1
|
Krishnan G, Bagath M, Devaraj C, Soren NM. The signalling association of glucagon-like peptide-1 and its receptors in the gastrointestinal tract and GPR40 and insulin receptor in the pancreas of sheep. Gen Comp Endocrinol 2024; 358:114602. [PMID: 39226991 DOI: 10.1016/j.ygcen.2024.114602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 08/19/2024] [Accepted: 08/31/2024] [Indexed: 09/05/2024]
Abstract
The present study was aimed at gaining insight into the signalling relationship between glucagon-like peptide-1 (GLP-1) and its receptor (GLP-1R) in the regulation of glucose metabolism. Further, to assess the role of G-protein-coupled receptor 40 (GPR40) and insulin receptor (INSR) in the pancreas of sheep that were supplemented with calcium salts of long-chain fatty acids (CSFAs). An experiment was carried out over a period of 60 days with eighteen sheep, and they were fed with a standard basal diet. The sheep were divided into three groups: CSFA0 (without CSFAs), while CSFA3 and CSFA5 were supplemented with 3 % and 5 % of CSFAs, respectively. Plasma concentrations of GLP-1, insulin, glucagon, and glucose were assessed every two weeks. At the end of the experiment, sheep were slaughtered, and samples of gastrointestinal tract (GIT) epithelial tissues and pancreas were collected to assess the relative expression of mRNA of GPR40, GLP-1R, and INSR. Postprandial GLP-1 and insulin were increased by 3.7-4.1 and 1.45-1.5 times, respectively, in the CSFAs-supplemented groups compared to CSFA0. Post-feeding, glucagon and glucose levels decreased in CSFA3 and CSFA5 compared to CSFA0. The results indicated that the supplementation of LCFAs increased the expression of GLP-1R in the GIT and pancreas, as well as the mRNA of GPR40 and INSR in the pancreas. Chemosensing of LCFAs by GPR40 in the pancreas triggers signalling transduction, and enhanced GLP-1 and GLP-1R resulted in moderately increased insulin secretion and reduced glucagon levels. These combined effects, along with the glucose-lowering effect of GLP-1, effectively lowered glucose levels in normoglycemic sheep.
Collapse
Affiliation(s)
- G Krishnan
- Animal Physiology Division, ICAR-National Institute of Animal Nutrition and Physiology, Bangalore 560030, India.
| | - M Bagath
- Animal Nutrition Division, ICAR-National Institute of Animal Nutrition and Physiology, Bangalore 560030, India
| | - C Devaraj
- Bioenergetics and Environmental Sciences Division, ICAR-National Institute of Animal Nutrition and Physiology, Bangalore 560030, India
| | - N M Soren
- Animal Nutrition Division, ICAR-National Institute of Animal Nutrition and Physiology, Bangalore 560030, India
| |
Collapse
|
2
|
Lückmann M, Shenol A, Nissen TAD, Petersen JE, Kouvchinov D, Schwartz TW, Frimurer TM. Optimization of First-in-Class Dual-Acting FFAR1/FFAR4 Allosteric Modulators with Novel Mode of Action. ACS Med Chem Lett 2022; 13:1839-1847. [DOI: 10.1021/acsmedchemlett.2c00160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 08/31/2022] [Indexed: 11/06/2022] Open
Affiliation(s)
- Michael Lückmann
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Aslihan Shenol
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Tinne A. D. Nissen
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London SE5 9NU, U.K
| | - Jacob E. Petersen
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, 2200 Copenhagen, Denmark
| | - David Kouvchinov
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Thue W. Schwartz
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Thomas M. Frimurer
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, 2200 Copenhagen, Denmark
| |
Collapse
|
3
|
Sheashea M, Xiao J, Farag MA. MUFA in metabolic syndrome and associated risk factors: is MUFA the opposite side of the PUFA coin? Food Funct 2021; 12:12221-12234. [PMID: 34779464 DOI: 10.1039/d1fo00979f] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Omega-9 fatty acids represent some of the main mono-unsaturated fatty acids (MUFA) found in plant and animal sources. They can be synthesized endogenously in the human body, but they do not fully provide all the body's requirements. Consequently, they are considered as partially essential fatty acids. MUFA represent a healthier alternative to saturated animal fats and have several health benefits, including the prevention of metabolic syndrome (MetS) and its complications. This review concentrates on the major MUFA pharmacological activities in the context of MetS management, including alleviating cardiovascular disease (CVD) and dyslipidemia, central obesity, non-alcoholic fatty liver disease (NAFLD), and type 2 diabetes mellitus (T2DM). The beneficial effects of MUFA for CVD were found to be consistent with those of polyunsaturated fatty acids (PUFA) for the alleviation of systolic and diastolic blood pressure and high low density lipoprotein cholesterol (LDLc) and triacylglcerol (TAG) levels, albeit MUFA had a more favorable effect on decreasing night systolic blood pressure (SBP). To reduce the obesity profile, the use of MUFA was found to induce a higher oxidation rate with a higher energy expenditure, compared with PUFA. For NAFLD, PUFA was found to be a better potential drug candidate for the improvement of liver steatosis in children than MUFA. Any advantageous outcomes from using MUFA for diabetes and insulin resistance (IR) compared to using PUFA were found to be either non-significant or resulted from a small number of meta-analyses. Such an increase in the number of studies of the mechanisms of action require more clinical and epidemiological studies to confirm the beneficial outcomes, especially over a long-term treatment period.
Collapse
Affiliation(s)
- Mohamed Sheashea
- Aromatic and Medicinal Plants Department, Desert Research Center, Cairo, Egypt
| | - Jianbo Xiao
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo - Ourense Campus, E-32004 Ourense, Spain.
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
| | - Mohamed A Farag
- Pharmacognosy Department, College of Pharmacy, Cairo University, Kasr el Aini St., P.B. 11562, Cairo, Egypt.
- Chemistry Department, School of Sciences & Engineering, The American University in Cairo, New Cairo 11835, Egypt
| |
Collapse
|
4
|
Citrus Flavanone Narirutin, In Vitro and In Silico Mechanistic Antidiabetic Potential. Pharmaceutics 2021; 13:pharmaceutics13111818. [PMID: 34834233 PMCID: PMC8619962 DOI: 10.3390/pharmaceutics13111818] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/16/2021] [Accepted: 10/21/2021] [Indexed: 12/15/2022] Open
Abstract
Citrus fruits and juices have been studied extensively for their potential involvement in the prevention of various diseases. Flavanones, the characteristic polyphenols of citrus species, are the primarily compounds responsible for these studied health benefits. Using in silico and in vitro methods, we are exploring the possible antidiabetic action of narirutin, a flavanone family member. The goal of the in silico research was to anticipate how narirutin would interact with eight distinct receptors implicated in diabetes control and complications, namely, dipeptidyl-peptidase 4 (DPP4), protein tyrosine phosphatase 1B (PTP1B), free fatty acid receptor 1 (FFAR1), aldose reductase (AldR), glycogen phosphorylase (GP), alpha-amylase (AAM), peroxisome proliferator-activated receptor gamma (PPAR-γ), alpha-glucosidase (AGL), while the in vitro study looked into narirutin’s possible inhibitory impact on alpha-amylase and alpha-glucosidase. The results indicate that the studied citrus flavanone interacted remarkably with most of the receptors and had an excellent inhibitory activity during the in vitro tests suggesting its potent role among the different constituent of the citrus compounds in the management of diabetes and also its complications.
Collapse
|
5
|
Rani L, Grewal AS, Sharma N, Singh S. Recent Updates on Free Fatty Acid Receptor 1 (GPR-40) Agonists for the Treatment of Type 2 Diabetes Mellitus. Mini Rev Med Chem 2021; 21:426-470. [PMID: 33100202 DOI: 10.2174/1389557520666201023141326] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 09/09/2020] [Accepted: 09/14/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND The global incidence of type 2 diabetes mellitus (T2DM) has enthused the development of new antidiabetic targets with low toxicity and long-term stability. In this respect, free fatty acid receptor 1 (FFAR1), which is also recognized as a G protein-coupled receptor 40 (GPR40), is a novel target for the treatment of T2DM. FFAR1/GPR40 has a high level of expression in β-cells of the pancreas, and the requirement of glucose for stimulating insulin release results in immense stimulation to utilise this target in the medication of T2DM. METHODS The data used for this review is based on the search of several scienctific databases as well as various patent databases. The main search terms used were free fatty acid receptor 1, FFAR1, FFAR1 agonists, diabetes mellitus, G protein-coupled receptor 40 (GPR40), GPR40 agonists, GPR40 ligands, type 2 diabetes mellitus and T2DM. RESULTS The present review article gives a brief overview of FFAR1, its role in T2DM, recent developments in small molecule FFAR1 (GPR40) agonists reported till now, compounds of natural/plant origin, recent patents published in the last few years, mechanism of FFAR1 activation by the agonists, and clinical status of the FFAR1/GPR40 agonists. CONCLUSION The agonists of FFAR1/GRP40 showed considerable potential for the therapeutic control of T2DM. Most of the small molecule FFAR1/GPR40 agonists developed were aryl alkanoic acid derivatives (such as phenylpropionic acids, phenylacetic acids, phenoxyacetic acids, and benzofuran acetic acid derivatives) and thiazolidinediones. Some natural/plant-derived compounds, including fatty acids, sesquiterpenes, phenolic compounds, anthocyanins, isoquinoline, and indole alkaloids, were also reported as potent FFAR1 agonists. The clinical investigations of the FFAR1 agonists demonstrated their probable role in the improvement of glucose control. Though, there are some problems still to be resolved in this field as some FFAR1 agonists terminated in the late phase of clinical studies due to "hepatotoxicity." Currently, PBI-4050 is under clinical investigation by Prometic. Further investigation of pharmacophore scaffolds for FFAR1 full agonists as well as multitargeted modulators and corresponding clinical investigations will be anticipated, which can open up new directions in this area.
Collapse
Affiliation(s)
- Lata Rani
- Chitkara University School of Basic Sciences, Chitkara University, Himachal Pradesh, India
| | - Ajmer Singh Grewal
- Chitkara University School of Basic Sciences, Chitkara University, Himachal Pradesh, India
| | - Neelam Sharma
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Sukhbir Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| |
Collapse
|
6
|
Mechchate H, Es-safi I, Mohamed Al kamaly O, Bousta D. Insight into Gentisic Acid Antidiabetic Potential Using In Vitro and In Silico Approaches. Molecules 2021; 26:molecules26071932. [PMID: 33808152 PMCID: PMC8037080 DOI: 10.3390/molecules26071932] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/20/2021] [Accepted: 03/24/2021] [Indexed: 01/27/2023] Open
Abstract
Numerous scientific studies have confirmed the beneficial therapeutic effects of phenolic acids. Among them gentisic acid (GA), a phenolic acid extensively found in many fruit and vegetables has been associated with an enormous confirmed health benefit. The present study aims to evaluate the antidiabetic potential of gentisic acid and highlight its mechanisms of action following in silico and in vitro approaches. The in silico study was intended to predict the interaction of GA with eight different receptors highly involved in the management and complications of diabetes (dipeptidyl-peptidase 4 (DPP4), protein tyrosine phosphatase 1B (PTP1B), free fatty acid receptor 1 (FFAR1), aldose reductase (AldR), glycogen phosphorylase (GP), α-amylase, peroxisome proliferator-activated receptor gamma (PPAR-γ) and α-glucosidase), while the in vitro study studied the potential inhibitory effect of GA against α-amylase and α-glucosidase. The results indicate that GA interacted moderately with most of the receptors and had a moderate inhibitory activity during the in vitro tests. The study therefore encourages further in vivo studies to confirm the given results.
Collapse
Affiliation(s)
- Hamza Mechchate
- Laboratory of Biotechnology, Environment, Agrifood, and Health, Department of Biology, University of Sidi Mohamed Ben Abdellah, FSDM-Fez 30050, Morocco; (I.E.-s.); (D.B.)
- Correspondence:
| | - Imane Es-safi
- Laboratory of Biotechnology, Environment, Agrifood, and Health, Department of Biology, University of Sidi Mohamed Ben Abdellah, FSDM-Fez 30050, Morocco; (I.E.-s.); (D.B.)
| | - Omkulthom Mohamed Al kamaly
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, Riyadh 11564, Saudi Arabia;
| | - Dalila Bousta
- Laboratory of Biotechnology, Environment, Agrifood, and Health, Department of Biology, University of Sidi Mohamed Ben Abdellah, FSDM-Fez 30050, Morocco; (I.E.-s.); (D.B.)
| |
Collapse
|
7
|
Rehman K, Haider K, Jabeen K, Akash MSH. Current perspectives of oleic acid: Regulation of molecular pathways in mitochondrial and endothelial functioning against insulin resistance and diabetes. Rev Endocr Metab Disord 2020; 21:631-643. [PMID: 32125563 DOI: 10.1007/s11154-020-09549-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Insulin resistance (IR) and type 2 diabetes mellitus (T2DM) is a leading cause of deaths due to metabolic disorders in recent years. Molecular mechanisms involved in the initiation and development of IR and T2DM are multiples. The major factors include mitochondrial dysfunction which may cause incomplete fatty acid oxidation (FAO). Oleic acid upregulates the expression of genes causing FAO by deacetylation of PGC1α by PKA-dependent activation of SIRT1-PGC1α complex. Another potent factor for the development of IR and T2DM is endothelial dysfunction as damaged endothelium causes increased release of inflammatory mediators such as TNF-α, IL-6, IL-1β, sVCAM, sICAM, E-selectin and other proinflammatory cytokines. While, on the other hand, oleic acid has the ability to regulate E-selectin, and sICAM expression. Rest of the risk factors may include inflammation, β-cell dysfunction, oxidative stress, hormonal imbalance, apoptosis, and enzyme dysregulation. Here, we have highlighted how oleic acid regulates underlying causatives factors and hence, keeps surpassing effect in prevention and treatment of IR and T2DM. However, the percentage contribution of these factors in combating IR and ultimately averting T2DM is still debatable. Thus, because of its exceptional protective effect, it can be considered as an improved therapeutic agent in prophylaxis and/or treatment of IR and T2DM.
Collapse
Affiliation(s)
- Kanwal Rehman
- Department of Pharmacy, University of Agriculture, Faisalabad, Pakistan.
| | - Kamran Haider
- Department of Pharmacy, University of Agriculture, Faisalabad, Pakistan
| | - Komal Jabeen
- Department of Pharmacy, University of Agriculture, Faisalabad, Pakistan
- Institute of Physiology and Pharmacology, University of Agriculture, Faisalabad, Pakistan
| | | |
Collapse
|
8
|
In-Vivo Antidiabetic Activity and In-Silico Mode of Action of LC/MS-MS Identified Flavonoids in Oleaster Leaves. Molecules 2020; 25:molecules25215073. [PMID: 33139638 PMCID: PMC7663640 DOI: 10.3390/molecules25215073] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 10/26/2020] [Accepted: 10/28/2020] [Indexed: 12/14/2022] Open
Abstract
Background: Olea europea L. subsp. europaea var. sylvestris (Mill) Lehr (Oleaster) is a wild endemic olive tree indigenous to the Mediterranean region. Olea europea leaves represent a natural reservoir of bioactive molecules that can be used for therapeutic purposes. Aim of the study: This work was conducted to study antidiabetic and antihyperglycemic activities of flavonoids from oleaster leaves using alloxan-induced diabetic mice. The mode of action of flavonoids against eight receptors that have a high impact on diabetes management and complication was also investigated using molecular docking. Results: During 28 days of mice treatment with doses 25 and 50 mg/kg b.w, the studied flavonoids managed a severe diabetic state (<450 mg/dL), exhibiting a spectacular antidiabetic and antihyperglycemic activity, and improved mice health status compared to diabetic control. The in-silico mode of action of oleaster flavonoids revealed the inhibition of protein tyrosine phosphatase 1B (PTP1B), Dipeptidyl-peptidase 4 (DPP4), α-Amylase (AAM), α-Glucosidase inhibition, Aldose reductase (AldR), Glycogen phosphorylase (GP), and the activation of free fatty acid receptor 1 (FFAR1). Conclusion: The findings obtained in the present work indicate that the flavonoids from the oleaster may constitute a safe multi-target remedy to treat diabetes.
Collapse
|
9
|
Resanović I, Zarić B, Radovanović J, Sudar-Milovanović E, Gluvić Z, Jevremović D, Isenović ER. Hyperbaric Oxygen Therapy and Vascular Complications in Diabetes Mellitus. Angiology 2020; 71:876-885. [PMID: 32638622 DOI: 10.1177/0003319720936925] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Vascular complications in patients with diabetes mellitus (DM) are common. Since impaired oxygen balance in plasma plays an important role in the pathogenesis of chronic DM-associated complications, the administration of hyperbaric oxygen therapy (HBOT) has been recommended to influence development of vascular complications. Hyperbaric oxygen therapy involves inhalation of 100% oxygen under elevated pressure from 1.6 to 2.8 absolute atmospheres in hyperbaric chambers. Hyperbaric oxygen therapy increases plasma oxygen solubility, contributing to better oxygen diffusion to distant tissues and preservation of the viability of tissues reversibly damaged by atherosclerosis-induced ischemia, along with microcirculation restoration. Hyperbaric oxygen therapy exerts antiatherogenic, antioxidant, and cardioprotective effects by altering the level and composition of plasma fatty acids and also by promoting signal transduction through membranes, which are impaired by hyperglycemia and hypoxia. In addition, HBOT affects molecules involved in the regulation of nitric oxide synthesis and in that way exerts anti-inflammatory and angiogenic effects in patients with DM. In this review, we explore the recent literature related to the effects of HBOT on DM-related vascular complications.
Collapse
Affiliation(s)
- Ivana Resanović
- Department of Radiobiology and Molecular Genetics, "VINČA" Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Božidarka Zarić
- Department of Radiobiology and Molecular Genetics, "VINČA" Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Jelena Radovanović
- Department of Radiobiology and Molecular Genetics, "VINČA" Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Emina Sudar-Milovanović
- Department of Radiobiology and Molecular Genetics, "VINČA" Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Zoran Gluvić
- Department of Endocrinology and Diabetes, Zemun Clinical Hospital, School of Medicine, University of Belgrade, Serbia
| | - Danimir Jevremović
- Faculty of Stomatology in Pancevo, University Business Academy, Novi Sad, Serbia
| | - Esma R Isenović
- Department of Radiobiology and Molecular Genetics, "VINČA" Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
10
|
Zhang X, Macielag MJ. GPR120 agonists for the treatment of diabetes: a patent review (2014 present). Expert Opin Ther Pat 2020; 30:729-742. [PMID: 32799609 DOI: 10.1080/13543776.2020.1811852] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
INTRODUCTION G protein-coupled receptor 120 (GPR120) is a Gαq coupled GPCR specifically activated by long-chain fatty acids (LCFAs). Functionally, it has been identified as a member of a family of lipid-binding free fatty acid receptors including GPR40, GPR41, and GPR43. Upon stimulation by LCFAs, GPR120 can directly or indirectly modulate hormone secretion from the gastrointestinal tract and pancreas, and regulate lipid and/or glucose metabolism in adipose, liver, and muscle tissues. Additionally, GPR120 is postulated to mediate anti-inflammatory and insulin-sensitizing effects in adipose and macrophages. These benefits suggest that GPR120 agonists have the potential to be an effective treatment for obesity, type 2 diabetes mellitus (T2DM), and other metabolic syndromes. AREA COVERED This article highlights and reviews research advances in this field that have been published in patent literature and peer-reviewed journals since 2014. EXPERT OPINION Current development has been hindered by species differences in GPR120 distribution, differences in GPR120-mediated signaling in distinct tissue types, and lack of available ligands with suitable selectivity for GPR120 over GPR40 in both human and rodents. The discovery of β-arrestin biased GPR120 agonists will help elucidate the potential of selective therapeutics that may discriminate between desirable and undesirable pharmacological effects. ABBREVIATIONS ALA: α-linolenic acid; AUC: area under the curve; BRET: bioluminescence resonance energy transfer; CCK: cholecystokinin; CHO-K1 cell: Chinese hamster ovary-K1 cell; db/db mouse: diabetic mouse; DHA: docosahexaenoic acid; DIO: diet-induced obesity; DMSO: dimethyl sulfoxide; DPP-4: dipeptidyl peptidase 4; EPA: eicosapentaenoic acid; FA(s): fatty acid(s); FFA(s): free fatty acid(s); FFAR: free fatty acid receptor; FLIPR: fluorescent imaging plate reader; GIR: glucose infusion rate; GLP-1: glucagon-like peptide 1; GP(C)R: G protein-coupled receptor; GSIS: glucose-stimulated insulin secretion; HEK293 cell: human embryonic kidney 293 cell; HOMA-IR: homeostatic measurement assessment of insulin resistance; IP1: inositol phosphate turnover; IPGTT: intraperitoneal glucose tolerance test; LCFA(s): long-chain fatty acid(s); MEDmax: maximal efficacy; MIN6 cell: mouse insulin-secreting cell; NPY: neuropeptide Y; OGTT: oral glucose tolerance test; pERK: phosphorylated ERK; PPAR: peroxisome proliferator-activated receptor; QD: once daily; SAR: structure-activity relationship; siRNA: small interfering ribonucleic acid; STC-1: intestinal secretin tumor cell; T2DM: type 2 diabetes mellitus; U2OS cell: human bone osteosarcoma epithelial cell; uHTS: ultrahigh-throughput screening; ZDF: zucker diabetic fatty.
Collapse
Affiliation(s)
- Xuqing Zhang
- Discovery Chemistry, Janssen Research and Development , Spring House, PA, USA
| | - Mark J Macielag
- Discovery Chemistry, Janssen Research and Development , Spring House, PA, USA
| |
Collapse
|
11
|
Yang J, Gu E, Yan T, Shen D, Feng B, Tang C. Design, synthesis, and evaluation of a series of novel phenylpropanoic acid derivatives agonists for the FFA1. Chem Biol Drug Des 2019; 93:900-909. [PMID: 30657643 DOI: 10.1111/cbdd.13480] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 09/15/2018] [Accepted: 09/30/2018] [Indexed: 12/17/2022]
Abstract
Free fatty acid 1 (FFA1/GPR40) has attracted extensive attention as a novel target for the treatment of type 2 diabetes for its role in the enhancement of insulin secretion with glucose dependency. Aiming to develop novel potent FFA1 agonists, a new series of phenylpropionic acid derivatives were designed and synthesized on the basis of the modification of chemical cement of TAK-875, AMG-837, and LY2881835. Among them, most promising compounds 7, 14, and 15 were obtained with EC50 values of 82, 79, and 88 nM, exhibiting a powerful agonistic activity compared to TAK-875 (95.1 nM). During Oral glucose tolerance test in normal mice, compound 7, 14, and 15 had significant glucose-lowering effect at the dose of 50 mg/kg. Furthermore, compound 15 (50 mg/kg) also significantly improved in glucose tolerance in type 2 diabetic mice. Herein, we reported the discovery and optimization of a series of potent FFA1 agonists. The discovery supported further exploration surrounding this scaffold.
Collapse
Affiliation(s)
- Jiaju Yang
- School of Pharmaceutical Science, Jiangnan University, Wuxi, Jiangsu, China
| | - Enke Gu
- School of Pharmaceutical Science, Jiangnan University, Wuxi, Jiangsu, China
| | - Ting Yan
- Jiangyin Tianjiang Pharmaceutical Co. Ltd, Wuxi, Jiangsu, China
| | - Daoming Shen
- School of Pharmaceutical Science, Jiangnan University, Wuxi, Jiangsu, China
| | - Bainian Feng
- School of Pharmaceutical Science, Jiangnan University, Wuxi, Jiangsu, China
| | - Chunlei Tang
- School of Pharmaceutical Science, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
12
|
Luna-Vital DA, Gonzalez de Mejia E. Anthocyanins from purple corn activate free fatty acid-receptor 1 and glucokinase enhancing in vitro insulin secretion and hepatic glucose uptake. PLoS One 2018; 13:e0200449. [PMID: 29995924 PMCID: PMC6040766 DOI: 10.1371/journal.pone.0200449] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Accepted: 06/26/2018] [Indexed: 11/21/2022] Open
Abstract
The objective of this study was to evaluate the ability of anthocyanins (ANC) present in purple corn to enhance insulin secretion and hepatic glucose uptake in pancreatic cells and hepatocytes, through activation of the free fatty acid receptor-1 (FFAR1) and glucokinase (GK), respectively. Using a dual-layer cell culture with Caco-2 cells, INS-1E or HepG2 cells were treated with an anthocyanin-rich extract from the pericarp of purple corn (PCW), as well as pure ANC cyanidin-3-O-glucoside (C3G), peonidin-3-O-glucoside, pelargonidin-3-O-glucoside. Delphinidin-3-O-glucoside (D3G) was used for comparative purposes. Semipurified C3G (C3G-P) and condensed forms (CF-P) isolated from PCW were also used. At 100 μM, the pure ANC enhanced glucose-stimulated insulin secretion (GSIS) in INS-1E cells ranging from 18% to 40% (p<0.05) compared to untreated cells. PCW increased GSIS by 51%. D3G was the most effective anthocyanin activating FFAR1 (EC50: 196.6 μM). PCW had activating potential on FFAR1 (EC50: 77 μg/mL). PCW, as well as C3G and D3G increased the expression of FFAR1, PLC, and phosphorylation of PKD, related to the FFAR1-dependent insulin secretory pathway. The treatment with 100 μM of P3G and C3G increased (p<0.05) glucose uptake in HepG2 cells by 19% and 31%. PCW increased the glucose uptake in HepG2 cells by 48%. It was determined that CF-P was the most effective for activating GK (EC50: 39.9 μM) and the PCW extracts had an efficacy of EC50: 44 μg/mL. The ANC in purple corn also reduced AMPK phosphorylation and PEPCK expression in HepG2 cells, known to be related to reduction in gluconeogenesis. It is demonstrated for the first time that dietary ANC can enhance the activity of novel biomarkers FFAR1 and GK and potentially ameliorate type-2 diabetes comorbidities.
Collapse
Affiliation(s)
- Diego A. Luna-Vital
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Elvira Gonzalez de Mejia
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| |
Collapse
|
13
|
Hydrogen sulfide in the regulation of insulin secretion and insulin sensitivity: Implications for the pathogenesis and treatment of diabetes mellitus. Biochem Pharmacol 2018; 149:60-76. [DOI: 10.1016/j.bcp.2018.01.004] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 01/02/2018] [Indexed: 01/04/2023]
|
14
|
Yanai H, Masui Y, Katsuyama H, Adachi H, Kawaguchi A, Hakoshima M, Waragai Y, Harigae T, Sako A. An Improvement of Cardiovascular Risk Factors by Omega-3 Polyunsaturated Fatty Acids. J Clin Med Res 2018; 10:281-289. [PMID: 29511415 PMCID: PMC5827911 DOI: 10.14740/jocmr3362w] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 02/07/2018] [Indexed: 12/27/2022] Open
Abstract
An epidemiological survey in the Northwest Greenland reported that the Greenlanders have a lower frequency of acute myocardial infarction and diabetes mellitus. The very low incidence of ischemic heart disease in the Greenlanders was explained by consumption of a diet rich in omega-3 polyunsaturated fatty acids (PUFAs). Possible anti-atherothrombotic effects of omega-3 PUFA include an improvement of lipid metabolism such as a reduction of triglyceride and an increase of high-density lipoprotein-cholesterol (HDL-C), and glucose metabolism, anti-platelet activity, anti-inflammatory effects, an improvement of endothelial function and stabilization of atherosclerotic plaque. The present study reviews an improvement of cardiovascular risk factors such as dyslipidemia and diabetes due to consumption of omega-3 PUFA. A sufficient number of studies suggest that omega-3 PUFA supplementation reduces serum triglyceride and increases HDL-cholesterol. The mechanisms for omega-3 PUFA-mediated improvements of lipid metabolism have been partially elucidated. The studies using experimental animals, part of trials in humans, have shown the beneficial effects of omega-3 PUFA on glucose metabolism and insulin sensitivity. The meta-analysis showed that omega-3 PUFA might prevent development of diabetes in part of population. Further studies should be performed to elucidate the association of omega-3 PUFA supplementation with diabetes, in the future.
Collapse
Affiliation(s)
- Hidekatsu Yanai
- Department of Internal Medicine, National Center for Global Health and Medicine Kohnodai Hospital, Chiba, Japan
| | - Yoshinori Masui
- Department of Internal Medicine, National Center for Global Health and Medicine Kohnodai Hospital, Chiba, Japan
| | - Hisayuki Katsuyama
- Department of Internal Medicine, National Center for Global Health and Medicine Kohnodai Hospital, Chiba, Japan
| | - Hiroki Adachi
- Department of Internal Medicine, National Center for Global Health and Medicine Kohnodai Hospital, Chiba, Japan
| | - Akiko Kawaguchi
- Department of Internal Medicine, National Center for Global Health and Medicine Kohnodai Hospital, Chiba, Japan
| | - Mariko Hakoshima
- Department of Internal Medicine, National Center for Global Health and Medicine Kohnodai Hospital, Chiba, Japan
| | - Yoko Waragai
- Department of Internal Medicine, National Center for Global Health and Medicine Kohnodai Hospital, Chiba, Japan
| | - Tadanao Harigae
- Department of Internal Medicine, National Center for Global Health and Medicine Kohnodai Hospital, Chiba, Japan
| | - Akahito Sako
- Department of Internal Medicine, National Center for Global Health and Medicine Kohnodai Hospital, Chiba, Japan
| |
Collapse
|
15
|
Colín-Lozano B, Estrada-Soto S, Chávez-Silva F, Gutiérrez-Hernández A, Cerón-Romero L, Giacoman-Martínez A, Almanza-Pérez JC, Hernández-Núñez E, Wang Z, Xie X, Cappiello M, Balestri F, Mura U, Navarrete-Vazquez G. Design, Synthesis and in Combo Antidiabetic Bioevaluation of Multitarget Phenylpropanoic Acids. Molecules 2018; 23:molecules23020340. [PMID: 29415496 PMCID: PMC6017591 DOI: 10.3390/molecules23020340] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 02/01/2018] [Accepted: 02/03/2018] [Indexed: 12/22/2022] Open
Abstract
We have synthesized a small series of five 3-[4-arylmethoxy)phenyl]propanoic acids employing an easy and short synthetic pathway. The compounds were tested in vitro against a set of four protein targets identified as key elements in diabetes: G protein-coupled receptor 40 (GPR40), aldose reductase (AKR1B1), peroxisome proliferator-activated receptor gama (PPARγ) and solute carrier family 2 (facilitated glucose transporter), member 4 (GLUT-4). Compound 1 displayed an EC50 value of 0.075 μM against GPR40 and was an AKR1B1 inhibitor, showing IC50 = 7.4 μM. Compounds 2 and 3 act as slightly AKR1B1 inhibitors, potent GPR40 agonists and showed an increase of 2 to 4-times in the mRNA expression of PPARγ, as well as the GLUT-4 levels. Docking studies were conducted in order to explain the polypharmacological mode of action and the interaction binding mode of the most active molecules on these targets, showing several coincidences with co-crystal ligands. Compounds 1–3 were tested in vivo at an explorative 100 mg/kg dose, being 2 and 3 orally actives, reducing glucose levels in a non-insulin-dependent diabetes mice model. Compounds 2 and 3 displayed robust in vitro potency and in vivo efficacy, and could be considered as promising multitarget antidiabetic candidates. This is the first report of a single molecule with these four polypharmacological target action.
Collapse
Affiliation(s)
- Blanca Colín-Lozano
- Facultad de Farmacia, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos 62209, Mexico.
| | - Samuel Estrada-Soto
- Facultad de Farmacia, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos 62209, Mexico.
| | - Fabiola Chávez-Silva
- Facultad de Farmacia, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos 62209, Mexico.
| | | | - Litzia Cerón-Romero
- Facultad de Farmacia, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos 62209, Mexico.
| | - Abraham Giacoman-Martínez
- Laboratorio de Farmacología, Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana Iztapalapa, Ciudad de México 09340, Mexico.
| | - Julio Cesar Almanza-Pérez
- Laboratorio de Farmacología, Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana Iztapalapa, Ciudad de México 09340, Mexico.
| | - Emanuel Hernández-Núñez
- Cátedra CONACyT, Departamento de Recursos del Mar, Centro de Investigación y de Estudios Avanzados del IPN, Unidad Mérida, Yucatán 97310, Mexico.
| | - Zhilong Wang
- CAS Key Laboratory of Receptor Research, the National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China, (Z.W.).
| | - Xin Xie
- CAS Key Laboratory of Receptor Research, the National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China, (Z.W.).
| | - Mario Cappiello
- Dipartimento di Biologia, Unità di Biochimica, University of Pisa, 56126 Pisa, Italy.
| | - Francesco Balestri
- Dipartimento di Biologia, Unità di Biochimica, University of Pisa, 56126 Pisa, Italy.
| | - Umberto Mura
- Dipartimento di Biologia, Unità di Biochimica, University of Pisa, 56126 Pisa, Italy.
| | - Gabriel Navarrete-Vazquez
- Facultad de Farmacia, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos 62209, Mexico.
| |
Collapse
|
16
|
Shi J, Gu Z, Jurica EA, Wu X, Haque LE, Williams KN, Hernandez AS, Hong Z, Gao Q, Dabros M, Davulcu AH, Mathur A, Rampulla RA, Gupta AK, Jayaram R, Apedo A, Moore DB, Liu H, Kunselman LK, Brady EJ, Wilkes JJ, Zinker BA, Cai H, Shu YZ, Sun Q, Dierks EA, Foster KA, Xu C, Wang T, Panemangalore R, Cvijic ME, Xie C, Cao GG, Zhou M, Krupinski J, Whaley JM, Robl JA, Ewing WR, Ellsworth BA. Discovery of Potent and Orally Bioavailable Dihydropyrazole GPR40 Agonists. J Med Chem 2018; 61:681-694. [DOI: 10.1021/acs.jmedchem.7b00982] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Jun Shi
- Research and Development, Bristol-Myers Squibb Co., P.O. Box 4000, Princeton, New Jersey 08540-4000, United States
| | - Zhengxiang Gu
- Research and Development, Bristol-Myers Squibb Co., P.O. Box 4000, Princeton, New Jersey 08540-4000, United States
| | - Elizabeth Anne Jurica
- Research and Development, Bristol-Myers Squibb Co., P.O. Box 4000, Princeton, New Jersey 08540-4000, United States
| | - Ximao Wu
- Research and Development, Bristol-Myers Squibb Co., P.O. Box 4000, Princeton, New Jersey 08540-4000, United States
| | - Lauren E. Haque
- Research and Development, Bristol-Myers Squibb Co., P.O. Box 4000, Princeton, New Jersey 08540-4000, United States
| | - Kristin N. Williams
- Research and Development, Bristol-Myers Squibb Co., P.O. Box 4000, Princeton, New Jersey 08540-4000, United States
| | - Andres S. Hernandez
- Research and Development, Bristol-Myers Squibb Co., P.O. Box 4000, Princeton, New Jersey 08540-4000, United States
| | - Zhenqiu Hong
- Research and Development, Bristol-Myers Squibb Co., P.O. Box 4000, Princeton, New Jersey 08540-4000, United States
| | - Qi Gao
- Research and Development, Bristol-Myers Squibb Co., P.O. Box 4000, Princeton, New Jersey 08540-4000, United States
| | - Marta Dabros
- Research and Development, Bristol-Myers Squibb Co., P.O. Box 4000, Princeton, New Jersey 08540-4000, United States
| | - Akin H. Davulcu
- Research and Development, Bristol-Myers Squibb Co., P.O. Box 4000, Princeton, New Jersey 08540-4000, United States
| | - Arvind Mathur
- Research and Development, Bristol-Myers Squibb Co., P.O. Box 4000, Princeton, New Jersey 08540-4000, United States
| | - Richard A. Rampulla
- Research and Development, Bristol-Myers Squibb Co., P.O. Box 4000, Princeton, New Jersey 08540-4000, United States
| | - Arun Kumar Gupta
- Research and Development, Bristol-Myers Squibb Co., P.O. Box 4000, Princeton, New Jersey 08540-4000, United States
| | - Ramya Jayaram
- Research and Development, Bristol-Myers Squibb Co., P.O. Box 4000, Princeton, New Jersey 08540-4000, United States
| | - Atsu Apedo
- Research and Development, Bristol-Myers Squibb Co., P.O. Box 4000, Princeton, New Jersey 08540-4000, United States
| | - Douglas B. Moore
- Research and Development, Bristol-Myers Squibb Co., P.O. Box 4000, Princeton, New Jersey 08540-4000, United States
| | - Heng Liu
- Research and Development, Bristol-Myers Squibb Co., P.O. Box 4000, Princeton, New Jersey 08540-4000, United States
| | - Lori K. Kunselman
- Research and Development, Bristol-Myers Squibb Co., P.O. Box 4000, Princeton, New Jersey 08540-4000, United States
| | - Edward J. Brady
- Research and Development, Bristol-Myers Squibb Co., P.O. Box 4000, Princeton, New Jersey 08540-4000, United States
| | - Jason J. Wilkes
- Research and Development, Bristol-Myers Squibb Co., P.O. Box 4000, Princeton, New Jersey 08540-4000, United States
| | - Bradley A. Zinker
- Research and Development, Bristol-Myers Squibb Co., P.O. Box 4000, Princeton, New Jersey 08540-4000, United States
| | - Hong Cai
- Research and Development, Bristol-Myers Squibb Co., P.O. Box 4000, Princeton, New Jersey 08540-4000, United States
| | - Yue-Zhong Shu
- Research and Development, Bristol-Myers Squibb Co., P.O. Box 4000, Princeton, New Jersey 08540-4000, United States
| | - Qin Sun
- Research and Development, Bristol-Myers Squibb Co., P.O. Box 4000, Princeton, New Jersey 08540-4000, United States
| | - Elizabeth A. Dierks
- Research and Development, Bristol-Myers Squibb Co., P.O. Box 4000, Princeton, New Jersey 08540-4000, United States
| | - Kimberly A. Foster
- Research and Development, Bristol-Myers Squibb Co., P.O. Box 4000, Princeton, New Jersey 08540-4000, United States
| | - Carrie Xu
- Research and Development, Bristol-Myers Squibb Co., P.O. Box 4000, Princeton, New Jersey 08540-4000, United States
| | - Tao Wang
- Research and Development, Bristol-Myers Squibb Co., P.O. Box 4000, Princeton, New Jersey 08540-4000, United States
| | - Reshma Panemangalore
- Research and Development, Bristol-Myers Squibb Co., P.O. Box 4000, Princeton, New Jersey 08540-4000, United States
| | - Mary Ellen Cvijic
- Research and Development, Bristol-Myers Squibb Co., P.O. Box 4000, Princeton, New Jersey 08540-4000, United States
| | - Chunshan Xie
- Research and Development, Bristol-Myers Squibb Co., P.O. Box 4000, Princeton, New Jersey 08540-4000, United States
| | - Gary G. Cao
- Research and Development, Bristol-Myers Squibb Co., P.O. Box 4000, Princeton, New Jersey 08540-4000, United States
| | - Min Zhou
- Research and Development, Bristol-Myers Squibb Co., P.O. Box 4000, Princeton, New Jersey 08540-4000, United States
| | - John Krupinski
- Research and Development, Bristol-Myers Squibb Co., P.O. Box 4000, Princeton, New Jersey 08540-4000, United States
| | - Jean M. Whaley
- Research and Development, Bristol-Myers Squibb Co., P.O. Box 4000, Princeton, New Jersey 08540-4000, United States
| | - Jeffrey A. Robl
- Research and Development, Bristol-Myers Squibb Co., P.O. Box 4000, Princeton, New Jersey 08540-4000, United States
| | - William R. Ewing
- Research and Development, Bristol-Myers Squibb Co., P.O. Box 4000, Princeton, New Jersey 08540-4000, United States
| | - Bruce Alan Ellsworth
- Research and Development, Bristol-Myers Squibb Co., P.O. Box 4000, Princeton, New Jersey 08540-4000, United States
| |
Collapse
|
17
|
Munakata Y, Yamada T, Imai J, Takahashi K, Tsukita S, Shirai Y, Kodama S, Asai Y, Sugisawa T, Chiba Y, Kaneko K, Uno K, Sawada S, Hatakeyama H, Kanzaki M, Miyazaki JI, Oka Y, Katagiri H. Olfactory receptors are expressed in pancreatic β-cells and promote glucose-stimulated insulin secretion. Sci Rep 2018; 8:1499. [PMID: 29367680 PMCID: PMC5784078 DOI: 10.1038/s41598-018-19765-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 01/04/2018] [Indexed: 11/25/2022] Open
Abstract
Olfactory receptors (ORs) mediate olfactory chemo-sensation in OR neurons. Herein, we have demonstrated that the OR chemo-sensing machinery functions in pancreatic β-cells and modulates insulin secretion. First, we found several OR isoforms, including OLFR15 and OLFR821, to be expressed in pancreatic islets and a β-cell line, MIN6. Immunostaining revealed OLFR15 and OLFR821 to be uniformly expressed in pancreatic β-cells. In addition, mRNAs of Olfr15 and Olfr821 were detected in single MIN6 cells. These results indicate that multiple ORs are simultaneously expressed in individual β-cells. Octanoic acid, which is a medium-chain fatty acid contained in food and reportedly interacts with OLFR15, potentiated glucose-stimulated insulin secretion (GSIS), thereby improving glucose tolerance in vivo. GSIS potentiation by octanoic acid was confirmed in isolated pancreatic islets and MIN6 cells and was blocked by OLFR15 knockdown. While Gαolf expression was not detectable in β-cells, experiments using inhibitors and siRNA revealed that the pathway dependent on phospholipase C-inositol triphosphate, rather than cAMP-protein kinase A, mediates GSIS potentiation via OLFR15. These findings suggest that the OR system in pancreatic β-cells has a chemo-sensor function allowing recognition of environmental substances obtained from food, and potentiates insulin secretion in a cell-autonomous manner, thereby modulating systemic glucose metabolism.
Collapse
Affiliation(s)
- Yuichiro Munakata
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, 980-8575, Japan
| | - Tetsuya Yamada
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, 980-8575, Japan. .,Center for Metabolic Diseases, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan.
| | - Junta Imai
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, 980-8575, Japan
| | - Kei Takahashi
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, 980-8575, Japan
| | - Sohei Tsukita
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, 980-8575, Japan
| | - Yuta Shirai
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, 980-8575, Japan
| | - Shinjiro Kodama
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, 980-8575, Japan
| | - Yoichiro Asai
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, 980-8575, Japan
| | - Takashi Sugisawa
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, 980-8575, Japan
| | - Yumiko Chiba
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, 980-8575, Japan
| | - Keizo Kaneko
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, 980-8575, Japan
| | - Kenji Uno
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, 980-8575, Japan
| | - Shojiro Sawada
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, 980-8575, Japan
| | - Hiroyasu Hatakeyama
- Graduate School of Biomedical Engineering, Tohoku University, Sendai, 980-8579, Japan
| | - Makoto Kanzaki
- Center for Metabolic Diseases, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan.,Graduate School of Biomedical Engineering, Tohoku University, Sendai, 980-8579, Japan
| | - Jun-Ichi Miyazaki
- Division of Stem Cell Regulation Research, Osaka University Graduate School of Medicine, Suita, 565-0871, Japan
| | - Yoshitomo Oka
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, 980-8575, Japan
| | - Hideki Katagiri
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, 980-8575, Japan.,Center for Metabolic Diseases, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan.,Japan Agency for Medical Research and Development (AMED), CREST, Chiyoda-ku, Tokyo, 100-0004, Japan
| |
Collapse
|
18
|
Qian J, Gu Y, Wu C, Yu F, Chen Y, Zhu J, Yao X, Bei C, Zhu Q. Agonist-induced activation of human FFA1 receptor signals to extracellular signal-regulated kinase 1 and 2 through Gq- and Gi-coupled signaling cascades. Cell Mol Biol Lett 2017; 22:13. [PMID: 28747926 PMCID: PMC5522598 DOI: 10.1186/s11658-017-0043-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 07/07/2017] [Indexed: 12/18/2022] Open
Abstract
Background FFA1 is abundantly expressed in the liver, skeletal muscle, monocytes and nervous system, but is particularly abundant in pancreatic β cells. It is widely believed that FFA1 exerts its regulatory roles in a variety of physiological and pathological functions. In response to oleic acid, FFA1 has been shown to induce the activation of extracellular signal-regulated kinase 1 and 2 (ERK1/2) through a mechanism involving EGFR transactivation in a breast cancer cell line. However, the underlying molecular mechanism for ERK1/2 activation mediated by n-6 free fatty acid (LA) in HEK293 cells remains to be further elucidated. Methods A FLAG-FFA1 vector was stably expressed in HEK293 cells. Western blot analysis was applied to investigate the change in LA-induced ERK1/2 phosphorylation change in response to kinase inhibitors. Arrestin-2/3-specific siRNA was used to analyze the effect of arrestin-2/3 knockdown on FFA1-mediated ERK1/2 activation. Results We proved that activation of ERK1/2 by LA was rapid, peaking at 5 min. Further experiments proved that FFA1 couples to a Gq protein and activates PI-PLC, which induces the IP3/Ca2+ and DAG/PKC signal pathways, both of which are involved in ERK1/2 activation. We also showed that there is no EGFR transactivation, arrestin-2/3 or Gβγ pathway participation in ERK1/2 phosphorylation. Treating cells with PTX abolished ERK1/2 activation at a late time point (≥20 min), indicating a critical role for Gi subunits in FFA1-mediated ERK1/2 activation. Conclusions Our study provides a detailed delineation of the LA-mediated activation of ERK1/2 in HEK293 cells that are stably transfected with human FFA1. We also present evidence of Gi/Gq-induced synergism in the regulation of ERK1/2 phosphorylation. These observations may provide new insights into the pharmacological effects of FFA1 and the physiological functions modulated by FFA1-mediated activation of ERK1/2. Electronic supplementary material The online version of this article (doi:10.1186/s11658-017-0043-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jing Qian
- Huzhou University Schools of Nursing and Medicine, Huzhou University, HuZhou, 313000 China
| | - Yuyang Gu
- Huzhou University Schools of Nursing and Medicine, Huzhou University, HuZhou, 313000 China
| | - Chun Wu
- Institute of Biochemistry, College of Life Science, Zijingang Campus, Zhejiang University, Hangzhou, Zhejiang 310058 China
| | - Feng Yu
- Huzhou University Schools of Nursing and Medicine, Huzhou University, HuZhou, 313000 China
| | - Yuqi Chen
- Huzhou University Schools of Nursing and Medicine, Huzhou University, HuZhou, 313000 China
| | - Jingmei Zhu
- Huzhou University Schools of Nursing and Medicine, Huzhou University, HuZhou, 313000 China
| | - Xingyi Yao
- Huzhou University Schools of Nursing and Medicine, Huzhou University, HuZhou, 313000 China
| | - Chen Bei
- Huzhou University Schools of Nursing and Medicine, Huzhou University, HuZhou, 313000 China
| | - Qingqing Zhu
- Huzhou University Schools of Nursing and Medicine, Huzhou University, HuZhou, 313000 China
| |
Collapse
|
19
|
Satapati S, Qian Y, Wu MS, Petrov A, Dai G, Wang SP, Zhu Y, Shen X, Muise ES, Chen Y, Zycband E, Weinglass A, Di Salvo J, Debenham JS, Cox JM, Lan P, Shah V, Previs SF, Erion M, Kelley DE, Wang L, Howard AD, Shang J. GPR120 suppresses adipose tissue lipolysis and synergizes with GPR40 in antidiabetic efficacy. J Lipid Res 2017; 58:1561-1578. [PMID: 28583918 DOI: 10.1194/jlr.m075044] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 05/02/2017] [Indexed: 12/28/2022] Open
Abstract
GPR40 and GPR120 are fatty acid sensors that play important roles in glucose and energy homeostasis. GPR40 potentiates glucose-dependent insulin secretion and demonstrated in clinical studies robust glucose lowering in type 2 diabetes. GPR120 improves insulin sensitivity in rodents, albeit its mechanism of action is not fully understood. Here, we postulated that the antidiabetic efficacy of GPR40 could be enhanced by coactivating GPR120. A combination of GPR40 and GPR120 agonists in db/db mice, as well as a single molecule with dual agonist activities, achieved superior glycemic control compared with either monotherapy. Compared with a GPR40 selective agonist, the dual agonist improved insulin sensitivity in ob/ob mice measured by hyperinsulinemic-euglycemic clamp, preserved islet morphology, and increased expression of several key lipolytic genes in adipose tissue of Zucker diabetic fatty rats. Novel insights into the mechanism of action for GPR120 were obtained. Selective GPR120 activation suppressed lipolysis in primary white adipocytes, although this effect was attenuated in adipocytes from obese rats and obese rhesus, and sensitized the antilipolytic effect of insulin in rat and rhesus primary adipocytes. In conclusion, GPR120 agonism enhances insulin action in adipose tissue and yields a synergistic efficacy when combined with GPR40 agonism.
Collapse
Affiliation(s)
| | - Ying Qian
- Cardiometabolic Disease, Merck & Co., Inc., Kenilworth, NJ 07033
| | - Margaret S Wu
- Cardiometabolic Disease, Merck & Co., Inc., Kenilworth, NJ 07033
| | - Aleksandr Petrov
- Cardiometabolic Disease, Merck & Co., Inc., Kenilworth, NJ 07033
| | - Ge Dai
- Cardiometabolic Disease, Merck & Co., Inc., Kenilworth, NJ 07033
| | - Sheng-Ping Wang
- Cardiometabolic Disease, Merck & Co., Inc., Kenilworth, NJ 07033
| | - Yonghua Zhu
- Cardiometabolic Disease, Merck & Co., Inc., Kenilworth, NJ 07033
| | - Xiaolan Shen
- Safety Assessment and Laboratory Animal Resources, Merck & Co., Inc., Kenilworth, NJ 07033
| | - Eric S Muise
- Genetics and Pharmacogenomics, Merck & Co., Inc., Kenilworth, NJ 07033
| | - Ying Chen
- Cardiometabolic Disease, Merck & Co., Inc., Kenilworth, NJ 07033
| | - Emanuel Zycband
- Cardiometabolic Disease, Merck & Co., Inc., Kenilworth, NJ 07033
| | - Adam Weinglass
- Genetics and Pharmacology, Merck & Co., Inc., Kenilworth, NJ 07033
| | - Jerry Di Salvo
- Genetics and Pharmacology, Merck & Co., Inc., Kenilworth, NJ 07033
| | - John S Debenham
- Genetics and Chemistry, Merck & Co., Inc., Kenilworth, NJ 07033
| | - Jason M Cox
- Genetics and Chemistry, Merck & Co., Inc., Kenilworth, NJ 07033
| | - Ping Lan
- Genetics and Chemistry, Merck & Co., Inc., Kenilworth, NJ 07033
| | - Vinit Shah
- Cardiometabolic Disease, Merck & Co., Inc., Kenilworth, NJ 07033
| | - Stephen F Previs
- Cardiometabolic Disease, Merck & Co., Inc., Kenilworth, NJ 07033
| | - Mark Erion
- Cardiometabolic Disease, Merck & Co., Inc., Kenilworth, NJ 07033
| | - David E Kelley
- Cardiometabolic Disease, Merck & Co., Inc., Kenilworth, NJ 07033
| | - Liangsu Wang
- Cardiometabolic Disease, Merck & Co., Inc., Kenilworth, NJ 07033
| | - Andrew D Howard
- Cardiometabolic Disease, Merck & Co., Inc., Kenilworth, NJ 07033
| | - Jin Shang
- Cardiometabolic Disease, Merck & Co., Inc., Kenilworth, NJ 07033.
| |
Collapse
|
20
|
Marchetti P, Bugliani M, De Tata V, Suleiman M, Marselli L. Pancreatic Beta Cell Identity in Humans and the Role of Type 2 Diabetes. Front Cell Dev Biol 2017; 5:55. [PMID: 28589121 PMCID: PMC5440564 DOI: 10.3389/fcell.2017.00055] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 05/05/2017] [Indexed: 12/13/2022] Open
Abstract
Pancreatic beta cells uniquely synthetize, store, and release insulin. Specific molecular, functional as well as ultrastructural traits characterize their insulin secretion properties and survival phentoype. In this review we focus on human islet/beta cells, and describe the changes that occur in type 2 diabetes and could play roles in the disease as well as represent possible targets for therapeutical interventions. These include transcription factors, molecules involved in glucose metabolism and insulin granule handling. Quantitative and qualitative insulin release patterns and their changes in type 2 diabetes are also associated with ultrastructural features involving the insulin granules, the mitochondria, and the endoplasmic reticulum.
Collapse
Affiliation(s)
- Piero Marchetti
- Department of Clinical and Experimental Medicine, University of PisaPisa, Italy
| | - Marco Bugliani
- Department of Clinical and Experimental Medicine, University of PisaPisa, Italy
| | - Vincenzo De Tata
- Department of Translational Medicine, University of PisaPisa, Italy
| | - Mara Suleiman
- Department of Clinical and Experimental Medicine, University of PisaPisa, Italy
| | - Lorella Marselli
- Department of Clinical and Experimental Medicine, University of PisaPisa, Italy
| |
Collapse
|
21
|
Insulinotropic effects of GPR120 agonists are altered in obese diabetic and obese non-diabetic states. Clin Sci (Lond) 2016; 131:247-260. [PMID: 27980130 DOI: 10.1042/cs20160545] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 12/13/2016] [Accepted: 12/15/2016] [Indexed: 02/06/2023]
Abstract
G-protein-coupled receptor 120 (GPR120) is a putative target for obesity and diabetes therapies. However, it remains controversial whether resident GPR120 plays a direct regulatory role in islet β-cell insulin secretion. The present study examined this issue in isolated rodent islets and rat β-cell line INS-1E, and assessed the role of GPR120 in islet insulin secretion in obese non-diabetic (OND) and diabetic states. GPR120 expression was detected in rodent islet β-cells. Docosahexaenoic acid (DHA) and synthetic GPR120 agonist GSK137647 (GSK) augmented insulin release from rat/mouse islets and INS-1E; DHA effects were partially mediated by GPR40. GPR120 knockdown and overexpression attenuated and enhanced DHA effects in INS-1E respectively. DHA and GSK improved postprandial hyperglycaemia of diabetic mice. Inhibition of calcium signalling in INS-1E reduced GPR120 activation-induced insulinotropic effects. The insulinotropic effects of DHA/GSK were amplified in OND rat islets, but diminished in diabetic rat islets. GPR120 and peroxisome proliferator-activated receptor γ (PPARγ) expression were elevated in OND islets and palmitic acid (PA)-treated INS-1E, but reduced in diabetic islets and high glucose-treated INS-1E. PPARγ activation increased GPR120 expression in rat islets and INS-1E. DHA and GSK induced protein kinase B (Akt)/extracellular signal-regulated kinase (ERK) phosphorylation in rodent islets and INS-1E, and these effects were altered in OND and diabetic states. Taken together, the present study indicates that (i) GPR120 activation has an insulinotropic influence on β-cells with the involvement of calcium signalling; (ii) GPR120 expression in β-cells and GPR120-mediated insulinotropic effects are altered in OND and diabetic states in distinct ways, and these alterations may be mediated by PPARγ.
Collapse
|
22
|
Lamri A, Bonnefond A, Meyre D, Balkau B, Roussel R, Marre M, Froguel P, Fumeron F. Interaction between GPR120 p.R270H loss-of-function variant and dietary fat intake on incident type 2 diabetes risk in the D.E.S.I.R. study. Nutr Metab Cardiovasc Dis 2016; 26:931-936. [PMID: 27212621 DOI: 10.1016/j.numecd.2016.04.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 04/11/2016] [Accepted: 04/12/2016] [Indexed: 01/29/2023]
Abstract
BACKGROUND AND AIMS GPR120 (encoded by FFAR4) is a lipid sensor that plays an important role in the control of energy balance. GPR120 is activated by long chain fatty acids (FAs) including omega-3 FAs. In humans, the loss of function p.R270H variant of the gene FFAR4 has been associated with a lower protein activity, an increased risk of obesity and higher fasting plasma glucose levels. The aim of this study was to investigate whether p.R270H interacts with dietary fat intake to modulate the risk of type 2 diabetes (T2D, 198 incident; 368 prevalent cases) and overweight (787 incident and 2891 prevalent cases) in the prospective D.E.S.I.R. study (n = 5,212, 9 years follow-up). METHODS AND RESULTS The association of p.R270H with dietary fat and total calories was assessed by linear mixed models. The interaction between p.R270H and dietary fat on T2D and overweight was assessed by logistic regression analysis. The p.R270H variant had a minor allele frequency of 1.45% and was not significantly associated with total calories intake, fat intake or the total calories derived from fat (%). However, there was a significant interaction between p.R270H and dietary fat modulating the incidence of T2D (Pinteraction = 0.02) where the H-carriers had a higher risk of T2D than RR homozygotes in the low fat intake category only. The interaction between p.R270H and fat intake modulating the incidence and prevalence of overweight was not significant. CONCLUSION The p.R270H variant of GPR120 modulates the risk of T2D in interaction with dietary fat intake in the D.E.S.I.R.
Collapse
Affiliation(s)
- A Lamri
- Institut National de la Santé et de la Recherche Médicale (INSERM), Centre de Recherches des Cordeliers, Research Unit 1138, Paris, France; Paris Diderot University, Sorbonne Paris Cité, Paris, France; Department of Clinical Epidemiology and Biostatistics, McMaster University, Hamilton, Canada
| | - A Bonnefond
- CNRS-UMR8199, Lille Pasteur Institute, Lille, France; Lille University, Lille, France; European Genomic Institute for Diabetes (EGID), FR 3508, Lille, France
| | - D Meyre
- Department of Clinical Epidemiology and Biostatistics, McMaster University, Hamilton, Canada; Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Canada
| | - B Balkau
- INSERM, CESP Centre for Research in Epidemiology and Population Health, U1018, Villejuif, France; Universities of St Quentin-Versailles and Paris Sud 11, UMRS 1018, Villejuif, France
| | - R Roussel
- Institut National de la Santé et de la Recherche Médicale (INSERM), Centre de Recherches des Cordeliers, Research Unit 1138, Paris, France; Paris Diderot University, Sorbonne Paris Cité, Paris, France; Assistance Publique Hôpitaux de Paris (APHP), Bichat Hospital, Department of Diabetology, Endocrinology and Nutrition, Paris, France
| | - M Marre
- Institut National de la Santé et de la Recherche Médicale (INSERM), Centre de Recherches des Cordeliers, Research Unit 1138, Paris, France; Paris Diderot University, Sorbonne Paris Cité, Paris, France; Assistance Publique Hôpitaux de Paris (APHP), Bichat Hospital, Department of Diabetology, Endocrinology and Nutrition, Paris, France
| | - P Froguel
- CNRS-UMR8199, Lille Pasteur Institute, Lille, France; Lille University, Lille, France; European Genomic Institute for Diabetes (EGID), FR 3508, Lille, France
| | - F Fumeron
- Institut National de la Santé et de la Recherche Médicale (INSERM), Centre de Recherches des Cordeliers, Research Unit 1138, Paris, France; Paris Diderot University, Sorbonne Paris Cité, Paris, France.
| |
Collapse
|
23
|
Mena SJ, Manosalva C, Carretta MD, Teuber S, Olmo I, Burgos RA, Hidalgo MA. Differential free fatty acid receptor-1 (FFAR1/GPR40) signalling is associated with gene expression or gelatinase granule release in bovine neutrophils. Innate Immun 2016; 22:479-89. [DOI: 10.1177/1753425916656765] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 06/06/2016] [Indexed: 12/31/2022] Open
Abstract
Fatty acids have been recognized as regulators of immune function in addition to their known metabolic role. Long-chain fatty acids bind free fatty acid receptor (FFAR)-1/GPR40, which is expressed on bovine neutrophils, and increase responses such as granule release and gene expression. In this study, we investigated the molecular mechanisms governing the up-regulation of cyclooxygenase-2 (COX-2) and IL-8, as well as matrix metalloproteinase (MMP)-9 granule release in FFAR1/GPR40 agonist-stimulated neutrophils. Our results showed that natural (oleic and linoleic acid) and synthetic (GW9508) FFAR1/GPR40 agonists increased ERK1/2, p38 MAPK and Akt phosphorylation, and that the FFAR1/GPR40 antagonist GW1100 reduced these responses. We evaluated the levels of IκBα, a component of the classical activation pathway of the transcription factor NF-κB, and we observed IκBα reduction after stimulation with FFAR1/GPR40 agonists, an effect that was inhibited by GW1100 or the inhibitors UO126, SB203580 or LY294002. FFAR1/GPR40 agonists increased COX-2 and IL-8 expression, which was inhibited by GW1100 and an NF-κB inhibitor. Finally, the FFAR1/GPR40 agonist-induced MMP-9 granule release was reduced by GW1100 and UO126. In conclusion, FFAR1/GPR40 agonists differentially stimulate neutrophil functions; COX-2 and IL-8 are expressed after FFAR1/GPR40 activation via NF-κB, IκBα reduction is FFAR1/GPR40- and PI3K/MAPK-dependent, and MMP-9 granule release is FFAR1/GPR40- and ERK1/2-dependent.
Collapse
Affiliation(s)
- Sandra J Mena
- Laboratory of Molecular Pharmacology, Institute of Pharmacology, Faculty of Veterinary Science, Universidad Austral de Chile, Valdivia, Chile
- Department of Biology, Universidad de Nariño, Pasto, Colombia
| | - Carolina Manosalva
- Laboratory of Molecular Pharmacology, Institute of Pharmacology, Faculty of Veterinary Science, Universidad Austral de Chile, Valdivia, Chile
- Institute of Pharmacy, Faculty of Sciences, Universidad Austral de Chile, Valdivia, Chile
| | - Maria D Carretta
- Laboratory of Molecular Pharmacology, Institute of Pharmacology, Faculty of Veterinary Science, Universidad Austral de Chile, Valdivia, Chile
| | - Stefanie Teuber
- Laboratory of Molecular Pharmacology, Institute of Pharmacology, Faculty of Veterinary Science, Universidad Austral de Chile, Valdivia, Chile
| | - Iván Olmo
- Laboratory of Molecular Pharmacology, Institute of Pharmacology, Faculty of Veterinary Science, Universidad Austral de Chile, Valdivia, Chile
| | - Rafael A Burgos
- Laboratory of Molecular Pharmacology, Institute of Pharmacology, Faculty of Veterinary Science, Universidad Austral de Chile, Valdivia, Chile
| | - Maria A Hidalgo
- Laboratory of Molecular Pharmacology, Institute of Pharmacology, Faculty of Veterinary Science, Universidad Austral de Chile, Valdivia, Chile
| |
Collapse
|
24
|
Milligan G, Shimpukade B, Ulven T, Hudson BD. Complex Pharmacology of Free Fatty Acid Receptors. Chem Rev 2016; 117:67-110. [PMID: 27299848 DOI: 10.1021/acs.chemrev.6b00056] [Citation(s) in RCA: 208] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
G protein-coupled receptors (GPCRs) are historically the most successful family of drug targets. In recent times it has become clear that the pharmacology of these receptors is far more complex than previously imagined. Understanding of the pharmacological regulation of GPCRs now extends beyond simple competitive agonism or antagonism by ligands interacting with the orthosteric binding site of the receptor to incorporate concepts of allosteric agonism, allosteric modulation, signaling bias, constitutive activity, and inverse agonism. Herein, we consider how evolving concepts of GPCR pharmacology have shaped understanding of the complex pharmacology of receptors that recognize and are activated by nonesterified or "free" fatty acids (FFAs). The FFA family of receptors is a recently deorphanized set of GPCRs, the members of which are now receiving substantial interest as novel targets for the treatment of metabolic and inflammatory diseases. Further understanding of the complex pharmacology of these receptors will be critical to unlocking their ultimate therapeutic potential.
Collapse
Affiliation(s)
- Graeme Milligan
- Centre for Translational Pharmacology, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow , Glasgow G12 8QQ, Scotland, United Kingdom
| | - Bharat Shimpukade
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark , Campusvej 55, DK-5230 Odense M, Denmark
| | - Trond Ulven
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark , Campusvej 55, DK-5230 Odense M, Denmark
| | - Brian D Hudson
- Centre for Translational Pharmacology, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow , Glasgow G12 8QQ, Scotland, United Kingdom
| |
Collapse
|
25
|
Deng Y, Matsui Y, Pan W, Li Q, Lai ZC. Yap1 plays a protective role in suppressing free fatty acid-induced apoptosis and promoting beta-cell survival. Protein Cell 2016; 7:362-72. [PMID: 27000077 PMCID: PMC4853318 DOI: 10.1007/s13238-016-0258-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 02/23/2016] [Indexed: 02/07/2023] Open
Abstract
Mammalian pancreatic β-cells play a pivotal role in development and glucose homeostasis through the production and secretion of insulin. Functional failure or decrease in β-cell number leads to type 2 diabetes (T2D). Despite the physiological importance of β-cells, the viability of β-cells is often challenged mainly due to its poor ability to adapt to their changing microenvironment. One of the factors that negatively affect β-cell viability is high concentration of free fatty acids (FFAs) such as palmitate. In this work, we demonstrated that Yes-associated protein (Yap1) is activated when β-cells are treated with palmitate. Our loss- and gain-of-function analyses using rodent insulinoma cell lines revealed that Yap1 suppresses palmitate-induced apoptosis in β-cells without regulating their proliferation. We also found that upon palmitate treatment, re-arrangement of F-actin mediates Yap1 activation. Palmitate treatment increases expression of one of the Yap1 target genes, connective tissue growth factor (CTGF). Our gain-of-function analysis with CTGF suggests CTGF may be the downstream factor of Yap1 in the protective mechanism against FFA-induced apoptosis.
Collapse
Affiliation(s)
- Yaoting Deng
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, 16802, USA
| | - Yurika Matsui
- Intercollege Graduate Degree Program in Molecular, Cellular and Integrative Biosciences, Pennsylvania State University, University Park, PA, 16802, USA
| | - Wenfei Pan
- Shandong Provincial Hospital Affiliated to Shandong University, Jinan, 250021, China
| | - Qiu Li
- Shandong Provincial Hospital Affiliated to Shandong University, Jinan, 250021, China.
| | - Zhi-Chun Lai
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, 16802, USA. .,Intercollege Graduate Degree Program in Molecular, Cellular and Integrative Biosciences, Pennsylvania State University, University Park, PA, 16802, USA. .,Shandong Provincial Hospital Affiliated to Shandong University, Jinan, 250021, China. .,Department of Biology, Pennsylvania State University, University Park, PA, 16802, USA.
| |
Collapse
|
26
|
Ren XM, Cao LY, Zhang J, Qin WP, Yang Y, Wan B, Guo LH. Investigation of the Binding Interaction of Fatty Acids with Human G Protein-Coupled Receptor 40 Using a Site-Specific Fluorescence Probe by Flow Cytometry. Biochemistry 2016; 55:1989-96. [DOI: 10.1021/acs.biochem.6b00079] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Xiao-Min Ren
- State Key Laboratory of Environmental
Chemistry and Eco-toxicology, Research Center for Eco-environmental
Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, P.O. Box 2871, Beijing 100085, China
| | - Lin-Ying Cao
- State Key Laboratory of Environmental
Chemistry and Eco-toxicology, Research Center for Eco-environmental
Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, P.O. Box 2871, Beijing 100085, China
| | - Jing Zhang
- State Key Laboratory of Environmental
Chemistry and Eco-toxicology, Research Center for Eco-environmental
Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, P.O. Box 2871, Beijing 100085, China
| | - Wei-Ping Qin
- College of Life and Environmental
Science, Minzu University of China, Beijing 100081, China
| | - Yu Yang
- State Key Laboratory of Environmental
Chemistry and Eco-toxicology, Research Center for Eco-environmental
Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, P.O. Box 2871, Beijing 100085, China
| | - Bin Wan
- State Key Laboratory of Environmental
Chemistry and Eco-toxicology, Research Center for Eco-environmental
Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, P.O. Box 2871, Beijing 100085, China
| | - Liang-Hong Guo
- State Key Laboratory of Environmental
Chemistry and Eco-toxicology, Research Center for Eco-environmental
Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, P.O. Box 2871, Beijing 100085, China
- Institute of Environment and Health, Jianghan University, Wuhan 430056, China
| |
Collapse
|
27
|
Huang J, Guo B, Chu WJ, Xie X, Yang YS, Zhou XL. Design, synthesis and evaluation of potent G-protein coupled receptor 40 agonists. CHINESE CHEM LETT 2016. [DOI: 10.1016/j.cclet.2015.09.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
28
|
Akmurzina V, Petryairina E, Saveliev S, Selishcheva A. The profile of plasma non-esterified fatty acids in children with different terms of type 1 diabetes mellitus. ACTA ACUST UNITED AC 2016; 62:206-11. [DOI: 10.18097/pbmc20166202206] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Composition and quantitative content of non-esterified fatty acids (NEFA) were investigated in plasma samples of healthy children (12) and children with type 1 diabetes mellitus (DM1) (31) by gas chromatography (GC) after preliminary NEFA solid-phase extraction from plasma lipids. There was a significant (p<0.001) 1.6-fold increase in the total level of NEFA regardless of the disease duration. In the group of DM1 children with the disease period less than 1 year there was an increase in the arachidonic acid (20:4) content (30%) and the oleic acid trans-isomer (18:1) content (82%), and also a decrease in the docosahexaenoic acid (22:6 n3) content (26% ) and the docosapentaenoic acids (22:5 n-6) content (60%). In the group of DM1 children with prolonged course of this disease the altered NEFA levels returned to the normal level
Collapse
Affiliation(s)
- V.A. Akmurzina
- Department of Biology, M.V. Lomonosov Moscow State University, Moscow, Russia; Institution of Biomedical Problems, Moscow, Russia
| | | | - S.V. Saveliev
- Research Institute of Human Morphology of the Russian Academy of Medical Sciences, Moscow, Russia; Institution of Biomedical Problems, Moscow, Russia
| | - A.A. Selishcheva
- Department of Biology, M.V. Lomonosov Moscow State University, Moscow, Russia; Institution of Biomedical Problems, Moscow, Russia
| |
Collapse
|
29
|
Baumgard LH, Hausman GJ, Sanz Fernandez MV. Insulin: pancreatic secretion and adipocyte regulation. Domest Anim Endocrinol 2016; 54:76-84. [PMID: 26521203 DOI: 10.1016/j.domaniend.2015.07.001] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 06/29/2015] [Accepted: 07/07/2015] [Indexed: 12/19/2022]
Abstract
Insulin is the primary acute anabolic coordinator of nutrient partitioning. Hyperglycemia is the main stimulant of insulin secretion, but other nutrients such as specific amino acids, fatty acids, and ketoacids can potentiate pancreatic insulin release. Incretins are intestinal hormones with insulinotropic activity and are secreted in response to food ingestion, thus integrating diet chemical composition with the regulation of insulin release. In addition, prolactin is required for proper islet development, and it stimulates β-cell proliferation. Counterintuitively, bacterial components appear to signal insulin secretion. In vivo lipopolysaccharide infusion acutely increases circulating insulin, which is paradoxical as endotoxemia is a potent catabolic condition. Insulin is a potent anabolic orchestrator of nutrient partitioning, and this is particularly true in adipocytes. Insulin dictates lipid accretion in a dose-dependent manner during preadipocyte development in adipose tissue-derived stromal vascular cell culture. However, in vivo studies focused on insulin's role in regulating adipose tissue metabolism from growing, and market weight pigs are sometimes inconsistent, and this variability appears to be animal, age and depot dependent. Additionally, porcine adipose tissue synthesizes and secretes a number of adipokines (leptin, adiponectin, and so forth) that directly or indirectly influence insulin action. Therefore, because insulin has an enormous impact on agriculturally important phenotypes, it is critical to have a better understanding of how insulin homeostasis is governed.
Collapse
Affiliation(s)
- L H Baumgard
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA.
| | - G J Hausman
- Department of Animal and Dairy Science, University of Georgia, Athens, GA 30602, USA
| | - M V Sanz Fernandez
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
30
|
Dual effects of the non-esterified fatty acid receptor ‘GPR40’ for human health. Prog Lipid Res 2015; 58:40-50. [DOI: 10.1016/j.plipres.2015.01.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Accepted: 01/12/2015] [Indexed: 11/18/2022]
|
31
|
Manosalva C, Mena J, Velasquez Z, Colenso CK, Brauchi S, Burgos RA, Hidalgo MA. Cloning, identification and functional characterization of bovine free fatty acid receptor-1 (FFAR1/GPR40) in neutrophils. PLoS One 2015; 10:e0119715. [PMID: 25790461 PMCID: PMC4366208 DOI: 10.1371/journal.pone.0119715] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2014] [Accepted: 01/16/2015] [Indexed: 12/21/2022] Open
Abstract
Long chain fatty acids (LCFAs), which are ligands for the G-protein coupled receptor FFAR1 (GPR40), are increased in cow plasma after parturition, a period in which they are highly susceptible to infectious diseases. This study identified and analyzed the functional role of the FFAR1 receptor in bovine neutrophils, the first line of host defense against infectious agents. We cloned the putative FFAR1 receptor from bovine neutrophils and analyzed the sequence to construct a homology model. Our results revealed that the sequence of bovine FFAR1 shares 84% identity with human FFAR1 and 31% with human FFAR3/GPR41. Therefore, we constructed a homology model of bovine FFAR1 using human as the template. Expression of the bovine FFAR1 receptor in Chinese hamster ovary (CHO)-K1 cells increased the levels of intracellular calcium induced by the LCFAs, oleic acid (OA) and linoleic acid (LA); no increase in calcium mobilization was observed in the presence of the short chain fatty acid propionic acid. Additionally, the synthetic agonist GW9508 increased intracellular calcium in CHO-K1/bFFAR1 cells. OA and LA increased intracellular calcium in bovine neutrophils. Furthermore, GW1100 (antagonist of FFAR1) and U73122 (phospholipase C (PLC) inhibitor) reduced FFAR1 ligand-induced intracellular calcium in CHO-K1/bFFAR1 cells and neutrophils. Additionally, inhibition of FFAR1, PLC and PKC reduced the FFAR1 ligand-induced release of matrix metalloproteinase (MMP)-9 granules and reactive oxygen species (ROS) production. Thus, we identified the bovine FFAR1 receptor and demonstrate a functional role for this receptor in neutrophils activated with oleic or linoleic acid.
Collapse
Affiliation(s)
- Carolina Manosalva
- Laboratory of Molecular Pharmacology, Institute of Pharmacology, Faculty of Veterinary Science, Universidad Austral de Chile, Valdivia, Chile
| | - Jaqueline Mena
- Laboratory of Molecular Pharmacology, Institute of Pharmacology, Faculty of Veterinary Science, Universidad Austral de Chile, Valdivia, Chile
- Department of Biology, Universidad de Nariño, Pasto, Colombia
| | - Zahady Velasquez
- Laboratory of Molecular Pharmacology, Institute of Pharmacology, Faculty of Veterinary Science, Universidad Austral de Chile, Valdivia, Chile
| | - Charlotte K. Colenso
- Institute of Physiology, Faculty of Medicine, Universidad Austral de Chile, Valdivia, Chile
| | - Sebastian Brauchi
- Institute of Physiology, Faculty of Medicine, Universidad Austral de Chile, Valdivia, Chile
| | - Rafael A. Burgos
- Laboratory of Molecular Pharmacology, Institute of Pharmacology, Faculty of Veterinary Science, Universidad Austral de Chile, Valdivia, Chile
| | - Maria A. Hidalgo
- Laboratory of Molecular Pharmacology, Institute of Pharmacology, Faculty of Veterinary Science, Universidad Austral de Chile, Valdivia, Chile
| |
Collapse
|
32
|
Choi YJ, Shin D, Lee JY. G-protein coupled receptor 40 agonists as novel therapeutics for type 2 diabetes. Arch Pharm Res 2015; 37:435-9. [PMID: 24234912 DOI: 10.1007/s12272-013-0283-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2013] [Accepted: 10/30/2013] [Indexed: 12/16/2022]
Abstract
With growing needs for new antidiabetic drugs which are safe and effective alone or in combination with existing drugs, G-protein coupled receptor 40 (GPR40) has drawn a considerable attention as a potential therapeutic target for type 2 diabetes. As GPR40 agonist may offer advantages to commonly used agents, by acting ambient glucose dependent manner which mechanistically leads to reduced risk of developing hypoglycemia. Since deorphanization in 2003, development of small molecule GPR40 agonists has been spurred by several research groups. There are a number of lead molecules targeting GPR40, and among these molecules TAK-875 (full agonist) and AMG 837 (partial agonist) advanced into clinical stage.
Collapse
|
33
|
Li A, Li Y, Du L. Biological characteristics and agonists of GPR120 (FFAR4) receptor: the present status of research. Future Med Chem 2015; 7:1457-1468. [PMID: 26230883 DOI: 10.4155/fmc.15.75] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025] Open
Abstract
GPR120 receptor functions as a receptor for ω-3 fatty acid, involving regulating the secretion of gastrointestinal peptide hormone, adipogenesis, adipogenic differentiation and anti-inflammatory process and the like in the aspect of biological functions. In view that the dysfunction of GPR120 receptor is closely correlated with metabolic disorders, GPR120 may act as a novel potential therapeutic target for the treatment of obesity, insulin resistance, Type 2 diabetes and so on. Therefore, mounting scientists devote themselves to probing the molecular mechanism of the biological function of GPR120 receptor and their ligands for the treatment of impaired metabolic health. Herein, we summarize the mechanisms of signal transduction through GPR120 receptor, and discovery and development of GPR120 agonists thereof.
Collapse
Affiliation(s)
- Ang Li
- Department of Medicinal Chemistry, School of Pharmacy, Shandong University, Jinan, Shandong 250012, China
| | - Yue Li
- Department of Pharmacy, Zhangqiu People's Hospital, Zhangqiu, Shandong 250200, China
| | - Lupei Du
- Department of Medicinal Chemistry, School of Pharmacy, Shandong University, Jinan, Shandong 250012, China
| |
Collapse
|
34
|
Albert BB, Derraik JGB, Brennan CM, Biggs JB, Smith GC, Garg ML, Cameron-Smith D, Hofman PL, Cutfield WS. Higher omega-3 index is associated with increased insulin sensitivity and more favourable metabolic profile in middle-aged overweight men. Sci Rep 2014; 4:6697. [PMID: 25331725 PMCID: PMC5381193 DOI: 10.1038/srep06697] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Accepted: 10/01/2014] [Indexed: 01/13/2023] Open
Abstract
We assessed whether omega-3 index (red blood cell concentrations of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA)) was associated with insulin sensitivity and other metabolic outcomes in 47 overweight men aged 46.5 ± 5.1 years. Participants were assessed twice, 16 weeks apart. Insulin sensitivity was assessed by the Matsuda method from an oral glucose tolerance test. Linear associations were examined; stratified analyses were carried out with participants separated according to the omega-3 index: lower tertiles (LOI; n = 31) and highest tertile (HOI; n = 16). Increasing omega-3 index was correlated with higher insulin sensitivity (r = 0.23; p = 0.025), higher disposition index (r = 0.20; p = 0.054), and lower CRP concentrations (r = −0.39; p < 0.0001). Insulin sensitivity was 43% higher in HOI than in LOI men (Matsuda index 6.83 vs 4.78; p = 0.009). Similarly, HOI men had disposition index that was 70% higher (p = 0.013) and fasting insulin concentrations 25% lower (p = 0.038). HOI men displayed lower nocturnal systolic blood pressure (−6.0 mmHg; p = 0.025) and greater systolic blood pressure dip (14.7 vs 10.8%; p = 0.039). Men in the HOI group also had lower concentrations of CRP (41% lower; p = 0.033) and free fatty acids (21% lower, p = 0.024). In conclusion, higher omega-3 index is associated with increased insulin sensitivity and a more favourable metabolic profile in middle-aged overweight men.
Collapse
Affiliation(s)
| | - José G B Derraik
- Liggins Institute, University of Auckland, Auckland, New Zealand
| | | | - Janene B Biggs
- Liggins Institute, University of Auckland, Auckland, New Zealand
| | - Greg C Smith
- Department of Pharmacology, University of New South Wales, Sydney, New South Wales, Australia
| | - Manohar L Garg
- Nutraceuticals Research Group, University of Newcastle, Callaghan, New South Wales, Australia
| | | | - Paul L Hofman
- 1] Liggins Institute, University of Auckland, Auckland, New Zealand [2] Gravida: National Centre for Growth and Development, Auckland, New Zealand
| | - Wayne S Cutfield
- 1] Liggins Institute, University of Auckland, Auckland, New Zealand [2] Gravida: National Centre for Growth and Development, Auckland, New Zealand
| |
Collapse
|
35
|
Zhang D, Leung PS. Potential roles of GPR120 and its agonists in the management of diabetes. DRUG DESIGN DEVELOPMENT AND THERAPY 2014; 8:1013-27. [PMID: 25114508 PMCID: PMC4122337 DOI: 10.2147/dddt.s53892] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Free fatty acids (FFAs) serve not only as nutrients that provide energy but also as extracellular signaling molecules that manipulate intracellular physiological events through FFA receptors (FFARs) such as FFAR4. FFAR4 is also known as G-protein coupled receptor 120 (GPR120). The main role of GPR120 is to elicit FFA regulation on metabolism homeostasis. GPR120 agonism correlates with prevention of the occurrence and development of metabolic disorders such as obesity and diabetes. GPR120 activation directly or indirectly inhibits inflammation, modulates hormone secretion from the gastrointestinal tract and pancreas, and regulates lipid and/or glucose metabolism in adipose, liver, and muscle tissues, which may help prevent obesity and diabetes. This review summarizes recent advances in physiological roles of GPR120 in preventing insulin resistance and protecting pancreatic islet function, and examines how resident GPR120 in the pancreas may be involved in modulating pancreatic islet function.
Collapse
Affiliation(s)
- Dan Zhang
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong
| | - Po Sing Leung
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong
| |
Collapse
|
36
|
Stone VM, Dhayal S, Brocklehurst KJ, Lenaghan C, Sörhede Winzell M, Hammar M, Xu X, Smith DM, Morgan NG. GPR120 (FFAR4) is preferentially expressed in pancreatic delta cells and regulates somatostatin secretion from murine islets of Langerhans. Diabetologia 2014; 57:1182-91. [PMID: 24663807 PMCID: PMC4018485 DOI: 10.1007/s00125-014-3213-0] [Citation(s) in RCA: 113] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Accepted: 02/17/2014] [Indexed: 11/25/2022]
Abstract
AIMS/HYPOTHESIS The NEFA-responsive G-protein coupled receptor 120 (GPR120) has been implicated in the regulation of inflammation, in the control of incretin secretion and as a predisposing factor influencing the development of type 2 diabetes by regulation of islet cell apoptosis. However, there is still considerable controversy about the tissue distribution of GPR120 and, in particular, it remains unclear which islet cell types express this molecule. In the present study, we have addressed this issue by constructing a Gpr120-knockout/β-galactosidase (LacZ) knock-in (KO/KI) mouse to examine the distribution and functional role of GPR120 in the endocrine pancreas. METHODS A KO/KI mouse was generated in which exon 1 of the Gpr120 gene (also known as Ffar4) was replaced in frame by LacZ, thereby allowing for regulated expression of β-galactosidase under the control of the endogenous GPR120 promoter. The distribution of GPR120 was inferred from expression studies detecting β-galactosidase activity and protein production. Islet hormone secretion was measured from isolated mouse islets treated with selective GPR120 agonists. RESULTS β-galactosidase activity was detected as a surrogate for GPR120 expression exclusively in a small population of islet endocrine cells located peripherally within the islet mantle. Immunofluorescence analysis revealed co-localisation with somatostatin suggesting that GPR120 is preferentially produced in islet delta cells. In confirmation of this, glucose-induced somatostatin secretion was inhibited by a range of selective GPR120 agonists. This response was lost in GPR120-knockout mice. CONCLUSIONS/INTERPRETATION The results imply that GPR120 is selectively present within the delta cells of murine islets and that it regulates somatostatin secretion.
Collapse
Affiliation(s)
- Virginia M. Stone
- Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, RILD Building, Barrack Road, Exeter, EX2 5DW UK
- Centre for Infectious Medicine, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Shalinee Dhayal
- Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, RILD Building, Barrack Road, Exeter, EX2 5DW UK
| | | | | | | | - Mårten Hammar
- R&D, Cardiovascular and Metabolic Diseases, AstraZeneca, Mölndal, Sweden
| | - Xiufeng Xu
- R&D, Cardiovascular and Metabolic Diseases, AstraZeneca, Mölndal, Sweden
| | - David M. Smith
- R&D, Cardiovascular and Metabolic Diseases, AstraZeneca, Mölndal, Sweden
| | - Noel G. Morgan
- Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, RILD Building, Barrack Road, Exeter, EX2 5DW UK
| |
Collapse
|
37
|
Ciborowski M, Zbucka-Kretowska M, Bomba-Opon D, Wielgos M, Brawura-Biskupski-Samaha R, Pierzynski P, Szmitkowski M, Wolczynski S, Lipinska D, Citko A, Bauer W, Gorska M, Kretowski A. Potential first trimester metabolomic biomarkers of abnormal birth weight in healthy pregnancies. Prenat Diagn 2014; 34:870-7. [PMID: 24733416 DOI: 10.1002/pd.4386] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 04/09/2014] [Accepted: 04/09/2014] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Macrosomia and low birth weight (LBW) can be associated with pregnancy complications and may affect the long-term health of the child. The aim of this study was to evaluate the metabolomic serum profiles of healthy pregnant women to identify early biomarkers of macrosomia and LBW and to understand mechanisms leading to abnormal fetal growth not related to mother's body mass index or presence of gestational diabetes. METHOD Serum samples from 770 women were collected between the 12th and 14th gestational week. Delivery samples were divided into three groups according to the infant birth weight as follows: low, <2500 g; normal, 2500-4000 g; and high >4000 g. Samples from women with any complications of pregnancy were excluded. Serum fingerprinting was performed by LC-QTOF-MS. RESULTS Lower levels of phospholipids, lysophospholipids, and monoacylglycerols; low vitamin D3 metabolites; and increased bilirubin level were associated with macrosomia. Because most changes involved lipids, as a concept of validation, adipocyte fatty acid-binding protein (A-FABP) levels were measured and found correlated with the studied lipids and birth weight. CONCLUSION Serum fingerprinting in early pregnancy can predict the risk of macrosomia. Serum levels of A-FABP and several lipids are promising prognostic markers for macrosomia in healthy pregnancies.
Collapse
|
38
|
Liu J(J, Wang Y, Ma Z, Schmitt M, Zhu L, Brown SP, Dransfield PJ, Sun Y, Sharma R, Guo Q, Zhuang R, Zhang J, Luo J, Tonn GR, Wong S, Swaminath G, Medina JC, Lin DCH, Houze JB. Optimization of GPR40 Agonists for Type 2 Diabetes. ACS Med Chem Lett 2014; 5:517-21. [PMID: 24900872 DOI: 10.1021/ml400501x] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2013] [Accepted: 02/06/2014] [Indexed: 11/30/2022] Open
Abstract
GPR40 (FFA1 and FFAR1) has gained significant interest as a target for the treatment of type 2 diabetes. TAK-875 (1), a GPR40 agonist, lowered hemoglobin A1c (HbA1c) and lowered both postprandial and fasting blood glucose levels in type 2 diabetic patients in phase II clinical trials. We optimized phenylpropanoic acid derivatives as GPR40 agonists and identified AMG 837 (2) as a clinical candidate. Here we report our efforts in searching for structurally distinct back-ups for AMG 837. These efforts led to the identification of more polar GPR40 agonists, such as AM-4668 (10), that have improved potency, excellent pharmacokinetic properties across species, and minimum central nervous system (CNS) penetration.
Collapse
Affiliation(s)
- Jiwen (Jim) Liu
- Department of Therapeutic
Discovery, Metabolic Disorders, Translational Sciences, Amgen Inc., 1120 Veterans Boulevard, South San Francisco, CA 94080, United States
| | - Yingcai Wang
- Department of Therapeutic
Discovery, Metabolic Disorders, Translational Sciences, Amgen Inc., 1120 Veterans Boulevard, South San Francisco, CA 94080, United States
| | - Zhihua Ma
- Department of Therapeutic
Discovery, Metabolic Disorders, Translational Sciences, Amgen Inc., 1120 Veterans Boulevard, South San Francisco, CA 94080, United States
| | - Mike Schmitt
- Department of Therapeutic
Discovery, Metabolic Disorders, Translational Sciences, Amgen Inc., 1120 Veterans Boulevard, South San Francisco, CA 94080, United States
| | - Liusheng Zhu
- Department of Therapeutic
Discovery, Metabolic Disorders, Translational Sciences, Amgen Inc., 1120 Veterans Boulevard, South San Francisco, CA 94080, United States
| | - Sean P. Brown
- Department of Therapeutic
Discovery, Metabolic Disorders, Translational Sciences, Amgen Inc., 1120 Veterans Boulevard, South San Francisco, CA 94080, United States
| | - Paul J. Dransfield
- Department of Therapeutic
Discovery, Metabolic Disorders, Translational Sciences, Amgen Inc., 1120 Veterans Boulevard, South San Francisco, CA 94080, United States
| | - Ying Sun
- Department of Therapeutic
Discovery, Metabolic Disorders, Translational Sciences, Amgen Inc., 1120 Veterans Boulevard, South San Francisco, CA 94080, United States
| | - Rajiv Sharma
- Department of Therapeutic
Discovery, Metabolic Disorders, Translational Sciences, Amgen Inc., 1120 Veterans Boulevard, South San Francisco, CA 94080, United States
| | - Qi Guo
- Department of Therapeutic
Discovery, Metabolic Disorders, Translational Sciences, Amgen Inc., 1120 Veterans Boulevard, South San Francisco, CA 94080, United States
| | - Run Zhuang
- Department of Therapeutic
Discovery, Metabolic Disorders, Translational Sciences, Amgen Inc., 1120 Veterans Boulevard, South San Francisco, CA 94080, United States
| | - Jane Zhang
- Department of Therapeutic
Discovery, Metabolic Disorders, Translational Sciences, Amgen Inc., 1120 Veterans Boulevard, South San Francisco, CA 94080, United States
| | - Jian Luo
- Department of Therapeutic
Discovery, Metabolic Disorders, Translational Sciences, Amgen Inc., 1120 Veterans Boulevard, South San Francisco, CA 94080, United States
| | - George R. Tonn
- Department of Therapeutic
Discovery, Metabolic Disorders, Translational Sciences, Amgen Inc., 1120 Veterans Boulevard, South San Francisco, CA 94080, United States
| | - Simon Wong
- Department of Therapeutic
Discovery, Metabolic Disorders, Translational Sciences, Amgen Inc., 1120 Veterans Boulevard, South San Francisco, CA 94080, United States
| | - Gayathri Swaminath
- Department of Therapeutic
Discovery, Metabolic Disorders, Translational Sciences, Amgen Inc., 1120 Veterans Boulevard, South San Francisco, CA 94080, United States
| | - Julio C. Medina
- Department of Therapeutic
Discovery, Metabolic Disorders, Translational Sciences, Amgen Inc., 1120 Veterans Boulevard, South San Francisco, CA 94080, United States
| | - Daniel C.-H. Lin
- Department of Therapeutic
Discovery, Metabolic Disorders, Translational Sciences, Amgen Inc., 1120 Veterans Boulevard, South San Francisco, CA 94080, United States
| | - Jonathan B. Houze
- Department of Therapeutic
Discovery, Metabolic Disorders, Translational Sciences, Amgen Inc., 1120 Veterans Boulevard, South San Francisco, CA 94080, United States
| |
Collapse
|
39
|
Suckow AT, Polidori D, Yan W, Chon S, Ma JY, Leonard J, Briscoe CP. Alteration of the glucagon axis in GPR120 (FFAR4) knockout mice: a role for GPR120 in glucagon secretion. J Biol Chem 2014; 289:15751-63. [PMID: 24742677 DOI: 10.1074/jbc.m114.568683] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
GPR40 (FFAR1) and GPR120 (FFAR4) are G-protein-coupled receptors (GPCRs) that are activated by long chain fatty acids (LCFAs). GPR40 is expressed at high levels in islets and mediates the ability of LCFAs to potentiate glucose-stimulated insulin secretion (GSIS). GPR120 is expressed at high levels in colon, adipose, and pituitary, and at more modest levels in pancreatic islets. The role of GPR120 in islets has not been explored extensively. Here, we confirm that saturated (e.g. palmitic acid) and unsaturated (e.g. docosahexaenoic acid (DHA)) LCFAs engage GPR120 and demonstrate that palmitate- and DHA-potentiated glucagon secretion are greatly reduced in isolated GPR120 KO islets. Remarkably, LCFA potentiated glucagon secretion is similarly reduced in GPR40 KO islets. Compensatory changes in mRNA expression of GPR120 in GPR40 KO islets, and vice versa, do not explain that LCFA potentiated glucagon secretion seemingly involves both receptors. LCFA-potentiated GSIS remains intact in GPR120 KO islets. Consistent with previous reports, GPR120 KO mice are hyperglycemic and glucose intolerant; however, our KO mice display evidence of a hyperactive counter-regulatory response rather than insulin resistance during insulin tolerance tests. An arginine stimulation test and a glucagon challenge confirmed both increases in glucagon secretion and liver glucagon sensitivity in GPR120 KO mice relative to WT mice. Our findings demonstrate that GPR120 is a nutrient sensor that is activated endogenously by both saturated and unsaturated long chain fatty acids and that an altered glucagon axis likely contributes to the impaired glucose homeostasis observed in GPR120 KO mice.
Collapse
Affiliation(s)
- Arthur T Suckow
- From Janssen Research & Development, LLC, San Diego, California 92121
| | - David Polidori
- From Janssen Research & Development, LLC, San Diego, California 92121
| | - Wen Yan
- From Janssen Research & Development, LLC, San Diego, California 92121
| | - Suhyoun Chon
- From Janssen Research & Development, LLC, San Diego, California 92121
| | - Jing Ying Ma
- From Janssen Research & Development, LLC, San Diego, California 92121
| | - James Leonard
- From Janssen Research & Development, LLC, San Diego, California 92121
| | - Celia P Briscoe
- From Janssen Research & Development, LLC, San Diego, California 92121
| |
Collapse
|
40
|
Discovery and characterization of novel small molecule agonists of G protein-coupled receptor 119. Acta Pharmacol Sin 2014; 35:540-8. [PMID: 24681896 DOI: 10.1038/aps.2014.8] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2014] [Accepted: 03/05/2014] [Indexed: 02/06/2023]
Abstract
AIM GPR119 is a G protein-coupled receptor (GPCR) that is highly expressed in pancreatic β-cells and intestinal L-cells and facilitates glucose-stimulated insulin secretion (GSIS). GPR119 may represent a novel target for the treatment of metabolic disorders. Here, we sought to identify novel small-molecule GPR119 agonists. METHODS A cell-based high-throughput screening assay was established using HEK293 cells stably expressing GPR119 and pCRE-luc reporter plasmid (HEK293/GPR119/pCRE-luc). A compound library composed of 1440 compounds was screened. Mouse β-cell line MIN-6 and isolated mouse islets were used to evaluate the effects of candidate compounds on GSIS in vitro. RESULTS Three compounds with novel structures (ZSY-04, -06, and -13) were found to activate GPR119-mediated signaling and to induce GPR119 desensitization. The EC50 values of ZSY-04, -06, and -13 in stimulating intracellular cAMP accumulation in HEK293/GPR119 cells were 2.758, 3.046, and 0.778 μmol/L, respectively. Furthermore, all three compounds displayed high selectivity for GPR119, and did not activate other 9 GPCRs tested. Moreover, all three compounds significantly increased GSIS in both MIN-6 mouse β-cells and isolated mouse islets at concentration of 10 μmol/L. CONCLUSION Three novel small-molecule GPR119 agonists (ZSY-04, -06, and -13) with high receptor selectivity and capacity to induce GSIS in vitro were discovered. These compounds are potential candidates to be structurally optimized into drugs for the treatment of type 2 diabetes.
Collapse
|
41
|
Abstract
The beneficial roles of omega-3 fatty acids (ω3-FAs) on obesity, type 2 diabetes, and other metabolic diseases are well known. Most of these effects can be explained by their anti-inflammatory effects triggered through their receptor, free fatty acid receptor 4 (FFAR4) activation. Although the whole mechanism of action is not fully described yet, it has been shown that stimulation of ω3-FA to FFAR4 is followed by receptor phosphorylation. This makes FFAR4 to be capable of interacting with β-arrestin-2, which in turn, results in association of β-arrestin-2 with TAB1. This stealing of an important partaker of the inflammatory cascade leads to interruption of the pathway, resulting in reduced inflammation. Besides this regulation of the anti-inflammatory response, FFAR4 signaling also has been shown to regulate glucose homeostasis, adiposity, gastrointestinal peptide secretion, and taste preference. In this review, we summarize the current knowledge about the interaction of ω3-FAs with FFAR4 and the consequent opportunities for the application of ω3-FAs and possible FFAR4 targets.
Collapse
Affiliation(s)
- Da Young Oh
- Division of Endocrinology and Metabolism, Department of Medicine, University of California San Diego, La Jolla, CA, USA
- *Correspondence: Da Young Oh, Division of Endocrinology and Metabolism, Department of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA e-mail:
| | - Evelyn Walenta
- Division of Endocrinology and Metabolism, Department of Medicine, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
42
|
Yao S, Lu T, Zhou Z, Liu H, Yuan H, Ran T, Lu S, Zhang Y, Ke Z, Xu J, Xiong X, Chen Y. An efficient multistep ligand-based virtual screening approach for GPR40 agonists. Mol Divers 2013; 18:183-93. [PMID: 24307222 DOI: 10.1007/s11030-013-9493-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Accepted: 11/11/2013] [Indexed: 10/25/2022]
Abstract
G protein-coupled receptor 40/free fatty acid receptor 1 (GPR40/FFAR1) is a member of the GPCR superfamily, and GPR40 agonists have therapeutic potential for type 2 diabetes. With the crystal structure of GPR40 currently unavailable, various ligand-based virtual screening approaches can be applied to identify novel agonists of GPR40. It is known that each ligand-based method has its own advantages and limitations. To improve the efficiency of individual ligand-based methods, an efficient multistep ligand-based virtual screening approach is presented in this study, including the pharmacophore-based screening, physicochemical property filtering, protein-ligand interaction fingerprint similarity analysis, and 2D-fingerprint structural similarity search. A focused decoy library was generated and used to evaluate the efficiency of this virtual screening protocol. This multistep workflow not only significantly improved the hit rate compared with each individual ligand-based method, but also identified diverse known actives from decoys. This protocol may serve as an efficient virtual screening tool for the targets without crystal structures available to discover novel active compounds.
Collapse
Affiliation(s)
- Sihui Yao
- Laboratory of Molecular Design and Drug Discovery, School of Basic Science, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Meidute Abaraviciene S, Muhammed SJ, Amisten S, Lundquist I, Salehi A. GPR40 protein levels are crucial to the regulation of stimulated hormone secretion in pancreatic islets. Lessons from spontaneous obesity-prone and non-obese type 2 diabetes in rats. Mol Cell Endocrinol 2013; 381:150-9. [PMID: 23911664 DOI: 10.1016/j.mce.2013.07.025] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Revised: 06/27/2013] [Accepted: 07/22/2013] [Indexed: 12/21/2022]
Abstract
The role of islet GPR40 protein in the pathogenesis of diabetes is unclear. We explored the influence of GPR40 protein levels on hormone secretion in islets from two rat models of spontaneous type 2 diabetes displaying either hyperlipidaemia or hyperglycaemia. GPR40 expression was analysed by confocal microscopy, Western blot and qPCR in islets from preobese Zucker (fa/fa) rats, diabetic Goto-Kakizaki (GK) rats, and controls. Confocal microscopy of control islets showed expression of GPR40 protein in insulin, glucagon and somatostatin cells. GPR40 expression was strongly increased in islets of hyperlipidaemic fa/fa rats and coincided with a concentration-related increase in palmitate-induced release of insulin and glucagon and its inhibition of somatostatin release. Conversely, hyperglycaemic GK islets displayed an extremely faint expression of GPR40 as did high-glucose-cultured control islets. This was reflected in abolished palmitate-induced hormone response in GK islets and high-glucose-cultured control islets. The palmitate antagonist rosiglitazone promoted reappearance of GPR40 in high-glucose-cultured islets and served as partial agonist in glucose-stimulated insulin release. GPR40 protein is abundantly expressed in pancreatic islets and modulates stimulated hormone secretion. Mild hyperlipidaemia in obesity-prone diabetes creates increased GPR40 expression and increased risk for an exaggerated palmitate-induced insulin response and lipotoxicity, a metabolic situation suitable for GPR40 antagonist treatment. Chronic hyperglycaemia creates abrogated GPR40 expression and downregulated insulin release, a metabolic situation suitable for GPR40 agonist treatment to avoid glucotoxicity. GPR40 protein is interactively modulated by both free fatty acids and glucose and is a promising target for pharmacotherapy in different variants of type 2 diabetes.
Collapse
Affiliation(s)
- Sandra Meidute Abaraviciene
- Department of Clinical Science, SUS, Division of Islet Cell Physiology, University of Lund, Sweden; Department of Stem Cell Biology, State Research Institute Centre of Innovative Vilnius, Lithuania
| | | | | | | | | |
Collapse
|
44
|
Offermanns S. Free fatty acid (FFA) and hydroxy carboxylic acid (HCA) receptors. Annu Rev Pharmacol Toxicol 2013; 54:407-34. [PMID: 24160702 DOI: 10.1146/annurev-pharmtox-011613-135945] [Citation(s) in RCA: 133] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Saturated and unsaturated free fatty acids (FFAs), as well as hydroxy carboxylic acids (HCAs) such as lactate and ketone bodies, are carriers of metabolic energy, precursors of biological mediators, and components of biological structures. However, they are also able to exert cellular effects through G protein-coupled receptors named FFA1-FFA4 and HCA1-HCA3. Work during the past decade has shown that these receptors are widely expressed in the human body and regulate the metabolic, endocrine, immune and other systems to maintain homeostasis under changing dietary conditions. The development of genetic mouse models and the generation of synthetic ligands of individual FFA and HCA receptors have been instrumental in identifying cellular and biological functions of these receptors. These studies have produced strong evidence that several FFA and HCA receptors can be targets for the prevention and treatment of various diseases, including type 2 diabetes mellitus, obesity, and inflammation.
Collapse
Affiliation(s)
- Stefan Offermanns
- Department of Pharmacology, Max-Planck-Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany and Medical Faculty, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany;
| |
Collapse
|
45
|
Abstract
The stimulation of insulin secretion by glucose can be modulated by multiple nutritive, hormonal, and pharmacological inputs. Fatty acids potentiate insulin secretion through the generation of intracellular signaling molecules and through the activation of cell surface receptors. The G-protein-coupled receptor 40 (GPR40), also known as free fatty acid receptor 1 (we will use GPR40 in this review), has emerged as an important component in the fatty acid augmentation of insulin secretion. By signaling predominantly through Gαq/11, GPR40 increases intracellular calcium and activates phospholipases to generate diacylglycerols resulting in increased insulin secretion. Synthetic small-molecule agonists of GPR40 enhance insulin secretion in a glucose-dependent manner in vitro and in vivo with a mechanism similar to that found with fatty acids. GPR40 agonists have shown efficacy in increasing insulin secretion and lowering blood glucose in rodent models of type 2 diabetes. Recent phase I and phase II clinical trials in humans have shown that the GPR40 agonist TAK-875 reduces fasting and postprandial blood glucose and lowers HbA1c with efficacy equal to that of the sulfonylurea glimepiride without inducing hypoglycemia or evidence of tachyphylaxis. These data suggest that targeting the GPR40 receptor can be a viable therapeutic option for the treatment of type 2 diabetes.
Collapse
Affiliation(s)
- Charles F Burant
- Department of Internal Medicine and Michigan Metabolomics and Obesity Center, University of Michigan, Ann Arbor, Michigan, USA.
| |
Collapse
|
46
|
Mo XL, Wei HK, Peng J, Tao YX. Free Fatty Acid Receptor GPR120 and Pathogenesis of Obesity and Type 2 Diabetes Mellitus. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2013; 114:251-76. [DOI: 10.1016/b978-0-12-386933-3.00007-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
47
|
Feng XT, Leng J, Xie Z, Li SL, Zhao W, Tang QL. GPR40: a therapeutic target for mediating insulin secretion (review). Int J Mol Med 2012; 30:1261-6. [PMID: 23023155 DOI: 10.3892/ijmm.2012.1142] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Accepted: 08/26/2012] [Indexed: 11/05/2022] Open
Abstract
G-protein-coupled receptor 40 (GPR40), known as free fatty acid receptor 1, is mainly expressed in pancreatic β-cells and activated by medium- and long-chain fatty acids. Increasing evidence indicates that the activation of GPR40 in cells causes insulin secretion, and GPR40 has become an attractive therapeutic target for type 2 diabetes. Recently, certain novel GPR40 agonists have been identified that regulate glucose-stimulated insulin secretion, leading to the development of new drugs for the treatment of type 2 diabetes. In this review, we focus on progress in the physiological role of GPR40 and potential drugs targeting GPR40 over the past decade.
Collapse
Affiliation(s)
- Xiao-Tao Feng
- Guangxi Scientific Experimental Center of Traditional Chinese Medicine, Guangxi University of Chinese Medicine, Nanning, P.R. China
| | | | | | | | | | | |
Collapse
|
48
|
Tuo Y, Feng DD, Wang DF, Sun J, Li SB, Chen C. Long-term in vitro treatment of INS-1 rat pancreatic β-cells by unsaturated free fatty acids protects cells against gluco- and lipotoxicities via activation of GPR40 receptors. Clin Exp Pharmacol Physiol 2012; 39:423-8. [DOI: 10.1111/j.1440-1681.2012.05691.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | - Dan Dan Feng
- Department of Physiology; Xiang Ya Medical School; Central South University; Changsha; China
| | | | - Jian Sun
- School of Biomedical Sciences; The University of Queensland; Brisbane; Queensland; Australia
| | - Sheng-Bin Li
- Department of Forensic Science; School of Medicine; Xi'an Jiaotong University; Xi'an; China
| | - Chen Chen
- School of Biomedical Sciences; The University of Queensland; Brisbane; Queensland; Australia
| |
Collapse
|
49
|
|
50
|
Yashiro H, Tsujihata Y, Takeuchi K, Hazama M, Johnson PRV, Rorsman P. The effects of TAK-875, a selective G protein-coupled receptor 40/free fatty acid 1 agonist, on insulin and glucagon secretion in isolated rat and human islets. J Pharmacol Exp Ther 2012; 340:483-9. [PMID: 22106100 DOI: 10.1124/jpet.111.187708] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
G protein-coupled receptor 40 (GPR40)/free fatty acid 1 (FFA1) is a G protein-coupled receptor involved in free fatty acid-induced insulin secretion. To analyze the effect of our novel GPR40/FFA1-selective agonist, [(3S)-6-({2',6'-dimethyl-4'-[3-(methylsulfonyl)propoxy]biphenyl-3-yl}methoxy)-2,3-dihydro-1-benzofuran-3-yl]acetic acid hemi-hydrate (TAK-875), on insulin and glucagon secretion, we performed hormone secretion assays and measured intracellular Ca²⁺ concentration ([Ca²⁺](i)) in both human and rat islets. Insulin and glucagon secretion were measured in static and dynamic conditions by using groups of isolated rat and human pancreatic islets. [Ca²⁺](i) was recorded by using confocal microscopy. GPR40/FFA1 expression was measured by quantitative polymerase chain reaction. In both human and rat islets, TAK-875 enhanced glucose-induced insulin secretion in a glucose-dependent manner. The stimulatory effect of TAK-875 was similar to that produced by glucagon-like peptide-1 and correlated with the elevation of β-cell [Ca²⁺](i). TAK-875 was without effect on glucagon secretion at both 1 and 16 mM glucose in human islets. These data indicate that GPR40/FFA1 influences mainly insulin secretion in a glucose-dependent manner. The β-cell-specific action of TAK-875 in human islets may represent a therapeutically useful feature that allows plasma glucose control without compromising counter-regulation of glucagon secretion, thus minimizing the risk of hypoglycemia.
Collapse
Affiliation(s)
- Hiroaki Yashiro
- Metabolic Disease Drug Discovery Unit, Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, 17-85 Jusohonmachi 2-chome, Yodogawa-ku, Osaka 532-8686, Japan.
| | | | | | | | | | | |
Collapse
|