitive proteins forming redox-dependent signaling pathways that are crucial for fundamental cellular processes, including metabolism, proliferation, differentiation, migration, and apoptosis. Trx participates in signaling pathways interacting with different proteins to control their dynamic regulation of structure and function. In this review, we focus on Trx target proteins that are involved in redox-dependent signaling pathways. Specifically, Trx-dependent reductive enzymes that participate in classical redox reactions and redox-sensitive signaling molecules are discussed in greater detail. The latter are extensively discussed, as ongoing research unveils more and more details about the complex signaling networks of Trx-sensitive signaling molecules such as apoptosis signal-regulating kinase 1, Trx interacting protein, and phosphatase and tensin homolog, thus highlighting the potential direct and indirect impact of their redox-dependent interaction with Trx. Overall, the findings that are described here illustrate the importance and complexity of Trx-dependent, redox-sensitive signaling in the cell. Our increasing understanding of the components and mechanisms of these signaling pathways could lead to the identification of new potential targets for the treatment of diseases, including cancer and diabetes.
Collapse
Affiliation(s)
- Samuel Lee
- The Harvard Stem Cell Institute, Cambridge, MA, USA
| | | | | |
Collapse
|
18
|
Liu C, Liu Z, Li M, Li X, Wong YS, Ngai SM, Zheng W, Zhang Y, Chen T. Enhancement of auranofin-induced apoptosis in MCF-7 human breast cells by selenocystine, a synergistic inhibitor of thioredoxin reductase. PLoS One 2013; 8:e53945. [PMID: 23342042 PMCID: PMC3544722 DOI: 10.1371/journal.pone.0053945] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Accepted: 12/05/2012] [Indexed: 12/03/2022] Open
Abstract
Thioredoxin system plays an important role in regulation of intracellular redox balance and various signaling pathways. Thioredoxin reductase (TrxR) is overexpressed in many cancer cells and has been identified as a potential target of anticancer drugs. Auranofin (AF) is potent TrxR inhibitor with novel in vitro and in vivo anticancer activities. Selenocystine (SeC) is a nutritionally available selenoamino acid with selective anticancer effects through induction of apoptosis. In the present study, we demonstrated the synergistic effects and the underlying molecular mechanisms of SeC in combination with AF on MCF-7 human breast cancer cells. The results showed that SeC and AF synergistically inhibited the cancer cell growth through induction of ROS-dependent apoptosis with the involvement of mitochondrial dysfunction. DNA damage-mediated p53 phosphorylation and down-regulation of phosphorylated AKT and ERK also contributed to cell apoptosis. Moreover, we demonstrated the important role of TrxR activity in the synergistic action of SeC and AF. Taken together, our results suggest the strategy to use SeC and AF in combination could be a highly efficient way to achieve anticancer synergism by targeting TrxR.
Collapse
Affiliation(s)
- Chaoran Liu
- Department of Chemistry, Jinan University, Guangzhou, China
| | - Zhong Liu
- Guangzhou Jinan Biomedicine Research and Development Center, Guangdong Provincial Key Laboratory of Bioengineering Medicine, National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou, China
| | - Meng Li
- Department of Chemistry, Jinan University, Guangzhou, China
| | - Xiaoling Li
- Department of Chemistry, Jinan University, Guangzhou, China
| | - Yum-Shing Wong
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Sai-Ming Ngai
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Wenjie Zheng
- Department of Chemistry, Jinan University, Guangzhou, China
- * E-mail: (TC); (WZ)
| | - Yibo Zhang
- Department of Chemistry, Jinan University, Guangzhou, China
| | - Tianfeng Chen
- Department of Chemistry, Jinan University, Guangzhou, China
- * E-mail: (TC); (WZ)
| |
Collapse
|
19
|
Weekley CM, Harris HH. Which form is that? The importance of selenium speciation and metabolism in the prevention and treatment of disease. Chem Soc Rev 2013; 42:8870-94. [DOI: 10.1039/c3cs60272a] [Citation(s) in RCA: 371] [Impact Index Per Article: 30.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
20
|
Seng HL, Tiekink ERT. Anti-cancer potential of selenium- and tellurium-containing species: opportunities abound! Appl Organomet Chem 2012. [DOI: 10.1002/aoc.2928] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Hoi-Ling Seng
- Department of Chemistry; University of Malaya; 50603 Kuala Lumpur Malaysia
| | | |
Collapse
|
21
|
Chatzakos V, Rundlöf AK, Ahmed D, de Verdier PJ, Flygare J. Inhibition of sphingosine kinase 1 enhances cytotoxicity, ceramide levels and ROS formation in liver cancer cells treated with selenite. Biochem Pharmacol 2012; 84:712-21. [PMID: 22727936 DOI: 10.1016/j.bcp.2012.06.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Revised: 06/11/2012] [Accepted: 06/12/2012] [Indexed: 01/16/2023]
Abstract
High doses of selenite have been shown to induce cell death in acute myeloid leukemia and lung cancer cells. In this study, we combined selenite treatment with modulators of sphingolipid metabolism in the hepatocellular carcinoma cell line Huh7. Treatment with 20 μM of selenite reduced the viability of Huh7 cells by half and increased the levels of long chain C14-, C16-, C18- and C18:1- ceramides by two-fold. Inhibition of neutral sphingomyelinase with 3-O-methylsphingosine significantly reduced the cytotoxic effect of selenite. In line with this result, selenite caused a 2.5-fold increase in the activity of neutral sphingomyelinase. The sphingosine kinase 1 (SK1) inhibitor 2-(p-hydroxyanilino)-4-(p-chlorophenyl)thiazole (SK1-II) sensitized the cells to the cytotoxic effects of selenite. Preincubation with 10 μM of SK1-II prior to treatment with 10 μM of selenite caused induction of apoptosis and gave rise to a 2.5-fold increase in C14-, C16-, C18- and C18:1- ceramides. Instead, 50 μM of SK1-II combined with 10 μM of selenite caused accumulation of cells in G1/S phases, but less apoptosis and accumulation of ceramides. The formation of reactive oxygen species (ROS) after treatment with 10 μM of selenite was maximally enhanced by 1 μM of SK1-II. Moreover, combined treatment with SK1-II and 10 μM of selenite synergistically reduced the number of viable Huh7 cells, while the non-tumorigenic hepatocyte cell line MIHA remained unaffected by the same treatment. These results raise the possibility that a combination of selenite and SK1 inhibitors could be used to treat liver cancer cells, that are regarded as drug resistant, at doses that are non-toxic to normal liver cells.
Collapse
Affiliation(s)
- V Chatzakos
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet and Karolinska University Hospital Huddinge, 141 86 Stockholm, Sweden.
| | | | | | | | | |
Collapse
|
22
|
Wang D, Taylor EW, Wang Y, Wan X, Zhang J. Encapsulated nanoepigallocatechin-3-gallate and elemental selenium nanoparticles as paradigms for nanochemoprevention. Int J Nanomedicine 2012; 7:1711-21. [PMID: 22619522 PMCID: PMC3356175 DOI: 10.2147/ijn.s29341] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Chemoprevention that impedes one or more steps in carcinogenesis, via long-term administration of naturally occurring or synthetic compounds, is widely considered to be a crucial strategy for cancer control. Selenium (Se) has chemopreventive effects, but its application is limited due to a low therapeutic index as shown in numerous animal experiments. In contrast to Se, which was known for its toxicity prior to the discovery of its beneficial effects, the natural compound epigallocatechin-3-gallate (EGCG) was originally considered to be nontoxic. Due to its preventive effects on many types of cancer in various animal models, EGCG has been regarded as a prime example of a promising chemopreventive agent without major toxicity concerns. However, very recently, evidence has accumulated showing that efficacious doses of EGCG used in health promotion may not be far from its toxic dose level. Therefore, both Se and EGCG need to be modified by novel pharmaceutical technologies to attain enhanced efficacy and/or reduced toxicity. Nanotechnology may be one of these technologies. In support of this hypothesis, the characteristics of polylactic acid and polyethylene glycol-encapsulated nano-EGCG and elemental Se nanoparticles dispersed by bovine serum albumin are reviewed in this article. Encapsulation of EGCG to form nano-EGCG leads to its enhanced stability in plasma and remarkably superior chemopreventive effects, with more than tenfold dose advantages in inducing apoptosis and inhibition of both angiogenesis and tumor growth. Se at nanoparticle size (“Nano-Se”), compared with Se compounds commonly used in dietary supplements, has significantly lower toxicity, without compromising its ability to upregulate selenoenzymes at nutritional levels and induce phase II enzymes at supranutritional levels.
Collapse
Affiliation(s)
- Dongxu Wang
- Key Laboratory of Tea Biochemistry and Biotechnology, School of Tea and Food Science, Anhui Agricultural University, Hefei, Anhui, People's Republic of China
| | | | | | | | | |
Collapse
|
23
|
Galassi R, Burini A, Ricci S, Pellei M, Rigobello MP, Citta A, Dolmella A, Gandin V, Marzano C. Synthesis and characterization of azolate gold(I) phosphane complexes as thioredoxin reductase inhibiting antitumor agents. Dalton Trans 2012; 41:5307-18. [PMID: 22391922 DOI: 10.1039/c2dt11781a] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Following an increasing interest in the gold drug therapy field, nine new neutral azolate gold(I) phosphane compounds have been synthesized and tested as anticancer agents. The azolate ligands used in this study are pyrazolates and imidazolates substituted with deactivating groups such as trifluoromethyl, nitro or chloride moieties, whereas the phosphane co-ligand is the triphenylphosphane or the more hydrophilic TPA (TPA = 1,3,5-triazaphosphaadamantane). The studied gold(I) complexes are: (3,5-bis-trifluoromethyl-1H-pyrazolate-1-yl)-triphenylphosphane-gold(I) (1), (3,5-dinitro-1H-pyrazolate-1-yl)-triphenylphosphane-gold(I) (2), (4-nitro-1H-pyrazolate-1-yl)-triphenylphosphane-gold(I) (5), (4,5-dichloro-1H-imidazolate-1-yl)-triphenylphosphane-gold(I) (7), with the related TPA complexes (3), (4), (6) and (8) and (1-benzyl-4,5-di-chloro-2H-imidazolate-2-yl)-triphenylphosphane-gold(I) (9). The presence of deactivating groups on the azole rings improves the solubility of these complexes in polar media. Compounds 1-8 contain the N-Au-P environment, whilst compound 9 is the only one to contain a C-Au-P environment. Crystal structures for compounds 1 and 2 have been obtained and discussed. Interestingly, the newly synthesized gold(I) compounds were found to possess a pronounced cytotoxic activity on several human cancer cells, some of which were endowed with cis-platin or multidrug resistance. In particular, among azolate gold(I) complexes, 1 and 2 proved to be the most promising derivatives eliciting an antiproliferative effect up to 70 times higher than cis-platin. Mechanistic experiments indicated that the inhibition of thioredoxin reductase (TrxR) might be involved in the pharmacodynamic behavior of these gold species.
Collapse
Affiliation(s)
- Rossana Galassi
- School of Science and Technology, Chemistry Division, University of Camerino, via S. Agostino, 1, 62032 Camerino, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Erkhembayar S, Mollbrink A, Eriksson LC. The effect of sodium selenite on liver growth and thioredoxin reductase expression in regenerative and neoplastic liver cell proliferation. Biochem Pharmacol 2012; 83:687-93. [DOI: 10.1016/j.bcp.2011.12.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Revised: 12/01/2011] [Accepted: 12/02/2011] [Indexed: 11/29/2022]
|
25
|
Chen XJ, Duan FD, Zhang HH, Xiong Y, Wang J. Sodium selenite-induced apoptosis mediated by ROS attack in human osteosarcoma U2OS cells. Biol Trace Elem Res 2012; 145:1-9. [PMID: 21826611 DOI: 10.1007/s12011-011-9154-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Accepted: 07/15/2011] [Indexed: 10/17/2022]
Abstract
Sodium selenite (Na(2)SeO(3), SSE) is an inorganic Se compound that is widely used in cancer chemoprevention studies. SSE has been shown to have anti-proliferative effects on several types of human cancer cells, but its effect on osteosarcoma cells has thus far not been reported. In this study, the cytotoxic effect of SSE on osteosarcoma cells U2OS was investigated in vitro and found to be higher than on comparable non-cancer cell lines 293 and L6. Treatment with SSE decreased cell growth in a dose- and time-dependent manner and altered cellular morphology. SSE also inhibited cell viability by inducing apoptosis, as evidenced by the formation of apoptotic bodies, generation of reactive oxygen species (ROS), and accumulation of cells during the advanced phase of apoptosis. SSE-induced apoptosis correlated with the activation of CASP 3, downregulation of BCL-2, and upregulation of P53 and PTEN in U2OS cells. These results indicated that SSE induces apoptosis in U2OS cells mainly through an ROS-mediated caspase pathway. This is the first report to show a possible mechanism of the anti-proliferative effect of SSE for the prevention of osteosarcoma in cell culture models.
Collapse
Affiliation(s)
- Xiao-Jia Chen
- National Engineering Research Center of Genetic Medicine, Guangdong Provincial Key Laboratory of Bioengineering Medicine, Bioengineering Institute of Jinan University, Guangzhou 510632, China.
| | | | | | | | | |
Collapse
|
26
|
Erkhembayar S, Mollbrink A, Eriksson M, Larsen EH, Eriksson LC. Selenium homeostasis and induction of thioredoxin reductase during long term selenite supplementation in the rat. J Trace Elem Med Biol 2011; 25:254-9. [PMID: 22033016 DOI: 10.1016/j.jtemb.2011.09.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Revised: 09/23/2011] [Accepted: 09/28/2011] [Indexed: 11/22/2022]
Abstract
Selenium is a candidate treatment for liver tumour prevention in chronic liver disease. In this study, we have studied selenium uptake, distribution and accumulation in rats provided with water containing tumour-preventive doses of sodium selenite for 10 weeks. Male Fischer 344 rats were given drinking water containing 1 μg/mL or 5 μg/mL sodium selenite. Selenium levels were monitored in serum and liver tissue over the 10-week period, and the kinetics of induction of the redox-active cytosolic selenoenzyme thioredoxin reductase were followed. Selenite exposure via drinking water caused a dose-dependent increase in blood and liver selenium levels, with plateaus at 6 and 8 weeks, respectively. These plateaus were reached at the same level of selenium regardless of dose, and no further accumulation was observed. A selenium-dependent increase in the activity of TrxR1 in parallel with the increase in liver selenium levels was also seen, and the induction of TrxR1 mRNA was seen only during the first three days of treatment, when the levels of selenium in the liver were increasing. Sodium selenite at 1 and 5 μg/mL did not affect body weight or relative liver mass. We concluded that long-term treatment with selenite did not cause accumulation of selenium and that the activity of TrxR1 in the liver rose with the selenium levels. We therefore suggest that sodium selenite at doses up to 5 μg/mL could be used for long-term tumour prevention.
Collapse
Affiliation(s)
- Suvd Erkhembayar
- Division of Pathology, Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | | | | | | | | |
Collapse
|
27
|
Enqvist M, Nilsonne G, Hammarfjord O, Wallin RPA, Björkström NK, Björnstedt M, Hjerpe A, Ljunggren HG, Dobra K, Malmberg KJ, Carlsten M. Selenite induces posttranscriptional blockade of HLA-E expression and sensitizes tumor cells to CD94/NKG2A-positive NK cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2011; 187:3546-54. [PMID: 21890659 DOI: 10.4049/jimmunol.1100610] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
CD94/NKG2A is an inhibitory receptor that controls the activity of a large proportion of human NK cells following interactions with the nonclassical HLA class Ib molecule HLA-E expressed on target cells. In this study, we show that selenite (SeO(3)(2-)), an inorganic selenium compound, induces an almost complete loss of cell surface expression of HLA-E on tumor cells of various origins. Selenite abrogated the HLA-E expression at a posttranscriptional level, since selenite exposure led to a dose-dependent decrease in cellular HLA-E protein expression whereas the mRNA levels remained intact. The loss of HLA-E expression following selenite treatment was associated with decreased levels of intracellular free thiols in the tumor cells, suggesting that the reduced HLA-E protein synthesis was caused by oxidative stress. Indeed, HLA-E expression and the level of free thiols remained intact following treatment with selenomethionine, a selenium compound that does not generate oxidative stress. Loss of HLA-E expression, but not of total HLA class I expression, on tumor cells resulted in increased susceptibility to CD94/NK group 2A-positive NK cells. Our results suggest that selenite may be used to potentiate the anti-tumor cytotoxicity in settings of NK cell-based immunotherapies.
Collapse
Affiliation(s)
- Monika Enqvist
- Department of Medicine, Center for Infectious Medicine, Karolinska Institute, Karolinska University Hospital Huddinge, 141 86 Stockholm, Sweden
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Rigobello MP, Folda A, Citta A, Scutari G, Gandin V, Fernandes AP, Rundlöf AK, Marzano C, Björnstedt M, Bindoli A. Interaction of selenite and tellurite with thiol-dependent redox enzymes: Kinetics and mitochondrial implications. Free Radic Biol Med 2011; 50:1620-9. [PMID: 21397686 DOI: 10.1016/j.freeradbiomed.2011.03.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2010] [Revised: 02/17/2011] [Accepted: 03/04/2011] [Indexed: 12/13/2022]
Abstract
The interactions of selenite and tellurite with cytosolic and mitochondrial thioredoxin reductases (TrxR1 and TrxR2) and glutathione reductases (GR) from yeast and mammalian sources were explored. Both TrxR1 and TrxR2 act as selenite and tellurite reductases. Kinetic treatment shows that selenite has a greater affinity than tellurite with both TrxR1 and TrxR2. Considering both k(cat) and K(m), selenite shows a better catalytic efficiency than tellurite with TrxR1, whereas with TrxR2, the catalytic efficiency is similar for both chalcogens. Tellurite is a good substrate for GR, whereas selenite is almost completely ineffective. Selenite or tellurite determine a large mitochondrial permeability transition associated with thiol group oxidation. However, with increasing concentrations of both chalcogens, only about 25% of total thiols are oxidized. In isolated mitochondria, selenite or tellurite per se does not stimulate H₂O₂ production, which, however, is increased by the presence of auranofin. They also determine a large oxidation of mitochondrial pyridine nucleotides. In ovarian cancer cells both chalcogens decrease the mitochondrial membrane potential. These results indicate that selenite and tellurite, interacting with the thiol-dependent enzymes, alter the balance connecting pyridine nucleotides and thiol redox state, consequently leading to mitochondrial and cellular alterations essentially referable to a disulfide stress.
Collapse
|
29
|
Atalay M, Bilginoglu A, Kokkola T, Oksala N, Turan B. Treatments with sodium selenate or doxycycline offset diabetes-induced perturbations of thioredoxin-1 levels and antioxidant capacity. Mol Cell Biochem 2011; 351:125-31. [PMID: 21246260 DOI: 10.1007/s11010-011-0719-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2010] [Accepted: 01/05/2011] [Indexed: 12/12/2022]
Abstract
Diabetes is associated with increased oxidative stress and impaired antioxidant defenses. Thioredoxin-1 (TRX-1) is a cytosolic thiol antioxidant and redox-active protein which plays a vital role in the maintenance of reduced intracellular redox state. In this study, the authors examined whether 4-week treatments with sodium selenate and doxycycline--a metalloproteinase-2 inhibitor which also has antioxidant-like effects--offset perturbations in oxidative stress and antioxidant protection in rat liver and skeletal muscle in streptozotocin-induced diabetes (SID) model. Experimental diabetes decreased TRX-1 levels in skeletal muscle and liver. On the other hand, SID increased oxidative stress marker protein carbonyl levels and decreased oxygen radical absorbance capacity (ORAC), an indicator of antioxidant capacity, in liver. A 4-week treatment of sodium selenate to diabetic rats decreased blood glucose levels moderately, while doxycycline treatment caused a reduction in weight loss of diabetic rats. Both doxycycline and sodium selenate prevented diabetes-induced decrease of TRX-1 levels in skeletal muscle, whereas only doxyxycline was effectively preventing diabetes-induced decrease of TRX-1 in liver. Furthermore, both treatments prevented diabetes-induced altered levels of protein carbonyls and ORAC in liver, and restored free and total protein thiol levels in both skeletal muscle and liver. In conclusion, the data of this study provides further evidence that sodium selenate and doxycycline treatments may control oxidative stress and improve antioxidant defense in diabetes.
Collapse
Affiliation(s)
- Mustafa Atalay
- Institute of Biomedicine, Physiology, University of Eastern Finland, Kuopio, Finland
| | | | | | | | | |
Collapse
|
30
|
Selenium: a double-edged sword for defense and offence in cancer. Arch Toxicol 2010; 84:919-38. [PMID: 20871980 DOI: 10.1007/s00204-010-0595-8] [Citation(s) in RCA: 241] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2010] [Accepted: 09/09/2010] [Indexed: 10/19/2022]
Abstract
Selenium (Se) is an essential dietary component for animals including humans and is regarded as a protective agent against cancer. Although the mode of anticancer action of Se is not fully understood yet, several mechanisms, such as antioxidant protection by selenoenzymes, specific inhibition of tumor cell growth by Se metabolites, modulation of cell cycle and apoptosis, and effect on DNA repair have all been proposed. Despite the unsupported results of the last SELECT trial, the cancer-preventing activity of Se was demonstrated in majority of the epidemiological studies. Moreover, recent studies suggest that Se has a potential to be used not only in cancer prevention but also in cancer treatment where in combination with other anticancer drugs or radiation, it can increase efficacy of cancer therapy. In combating cancer cells, Se acts as pro-oxidant rather than antioxidant, inducing apoptosis through the generation of oxidative stress. Thus, the inorganic Se compound, sodium selenite (SeL), due to its prooxidant character, represents a promising alternative for cancer therapy. However, this Se compound is highly toxic compared to organic Se forms. Thus, the unregulated intake of dietary or pharmacological Se supplements mainly in the form of SeL has a potential to expose the body tissues to the toxic levels of Se with subsequent negative consequences on DNA integrity. Hence, due to a broad interest to exploit the positive effects of Se on human health and cancer therapy, studies investigating the negative effects such as toxicity and DNA damage induction resulting from high Se intake are also highly required. Here, we review a role of Se in cancer prevention and cancer therapy, as well as mechanisms underlying Se-induced toxicity and DNA injury. Since Saccharomyces cerevisiae has proven a powerful tool for addressing some important questions regarding Se biology, a part of this review is devoted to this model system.
Collapse
|
31
|
Selenium compounds are substrates for glutaredoxins: a novel pathway for selenium metabolism and a potential mechanism for selenium-mediated cytotoxicity. Biochem J 2010; 429:85-93. [PMID: 20408818 DOI: 10.1042/bj20100368] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The Grx (glutaredoxin) proteins are oxidoreductases with a central function in maintaining the redox balance within the cell. In the present study, we have explored the reactions between selenium compounds and the glutaredoxin system. Selenite, GS-Se-SG (selenodiglutathione) and selenocystine were all shown to be substrates of human Grx1, implying a novel role for the glutaredoxins in selenium metabolism. During the past few years, selenium has further evolved as a potential therapeutic agent in cancer treatment, and a leading mechanism of cytotoxicity is the generation of ROS (reactive oxygen species). Both selenite and GS-Se-SG were reduced by Grx1 and Grx2 in a non-stoichiometric manner due to redox cycling with oxygen, which in turn generated ROS. The role of Grx in selenium toxicity was therefore explored. Cells were treated with the selenium compounds in combination with transient overexpression of, or small interfering RNA against, Grx1. The results demonstrated an increased viability of the cells during silencing of Grx1, indicating that Grx1 is contributing to selenium toxicity. This is in contrast with TrxR (thioredoxin reductase), which previously was shown to protect cells from selenium cytotoxicity, verifying a diverse role between Grx and TrxR in selenium-mediated cytotoxicity. Furthermore, selenium treatment led to a marked increase in protein glutathionylation and cysteinylation that potentially can influence the activity and function of several proteins within the cell.
Collapse
|
32
|
Selenius M, Rundlöf AK, Olm E, Fernandes AP, Björnstedt M. Selenium and the selenoprotein thioredoxin reductase in the prevention, treatment and diagnostics of cancer. Antioxid Redox Signal 2010; 12:867-80. [PMID: 19769465 DOI: 10.1089/ars.2009.2884] [Citation(s) in RCA: 135] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Selenium is an essential element that is specifically incorporated as selenocystein into selenoproteins. It is a potent modulator of eukaryotic cell growth with strictly concentration-dependant effects. Lower concentrations are necessary for cell survival and growth, whereas higher concentrations inhibit growth and induce cell death. It is well established that selenium has cancer preventive effects, and several studies also have shown that it has strong anticancer effects with a selective cytotoxicity on malignant drug-resistant cells while only exerting marginal effects on normal and benign cells. This cancer-specific cytotoxicity is likely explained by high affinity selenium uptake dependent on proteins connected to multidrug resistance. One of the most studied selenoproteins in cancer is thioredoxin reductase (TrxR) that has important functions in neoplastic growth and is an important component of the resistant phenotype. Several reports have shown that TrxR is induced in tumor cells and pre-neoplastic cells, and several commonly used drugs interact with the protein. In this review, we summarize the current knowledge of selenium as a potent preventive and tumor selective anticancer drug, and we also discuss the potential of using the expression and modulation of the selenoprotein TrxR in the diagnostics and treatment of cancer.
Collapse
Affiliation(s)
- Markus Selenius
- Division of Pathology, Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | | | | | | | | |
Collapse
|
33
|
Vinceti M, Maraldi T, Bergomi M, Malagoli C. Risk of chronic low-dose selenium overexposure in humans: insights from epidemiology and biochemistry. REVIEWS ON ENVIRONMENTAL HEALTH 2009; 24:231-248. [PMID: 19891121 DOI: 10.1515/reveh.2009.24.3.231] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The latest developments of epidemiologic and biochemical research suggest that current upper limits of intake for dietary selenium and for overall selenium exposure may be inadequate to protect human health. In particular, recent experimental and observational prospective studies indicate a diabetogenic effect of selenium at unexpectedly low levels of intake. Experimental evidence from laboratory studies and veterinary medicine appears to confirm previous epidemiologic observations that selenium overexposure is associated with an increased risk of amyotrophic lateral sclerosis, and a recent large trial indicated no beneficial effect in preventing prostate cancer. Moreover, the pro-oxidant properties of selenium species and the observation that the selenium-containing enzymes glutathione peroxidases are induced by oxidative stress imply that the increase in enzymatic activity induced by this metalloid may represent at least in part a compensatory response. Taken together, the data indicate that the upper safe limit of organic and inorganic selenium intake in humans may be lower than has been thought and that low-dose chronic overexposure to selenium may be considerably more widespread than supposed.
Collapse
Affiliation(s)
- Marco Vinceti
- CREAGEN-Environmental, Genetic & Nutritional Epidemiology Research Center, Department of Public Health Sciences, University of Modena and Reggio Emilia, Modena, Italy.
| | | | | | | |
Collapse
|
34
|
Extracellular thiol-assisted selenium uptake dependent on the x(c)- cystine transporter explains the cancer-specific cytotoxicity of selenite. Proc Natl Acad Sci U S A 2009; 106:11400-5. [PMID: 19549867 DOI: 10.1073/pnas.0902204106] [Citation(s) in RCA: 136] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The selenium salt selenite (SeO(3)(2-)) is cytotoxic in low to moderate concentrations, with a remarkable specificity for cancer cells resistant to conventional chemotherapy. Our data show that selenium uptake and accumulation, rather than intracellular events, are crucial to the specific selenite cytotoxicity observed in resistant cancer cells. We show that selenium uptake depends on extracellular reduction, and that the extracellular environment is a key factor specific to selenite cytotoxicity. The extracellular reduction is mediated by cysteine, and the efficacy is determined by the uptake of cystine by the x(c)(-) antiporter and secretion of cysteine by multidrug resistance proteins, both of which are frequently overexpressed by resistant cancer cells. This mechanism provides molecular evidence for the existence of an inverse relationship between resistance to conventional chemotherapy and sensitivity to selenite cytotoxicity, and highlights the great therapeutic potential in treating multidrug-resistant cancer.
Collapse
|
35
|
Lu J, Berndt C, Holmgren A. Metabolism of selenium compounds catalyzed by the mammalian selenoprotein thioredoxin reductase. Biochim Biophys Acta Gen Subj 2009; 1790:1513-9. [PMID: 19406206 DOI: 10.1016/j.bbagen.2009.04.013] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2009] [Revised: 04/21/2009] [Accepted: 04/22/2009] [Indexed: 01/24/2023]
Abstract
The mammalian thioredoxin reductases (TrxR) are selenoproteins with a catalytic selenocysteine residue which in the oxidized enzyme forms a selenenylsulfide and in the reduced enzyme is present as a selenolthiol. Selenium compounds such as selenite, selenodiglutathione and selenocystine are substrates for the enzyme with low K(m)-values and the enzyme is implicated in reductive assimilation of selenium by generating selenide for selenoprotein synthesis. Redox cycling of reduced metabolites of these selenium compounds including selenide with oxygen via TrxR and reduced thioredoxin (Trx) will oxidize NADPH and produce reactive oxygen species inducing cell death at high concentrations explaining selenite toxicity. There is no free pool of selenocysteine since this would be toxic in an oxygen environment by redox cycling via thioredoxin systems. The importance of selenium compounds and TrxR in cancer and cardiovascular diseases both for prevention and treatment is discussed. A selenazol drug like ebselen is a direct substrate for mammalian TrxR and dithiol Trx and ebselen selenol is readily reoxidized by hydrogen peroxide and lipid hydroperoxides, acting as an anti-oxidant and anti-inflammatory drug.
Collapse
Affiliation(s)
- Jun Lu
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE 171 77 Stockholm, Sweden
| | | | | |
Collapse
|
36
|
Augmented antitumor effects of combination therapy of cisplatin with ethaselen as a novel thioredoxin reductase inhibitor on human A549 cell in vivo. Invest New Drugs 2009; 28:205-15. [PMID: 19271154 DOI: 10.1007/s10637-009-9235-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2009] [Accepted: 02/18/2009] [Indexed: 10/21/2022]
Abstract
Ethaselen (1, 2-[bis (1, 2-Benzisoselenazolone-3 (2H) -ketone)] ethane, BBSKE), as a novel organoselenium compound targeting thioredoxin reductase (TrxR), has been reported to inhibit tumor growth and TrxR activity in several human tumor cell lines. It has now entered Phase I clinical trails. Here we report the effects of ethaselen and cisplatin (cis-diamminedichloroplatinum II, DDP) combination therapy (ethaselen 36 mg/kg, i.g., o.d. x 10 d and cisplatin 1 mg/kg, i.p., single at day 0) on human A549-grafted nude mouse model (female, BALB/c nude mouse, n = 5, treatment after tumor volume reached 100 mm(3)). Compared to single drug administration (either ethaselen: 36 mg/kg, i.g., o.d. x 10 d or cisplatin: 1.0 mg/kg, i.p., single at day 0), the combination therapy showed significantly reduced tumor size (presumably due to a synergistic effect) and no obvious toxic damage (both in terms of body weight maintenance and liver/kidney damage). These results will be significant in the development of novel anti-tumoral therapeutic strategies directed to non-small cell lung cancer (NSCLC).
Collapse
|
37
|
Arnér ESJ. Focus on mammalian thioredoxin reductases--important selenoproteins with versatile functions. Biochim Biophys Acta Gen Subj 2009; 1790:495-526. [PMID: 19364476 DOI: 10.1016/j.bbagen.2009.01.014] [Citation(s) in RCA: 504] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2008] [Accepted: 01/30/2009] [Indexed: 02/07/2023]
Abstract
Thioredoxin systems, involving redox active thioredoxins and thioredoxin reductases, sustain a number of important thioredoxin-dependent pathways. These redox active proteins support several processes crucial for cell function, cell proliferation, antioxidant defense and redox-regulated signaling cascades. Mammalian thioredoxin reductases are selenium-containing flavoprotein oxidoreductases, dependent upon a selenocysteine residue for reduction of the active site disulfide in thioredoxins. Their activity is required for normal thioredoxin function. The mammalian thioredoxin reductases also display surprisingly multifaceted properties and functions beyond thioredoxin reduction. Expressed from three separate genes (in human named TXNRD1, TXNRD2 and TXNRD3), the thioredoxin reductases can each reduce a number of different types of substrates in different cellular compartments. Their expression patterns involve intriguingly complex transcriptional mechanisms resulting in several splice variants, encoding a number of protein variants likely to have specialized functions in a cell- and tissue-type restricted manner. The thioredoxin reductases are also targeted by a number of drugs and compounds having an impact on cell function and promoting oxidative stress, some of which are used in treatment of rheumatoid arthritis, cancer or other diseases. However, potential specific or essential roles for different forms of human or mouse thioredoxin reductases in health or disease are still rather unclear, although it is known that at least the murine Txnrd1 and Txnrd2 genes are essential for normal development during embryogenesis. This review is a survey of current knowledge of mammalian thioredoxin reductase function and expression, with a focus on human and mouse and a discussion of the striking complexity of these proteins. Several yet open questions regarding their regulation and roles in different cells or tissues are emphasized. It is concluded that the intriguingly complex regulation and function of mammalian thioredoxin reductases within the cellular context and in intact mammals strongly suggests that their functions are highly fi ne-tuned with the many pathways involving thioredoxins and thioredoxin-related proteins. These selenoproteins furthermore propagate many functions beyond a reduction of thioredoxins. Aberrant regulation of thioredoxin reductases, or a particular dependence upon these enzymes in diseased cells, may underlie their presumed therapeutic importance as enzymatic targets using electrophilic drugs. These reductases are also likely to mediate several of the effects on health and disease that are linked to different levels of nutritional selenium intake. The thioredoxin reductases and their splice variants may be pivotal components of diverse cellular signaling pathways, having importance in several redox-related aspects of health and disease. Clearly, a detailed understanding of mammalian thioredoxin reductases is necessary for a full comprehension of the thioredoxin system and of selenium dependent processes in mammals.
Collapse
Affiliation(s)
- Elias S J Arnér
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77 Stockholm, Sweden.
| |
Collapse
|
38
|
Abstract
PURPOSE OF REVIEW To discuss recent research related to anticarcinogenic mechanisms of selenium action in light of the underlying chemical/biochemical functions of the selenium species, likely to be executors of those effects. RECENT FINDINGS Recent studies in a variety of model systems have increased the understanding of the anticarcinogenic mechanisms of selenium compounds. These include effects on gene expression, DNA damage and repair, signaling pathways, regulation of cell cycle and apoptosis, metastasis and angiogenesis. These effects would appear to be related to the production of reactive oxygen species produced by the redox cycling, modification of protein-thiols and methionine mimicry. Three principle selenium metabolites appear to execute these effects: hydrogen selenide, methylselenol and selenomethionine. The fact that various selenium compounds can be metabolized to one or more of these species but differ in anticarcinogenic activity indicates competing pathways of their metabolic and chemical/biochemical disposition. Increasing knowledge of selenoprotein polymorphisms has shown that at least some are related to cancer risk and may affect carcinogenesis indirectly by influencing selenium metabolism. SUMMARY The anticarcinogenic effects of selenium compounds constitute intermediate mechanisms with several underlying chemical/biochemical mechanisms such as redox cycling, alteration of protein-thiol redox status and methionine mimicry.
Collapse
Affiliation(s)
- Matthew I Jackson
- Grand Forks Human Nutrition Research Center, USDA-ARS, Grand Forks, North Dakota 58202-9034, USA
| | | |
Collapse
|