1
|
Cacic D, Nordgård O, Meyer P, Hervig T. Platelet Microparticles Decrease Daunorubicin-Induced DNA Damage and Modulate Intrinsic Apoptosis in THP-1 Cells. Int J Mol Sci 2021; 22:ijms22147264. [PMID: 34298882 PMCID: PMC8304976 DOI: 10.3390/ijms22147264] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 06/26/2021] [Accepted: 07/02/2021] [Indexed: 02/07/2023] Open
Abstract
Platelets can modulate cancer through budding of platelet microparticles (PMPs) that can transfer a plethora of bioactive molecules to cancer cells upon internalization. In acute myelogenous leukemia (AML) this can induce chemoresistance, partially through a decrease in cell activity. Here we investigated if the internalization of PMPs protected the monocytic AML cell line, THP-1, from apoptosis by decreasing the initial cellular damage inflicted by treatment with daunorubicin, or via direct modulation of the apoptotic response. We examined whether PMPs could protect against apoptosis after treatment with a selection of inducers, primarily associated with either the intrinsic or the extrinsic apoptotic pathway, and protection was restricted to the agents targeting intrinsic apoptosis. Furthermore, levels of daunorubicin-induced DNA damage, assessed by measuring gH2AX, were reduced in both 2N and 4N cells after PMP co-incubation. Measuring different BCL2-family proteins before and after treatment with daunorubicin revealed that PMPs downregulated the pro-apoptotic PUMA protein. Thus, our findings indicated that PMPs may protect AML cells against apoptosis by reducing DNA damage both dependent and independent of cell cycle phase, and via direct modulation of the intrinsic apoptotic pathway by downregulating PUMA. These findings further support the clinical relevance of platelets and PMPs in AML.
Collapse
Affiliation(s)
- Daniel Cacic
- Department of Hematology and Oncology, Stavanger University Hospital, 4068 Stavanger, Norway; (O.N.); (P.M.)
- Correspondence:
| | - Oddmund Nordgård
- Department of Hematology and Oncology, Stavanger University Hospital, 4068 Stavanger, Norway; (O.N.); (P.M.)
| | - Peter Meyer
- Department of Hematology and Oncology, Stavanger University Hospital, 4068 Stavanger, Norway; (O.N.); (P.M.)
| | - Tor Hervig
- Department of Clinical Science, University of Bergen, 5021 Bergen, Norway;
- Laboratory of Immunology and Transfusion Medicine, Haugesund Hospital, 5528 Haugesund, Norway
| |
Collapse
|
2
|
de la Cueva-Alique I, Sierra S, Muñoz-Moreno L, Pérez-Redondo A, Bajo AM, Marzo I, Gude L, Cuenca T, Royo E. Biological evaluation of water soluble arene Ru(II) enantiomers with amino-oxime ligands. J Inorg Biochem 2018. [DOI: 10.1016/j.jinorgbio.2018.02.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
3
|
Inhibition of autophagy with chloroquine potentiates carfilzomib-induced apoptosis in myeloma cells in vitro and in vivo. Cancer Lett 2016; 382:1-10. [PMID: 27565383 DOI: 10.1016/j.canlet.2016.08.019] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 08/18/2016] [Accepted: 08/18/2016] [Indexed: 01/24/2023]
Abstract
The proteasome inhibitor bortezomib is now the cornerstone of combination therapy of multiple myeloma (MM). Carfilzomib, a second-generation inhibitor, has shown a substantial benefit vs bortezomib in combination regimes. Here we have analyzed in detail the mechanism of cell death induced by carfilzomib and its crosstalk with autophagy and applied the results to the in vivo treatment of MM in a mouse model. Carfilzomib induced apoptosis essentially by the intrinsic pathway, through the up-regulation of Puma and Noxa proteins followed by the interaction of Puma, Noxa and Bim with Bax and of Noxa with Bak. Carfilzomib also produces an increase in the formation of autophagosomes but, as apoptosis progresses, autophagy is disrupted, probably owing to Beclin 1 and p62 inactivation. Cotreatment with chloroquine, which blocks autophagy, strongly potentiated apoptosis in vitro and in vivo. Accordingly, combination therapy with carfilzomib plus chloroquine was highly effective in the treatment of MM in a mouse xenograft model. Chloroquine also enhanced carfilzomib-induced calreticulin exposure in MM cells undergoing apoptosis, increasing the immunogenic ability of carfilzomib. These results support design of trials combining carfilzomib with chloroquine to improve MM therapy.
Collapse
|
4
|
Opydo-Chanek M, Mazur L. Comparison of in vitro antileukemic activity of obatoclax and ABT-737. Tumour Biol 2016; 37:10839-49. [PMID: 26880588 PMCID: PMC4999481 DOI: 10.1007/s13277-016-4943-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 01/29/2016] [Indexed: 01/10/2023] Open
Abstract
Obatoclax and ABT-737 belong to a new class of anticancer agents known as BH3-mimetics. These agents antagonize the anti-apoptotic members of Bcl-2 family. The Bcl-2 proteins modulate sensitivity of many types of cancer cells to chemotherapy. Therefore, the objective of the present study was to examine and compare the antileukemic activity of obatoclax and ABT-737 applied alone, and in combination with anticancer agent, mafosfamide and daunorubicin. The in vitro cytotoxic effects of the tested agents on human leukemia cells were determined using the spectrophotometric MTT test, Coulter electrical impedance method, flow cytometry annexin V-fluorescein/propidium iodide assay, and light microscopy technique. The combination index analysis was used to quantify the extent of agent interactions. BH3 mimetics significantly decreased the leukemia cell viability and synergistically enhanced the cytotoxic effects induced by mafosfamide and daunorubicin. Obatoclax affected the cell viability to a greater degree than did ABT-737. In addition, various patterns of temporary changes in the cell volume and count, and in the frequency of leukemia cells undergoing apoptosis, were found 24 and 48 h after the tested agent application. ABT-737 combined with anticancer agents induced apoptosis more effectively than obatoclax when given in the same combination regimen. The results of the present study point to the different antileukemic activities of obatoclax and ABT-737, when applied alone, and in combination with anticancer agents. A better understanding of the exact mechanisms of BH3 mimetic action is of key importance for their optional use in cancer therapy.
Collapse
Affiliation(s)
- Małgorzata Opydo-Chanek
- Department of Experimental Hematology, Jagiellonian University, Gronostajowa 9, 30-387, Krakow, Poland.
| | - Lidia Mazur
- Department of Experimental Hematology, Jagiellonian University, Gronostajowa 9, 30-387, Krakow, Poland
| |
Collapse
|
5
|
Doxorubicin induces apoptosis in Jurkat cells by mitochondria-dependent and mitochondria-independent mechanisms under normoxic and hypoxic conditions. Anticancer Drugs 2015; 26:583-98. [PMID: 25734830 DOI: 10.1097/cad.0000000000000223] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
In this study, we investigated the molecular mechanism of doxorubicin (dxr)-induced cytotoxicity on Jurkat cells - a model cell of human acute lymphoblastic leukemia - under normoxic (20% O2) and hypoxic (5% O2) conditions. Using in-cell western analysis, immunofluorescence, flow cytometry analysis, and biochemical inhibitors, we evaluated several oxidative stress (OS) and cell death markers. It was found that dxr (5-100 μmol/l) induced apoptosis by OS mechanisms involving DNA fragmentation (8-48%), loss of mitochondrial membrane potential (ΔΨm, 33-92%), and H2O2 production (15-42%) under normoxia. In addition, dxr (10 μmol/l) induced activation and/or nuclei translocation of NF-κB (6.6, 1.6-fold increase), p53 (4.3, 3.1 f), c-Jun (9.5, 5.0 f), apoptosis-inducing factor (AIF) (1.9, 3.9 f), caspase-3 (3.7, 1.9 f), overexpression of Parkin (2.1, 1.2 f)/PINK-1 (2.1 f) proteins, and reduced DJ-1 levels by half compared with untreated cells under normoxia, according to immunofluorescence and in-cell western analysis, respectively. In contrast, dxr (10 μmol/l) could not induce apoptosis in Jurkat cells under hypoxia. Effectively, dxr significantly reduced DNA fragmentation (6%), expression levels of cell death (e.g. p53, c-Jun, caspase-3, AIF), and OS (e.g. Parkin) markers, whereas it increased ΔΨm, hypoxia-inducible factor 1-α (HIF-1α, 3.1, 2.3 f), NF-κB (6.8, 2.0 f), and DJ-1 (1.3, 1.0 f) levels. This investigation suggests that dxr might efficiently eliminate acute lymphoblastic leukemia cells by OS-induced apoptosis under normoxic conditions through a minimal completeness of cell death signaling (i.e. mitochondria-caspase-3/AIF-dependent pathways) and through a direct DNA damage process. However, hypoxic conditions may reduce the effectiveness of dxr toxicity.
Collapse
|
6
|
Frik M, Fernández-Gallardo J, Gonzalo O, Mangas-Sanjuan V, González-Alvarez M, Serrano del Valle A, Hu C, González-Alvarez I, Bermejo M, Marzo I, Contel M. Cyclometalated Iminophosphorane Gold(III) and Platinum(II) Complexes. A Highly Permeable Cationic Platinum(II) Compound with Promising Anticancer Properties. J Med Chem 2015; 58:5825-41. [PMID: 26147404 PMCID: PMC4538566 DOI: 10.1021/acs.jmedchem.5b00427] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
![]()
New
organometallic gold(III) and platinum(II) complexes containing
iminophosphorane ligands are described. Most of them are more cytotoxic
to a number of human cancer cell lines than cisplatin. Cationic Pt(II)
derivatives 4 and 5, which differ only in
the anion, Hg2Cl62– or PF6– respectively, display almost identical
IC50 values in the sub-micromolar range (25–335-fold
more active than cisplatin on these cell lines). The gold compounds
induced mainly caspase-independent cell death, as previously reported
for related cycloaurated compounds containing IM ligands. Cycloplatinated
compounds 3, 4, and 5 can also
activate alternative caspase-independent mechanisms of death. However,
at short incubation times cell death seems to be mainly caspase dependent,
suggesting that the main mechanism of cell death for these compounds
is apoptosis. Mercury-free compound 5 does not interact
with plasmid (pBR322) DNA or with calf thymus DNA. Permeability studies
of 5 by two different assays, in vitro Caco-2 monolayers and a rat perfusion model, have revealed a high
permeability profile for this compound (comparable to that of metoprolol
or caffeine) and an estimated oral fraction absorbed of 100%, which
potentially makes it a good candidate for oral administration.
Collapse
Affiliation(s)
- Malgorzata Frik
- †Department of Chemistry, Brooklyn College, The City University of New York, Brooklyn, New York 11210, United States.,‡Chemistry Ph.D. Program, The Graduate Center, The City University of New York, 365 Fifth Avenue, New York, New York 10016, United States
| | - Jacob Fernández-Gallardo
- †Department of Chemistry, Brooklyn College, The City University of New York, Brooklyn, New York 11210, United States
| | - Oscar Gonzalo
- §Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - Víctor Mangas-Sanjuan
- ∥Departamento de Ingeniería, Área Farmacia y Tecnología Farmacéutica, Universidad Miguel Hernández, 03550 San Juan, Alicante, Spain
| | - Marta González-Alvarez
- ∥Departamento de Ingeniería, Área Farmacia y Tecnología Farmacéutica, Universidad Miguel Hernández, 03550 San Juan, Alicante, Spain
| | - Alfonso Serrano del Valle
- §Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - Chunhua Hu
- ⊥Chemistry Department, New York University, New York, New York 10003, United States
| | - Isabel González-Alvarez
- ∥Departamento de Ingeniería, Área Farmacia y Tecnología Farmacéutica, Universidad Miguel Hernández, 03550 San Juan, Alicante, Spain
| | - Marival Bermejo
- ∥Departamento de Ingeniería, Área Farmacia y Tecnología Farmacéutica, Universidad Miguel Hernández, 03550 San Juan, Alicante, Spain
| | - Isabel Marzo
- §Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - María Contel
- †Department of Chemistry, Brooklyn College, The City University of New York, Brooklyn, New York 11210, United States.,‡Chemistry Ph.D. Program, The Graduate Center, The City University of New York, 365 Fifth Avenue, New York, New York 10016, United States.,#Biology Ph.D. Program, The Graduate Center, The City University of New York, 365 Fifth Avenue, New York, New York 10016, United States
| |
Collapse
|
7
|
Immunotherapy with liposome-bound TRAIL overcomes partial protection to soluble TRAIL-induced apoptosis offered by down-regulation of Bim in leukemic cells. Clin Transl Oncol 2015; 17:657-67. [PMID: 25967100 DOI: 10.1007/s12094-015-1295-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 04/30/2015] [Indexed: 01/02/2023]
Abstract
PURPOSE Human Apo2-Ligand/TRAIL secreted by natural killer cells and cytotoxic T lymphocytes plays an important role immunosurveillance controlling tumor growth and metastasis. Moreover, the fact that Apo2L/TRAIL is capable of inducing cell death in tumor cells but not in normal cells makes this death ligand a promising anti-tumor agent. Previous data from our group demonstrated that Apo2L/TRAIL was physiologically released as transmembrane protein inserted in lipid vesicles, called exosomes. Recently, we demonstrated that artificial lipid nanoparticles coated with bioactive Apo2L/TRAIL (LUV-TRAIL) resembling the natural exosomes, greatly improved Apo2L/TRAIL activity and were able to induce apoptosis in hematological malignancies. In this study, we have deepened in the underlying mechanism of action of LUV-TRAIL in hematologic cells. METHODS/PATIENTS Cytotoxic ability of LUV-TRAIL was assessed on Jurkat cells either over-expressing the anti-apoptotic protein Mcl1 or down-regulating the pro-apoptotic protein Bim previously generated in our laboratory. We also tested LUV-TRAIL cytotoxic ability against primary human leukemic cells from T-cell ALL patient. RESULTS Silencing Bim but not Mcl-1 over-expression partially protects Jurkat cells from apoptosis induced by sTRAIL. LUV-TRAIL induced caspase-8 and caspase-3 activation and killed Jurkat-Mcl1 and Jurkat-shBim more efficiently than sTRAIL independently of the mitochondrial pathway. On the other hand, LUV-TRAIL were clearly more cytotoxic against primary leukemic cells from a T-cell ALL patient than sTRAIL. CONCLUSION Tethering Apo2L/TRAIL to the surface of lipid nanoparticles greatly increases its bioactivity and could be of potential use in anti-tumor therapeutics.
Collapse
|
8
|
Ramírez-Labrada A, López-Royuela N, Jarauta V, Galán-Malo P, Azaceta G, Palomera L, Pardo J, Anel A, Marzo I, Naval J. Two death pathways induced by sorafenib in myeloma cells: Puma-mediated apoptosis and necroptosis. Clin Transl Oncol 2014; 17:121-32. [PMID: 25037851 DOI: 10.1007/s12094-014-1201-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Accepted: 06/27/2014] [Indexed: 01/07/2023]
Abstract
PURPOSE Sorafenib is a multikinase inhibitor that targets the MAPK pathway and is currently used for the treatment of hepatocellular and renal carcinoma. Recently, it has been shown that sorafenib is also cytotoxic to multiple myeloma (MM) cells. Here, we have further analyzed the mechanism of sorafenib-induced death in MM cells. METHODS Cell death induced by sorafenib in MM cell lines and in plasma cells from MM patients was evaluated by analysis of gene expression by RT-MLPA and quantitative PCR, protein levels and functionality by Western blot and flow cytometry and gene silencing with siRNA. RESULTS Cell death was characterized by phosphatidylserine exposure, ΔΨm loss, cytochrome c release and caspase activation, hallmarks of apoptosis. DL50 at 24 h ranged from 6 to 10 µM. Ex vivo treatment with 20 µM sorafenib induced apoptosis in around 80 % myeloma cells from six multiple myeloma patients. Sorafenib induced caspase-dependent degradation of Bcl-xL and Mcl-1 proteins, destabilizing the mitochondria and speeding up the development of apoptosis. Sorafenib treatment increased levels of Puma at mRNA and protein level and gene silencing with siRNA confirmed a relevant role for Puma in the induction of apoptosis. Co-treatment with the pan-caspase inhibitor Z-VAD-fmk prevented cell death to a variable degree depending on the cell line. In RPMI 8226 cells, Z-VAD-fmk prevented most of sorafenib-induced death. However, death in MM.1S was only prevented by co-incubation with both Z-VAD-fmk and the RIP1K inhibitor necrostatin-1, indicating that under conditions of inefficient caspase activation, sorafenib induces death by necroptosis. CONCLUSION Our results demonstrate a key role for Puma in the triggering of sorafenib-induced apoptosis and that this drug can also induce death by necroptosis in multiple myeloma cells.
Collapse
Affiliation(s)
- A Ramírez-Labrada
- Departamento de Bioquimica, Biologia Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, 50009, Zaragoza, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Park HK, Lee JE, Lim J, Jo DE, Park SA, Suh PG, Kang BH. Combination treatment with doxorubicin and gamitrinib synergistically augments anticancer activity through enhanced activation of Bim. BMC Cancer 2014; 14:431. [PMID: 24927938 PMCID: PMC4072609 DOI: 10.1186/1471-2407-14-431] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Accepted: 06/09/2014] [Indexed: 12/31/2022] Open
Abstract
Background A common approach to cancer therapy in clinical practice is the combination of several drugs to boost the anticancer activity of available drugs while suppressing their unwanted side effects. In this regard, we examined the efficacy of combination treatment with the widely-used genotoxic drug doxorubicin and the mitochondriotoxic Hsp90 inhibitor gamitrinib to exploit disparate stress signaling pathways for cancer therapy. Methods The cytotoxicity of the drugs as single agents or in combination against several cancer cell types was analyzed by MTT assay and the synergism of the drug combination was evaluated by calculating the combination index. To understand the molecular mechanism of the drug synergism, stress signaling pathways were analyzed after drug combination. Two xenograft models with breast and prostate cancer cells were used to evaluate anticancer activity of the drug combination in vivo. Cardiotoxicity was assessed by tissue histology and serum creatine phosphokinase concentration. Results Gamitrinib sensitized various human cancer cells to doxorubicin treatment, and combination treatment with the two drugs synergistically increased apoptosis. The cytotoxicity of the drug combination involved activation and mitochondrial accumulation of the proapoptotic Bcl-2 family member Bim. Activation of Bim was associated with increased expression of the proapoptotic transcription factor C/EBP-homologous protein and enhanced activation of the stress kinase c-Jun N-terminal kinase. Combined drug treatment with doxorubicin and gamitrinib dramatically reduced in vivo tumor growth in prostate and breast xenograft models without increasing cardiotoxicity. Conclusions The drug combination showed synergistic anticancer activities toward various cancer cells without aggravating the cardiotoxic side effects of doxorubicin, suggesting that the full therapeutic potential of doxorubicin can be unleashed through combination with gamitrinib.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Byoung Heon Kang
- Department of Biological Sciences, School of Life Sciences, UNIST, 50 UNIST St,, Ulsan 689-798, South Korea.
| |
Collapse
|
10
|
Li Q, Liu T, Li Y, Luo S, Zhu Q, Zhang L, Zhao T. Transport and killing mechanism of a novel camptothecin-deoxycholic acid derivate on hepatocellular carcinoma cells. J Drug Target 2014; 22:543-52. [PMID: 24725118 DOI: 10.3109/1061186x.2014.906603] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Abstract Camptothecin-20(s)-O-glycine ester-[N-(3'α, 12'α-dihydroxy-24'-carbonyl-5'β-cholan)] (A2), 10-(3'α,12'α-dihydroxy-5'β-cholan-24'-carboxyl)-(20 s)-camptothecin (C2), and 10-O-(3-O-(3'α, 12'α-dihydroxy-24'-carbonyl-5'β-cholan)-propyl)-(20S)-camptothecin (D2) are novel camptothecin-deoxycholic acid analogues. MTT assays were performed to assess the anticancer activity of these compounds against hepatocellular carcinoma SMMC-7721, breast carcinoma MCF-7, and colorectal carcinoma HCT-116 cells. A2 had a high killing ability on SMMC-7721 cells selectively, but C2 and D2 did not exhibit selectivity with regard to SMMC-7721 killing. Uptake assays were performed in an effort to elucidate the transport mechanisms of A2 into SMMC-7721 cells. A2 increased the mRNA expression of OATP1B3 (an organic anion-transporting polypeptide) and uptake of A2 was inhibited by rifampin (inhibitor of OATP1B3), which indicated that the transporter-mediated transport of A2 was mediated by OATP1B3. In addition, according to the western blot and apoptosis assays, we found that A2 killed SMMC-7721 cells by inducing cell apoptosis mainly via an AIF (apoptosis-inducing factor) pathway and a caspase-dependent mitochondria apoptosis pathway.
Collapse
Affiliation(s)
- Qingyong Li
- College of Pharmaceutical Science, Zhejiang University of Technology , Hangzhou , China
| | | | | | | | | | | | | |
Collapse
|
11
|
Cheng Z, DiMichele LA, Rojas M, Vaziri C, Mack CP, Taylor JM. Focal adhesion kinase antagonizes doxorubicin cardiotoxicity via p21(Cip1.). J Mol Cell Cardiol 2014; 67:1-11. [PMID: 24342076 PMCID: PMC4237309 DOI: 10.1016/j.yjmcc.2013.12.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Revised: 11/27/2013] [Accepted: 12/04/2013] [Indexed: 11/24/2022]
Abstract
Clinical application of potent anthracycline anticancer drugs, especially doxorubicin (DOX), is limited by a toxic cardiac side effect that is not fully understood and preventive strategies are yet to be established. Studies in genetically modified mice have demonstrated that focal adhesion kinase (FAK) plays a key role in regulating adaptive responses of the adult myocardium to pathological stimuli through activation of intracellular signaling cascades that facilitate cardiomyocyte growth and survival. The objective of this study was to determine if targeted myocardial FAK activation could protect the heart from DOX-induced de-compensation and to characterize the underlying mechanisms. To this end, mice with myocyte-restricted FAK knock-out (MFKO) or myocyte-specific expression of an active FAK variant (termed SuperFAK) were subjected to DOX treatment. FAK depletion enhanced susceptibility to DOX-induced myocyte apoptosis and cardiac dysfunction, while elevated FAK activity provided remarkable cardioprotection. Our mec6hanistic studies reveal a heretofore unappreciated role for the protective cyclin-dependent kinase inhibitor p21 in the repression of the pro-apoptotic BH3-only protein Bim and the maintenance of mitochondrial integrity and myocyte survival. DOX treatment induced proteasomal degradation of p21, which exacerbated mitochondrial dysfunction and cardiomyocyte apoptosis. FAK was both necessary and sufficient for maintaining p21 levels following DOX treatment and depletion of p21 compromised FAK-dependent protection from DOX. These findings identify p21 as a key determinant of DOX resistance downstream of FAK in cardiomyocytes and indicate that cardiac-restricted enhancement of the FAK/p21 signaling axis might be an effective strategy to preserve myocardial function in patients receiving anthracycline chemotherapy.
Collapse
Affiliation(s)
- Zhaokang Cheng
- Department of Pathology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Laura A DiMichele
- Department of Pathology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Mauricio Rojas
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Cyrus Vaziri
- Department of Pathology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Christopher P Mack
- Department of Pathology, University of North Carolina, Chapel Hill, NC 27599, USA; McAllister Heart Institute, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Joan M Taylor
- Department of Pathology, University of North Carolina, Chapel Hill, NC 27599, USA; McAllister Heart Institute, University of North Carolina, Chapel Hill, NC 27599, USA.
| |
Collapse
|
12
|
Granulysin induces apoptotic cell death and cleavage of the autophagy regulator Atg5 in human hematological tumors. Biochem Pharmacol 2013; 87:410-23. [PMID: 24269628 DOI: 10.1016/j.bcp.2013.11.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 11/11/2013] [Accepted: 11/13/2013] [Indexed: 12/18/2022]
Abstract
Granulysin is a protein present in the granules of human CTL and NK cells, with cytolytic activity against microbes and tumors. Previous work demonstrated that granulysin caused cell death through mitochondrial damage with release of AIF and cytochrome c. However, the molecular mechanism and, especially, the type of cell death were still not well defined. In the present work we show that granulysin-induced cell death is apoptotic, with phosphatidylserine exposure preceding membrane breakdown and with caspase 3 activation. Granulysin-induced apoptosis is prevented in Jurkat cells over-expressing Bcl-xL or Bcl2, or lacking Bak and Bax or Bim expression, suggesting a central role of the mitochondrial apoptotic pathway. This apoptotic process is initiated by intracellular Ca(2+) increase and mitochondrial ROS generation. We have tested granulysin against other hematological tumor cells such as multiple myeloma cell lines, and cells from B cell chronic lymphocytic leukemia (B-CLL) patients, finding different degrees of sensitivity. We also show that granulysin induces the cleavage of Atg5 in the complex formed with Atg12, without affecting autophagy. In conclusion, granulysin induces apoptosis on hematological tumor cells and on cells from B-CLL patients, opening the door to research on its use as a new anti-tumoral treatment.
Collapse
|
13
|
Zhu HJ, Liu L, Fan L, Zhang LN, Fang C, Zou ZJ, Li JY, Xu W. The BH3-only protein Puma plays an essential role in p53-mediated apoptosis of chronic lymphocytic leukemia cells. Leuk Lymphoma 2013; 54:2712-9. [DOI: 10.3109/10428194.2013.787613] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
14
|
Vela L, Gonzalo O, Naval J, Marzo I. Direct interaction of Bax and Bak proteins with Bcl-2 homology domain 3 (BH3)-only proteins in living cells revealed by fluorescence complementation. J Biol Chem 2013; 288:4935-46. [PMID: 23283967 DOI: 10.1074/jbc.m112.422204] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The key event in the mitochondrial pathway of apoptosis is the activation of Bax and Bak by BH3-only proteins through a molecular mechanism that is still a matter of debate. Here we studied interactions among anti- and proapoptotic proteins of the Bcl-2 family in living cells by using bimolecular fluorescence complementation analysis. Our results indicate that the antiapoptotic proteins Mcl-1 and Bcl-x(L) bind preferably to the BH3-only proteins Bim, PUMA, and Noxa but can also bind to Bak and Bax. We also found a direct interaction between Bim, PUMA, or Noxa with either Bax or Bak during apoptosis induction. In HeLa cells, interaction of Bim with Bax occurs in cytosol, and then Bim-Bax complexes translocate to mitochondria. Complexes of either PUMA or Noxa with Bax or Bak were always detected at mitochondria. Overexpression of Bcl-x(L) or Mcl-1 delayed Bim/Bax translocation to mitochondria. These results reveal the ability of main BH3-only proteins to directly activate Bax and Bak in living cells and suggest that a complex network of interactions regulate the function of Bcl-2 family members during apoptosis.
Collapse
Affiliation(s)
- Laura Vela
- Department of Biochemistry, Facultad de Ciencias, Universidad de Zaragoza, 5009 Zaragoza, Spain
| | | | | | | |
Collapse
|
15
|
A review of the role of Puma, Noxa and Bim in the tumorigenesis, therapy and drug resistance of chronic lymphocytic leukemia. Cancer Gene Ther 2012; 20:1-7. [DOI: 10.1038/cgt.2012.84] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
16
|
Carreira M, Calvo-Sanjuán R, Sanaú M, Marzo I, Contel M. Organometallic Palladium Complexes with a Water-Soluble Iminophosphorane Ligand as Potential Anticancer Agents. Organometallics 2012; 31:5772-5781. [PMID: 23066172 PMCID: PMC3466594 DOI: 10.1021/om3006239] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The synthesis and characterization of a new water-soluble iminophosphorane ligand TPA=N-C(O)-2BrC(6)H(4) (C,N-IM; TPA = 1,3,5-triaza-7-phosphaadamantane) 1 is reported. Oxidative addition of 1 to Pd(2)(dba)(3) affords the orthopalladated dimer [Pd(μ-Br){C(6)H(4)(C(O)N=TPA-kC,N)-2}](2) (2) as a mixture of cis and trans isomers (1:1 molar ratio) where the iminophosphorane moeity behaves as a C,N-pincer ligand. By addition of different neutral or monoanionic ligands to 2, the bridging bromide can be cleaved and a variety of hydrophilic or water-soluble mononuclear organometallic palladium(II) complexes of the type [Pd{C(6)H(4)(C(O)N=TPA-kC,N)-2}(L-L)] (L-L = acac (3); S(2)CNMe(2) (4); 4,7-Diphenyl-1,10-phenanthrolinedisulfonic acid disodium salt C(12)H(6)N(2)(C(6)H(4)SO(3)Na)(2) (5)); [Pd{C(6)H(4)(C(O)N=TPA-kC,N)-2}(L)Br] (L = P(mC(6)H(4)SO(3)Na)(3) (6); P(3-Pyridyl)(3) (7)) and, [Pd(C(6)H(4)(C(O)N=TPA)-2}(TPA)(2)Br] (8) are obtained as single isomers. All new complexes were tested as potential anticancer agents and their cytotoxicity properties were evaluated in vitro against human Jurkat-T acute lymphoblastic leukemia cells, normal T-lymphocytes (PBMC) and DU-145 human prostate cancer cells. Compounds [Pd(μ-Br){C(6)H(4)(C(O)N=TPA-kC,N)-2}](2) (2) and [Pd{C(6)H(4)(C(O)N=TPA-kC,N)-2}(acac)] 3 (which has been crystallographically characterized) display the higher cytotoxicity against the above mentioned cancer cell lines while being less toxic to normal T-lymphocytes (peripheral blood mononuclear cells: PBMC). In addition, 3 is very toxic to cisplatin resistant Jurkat shBak indicating a cell death pathway that may be different to that of cisplatin. The interaction of 2 and 3 with plasmid (pBR322) DNA is much weaker than that of cisplatin pointing to an alternative biomolecular target for these cytotoxic compounds. All the compounds show an interaction with human serum albumin (HSA) faster than that of cisplatin.
Collapse
Affiliation(s)
- Monica Carreira
- Department of Chemistry, Brooklyn College and The Graduate Center, The City University of New York, Brooklyn, NY, 11210, US
| | - Rubén Calvo-Sanjuán
- Department of Biochemistry and Molecular and Cellular Biology, University of Zaragoza, 50009, Spain
| | - Mercedes Sanaú
- Departamento de Química Inorgánica, Universidad de Valencia, Burjassot, Valencia, 46100, Spain
| | - Isabel Marzo
- Department of Biochemistry and Molecular and Cellular Biology, University of Zaragoza, 50009, Spain
| | - María Contel
- Department of Chemistry, Brooklyn College and The Graduate Center, The City University of New York, Brooklyn, NY, 11210, US
| |
Collapse
|
17
|
Cytotoxic hydrophilic iminophosphorane coordination compounds of d⁸ metals. Studies of their interactions with DNA and HSA. J Inorg Biochem 2012; 116:204-14. [PMID: 23063789 DOI: 10.1016/j.jinorgbio.2012.06.017] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Revised: 06/29/2012] [Accepted: 06/30/2012] [Indexed: 01/05/2023]
Abstract
The synthesis and characterization of a new water-soluble N,N-chelating iminophosphorane ligand TPAN-C(O)-2-NC(5)H(4) (N,N-IM) (1) and its d(8) (Au(III), Pd(II) and Pt(II)) coordination complexes are reported. The structures of cationic [AuCl(2)(N,N-IM)]ClO(4) (2) and neutral [MCl(2)(N,N-IM)] M=Pd (3), Pt(4) complexes were determined by X-ray diffraction studies or by means of density-functional calculations. While the Pd and Pt compounds are stable in mixtures of DMSO/H(2)O over 4 days, the gold derivative (2) decomposes quickly to TPAO and previously reported neutral gold(III) compound [AuCl(2)(N,N-H)] 5 (containing the chelating N,N-fragment HN-C(O)-2-NC(5)H(4)). The cytotoxicities of complexes 2-5 were evaluated in vitro against human Jurkat-T acute lymphoblastic leukemia cells and DU-145 human prostate cancer cells. Pt (4) and Au compounds (2 and 5) are more cytotoxic than cisplatin to these cell lines and to cisplatin-resistant Jurkat sh-Bak cell lines and their cell death mechanism is different from that of cisplatin. All the compounds show higher toxicity against leukemia cells when compared to normal human T-lymphocytes (PBMC). The interaction of the Pd and Pt compounds with calf thymus and plasmid (pBR322) DNA is different from that of cisplatin. All compounds bind to human serum albumin (HSA) faster than cisplatin (measured by fluorescence spectroscopy). Weak and stronger binding interactions were found for the Pd (3) and Pt (4) derivatives by isothermal titration calorimetry. Importantly, for the Pt (4) compounds the binding to HSA was reversed by addition of a chelating agent (citric acid) and by a decrease in pH.
Collapse
|
18
|
Protective effect of plaunotol against doxorubicin-induced renal cell death. J Nat Med 2012; 67:311-9. [PMID: 22752851 DOI: 10.1007/s11418-012-0683-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Accepted: 06/13/2012] [Indexed: 10/28/2022]
Abstract
In searching for a safe and effective compound to be used as a chemoprotective agent to prevent toxicity of the anthracyclin doxorubicin to renal cells, the present study demonstrated that plaunotol, a purified acyclic diterpene from Croton stellatopilosus Ohba, showed potential protection against doxorubicin-induced cell death in human proximal tubule cells. Treatment of renal cells with doxorubicin resulted in a significant decrease in viability of the cells, and we next proved that such toxicity was mainly due to apoptotic cell death. Pretreatment of the cells with plaunotol for at least 9 h prior to doxorubicin exposure improved the cells' survival. Plaunotol was shown to up-regulate the anti-apoptotic myeloid cell leukemia-1 (Mcl-1) level whereas it had no effect on the Bcl-2 level. The reduction in Mcl-1 after doxorubicin treatment was shown to be closely associated with the toxic action of the drug, and the increase in Mcl-1 induced by plaunotol pretreatment was able to prevent cell death induced by doxorubicin. Furthermore, the protective effect of plaunotol was evaluated in human lung and melanoma cells. Results indicated that plaunotol had no significantly protective effect in human lung carcinoma cells, whereas it sensitized melanoma cells to drug-induced cell death.
Collapse
|
19
|
Ehrhardt H, Höfig I, Wachter F, Obexer P, Fulda S, Terziyska N, Jeremias I. NOXA as critical mediator for drug combinations in polychemotherapy. Cell Death Dis 2012; 3:e327. [PMID: 22717582 PMCID: PMC3388227 DOI: 10.1038/cddis.2012.53] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
During polychemotherapy, cytotoxic drugs are given in combinations to enhance their anti-tumor effectiveness. For most drug combinations, underlying signaling mechanisms responsible for positive drug-drug interactions remain elusive. Here, we prove a decisive role for the Bcl-2 family member NOXA to mediate cell death by certain drug combinations, even if drugs were combined which acted independently from NOXA, when given alone. In proof-of-principle studies, betulinic acid, doxorubicin and vincristine induced cell death in a p53- and NOXA-independent pathway involving mitochondrial pore formation, release of cytochrome c and caspase activation. In contrast, when betulinic acid was combined with either doxorubicine or vincristine, cell death signaling changed considerably; the drug combinations clearly depended on both p53 and NOXA. Similarly and of high clinical relevance, in patient-derived childhood acute leukemia samples the drug combinations, but not the single drugs depended on p53 and NOXA, as shown by RNA interference studies in patient-derived cells. Our data emphasize that NOXA represents an important target molecule for combinations of drugs that alone do not target NOXA. NOXA might have a special role in regulating apoptosis sensitivity in the complex interplay of polychemotherapy. Deciphering the differences in signaling of single drugs and drug combinations might enable designing highly effective novel polychemotherapy regimens.
Collapse
Affiliation(s)
- H Ehrhardt
- Helmholtz Center Munich – German Research Center for Environmental Health, Marchioninistrasse 25, 81377 Munich, Germany
- Division of Neonatology, University Children's Hospital, Ludwig-Maximilian-University, Marchioninistr 15, 81377 Munich, Germany
| | - I Höfig
- Helmholtz Center Munich – German Research Center for Environmental Health, Marchioninistrasse 25, 81377 Munich, Germany
| | - F Wachter
- Helmholtz Center Munich – German Research Center for Environmental Health, Marchioninistrasse 25, 81377 Munich, Germany
| | - P Obexer
- Department of Pediatrics IV, Medical University Innsbruck, Innrain 66, 6020 Innsbruck, Austria
| | - S Fulda
- Institute for Experimental Cancer Research in Pediatrics, Goethe-University Frankfurt, Frankfurt, Germany
| | - N Terziyska
- Helmholtz Center Munich – German Research Center for Environmental Health, Marchioninistrasse 25, 81377 Munich, Germany
| | - I Jeremias
- Helmholtz Center Munich – German Research Center for Environmental Health, Marchioninistrasse 25, 81377 Munich, Germany
- Department of Oncology/Hematology, Dr. von Haunersches Kinderspital, Lindwurmstr 4, 80337 München, Germany
- Department of Gene Vectors, Helmholtz Center Munich – German Research Center for Environmental Health, Marchioninistrasse 25, D-81377 München, Germany. Tel: +49 89 7099 424; Fax: +49 89 7099 225; E-mail:
| |
Collapse
|
20
|
Aguiló JI, Iturralde M, Monleón I, Iñarrea P, Pardo J, Martínez-Lorenzo MJ, Anel A, Alava MA. Cytotoxicity of quinone drugs on highly proliferative human leukemia T cells: Reactive oxygen species generation and inactive shortened SOD1 isoform implications. Chem Biol Interact 2012; 198:18-28. [DOI: 10.1016/j.cbi.2012.05.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2012] [Revised: 05/04/2012] [Accepted: 05/04/2012] [Indexed: 11/29/2022]
|
21
|
Naci D, El Azreq MA, Chetoui N, Lauden L, Sigaux F, Charron D, Al-Daccak R, Aoudjit F. α2β1 integrin promotes chemoresistance against doxorubicin in cancer cells through extracellular signal-regulated kinase (ERK). J Biol Chem 2012; 287:17065-17076. [PMID: 22457358 DOI: 10.1074/jbc.m112.349365] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The role and the mechanisms by which β1 integrins regulate the survival and chemoresistance of T cell acute lymphoblastic leukemia (T-ALL) still are poorly addressed. In this study, we demonstrate in T-ALL cell lines and primary blasts, that engagement of α2β1 integrin with its ligand collagen I (ColI), reduces doxorubicin-induced apoptosis, whereas fibronectin (Fn) had no effect. ColI but not Fn inhibited doxorubicin-induced mitochondrial depolarization, cytochrome c release, and activation of caspase-9 and -3. ColI but not Fn also prevented doxorubicin from down-regulating the levels of the prosurvival Bcl-2 protein family member Mcl-1. The effect of ColI on Mcl-1 occurred through the inhibition of doxorubicin-induced activation of c-Jun N-terminal kinase (JNK). Mcl-1 knockdown experiments showed that the maintenance of Mcl-1 levels is essential for ColI-mediated T-ALL cell survival. Furthermore, activation of MAPK/ERK, but not PI3K/AKT, is required for ColI-mediated inhibition of doxorubicin-induced JNK activation and apoptosis and for ColI-mediated maintenance of Mcl-1 levels. Thus, our study identifies α2β1 integrin as an important survival pathway in drug-induced apoptosis of T-ALL cells and suggests that its activation can contribute to the generation of drug resistance.
Collapse
Affiliation(s)
- Dalila Naci
- Centre de Recherche en Rhumatologie/Immunologie, Centre Hospitalier Universitaire de Québec, Pavillon CHUL, and Faculté de Médecine, Université Laval, 2705 Boulevard Laurier, Local T1-49, Québec G1V4G2, Canada
| | - Mohammed-Amine El Azreq
- Centre de Recherche en Rhumatologie/Immunologie, Centre Hospitalier Universitaire de Québec, Pavillon CHUL, and Faculté de Médecine, Université Laval, 2705 Boulevard Laurier, Local T1-49, Québec G1V4G2, Canada
| | - Nizar Chetoui
- Centre de Recherche en Rhumatologie/Immunologie, Centre Hospitalier Universitaire de Québec, Pavillon CHUL, and Faculté de Médecine, Université Laval, 2705 Boulevard Laurier, Local T1-49, Québec G1V4G2, Canada
| | - Laura Lauden
- Institut National de la Santé et de la Recherche Médicale (INSERM) UMRS 940, Institut Universitaire d'Hématologie Université Paris Denis Diderot, Hôpital Saint Louis, 75010 Paris, France
| | - François Sigaux
- INSERM U944, Institut Universitaire d'Hématologie Université Paris Denis Diderot, Hôpital Saint Louis, 75010 Paris, France
| | - Dominique Charron
- Institut National de la Santé et de la Recherche Médicale (INSERM) UMRS 940, Institut Universitaire d'Hématologie Université Paris Denis Diderot, Hôpital Saint Louis, 75010 Paris, France
| | - Reem Al-Daccak
- Institut National de la Santé et de la Recherche Médicale (INSERM) UMRS 940, Institut Universitaire d'Hématologie Université Paris Denis Diderot, Hôpital Saint Louis, 75010 Paris, France
| | - Fawzi Aoudjit
- Centre de Recherche en Rhumatologie/Immunologie, Centre Hospitalier Universitaire de Québec, Pavillon CHUL, and Faculté de Médecine, Université Laval, 2705 Boulevard Laurier, Local T1-49, Québec G1V4G2, Canada.
| |
Collapse
|
22
|
|
23
|
Cell fate after mitotic arrest in different tumor cells is determined by the balance between slippage and apoptotic threshold. Toxicol Appl Pharmacol 2011; 258:384-93. [PMID: 22178383 DOI: 10.1016/j.taap.2011.11.021] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Revised: 11/09/2011] [Accepted: 11/29/2011] [Indexed: 01/08/2023]
Abstract
Microtubule poisons and other anti-mitotic drugs induce tumor death but the molecular events linking mitotic arrest to cell death are still not fully understood. We have analyzed cell fate after mitotic arrest produced by the microtubule-destabilizing drug vincristine in a panel of human tumor cell lines showing different response to vincristine. In Jurkat, RPMI 8226 and HeLa cells, apoptosis was triggered shortly after vincristine-induced mitotic arrest. However, A549 cells, which express a great amount of Bcl-x(L) and undetectable amounts of Bak, underwent mitotic slippage prior to cell death. However, when Bcl-x(L) gene was silenced in A549 cells, vincristine induced apoptosis during mitotic arrest. Another different behavior was found in MiaPaca2 cells, where vincristine caused death by mitotic catastrophe that switched to apoptosis when cyclin B1 degradation was prevented by proteasome inhibition. Overexpression of Bcl-x(L) or silencing Bax and Bak expression delayed the onset of apoptosis in Jurkat and RPMI 8226 cells, enabling mitotic slippage and endoreduplication. In HeLa cells, overexpression of Bcl-x(L) switched cell death from apoptosis to mitotic catastrophe. Mcl-1 offered limited protection to vincristine-induced cell death and Mcl-1 degradation was not essential for vincristine-induced death. All these results, taken together, indicate that the Bcl-x(L)/Bak ratio and the ability to degrade cyclin B1 determine cell fate after mitotic arrest in the different tumor cell types.
Collapse
|
24
|
Vela L, Contel M, Palomera L, Azaceta G, Marzo I. Iminophosphorane-organogold(III) complexes induce cell death through mitochondrial ROS production. J Inorg Biochem 2011; 105:1306-13. [PMID: 21864808 DOI: 10.1016/j.jinorgbio.2011.06.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2011] [Revised: 05/11/2011] [Accepted: 06/15/2011] [Indexed: 02/08/2023]
Abstract
Gold compounds are being investigated as potential antitumor drugs. Some gold(III) derivatives have been shown to induce cell death in solid tumors but their mechanism of action differs from that of cisplatin, since most of these compounds do not bind to DNA. We have explored cellular events triggered by three different iminophosphorane-organogold(III) compounds in leukemia cells (a neutral compound with two chloride ligands [Au{κ(2)-C,N-C(6)H(4)(PPh(2)=N(C(6)H(5))-2}Cl(2)] 1, and two cationic compounds with either a dithiocarbamate ligand [Au{κ(2)-C,N-C(6)H(4)(PPh(2)=N(C(6)H(5))-2}(S(2)CN-Me(2))]PF(6)2, or a water-soluble phosphine and a chloride ligand [Au{κ(2)-C,N-C(6)H(4)(PPh(2)=N(C(6)H(5))-2}(P{Cp(m-C(6)H(4)-SO(3)Na)(2)}(3)) Cl]PF(6)3). All three compounds showed higher toxicity against leukemia cells when compared to normal T-lymphocytes. Compounds 1 and 2 induced both necrosis and apoptosis, while 3 was mainly apoptotic. Necrotic cell death induced by 1 and 2 was Bax/Bak- and caspase-independent, while apoptosis induced by 3 was Bax/Bak-dependent. Reactive oxygen species (ROS) production at the mitochondrial level was a critical step in the antitumor effect of these compounds.
Collapse
Affiliation(s)
- Laura Vela
- Department of Biochemistry and Molecular and Cellular Biology, University of Zaragoza, C/Pedro Cerbuna 12, Zaragoza, Spain
| | | | | | | | | |
Collapse
|
25
|
Rudner J, Elsaesser SJ, Jendrossek V, Huber SM. Anti-apoptotic Bcl-2 fails to form efficient complexes with pro-apoptotic Bak to protect from Celecoxib-induced apoptosis. Biochem Pharmacol 2011; 81:32-42. [PMID: 20836993 DOI: 10.1016/j.bcp.2010.09.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2010] [Revised: 08/31/2010] [Accepted: 09/02/2010] [Indexed: 11/30/2022]
Abstract
The non-steroidal anti-inflammatory drug Celecoxib is a specific inhibitor of cyclooxygenase-2. Apart from its inhibitor function, Celecoxib induces apoptosis through the intrinsic pathway which is controlled by the Bcl-2 family members. In Jurkat T lymphoma cells, treatment with Celecoxib results in a rapid decline of the anti-apoptotic Bcl-2-related protein Mcl-1. The depletion of Mcl-1 is sufficient for apoptosis induction and can be blocked by overexpression of Bcl-xL but not by the close homologue Bcl-2. The present investigation analyzed the mechanism by which Bcl-xL prevents apoptosis induction whereas Bcl-2 failed to. Our data show that the involvement of the orphan nuclear receptor Nur77/TR3 specifically targeting Bcl-2 but not Bcl-xL was not involved in Celecoxib-induced apoptosis. Surprisingly, BH3-only proteins Bid, Bim, and Puma of the Bcl-2 family were not needed either. However, unlike Bcl-2, Mcl-1, and Bcl-xL sequestered Bak preventing it from activation through a direct interaction. Thus, when abundantly expressed, Bcl-xL can substitute for the loss of Mcl-1 whereas Bcl-2, incapable of forming a high affinity complex with Bak, could not.
Collapse
Affiliation(s)
- Justine Rudner
- Department of Radiation Oncology, University Hospital of Tübingen, Hoppe-Seyler-Str. 3, 72076 Tübingen, Germany.
| | | | | | | |
Collapse
|