1
|
Li DY, Gao SJ, Sun J, Zhang LQ, Wu JY, Song FH, Liu DQ, Zhou YQ, Mei W. Targeting the nitric oxide/cGMP signaling pathway to treat chronic pain. Neural Regen Res 2023; 18:996-1003. [PMID: 36254980 PMCID: PMC9827765 DOI: 10.4103/1673-5374.355748] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/15/2022] [Accepted: 06/30/2022] [Indexed: 11/07/2022] Open
Abstract
Nitric oxide (NO)/cyclic guanosine 3',5'-monophosphate (cGMP) signaling has been shown to act as a mediator involved in pain transmission and processing. In this review, we summarize and discuss the mechanisms of the NO/cGMP signaling pathway involved in chronic pain, including neuropathic pain, bone cancer pain, inflammatory pain, and morphine tolerance. The main process in the NO/cGMP signaling pathway in cells involves NO activating soluble guanylate cyclase, which leads to subsequent production of cGMP. cGMP then activates cGMP-dependent protein kinase (PKG), resulting in the activation of multiple targets such as the opening of ATP-sensitive K+ channels. The activation of NO/cGMP signaling in the spinal cord evidently induces upregulation of downstream molecules, as well as reactive astrogliosis and microglial polarization which participate in the process of chronic pain. In dorsal root ganglion neurons, natriuretic peptide binds to particulate guanylyl cyclase, generating and further activating the cGMP/PKG pathway, and it also contributes to the development of chronic pain. Upregulation of multiple receptors is involved in activation of the NO/cGMP signaling pathway in various pain models. Notably the NO/cGMP signaling pathway induces expression of downstream effectors, exerting both algesic and analgesic effects in neuropathic pain and inflammatory pain. These findings suggest that activation of NO/cGMP signaling plays a constituent role in the development of chronic pain, and this signaling pathway with dual effects is an interesting and promising target for chronic pain therapy.
Collapse
Affiliation(s)
- Dan-Yang Li
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Shao-Jie Gao
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Jia Sun
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Long-Qing Zhang
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Jia-Yi Wu
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Fan-He Song
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Dai-Qiang Liu
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Ya-Qun Zhou
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Wei Mei
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| |
Collapse
|
2
|
Gabel F, Hovhannisyan V, Berkati AK, Goumon Y. Morphine-3-Glucuronide, Physiology and Behavior. Front Mol Neurosci 2022; 15:882443. [PMID: 35645730 PMCID: PMC9134088 DOI: 10.3389/fnmol.2022.882443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 04/26/2022] [Indexed: 11/13/2022] Open
Abstract
Morphine remains the gold standard painkiller available to date to relieve severe pain. Morphine metabolism leads to the production of two predominant metabolites, morphine-3-glucuronide (M3G) and morphine-6-glucuronide (M6G). This metabolism involves uridine 5'-diphospho-glucuronosyltransferases (UGTs), which catalyze the addition of a glucuronide moiety onto the C3 or C6 position of morphine. Interestingly, M3G and M6G have been shown to be biologically active. On the one hand, M6G produces potent analgesia in rodents and humans. On the other hand, M3G provokes a state of strong excitation in rodents, characterized by thermal hyperalgesia and tactile allodynia. Its coadministration with morphine or M6G also reduces the resulting analgesia. Although these behavioral effects show quite consistency in rodents, M3G effects are much more debated in humans and the identity of the receptor(s) on which M3G acts remains unclear. Indeed, M3G has little affinity for mu opioid receptor (MOR) (on which morphine binds) and its effects are retained in the presence of naloxone or naltrexone, two non-selective MOR antagonists. Paradoxically, MOR seems to be essential to M3G effects. In contrast, several studies proposed that TLR4 could mediate M3G effects since this receptor also appears to be essential to M3G-induced hyperalgesia. This review summarizes M3G's behavioral effects and potential targets in the central nervous system, as well as the mechanisms by which it might oppose analgesia.
Collapse
Affiliation(s)
- Florian Gabel
- CNRS UPR 3212, Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique and University of Strasbourg, Strasbourg, France
| | - Volodya Hovhannisyan
- CNRS UPR 3212, Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique and University of Strasbourg, Strasbourg, France
| | - Abdel-Karim Berkati
- CNRS UPR 3212, Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique and University of Strasbourg, Strasbourg, France
| | - Yannick Goumon
- CNRS UPR 3212, Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique and University of Strasbourg, Strasbourg, France
- SMPMS, Mass Spectrometry Facilities of the CNRS UPR 3212, Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique, Strasbourg, France
| |
Collapse
|
3
|
de Freitas BG, Hösch NG, Pereira LM, Barbosa TC, Picolo G, Cury Y, Zambelli VO. PKCζ-Mitogen-Activated Protein Kinase Signaling Mediates Crotalphine-Induced Antinociception. Toxins (Basel) 2021; 13:toxins13120912. [PMID: 34941749 PMCID: PMC8709465 DOI: 10.3390/toxins13120912] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 11/29/2021] [Accepted: 12/06/2021] [Indexed: 01/14/2023] Open
Abstract
Crotalphine (CRP) is a structural analogue to a peptide that was first identified in the crude venom from the South American rattlesnake Crotalus durissus terrificus. This peptide induces a potent and long-lasting antinociceptive effect that is mediated by the activation of peripheral opioid receptors. The opioid receptor activation regulates a variety of intracellular signaling, including the mitogen-activated protein kinase (MAPK) pathway. Using primary cultures of sensory neurons, it was demonstrated that crotalphine increases the level of activated ERK1/2 and JNK-MAPKs and this increase is dependent on the activation of protein kinase Cζ (PKCζ). However, whether PKCζ-MAPK signaling is critical for crotalphine-induced antinociception is unknown. Here, we biochemically demonstrated that the systemic crotalphine activates ERK1/2 and JNK and decreases the phosphorylation of p38 in the lumbar spinal cord. The in vivo pharmacological inhibition of spinal ERK1/2 and JNK, but not of p38, blocks the antinociceptive effect of crotalphine. Of interest, the administration of a PKCζ pseudosubstrate (PKCζ inhibitor) prevents crotalphine-induced ERK activation in the spinal cord, followed by the abolishment of crotalphine-induced analgesia. Together, our results demonstrate that the PKCζ-ERK signaling pathway is involved in crotalphine-induced analgesia. Our study opens a perspective for the PKCζ-MAPK axis as a target for pain control.
Collapse
|
4
|
Wang M, Zhang J, Zheng L, Fang H, Zhang Y, Deng H, Wang M, Yu X, Meng Q, Chen Y, Liao L, Lv X, Yang H, Wang X. Ultrasound-Guided Continuous Thoracic Paravertebral Infusion of Methylene Blue in the Treatment of Postherpetic Neuralgia: A Prospective, Randomized, Controlled Study. Pain Ther 2021; 10:675-689. [PMID: 33840060 PMCID: PMC8119597 DOI: 10.1007/s40122-021-00265-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 04/02/2021] [Indexed: 11/06/2022] Open
Abstract
INTRODUCTION Postherpetic neuralgia (PHN) is the most common complication of herpes zoster. Methylene blue (MB) is an inhibitor of nitric oxide synthesis with potentially analgesic and anti-inflammatory properties. Studies have demonstrated that thoracic paravertebral single MB injection is effective in treating chronic pain. However, there are rare reports of the efficacy of continuous thoracic paravertebral infusion of MB for pain management in PHN patients. The purpose of this study was to evaluate the therapeutic effects of continuous thoracic paravertebral infusion of MB on PHN. METHODS A total of 104 PHN patients were randomly divided into two groups: the control group (continuous thoracic paravertebral infusion of 5% lidocaine in a total volume of 300 ml) and the MB group (continuous thoracic paravertebral infusion of 5% lidocaine plus 0.2% MB in a total volume of 300 ml). All patients were evaluated using the Numerical Rating Scale (NRS), Insomnia Severity Index (ISI), Patient Health Questionnaire-9 (PHQ-9), 36-Item Short-Form Health Survey (SF-36), and medication doses before and after the procedure. The effective treatment rate and adverse complications were recorded 6 months after the procedure. RESULTS In both groups, the NRS scores, ISI scores, PHQ-9 scores, and rescue medication dosages were significantly decreased at different time points after treatment compared to baseline, while the SF-36 scores were evidently improved at different time points after treatment compared to baseline. Compared with the control group, the MB group had significantly reduced NRS scores, ISI scores, PHQ-9 scores, and rescue medication dosages at each observation time point. Furthermore, the SF-36 scores in the MB group were significantly higher than those in the control group at each observation time point. The total effective treatment rate of the MB group was higher than that of the control group 6 months after the procedure. No severe adverse complications were observed in either group. CONCLUSIONS Ultrasound-guided continuous thoracic paravertebral infusion with MB is a safe and effective therapy for PHN. Continuous infusion with MB can significantly reduce pain intensity, improve pain-related depression, increase quality of life, and decrease the amount of rescue medicine with no serious adverse complications.
Collapse
Affiliation(s)
- Mingxia Wang
- Department of Anesthesiology and Critical Care Medicine, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Rd, Shanghai, 200120, China
| | - Jinyuan Zhang
- Department of Anesthesiology and Critical Care Medicine, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Rd, Shanghai, 200120, China
| | - Li Zheng
- Department of Anesthesiology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, 507 Zhengmin Rd, Shanghai, 200433, China
| | - Hongwei Fang
- Department of Anesthesiology and Critical Care Medicine, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Rd, Shanghai, 200120, China
| | - Yiguo Zhang
- Department of Anesthesiology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, 507 Zhengmin Rd, Shanghai, 200433, China
| | - Huimin Deng
- Department of Anesthesiology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, 507 Zhengmin Rd, Shanghai, 200433, China
| | - Mansi Wang
- Department of Anesthesiology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, 507 Zhengmin Rd, Shanghai, 200433, China
| | - Xiuqin Yu
- Department of Anesthesiology and Critical Care Medicine, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Rd, Shanghai, 200120, China
| | - Qingxiang Meng
- Department of Anesthesiology and Critical Care Medicine, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Rd, Shanghai, 200120, China
| | - Yuanli Chen
- Department of Anesthesiology and Critical Care Medicine, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Rd, Shanghai, 200120, China
| | - Lijun Liao
- Department of Anesthesiology and Critical Care Medicine, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Rd, Shanghai, 200120, China
| | - Xin Lv
- Department of Anesthesiology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, 507 Zhengmin Rd, Shanghai, 200433, China
| | - Hao Yang
- Department of Anesthesiology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, 507 Zhengmin Rd, Shanghai, 200433, China.
| | - Xiangrui Wang
- Department of Anesthesiology and Critical Care Medicine, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Rd, Shanghai, 200120, China.
| |
Collapse
|
5
|
Kron NS, Schmale MC, Fieber LA. Changes in Metabolism and Proteostasis Drive Aging Phenotype in Aplysia californica Sensory Neurons. Front Aging Neurosci 2020; 12:573764. [PMID: 33101008 PMCID: PMC7522570 DOI: 10.3389/fnagi.2020.573764] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 08/12/2020] [Indexed: 12/29/2022] Open
Abstract
Aging is associated with cognitive declines that originate in impairments of function in the neurons that make up the nervous system. The marine mollusk Aplysia californica (Aplysia) is a premier model for the nervous system uniquely suited to investigation of neuronal aging due to uniquely identifiable neurons and molecular techniques available in this model. This study describes the molecular processes associated with aging in two populations of sensory neurons in Aplysia by applying RNA sequencing technology across the aging process (age 6-12 months). Differentially expressed genes clustered into four to five coherent expression patterns across the aging time series in the two neuron populations. Enrichment analysis of functional annotations in these neuron clusters revealed decreased expression of pathways involved in energy metabolism and neuronal signaling, suggesting that metabolic and signaling pathways are intertwined. Furthermore, increased expression of pathways involved in protein processing and translation suggests that proteostatic stress also occurs in aging. Temporal overlap of enrichment for energy metabolism, proteostasis, and neuronal function suggests that cognitive impairments observed in advanced age result from the ramifications of broad declines in energy metabolism.
Collapse
Affiliation(s)
- Nicholas S Kron
- Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL, United States
| | - Michael C Schmale
- Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL, United States
| | - Lynne A Fieber
- Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL, United States
| |
Collapse
|
6
|
Garcia MM, Goicoechea C, Molina-Álvarez M, Pascual D. Toll-like receptor 4: A promising crossroads in the diagnosis and treatment of several pathologies. Eur J Pharmacol 2020; 874:172975. [PMID: 32017939 DOI: 10.1016/j.ejphar.2020.172975] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 12/20/2019] [Accepted: 01/29/2020] [Indexed: 12/26/2022]
Abstract
Toll-like receptor 4 (TLR4) is expressed in a wide variety of cells and is the central component of the mammalian innate immune system. Since its discovery in 1997, TLR4 has been assigned an ever-increasing number of functions that extend from pathogen recognition to tissue damage identification and promotion of the intrinsic "damage repair response" in pain, intestinal, respiratory and vascular disorders. Precisely, the finding of conserved sequence homology among species along with the molecular and functional characterisation of the TLR4 gene enabled researchers to envisage a common operating system in the activation of innate immunity and the initiation of plastic changes at the onset of chronic pain. Malfunctioning in other conditions was conceived in parallel. In this respect, "pivot" proteins and pathway redundancy are not just evolutionary leftovers but essential for normal functioning or cell survival. Indeed, at present, TLR4 single nucleotide polymorphisms (SNP) and their association with certain dysfunctions and diseases are being confirmed in different pools of patients. However, despite its ability to trigger pathogen infection or alternatively tissue injury communications to immune system, TLR4 targeting might not be considered a panacea. This review article represents a compilation of what we know about TLR4 from clinics and basic research on the 20th anniversary of its discovery. Understanding how to fine-tune the interaction between TLR4 and its specific ligands may lead in the next decades to the development of promising new treatments, reducing polypharmacy and probably having an impact on drug use in numerous pathologies.
Collapse
Affiliation(s)
- Miguel M Garcia
- Area of Pharmacology, Nutrition and Bromatology, Department of Basic Health Sciences, Universidad Rey Juan Carlos, Avda, Atenas S/n, 28922, Alcorcón, Spain
| | - Carlos Goicoechea
- Area of Pharmacology, Nutrition and Bromatology, Department of Basic Health Sciences, Universidad Rey Juan Carlos, Avda, Atenas S/n, 28922, Alcorcón, Spain
| | - Miguel Molina-Álvarez
- Area of Pharmacology, Nutrition and Bromatology, Department of Basic Health Sciences, Universidad Rey Juan Carlos, Avda, Atenas S/n, 28922, Alcorcón, Spain
| | - David Pascual
- Area of Pharmacology, Nutrition and Bromatology, Department of Basic Health Sciences, Universidad Rey Juan Carlos, Avda, Atenas S/n, 28922, Alcorcón, Spain.
| |
Collapse
|
7
|
Distinct functions of soluble guanylyl cyclase isoforms NO-GC1 and NO-GC2 in inflammatory and neuropathic pain processing. Pain 2019; 160:607-618. [PMID: 30422870 DOI: 10.1097/j.pain.0000000000001440] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A large body of evidence indicates that nitric oxide (NO)/cGMP signaling essentially contributes to the processing of chronic pain. In general, NO-induced cGMP formation is catalyzed by 2 isoforms of guanylyl cyclase, NO-sensitive guanylyl cyclase 1 (NO-GC1) and 2 (NO-GC2). However, the specific functions of the 2 isoforms in pain processing remain elusive. Here, we investigated the distribution of NO-GC1 and NO-GC2 in the spinal cord and dorsal root ganglia, and we characterized the behavior of mice lacking either isoform in animal models of pain. Using immunohistochemistry and in situ hybridization, we demonstrate that both isoforms are localized to interneurons in the spinal dorsal horn with NO-GC1 being enriched in inhibitory interneurons. In dorsal root ganglia, the distribution of NO-GC1 and NO-GC2 is restricted to non-neuronal cells with NO-GC2 being the major isoform in satellite glial cells. Mice lacking NO-GC1 demonstrated reduced hypersensitivity in models of neuropathic pain, whereas their behavior in models of inflammatory pain was normal. By contrast, mice lacking NO-GC2 exhibited increased hypersensitivity in models of inflammatory pain, but their neuropathic pain behavior was unaltered. Cre-mediated deletion of NO-GC1 or NO-GC2 in spinal dorsal horn neurons recapitulated the behavioral phenotypes observed in the global knockout. Together, these results indicate that cGMP produced by NO-GC1 or NO-GC2 in spinal dorsal horn neurons exert distinct, and partly opposing, functions in chronic pain processing.
Collapse
|
8
|
Komatsu T. [Study of Supplementary Analgesics Capable of Reducing the Dosage of Morphine]. YAKUGAKU ZASSHI 2016; 136:329-35. [PMID: 26831810 DOI: 10.1248/yakushi.15-00242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Morphine with its potent analgesic property has been widely used for the treatment of various types of pain. However, the intrathecal (i.t.) administration of morphine at doses far higher than those required for antinociception exhibited nociceptive-related behaviors consisting of scratching, biting and licking, hyperalgesia, and allodynia in mice. Morphine-3-glucuronide (M3G), one of the major metabolites of morphine, has been found to evoke nociceptive behaviors similar to those after high-dose i.t. morphine. It is plausible that M3G may be responsible for nociception seen after high-dose i.t. morphine treatment. This article reviews the potential mechanism of spinally mediated nociceptive behaviors evoked by i.t. M3G in mice. We discuss the possible presynaptic release of nociceptive neurotransmitters/neuromodulators such as substance P, glutamate, dynorphin, and Leu-enkephalin in the primary afferent fibers following i.t. M3G administration. It is possible to speculate that i.t. M3G could indirectly activate NK1, NMDA, and δ2-opioid receptors that lead to the release of nitric oxide (NO) in the dorsal spinal cord. The major function of NO is the production of cGMP and the activation of protein kinase G (PKG). The NO-cGMP-PKG pathway plays an important role in M3G-induced nociceptive behavior. The phosphorylation of extracellular signal-related kinase (ERK) in the dorsal spinal cord was also evoked via the NO-cGMP-PKG pathway through the activation of δ2-opioid, NK1, and NMDA receptors, contributing to M3G-induced nociceptive behaviors. The demonstration of a neural mechanism underlying M3G-induced nociception provides a pharmacological basis for improved pain management with morphine at high doses.
Collapse
|
9
|
Komatsu T, Katsuyama S, Nagase H, Mizoguchi H, Sakurada C, Tsuzuki M, Sakurada S, Sakurada T. Intrathecal morphine-3-glucuronide-induced nociceptive behavior via Delta-2 opioid receptors in the spinal cord. Pharmacol Biochem Behav 2016; 140:68-74. [DOI: 10.1016/j.pbb.2015.10.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2015] [Revised: 10/11/2015] [Accepted: 10/13/2015] [Indexed: 12/30/2022]
|
10
|
Shen Y, Zhang ZJ, Zhu MD, Jiang BC, Yang T, Gao YJ. Exogenous induction of HO-1 alleviates vincristine-induced neuropathic pain by reducing spinal glial activation in mice. Neurobiol Dis 2015; 79:100-10. [DOI: 10.1016/j.nbd.2015.04.012] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2014] [Revised: 04/15/2015] [Accepted: 04/29/2015] [Indexed: 12/21/2022] Open
|
11
|
Lipták N, Dochnal R, Csabafi K, Szakács J, Szabó G. Obestatin prevents analgesic tolerance to morphine and reverses the effects of mild morphine withdrawal in mice. ACTA ACUST UNITED AC 2013; 186:77-82. [DOI: 10.1016/j.regpep.2013.07.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Revised: 04/26/2013] [Accepted: 07/13/2013] [Indexed: 01/04/2023]
|
12
|
Lewis SS, Hutchinson MR, Zhang Y, Hund DK, Maier SF, Rice KC, Watkins LR. Glucuronic acid and the ethanol metabolite ethyl-glucuronide cause toll-like receptor 4 activation and enhanced pain. Brain Behav Immun 2013; 30:24-32. [PMID: 23348028 PMCID: PMC3641160 DOI: 10.1016/j.bbi.2013.01.005] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2012] [Revised: 01/09/2013] [Accepted: 01/10/2013] [Indexed: 12/19/2022] Open
Abstract
We have previously observed that the non-opioid morphine metabolite, morphine-3-glucuronide, enhances pain via a toll-like receptor 4 (TLR4) dependent mechanism. The present studies were undertaken to determine whether TLR4-dependent pain enhancement generalizes to other classes of glucuronide metabolites. In silico modeling predicted that glucuronic acid alone and ethyl glucuronide, a minor but long-lasting ethanol metabolite, would dock to the same MD-2 portion of the TLR4 receptor complex previously characterized as the docking site for morphine-3-glucuronide. Glucuronic acid, ethyl glucuronide and ethanol all caused an increase in TLR4-dependent reporter protein expression in a cell line transfected with TLR4 and associated co-signaling molecules. Glucuronic acid-, ethyl glucuronide-, and ethanol-induced increases in TLR4 signaling were blocked by the TLR4 antagonists LPS-RS and (+)-naloxone. Glucuronic acid and ethyl glucuronide both caused allodynia following intrathecal injection in rats, which was blocked by intrathecal co-administration of the TLR4 antagonist LPS-RS. The finding that ethyl glucuronide can cause TLR4-dependent pain could have implications for human conditions such as hangover headache and alcohol withdrawal hyperalgesia, as well as suggesting that other classes of glucuronide metabolites could have similar effects.
Collapse
Affiliation(s)
- Susannah S. Lewis
- Department of Psychology & Neuroscience, University of Colorado at Boulder, Boulder, Colorado, USA
| | - Mark R. Hutchinson
- Discipline of Pharmacology and Discipline of Physiology, School of Medical Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Yingning Zhang
- Department of Psychology & Neuroscience, University of Colorado at Boulder, Boulder, Colorado, USA
| | - Dana K. Hund
- Department of Psychology & Neuroscience, University of Colorado at Boulder, Boulder, Colorado, USA
| | - Steven F. Maier
- Department of Psychology & Neuroscience, University of Colorado at Boulder, Boulder, Colorado, USA
| | - Kenner C. Rice
- Chemical Biology Research Branch, National Institute on Drug Abuse and National Institute on Alcohol Abuse and Alcoholism National Institutes of Health, Rockville, Maryland, USA
| | - Linda R. Watkins
- Department of Psychology & Neuroscience, University of Colorado at Boulder, Boulder, Colorado, USA,Corresponding author: Linda R. Watkins, Department of Psychology, Campus Box 345, University of Colorado at Boulder, Boulder, Colorado, USA 80309-0345, , Fax: (303) 492-2967, Phone: (303) 492-7034
| |
Collapse
|
13
|
Dauch JR, Yanik BM, Hsieh W, Oh SS, Cheng HT. Neuron-astrocyte signaling network in spinal cord dorsal horn mediates painful neuropathy of type 2 diabetes. Glia 2012; 60:1301-15. [PMID: 22573263 DOI: 10.1002/glia.22349] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Revised: 04/13/2012] [Accepted: 04/17/2012] [Indexed: 12/13/2022]
Abstract
Activation of the neuronal-glial network in the spinal cord dorsal horn (SCDH) mediates various chronic painful conditions. We studied spinal neuronal-astrocyte signaling interactions involved in the maintenance of painful diabetic neuropathy (PDN) in type 2 diabetes. We used the db/db mouse, an animal model for PDN of type 2 diabetes, which develops mechanical allodynia from 6 to 12 wk of age. In this study, enhanced substance P expression was detected in the presynaptic sensory fibers innervating lamina I-III in the lumbar SCDH (LSCDH) of the db/db mouse at 10 wk of age. This phenomenon is associated with enhanced spinal ERK1/2 phosphorylation in projection sensory neurons and regional astrocyte activation. In addition, peak phosphorylation of the NR1 subunit of N-methyl-D-aspartate receptor (NMDAR), along with upregulation of neuronal and inducible nitric oxide synthase (nNOS and iNOS) expression were detected in diabetic mice. Expression of nNOS and iNOS was detected in both interneurons and astrocytes in lamina I-III of the LSCDH. Treatment with MK801, an NMDAR inhibitor, inhibited mechanical allodynia, ERK1/2 phosphorylation, and nNOS and iNOS upregulation in diabetic mice. MK801 also reduced astrocytosis and glial acidic fibrillary protein upregulation in db/db mice. In addition, N(G)-nitro-L-arginine methyl ester (L-NAME), a nonspecific NOS inhibitor, had similar effects on NMDAR signaling and NOS expression. These results suggest that nitric oxide from surrounding interneurons and astrocytes interacts with NMDAR-dependent signaling in the projection neurons of the SCDH during the maintenance of PDN.
Collapse
Affiliation(s)
- Jacqueline R Dauch
- Department of Neurology, University of Michigan Medical Center, Ann Arbor, MI 48109-2200, USA
| | | | | | | | | |
Collapse
|
14
|
Abstract
BACKGROUND The metabolism of opioids is critical to consider for multiple reasons. The most commonly prescribed opioid agents often have metabolites that are active and are the source of both analgesic activity and an increased incidence of adverse events. Many opioids are metabolized by cytochrome P450 enzymes. Polymorphisms in cytochrome P450 genes and inhibition or induction of cytochrome P450 enzymes by coadministered drugs may significantly impact the systemic concentration of opioids and their metabolites and the associated efficacy or adverse events. METHODS This is a narrative review of the metabolism of various opioids that will highlight the impact of their active metabolites, and the potential impact of cytochrome P450 activity on analgesic activity. RESULTS An understanding of "opioid metabolic machinery," cytochrome P450 activity, and drug-drug interactions in the context of opioid selection may benefit clinicians and patients alike. CONCLUSIONS A greater appreciation of the metabolism of commonly prescribed opioid analgesics and the impact of their active metabolites on efficacy and safety may aid prescribers in tailoring care for optimal outcomes.
Collapse
|
15
|
Baamonde A, Hidalgo A, Menéndez L. Involvement of glutamate NMDA and AMPA receptors, glial cells and IL-1β in the spinal hyperalgesia evoked by the chemokine CCL2 in mice. Neurosci Lett 2011; 502:178-81. [PMID: 21827829 DOI: 10.1016/j.neulet.2011.07.038] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Revised: 07/18/2011] [Accepted: 07/23/2011] [Indexed: 11/18/2022]
Abstract
We study here the involvement of excitatory amino acid receptors, glial cell activation and IL-1β release in the spinal hyperalgesia evoked by the chemokine CCL2 (MCP-1). Three hours after the intrathecal administration of CCL2 (1-100ng), mice exhibit dose-dependent thermal hyperalgesia, that was inhibited by the coadministration of the antagonist of chemokine receptor type 2 (CCR2) RS504393 (0.3-3μg). To assess the involvement of excitatory amino acid receptor sensitisation, CCL2 was coadministered with CPP (0.3-3ng) and NBQX (25-250ng), antagonists of NMDA and AMPA receptors, respectively. Both drugs blocked CCL2-evoked hyperalgesia, strongly suggesting that CCL2 evokes in vivo NMDA and AMPA receptor sensitisation, as previously described in electrophysiological studies. Furthermore, this rapid induction of CCL2-mediated hyperalgesia was blocked by the previous acute administration of the microglial inhibitor minocyclin (4.9μg) or the astroglial inhibitor l-aminoadipate (1.6μg). Since IL-1β can be released by activated glial cells we tested whether this cytokine could be underlying the spinal sensitisation induced by CCL2. The administration of the type I IL-1 receptor antagonist, IL-1ra (3-30μg), partially prevented CCL2-evoked hyperalgesia. Finally, to elucidate if IL-1β could produce NMDA and AMPA receptor sensitisation by itself, we performed experiments in which this cytokine was i.t. administered. Thermal hyperalgesia induced by IL-1β (30pg) was completely prevented by the coadministration of CPP (3ng) but unaffected by NBQX (250ng). Globally, our results suggest that spinal CCL2 induces thermal hyperalgesia by sensitising NMDA and AMPA receptors in a process that involves glial activation and IL-1β release.
Collapse
Affiliation(s)
- Ana Baamonde
- Laboratorio de Farmacología, Facultad de Medicina, Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo, C/Julián Clavería 6, 33006 Oviedo, Asturias, Spain
| | | | | |
Collapse
|
16
|
Hervera A, Negrete R, Leánez S, Martín-Campos JM, Pol O. Peripheral effects of morphine and expression of μ-opioid receptors in the dorsal root ganglia during neuropathic pain: nitric oxide signaling. Mol Pain 2011; 7:25. [PMID: 21486477 PMCID: PMC3094254 DOI: 10.1186/1744-8069-7-25] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Accepted: 04/12/2011] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The local administration of μ-opioid receptor (MOR) agonists attenuates neuropathic pain but the precise mechanism implicated in this effect is not completely elucidated. We investigated if nitric oxide synthesized by neuronal (NOS1) or inducible (NOS2) nitric oxide synthases could modulate the local antiallodynic effects of morphine through the peripheral nitric oxide-cGMP-protein kinase G (PKG)-ATP-sensitive K+ (KATP) channels signaling pathway activation and affect the dorsal root ganglia MOR expression during neuropathic pain. RESULTS In wild type (WT) mice, the subplantar administration of morphine dose-dependently decreased the mechanical and thermal allodynia induced by the chronic constriction of the sciatic nerve (CCI), which effects were significantly diminished after their co-administration with different subanalgesic doses of a selective NOS1 (N-[(4S)-4-amino-5-[(2-aminoethyl)amino]pentyl]-N'-nitroguanidine tris(trifluoroacetate) salt; NANT), NOS2 (L-N(6)-(1-iminoethyl)-lysine; L-NIL), L-guanylate cyclase (1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one; ODQ), PKG ((Rp)-8-(para-chlorophenylthio)guanosine-3',5'-cyclic monophosphorothioate; Rp-8-pCPT-cGMPs) inhibitor or a KATP channel blocker (glibenclamide). The evaluation of the expression of MOR in the dorsal root ganglia from sham-operated and sciatic nerve-injured WT, NOS1 knockout (KO) and NOS2-KO mice at 21 days after surgery demonstrated that, although the basal mRNA and protein levels of MOR were similar between WT and both NOS-KO animals, nerve injury only decreased their expression in WT mice. CONCLUSIONS These results suggest that the peripheral nitric oxide-cGMP-PKG-KATP signaling pathway activation participates in the local antiallodynic effects of morphine after sciatic nerve injury and that nitric oxide, synthesized by NOS1 and NOS2, is implicated in the dorsal root ganglia down-regulation of MOR during neuropathic pain.
Collapse
Affiliation(s)
- Arnau Hervera
- Grup de Neurofarmacologia Molecular, Institut de Recerca de l'Hospital de la Sta Creu i Sant Pau & Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain
| | | | | | | | | |
Collapse
|
17
|
Aquilano K, Baldelli S, Cardaci S, Rotilio G, Ciriolo MR. Nitric oxide is the primary mediator of cytotoxicity induced by GSH depletion in neuronal cells. J Cell Sci 2011; 124:1043-54. [PMID: 21363890 DOI: 10.1242/jcs.077149] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Glutathione (GSH) levels progressively decline during aging and in neurodegenerative disorders. However, the contribution of such event in mediating neuronal cell death is still uncertain. In this report, we show that, in neuroblastoma cells as well as in primary mouse cortical neurons, GSH decrease, induced by buthionine sulfoximine (BSO), causes protein nitration, S-nitrosylation and DNA strand breaks. Such alterations are also associated with inhibition of cytochrome c oxidase activity and microtubule network disassembly, which are considered hallmarks of nitric oxide (NO) toxicity. In neuroblastoma cells, BSO treatment also induces cell proliferation arrest through the ERK1/2-p53 pathway that finally results in caspase-independent apoptosis, as evident from the translocation of apoptosis-inducing factor from mitochondria towards nuclei. A deeper analysis of the signaling processes indicates that the NO-cGMP pathway is involved in cell proliferation arrest and death. In fact, these events are completely reversed by L-NAME, a specific NO synthase inhibitor, indicating that NO, rather than the depletion of GSH per se, is the primary mediator of cell damage. In addition, the guanylate cyclase (GC) inhibitor LY83583 is able to completely block activation of ERK1/2 and counteract BSO toxicity. In cortical neurons, NMDA (N-methyl-D-aspartic acid) treatment results in GSH decrease and BSO-mediated NO cytotoxicity is enhanced by either epidermal growth factor (EGF) or NMDA. These findings support the idea that GSH might represent the most important buffer of NO toxicity in neuronal cells, and indicate that the disruption of cellular redox buffering controlled by GSH makes neuronal cells susceptible to endogenous physiological flux of NO.
Collapse
Affiliation(s)
- Katia Aquilano
- Department of Biology, University of Rome Tor Vergata, 00133 Rome, Italy
| | | | | | | | | |
Collapse
|
18
|
Klinger M, Sacks S, Cervero F. A role for extracellular signal-regulated kinases 1 and 2 in the maintenance of persistent mechanical hyperalgesia in ovariectomized mice. Neuroscience 2011; 172:483-93. [DOI: 10.1016/j.neuroscience.2010.10.043] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2010] [Revised: 10/14/2010] [Accepted: 10/15/2010] [Indexed: 12/13/2022]
|