1
|
The Immunofluorescence-Based Detection of Hedgehog Pathway Components in Primary Cilia of Cultured Cells. Methods Mol Biol 2022; 2374:89-94. [PMID: 34562245 DOI: 10.1007/978-1-0716-1701-4_8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The primary cilium is a microtubule-based organelle that projects from the surface of vertebrate cells. Defects in the biogenesis of or transport through primary cilia affect Hedgehog signaling, and many Hedgehog pathway components traffic through or accumulate in cilia. This protocol provides methods for immunofluorescence staining of cilia-accumulated Hh pathway components, such as Smoothened, in cultured NIH 3T3 cells.
Collapse
|
2
|
Avery JT, Zhang R, Boohaker RJ. GLI1: A Therapeutic Target for Cancer. Front Oncol 2021; 11:673154. [PMID: 34113570 PMCID: PMC8186314 DOI: 10.3389/fonc.2021.673154] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 04/30/2021] [Indexed: 12/11/2022] Open
Abstract
GLI1 is a transcriptional effector at the terminal end of the Hedgehog signaling (Hh) pathway and is tightly regulated during embryonic development and tissue patterning/differentiation. GLI1 has low-level expression in differentiated tissues, however, in certain cancers, aberrant activation of GLI1 has been linked to the promotion of numerous hallmarks of cancer, such as proliferation, survival, angiogenesis, metastasis, metabolic rewiring, and chemotherapeutic resistance. All of these are driven, in part, by GLI1’s role in regulating cell cycle, DNA replication and DNA damage repair processes. The consequences of GLI1 oncogenic activity, specifically the activity surrounding DNA damage repair proteins, such as NBS1, and cell cycle proteins, such as CDK1, can be linked to tumorigenesis and chemoresistance. Therefore, understanding the underlying mechanisms driving GLI1 dysregulation can provide prognostic and diagnostic biomarkers to identify a patient population that would derive therapeutic benefit from either direct inhibition of GLI1 or targeted therapy towards proteins downstream of GLI1 regulation.
Collapse
Affiliation(s)
- Justin T Avery
- Oncology Department, Drug Discovery Division, Southern Research, Birmingham, AL, United States
| | - Ruowen Zhang
- Department of Medicine, Stony Brook University, Stony Brook, NY, United States
| | - Rebecca J Boohaker
- Oncology Department, Drug Discovery Division, Southern Research, Birmingham, AL, United States
| |
Collapse
|
3
|
Sun C, Zhang Y, Wang H, Yin Z, Wu L, Huang Y, Zhang W, Wang Y, Hu Q. Design and biological evaluation of phenyl imidazole analogs as hedgehog signaling pathway inhibitors. Chem Biol Drug Des 2020; 97:546-552. [PMID: 32946174 DOI: 10.1111/cbdd.13799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 08/27/2020] [Accepted: 09/09/2020] [Indexed: 11/30/2022]
Abstract
The hedgehog (Hh) signaling pathway is involved in diverse aspects of cellular events. Aberrant activation of Hh signaling pathway drives oncogenic transformation for a wide range of cancers, and it is therefore a promising target in cancer therapy. In the principle of association and ring-opening, we designed and synthesized a series of Hh signaling pathway inhibitors with phenyl imidazole scaffold, which were biologically evaluated in Gli-Luc reporter assay. Compound 25 was identified to possess high potency with nanomolar IC50 , and moreover, it preserved the inhibition against wild-type and drug-resistant Smo-overexpressing cells. A molecular modeling study of compound 25 expounded its binding mode to Smo receptor, providing a basis for the further structural modification of phenyl imidazole analogs.
Collapse
Affiliation(s)
- Chiyu Sun
- School of Pharmacy, Shenyang Medical College, Shenyang, China
| | - Ying Zhang
- School of Chemical Engineering, Shenyang University of Chemical Technology, Shenyang, China
| | - Han Wang
- School of Pharmacy, Shenyang Medical College, Shenyang, China
| | - Zhengxu Yin
- School of Pharmacy, Shenyang Medical College, Shenyang, China
| | - Lingqiong Wu
- School of Pharmacy, Shenyang Medical College, Shenyang, China
| | - Yanmiao Huang
- School of Pharmacy, Shenyang Medical College, Shenyang, China
| | - Wenhu Zhang
- School of Pharmacy, Shenyang Medical College, Shenyang, China
| | - Youbing Wang
- School of Pharmacy, Shenyang Medical College, Shenyang, China
| | - Qibo Hu
- School of Pharmacy, Shenyang Medical College, Shenyang, China
| |
Collapse
|
4
|
Zhang R, Ma J, Avery JT, Sambandam V, Nguyen TH, Xu B, Suto MJ, Boohaker RJ. GLI1 Inhibitor SRI-38832 Attenuates Chemotherapeutic Resistance by Downregulating NBS1 Transcription in BRAF V600E Colorectal Cancer. Front Oncol 2020; 10:241. [PMID: 32185127 PMCID: PMC7058788 DOI: 10.3389/fonc.2020.00241] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 02/12/2020] [Indexed: 12/13/2022] Open
Abstract
Resistance to radiation and chemotherapy in colorectal cancer (CRC) patients contribute significantly to refractory disease and disease progression. Herein, we provide mechanistic rationale for acquired or inherent chemotherapeutic resistance to the anti-tumor effects of 5-fluorouracil (5-FU) that is linked to oncogenic GLI1 transcription activity and NBS1 overexpression. Patients with high levels of GLI1 also expressed high levels of NBS1. Non-canonical activation of GLI1 is driven through oncogenic pathways in CRC, like the BRAFV600E mutation. GLI1 was identified as a novel regulator of NBS1 and discovered that by knocking down GLI1 levels in vitro, diminished NBS1 expression, increased DNA damage/apoptosis, and re-sensitization of 5-FU resistant cancer to treatment was observed. Furthermore, a novel GLI1 inhibitor, SRI-38832, which exhibited pharmacokinetic properties suitable for in vivo testing, was identified. GLI1 inhibition in a murine BRAFV600E variant xenograft model of CRC resulted in the same down-regulation of NBS1 observed in vitro as well as significant reduction of tumor growth/burden. GLI1 inhibition could therefore be a therapeutic option for 5-FU resistant and BRAFV600E variant CRC patients.
Collapse
Affiliation(s)
- Ruowen Zhang
- Southern Research, Division of Drug Discovery, Birmingham, AL, United States
| | - Jinlu Ma
- Department of Radiation Oncology, First Affiliated Hospital, Xian Jiaotong University, Xi'an, China
| | - Justin T. Avery
- Southern Research, Division of Drug Discovery, Birmingham, AL, United States
| | - Vijaya Sambandam
- Southern Research, Division of Drug Discovery, Birmingham, AL, United States
| | - Theresa H. Nguyen
- Southern Research, Division of Drug Discovery, Birmingham, AL, United States
| | - Bo Xu
- Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Mark J. Suto
- Southern Research, Division of Drug Discovery, Birmingham, AL, United States
| | - Rebecca J. Boohaker
- Southern Research, Division of Drug Discovery, Birmingham, AL, United States
| |
Collapse
|
5
|
MicroRNA-182-5p regulates hedgehog signaling pathway and chemosensitivity of cisplatin-resistant lung adenocarcinoma cells via targeting GLI2. Cancer Lett 2020; 469:266-276. [DOI: 10.1016/j.canlet.2019.10.044] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 09/06/2019] [Accepted: 10/29/2019] [Indexed: 01/03/2023]
|
6
|
Guo LH, Cao Y, Zhuang RT, Han Y, Li J. Astragaloside IV promotes the proliferation and migration of osteoblast-like cells through the hedgehog signaling pathway. Int J Mol Med 2018; 43:830-838. [PMID: 30535481 PMCID: PMC6317662 DOI: 10.3892/ijmm.2018.4013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 08/30/2018] [Indexed: 12/20/2022] Open
Abstract
The present study aimed to investigate the effects of astragaloside IV on osteoblast-like cell proliferation and migration, in addition to the underlying signaling pathway. In order to observe the effect on proliferation, a Cell Counting Kit-8 assay and flow cytometry were used. To detect cell migration ability, cell scratch and Transwell cell migration assays were performed. The RNA and protein expression levels of hedgehog signaling molecules, including Sonic hedgehog (SHH) and GLI family zinc finger 1 (GLI1), were examined by reverse transcription-quantitative polymerase chain reaction and western blot analyses. To inhibit the hedgehog signaling pathway, cyclopamine was used. Astragaloside IV, at a dosage of 1×10−2µg/ml in MG-63 cells and 1×10−3µg/ml in U-2OS cells, resulted in the enhanced proliferation and migration of cells, and the gene expression levels of the SHH and GLI1 were significantly increased. The combination of astragaloside IV and cyclopamine reduced MG-63 and U-2OS cell proliferation and migration, and inhibited the gene expression of SHH and GLI1. Astragaloside IV enhanced the proliferation and migration of human osteoblast-like cells through activating the hedgehog signaling pathway. The results of the present study provide a rational for the mechanistic link in astragaloside IV promoting the proliferation and migration of osteoblasts via the hedgehog signaling pathway.
Collapse
Affiliation(s)
- Li-Hua Guo
- Department of Dental Implant Center, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing 100050, P.R. China
| | - Yu Cao
- Department of Integrated Emergency Dental Care, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing 100050, P.R. China
| | - Run-Tao Zhuang
- Department of Stomatology, Beijing Jiaotong University Community Health Center, Beijing 100044, P.R. China
| | - Yan Han
- Department of Stomatology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing 100091, P.R. China
| | - Jun Li
- Department of Dental Implant Center, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing 100050, P.R. China
| |
Collapse
|
7
|
Synergistic inhibition of the Hedgehog pathway by newly designed Smo and Gli antagonists bearing the isoflavone scaffold. Eur J Med Chem 2018; 156:554-562. [DOI: 10.1016/j.ejmech.2018.07.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 06/25/2018] [Accepted: 07/07/2018] [Indexed: 01/19/2023]
|
8
|
Latuske EM, Stamm H, Klokow M, Vohwinkel G, Muschhammer J, Bokemeyer C, Jücker M, Kebenko M, Fiedler W, Wellbrock J. Combined inhibition of GLI and FLT3 signaling leads to effective anti-leukemic effects in human acute myeloid leukemia. Oncotarget 2018; 8:29187-29201. [PMID: 28418873 PMCID: PMC5438723 DOI: 10.18632/oncotarget.16304] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 02/20/2017] [Indexed: 12/13/2022] Open
Abstract
Activation of the Hedgehog pathway has been implicated in the pathogenesis of several tumor types including myeloid leukemia. Previously we demonstrated that overexpression of Hedgehog downstream mediators GLI1/2 confers an adverse prognosis to patients with acute myeloid leukemia (AML) and is correlated with a FLT3 mutated status. To analyze a possible non-canonical activation of the Hedgehog pathway via FLT3 and PI3K, we performed blocking experiments utilizing inhibitors for FLT3 (sunitinib), PI3K (PF-04691502) and GLI1/2 (GANT61) in FLT3-mutated and FLT3 wildtype AML cell lines and primary blasts. Combination of all three compounds had stronger anti-leukemic effects in FLT3-mutated compared to FLT3 wildtype AML cells in vitro. Interestingly, the colony growth of normal CD34+ cells from healthy donors was not impeded by the triple inhibitor combination possibly opening a therapeutic window for the clinical use of inhibitor combinations. Besides, combined treatment with sunitinib, PF-04691502 and GANT61 significantly prolonged the survival of mice transplanted with FLT3-mutated MV4-11 cells compared to the single agent treatments. Furthermore, the inhibition of FLT3 and PI3K resulted in reduced GLI protein expression and promotor activity in FLT3-mutated but not in FLT3 wildtype AML cell lines in western blotting and GLI1/2 promoter assays supporting our hypothesis of non-canonical GLI activation via FLT3. In summary, FLT3-mutated in contrast to FLT3 wildtype cells or normal human hematopoietic progenitor cells are exquisitely sensitive to combined inhibition by FLT3, PI3K and GLI1/2 overcoming some of the limitations of current FLT3 directed therapy in AML. The development of GLI1/2 inhibitors is highly desirable.
Collapse
Affiliation(s)
- Emily-Marie Latuske
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald University Cancer Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Hauke Stamm
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald University Cancer Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Marianne Klokow
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald University Cancer Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Gabi Vohwinkel
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald University Cancer Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jana Muschhammer
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald University Cancer Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Carsten Bokemeyer
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald University Cancer Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Manfred Jücker
- Institute of Biochemistry and Signal Transduction, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Maxim Kebenko
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald University Cancer Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Walter Fiedler
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald University Cancer Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jasmin Wellbrock
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald University Cancer Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
9
|
Pharmacological targeting of GLI1 inhibits proliferation, tumor emboli formation and in vivo tumor growth of inflammatory breast cancer cells. Cancer Lett 2017; 411:136-149. [PMID: 28965853 DOI: 10.1016/j.canlet.2017.09.033] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 09/15/2017] [Accepted: 09/21/2017] [Indexed: 01/01/2023]
Abstract
Activation of the Hedgehog (Hh) pathway effector GLI1 is linked to tumorigenesis and invasiveness in a number of cancers, with targeting of GLI1 by small molecule antagonists shown to be effective. We profiled a collection of GLI antagonists possessing distinct mechanisms of action for efficacy in phenotypic models of inflammatory and non-inflammatory breast cancer (IBC and non-IBC) that we showed expressed varying levels of Hh pathway mediators. Compounds GANT61, HPI-1, and JK184 decreased cell proliferation, inhibited GLI1 mRNA expression and decreased the number of colonies formed in TN-IBC (SUM149) and TNBC (MDA-MB-231 and SUM159) cell lines. In addition, GANT61 and JK184 significantly down-regulated GLI1 targets that regulate cell cycle (cyclin D and E) and apoptosis (Bcl2). GANT61 reduced SUM149 spheroid growth and emboli formation, and in orthotopic SUM149 tumor models significantly decreased tumor growth. We successfully utilized phenotypic profiling to identify a subset of GLI1 antagonists that were prioritized for testing in in vivo models. Our results indicated that GLI1 activation in TN-IBC as in TNBC, plays a vital role in promoting cell proliferation, motility, tumor growth, and formation of tumor emboli.
Collapse
|
10
|
Nayak A, Siddharth S, Das S, Nayak D, Sethy C, Kundu CN. Nanoquinacrine caused apoptosis in oral cancer stem cells by disrupting the interaction between GLI1 and β catenin through activation of GSK3β. Toxicol Appl Pharmacol 2017; 330:53-64. [DOI: 10.1016/j.taap.2017.07.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 07/10/2017] [Accepted: 07/13/2017] [Indexed: 01/07/2023]
|
11
|
Pak E, Segal RA. Hedgehog Signal Transduction: Key Players, Oncogenic Drivers, and Cancer Therapy. Dev Cell 2017; 38:333-44. [PMID: 27554855 DOI: 10.1016/j.devcel.2016.07.026] [Citation(s) in RCA: 239] [Impact Index Per Article: 29.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The Hedgehog (Hh) signaling pathway governs complex developmental processes, including proliferation and patterning within diverse tissues. These activities rely on a tightly regulated transduction system that converts graded Hh input signals into specific levels of pathway activity. Uncontrolled activation of Hh signaling drives tumor initiation and maintenance. However, recent entry of pathway-specific inhibitors into the clinic reveals mixed patient responses and thus prompts further exploration of pathway activation and inhibition. In this review, we share emerging insights into regulated and oncogenic Hh signaling, supplemented with updates on the development and use of Hh pathway-targeted therapies.
Collapse
Affiliation(s)
- Ekaterina Pak
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA; Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Rosalind A Segal
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA; Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA.
| |
Collapse
|
12
|
Lin Y, Huang Y, He J, Chen F, He Y, Zhang W. Role of Hedgehog-Gli1 signaling in the enhanced proliferation and differentiation of MG63 cells enabled by hierarchical micro-/nanotextured topography. Int J Nanomedicine 2017; 12:3267-3280. [PMID: 28458545 PMCID: PMC5404496 DOI: 10.2147/ijn.s135045] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Hedgehog–Gli1 signaling is evolutionarily conserved and plays an essential role in osteoblast proliferation and differentiation as well as bone formation. To evaluate the role of the Hedgehog–Gli1 pathway in the response of osteoblasts to hierarchical biomaterial topographies, human MG63 osteoblasts were seeded onto smooth, microstructured, and micro-/nanotextured topography (MNT) titanium to assess osteoblast proliferation and differentiation in terms of proliferative activity, alkaline phosphatase (ALP) production, and osteogenesis-related gene expression. Quantitative real-time polymerase chain reaction (qRT-PCR) was used to detect the mRNA expression of Sonic hedgehog (Shh), Smoothened (Smo), and Gli1, and the protein levels were assayed by Western blotting. MG63 cells treated with the Smo inhibitor cyclopamine were seeded onto the titanium specimens, and the cell proliferation and differentiation were studied in the presence or absence of cyclopamine. Our results showed that compared to the smooth and microstructured surfaces, the MNTs induced a higher gene expression and protein production of Shh, Smo, and Gli1 as well as the activation of Hedgehog signaling. The enhanced proliferative activity, ALP production, and expression of the osteogenesis-related genes (bone morphogenetic protein-2, ALP, and runt-related transcription factor 2) enabled by the MNTs were significantly downregulated by the presence of cyclopamine to a similar level as those on the smooth and acid-etched microstructured surfaces in the absence of cyclopamine. This evidence explicitly demonstrates pivotal roles of Hedgehog–Gli1 signaling pathway in mediating the enhanced effect of MNTs on MG63 proliferation and differentiation, which greatly advances our understanding of the mechanism involved in the biological responsiveness of biomaterial topographies. These findings may aid in the optimization of hierarchical biomaterial topographies targeting Hedgehog–Gli1 signaling.
Collapse
Affiliation(s)
- Yao Lin
- Department of Stomatology, Taishan People's Hospital, Affiliated to Guangdong Medical University, Taishan
| | - Yinghe Huang
- Department of Stomatology, Taishan People's Hospital, Affiliated to Guangdong Medical University, Taishan
| | - Junbing He
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Institute of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, People's Republic of China
| | - Feng Chen
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Institute of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, People's Republic of China
| | - Yanfang He
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Institute of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, People's Republic of China
| | - Wenying Zhang
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Institute of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, People's Republic of China
| |
Collapse
|
13
|
Ingallina C, Costa PM, Ghirga F, Klippstein R, Wang JT, Berardozzi S, Hodgins N, Infante P, Pollard SM, Botta B, Al-Jamal KT. Polymeric glabrescione B nanocapsules for passive targeting of Hedgehog-dependent tumor therapy in vitro. Nanomedicine (Lond) 2017; 12:711-728. [PMID: 28322108 PMCID: PMC5986025 DOI: 10.2217/nnm-2016-0388] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 01/26/2017] [Indexed: 01/09/2023] Open
Abstract
AIM With the purpose of delivering high doses of glabrescione B (GlaB) to solid tumors after systemic administration, long-circulating GlaB-loaded oil-cored polymeric nanocapsules (NC-GlaB) were formulated. MATERIALS & METHODS Synthesis of GlaB and its encapsulation in nanocapsules (NCs) was performed. Empty and GlaB-loaded NCs were assessed for their physico-chemical properties, in vitro cytotoxicity and in vivo biodistribution. RESULTS GlaB was efficiently loaded into NCs (∽90%), which were small (∽160 nm), homogeneous and stable upon storage. Further, GlaB and NC-GlaB demonstrated specific activities against the cancer stem cells. Preliminary studies in tumor-bearing mice supported the ability of NC to accumulate in pancreatic tumors. CONCLUSION This study provides early evidence that NC-GlaB has the potential to be utilized in a preclinical setting and justifies the need to perform therapeutic experiments in mice.
Collapse
Affiliation(s)
- Cinzia Ingallina
- Institute of Pharmaceutical Science, Faculty of Life Sciences & Medicine, King's College London, Franklin−Wilkins Building, London, SE1 9NH, UK
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza Università di Roma, Rome, Italy
| | - Pedro M Costa
- Institute of Pharmaceutical Science, Faculty of Life Sciences & Medicine, King's College London, Franklin−Wilkins Building, London, SE1 9NH, UK
| | - Francesca Ghirga
- Center for Life NanoScience@Sapienza, Istituto Italiano di Tecnologia, Rome, Italy
| | - Rebecca Klippstein
- Institute of Pharmaceutical Science, Faculty of Life Sciences & Medicine, King's College London, Franklin−Wilkins Building, London, SE1 9NH, UK
| | - Julie T Wang
- Institute of Pharmaceutical Science, Faculty of Life Sciences & Medicine, King's College London, Franklin−Wilkins Building, London, SE1 9NH, UK
| | - Simone Berardozzi
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza Università di Roma, Rome, Italy
- Center for Life NanoScience@Sapienza, Istituto Italiano di Tecnologia, Rome, Italy
| | - Naomi Hodgins
- Institute of Pharmaceutical Science, Faculty of Life Sciences & Medicine, King's College London, Franklin−Wilkins Building, London, SE1 9NH, UK
| | - Paola Infante
- Center for Life NanoScience@Sapienza, Istituto Italiano di Tecnologia, Rome, Italy
| | - Steven M Pollard
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh bioQuarter, 5 Little France Drive, Edinburgh EH16 4UU, UK
| | - Bruno Botta
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza Università di Roma, Rome, Italy
| | - Khuloud T Al-Jamal
- Institute of Pharmaceutical Science, Faculty of Life Sciences & Medicine, King's College London, Franklin−Wilkins Building, London, SE1 9NH, UK
| |
Collapse
|
14
|
El-Agroudy NN, El-Naga RN, El-Razeq RA, El-Demerdash E. Forskolin, a hedgehog signalling inhibitor, attenuates carbon tetrachloride-induced liver fibrosis in rats. Br J Pharmacol 2016; 173:3248-3260. [PMID: 27590029 PMCID: PMC5071558 DOI: 10.1111/bph.13611] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2016] [Revised: 08/07/2016] [Accepted: 08/11/2016] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND AND PURPOSE Liver fibrosis is one of the leading causes of morbidity and mortality worldwide with very limited therapeutic options. Given the pivotal role of activated hepatic stellate cells in liver fibrosis, attention has been directed towards the signalling pathways underlying their activation and fibrogenic functions. Recently, the hedgehog (Hh) signalling pathway has been identified as a potentially important therapeutic target in liver fibrosis. The present study was designed to explore the antifibrotic effects of the potent Hh signalling inhibitor, forskolin, and the possible molecular mechanisms underlying these effects. EXPERIMENTAL APPROACH Male Sprague-Dawley rats were treated with either CCl4 and/or forskolin for 6 consecutive weeks. Serum hepatotoxicity markers were determined, and histopathological evaluation was performed. Hepatic fibrosis was assessed by measuring α-SMA expression and collagen deposition by Masson's trichrome staining and hydroxyproline content. The effects of forskolin on oxidative stress markers (GSH, GPx, lipid peroxides), inflammatory markers (NF-κB, TNF-α, COX-2, IL-1β), TGF-β1 and Hh signalling markers (Ptch-1, Smo, Gli-2) were also assessed. KEY RESULTS Hepatic fibrosis induced by CCl4 was significantly reduced by forskolin, as indicated by decreased α-SMA expression and collagen deposition. Forskolin co-treatment significantly attenuated oxidative stress and inflammation, reduced TGF-β1 levels and down-regulated mRNA expression of Ptch-1, Smo and Gli-2 through cAMP-dependent PKA activation. CONCLUSION AND IMPLICATIONS In our model, forskolin exerted promising antifibrotic effects which could be partly attributed to its antioxidant and anti-inflammatory effects, as well as to its inhibition of Hh signalling, mediated by cAMP-dependent activation of PKA.
Collapse
Affiliation(s)
- Nermeen N El-Agroudy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Reem N El-Naga
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Rania Abd El-Razeq
- Department of Biochemistry, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Ebtehal El-Demerdash
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt. ,
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Misr International University, Cairo, Egypt. ,
| |
Collapse
|
15
|
Gonnissen A, Isebaert S, Haustermans K. Targeting the Hedgehog signaling pathway in cancer: beyond Smoothened. Oncotarget 2016; 6:13899-913. [PMID: 26053182 PMCID: PMC4546439 DOI: 10.18632/oncotarget.4224] [Citation(s) in RCA: 146] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 05/13/2015] [Indexed: 12/20/2022] Open
Abstract
An essential role for Hedgehog (Hh) signaling in human cancer has been established beyond doubt. At present, targeting Hh signaling has mainly been investigated with SMO inhibitors. Unfortunately, resistance against currently used SMO inhibitors has already been observed in basal cell carcinoma (BCC) patients. Therefore, the use of Hh inhibitors targeting the signaling cascade more downstream of SMO could represent a more promising strategy. Furthermore, besides the classical canonical way of Hh signaling activation, non-canonical activation of the GLI transcription factors by multiple important signaling pathways (e.g. MAPK, PI3K, TGFβ) has also been described, pinpointing the importance of targeting the transcription factors GLI1/2. The most promising agent in this context is probably the GLI1/2 inhibitor GANT61 which has been investigated preclinically in numerous tumor types in the last few years. In this review, the emerging role of Hh signaling in cancer is critically evaluated focusing on the potential of targeting Hh signaling more downstream of SMO, i.e. at the level of the GLI transcription factors. Furthermore, the working mechanism and therapeutic potential of the most extensively studied GLI inhibitor in human cancer, i.e. GANT61, is discussed in detail. In conclusion, GANT61 appears to be highly effective against human cancer cells and in xenograft mouse models, targeting almost all of the classical hallmarks of cancer and could hence represent a promising treatment option for human cancer.
Collapse
Affiliation(s)
- Annelies Gonnissen
- University of Leuven (KU Leuven), Department of Oncology, Laboratory of Experimental Radiotherapy, Leuven, Belgium
| | - Sofie Isebaert
- University of Leuven (KU Leuven), Department of Oncology, Laboratory of Experimental Radiotherapy, Leuven, Belgium
| | - Karin Haustermans
- University of Leuven (KU Leuven), Department of Oncology, Laboratory of Experimental Radiotherapy, Leuven, Belgium.,University Hospitals Leuven, Department of Radiation Oncology, Leuven, Belgium
| |
Collapse
|
16
|
Filocamo G, Brunetti M, Colaceci F, Sasso R, Tanori M, Pasquali E, Alfonsi R, Mancuso M, Saran A, Lahm A, Di Marcotullio L, Steinkühler C, Pazzaglia S. MK-4101, a Potent Inhibitor of the Hedgehog Pathway, Is Highly Active against Medulloblastoma and Basal Cell Carcinoma. Mol Cancer Ther 2016; 15:1177-89. [DOI: 10.1158/1535-7163.mct-15-0371] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 02/27/2016] [Indexed: 11/16/2022]
|
17
|
Lauressergues E, Heusler P, Lestienne F, Troulier D, Rauly-Lestienne I, Tourette A, Ailhaud MC, Cathala C, Tardif S, Denais-Laliève D, Calmettes MT, Degryse AD, Dumoulin A, De Vries L, Cussac D. Pharmacological evaluation of a series of smoothened antagonists in signaling pathways and after topical application in a depilated mouse model. Pharmacol Res Perspect 2016; 4:e00214. [PMID: 27069629 PMCID: PMC4804317 DOI: 10.1002/prp2.214] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 12/15/2015] [Accepted: 12/20/2015] [Indexed: 12/12/2022] Open
Abstract
The Hedgehog (HH) pathway has been linked to the formation of basal cell carcinoma (BCC), medulloblastoma, and other cancers. The recently approved orally active drugs vismodegib (GDC-0449) and sonidegib (LDE-225) were not only efficacious for the treatment of advanced or metastatic BCC by antagonizing the smoothened (SMO) receptor, but also produced important side effects, limiting their use for less invasive BCC. Herein, we compared a large series of SMO antagonists, including GDC-0449 and LDE-225, the clinically tested BMS-833923, CUR-61414, cyclopamine, IPI-926 (saridegib), itraconazole, LEQ-506, LY-2940680 (taladegib), PF-04449913 (glasdegib), and TAK-441 as well as preclinical candidates (PF-5274857, MRT-83) in two SMO-dependent cellular assays and for G-protein activation. We report marked differences in inhibitor potencies between compounds as well as a notable disparity between the G-protein assay and the cellular tests, suggesting that classification of drugs is assay dependent. Furthermore, we explored topical efficacies of SMO antagonists on depilated mice using Gli1 and Ptch1 mRNA quantification in skin as biomarkers of the HH signaling inhibition. This topical model rapidly discriminated drugs in terms of efficacies and potencies for inhibition of both biomarkers. SMO antagonists showed also a large variation in their blood and skin partition, suggesting that some drugs are more favorable for topical application. Overall, our data suggested that in vitro and in vivo efficacious drugs such as LEQ-506 and TAK-441 may be of interest for topical treatment of less invasive BCC with minimal side effects.
Collapse
Affiliation(s)
- Emilie Lauressergues
- Department of Cellular and Molecular Biology Pierre Fabre Research Centre 17, avenue Jean Moulin F-81106 Castres Cedex France
| | - Peter Heusler
- Department of Cellular and Molecular Biology Pierre Fabre Research Centre 17, avenue Jean Moulin F-81106 Castres Cedex France
| | - Fabrice Lestienne
- Department of Cellular and Molecular Biology Pierre Fabre Research Centre 17, avenue Jean Moulin F-81106 Castres Cedex France
| | - David Troulier
- Department of Developability Pierre Fabre Research Centre Castres France
| | - Isabelle Rauly-Lestienne
- Department of Cellular and Molecular Biology Pierre Fabre Research Centre 17, avenue Jean Moulin F-81106 Castres Cedex France
| | - Amélie Tourette
- Department of Cellular and Molecular Biology Pierre Fabre Research Centre 17, avenue Jean Moulin F-81106 Castres Cedex France
| | - Marie-Christine Ailhaud
- Department of Cellular and Molecular Biology Pierre Fabre Research Centre 17, avenue Jean Moulin F-81106 Castres Cedex France
| | - Claudie Cathala
- Department of Cellular and Molecular Biology Pierre Fabre Research Centre 17, avenue Jean Moulin F-81106 Castres Cedex France
| | - Stéphanie Tardif
- Department of Cellular and Molecular Biology Pierre Fabre Research Centre 17, avenue Jean Moulin F-81106 Castres Cedex France
| | | | | | | | - Antoine Dumoulin
- Department of Developability Pierre Fabre Research Centre Castres France
| | - Luc De Vries
- Department of Cellular and Molecular Biology Pierre Fabre Research Centre 17, avenue Jean Moulin F-81106 Castres Cedex France
| | - Didier Cussac
- Department of Cellular and Molecular Biology Pierre Fabre Research Centre 17, avenue Jean Moulin F-81106 Castres Cedex France
| |
Collapse
|
18
|
Nanoquinacrine induced apoptosis in cervical cancer stem cells through the inhibition of hedgehog-GLI1 cascade: Role of GLI-1. Sci Rep 2016; 6:20600. [PMID: 26846872 PMCID: PMC4742869 DOI: 10.1038/srep20600] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 01/07/2016] [Indexed: 12/30/2022] Open
Abstract
To improve the pharmacokinetics and to study the anti-cervical cancer and anti-stem cells (CSCs) mechanism of Quinacrine (QC), a spherical nano particle of QC (i.e. NQC) was prepared and characterized. QC and NQC showed higher cytotoxicity in multiple cancer cells than the normal epithelial cells. NQC exhibited more toxicity in cervical cancer cells and its CSCs than QC. A dose-dependent decreased expression of Hedgehog-GLI (HH-GLI) components were noted in NQC treated HeLa cells and its CSCs. NQC increased the expressions of negatively regulated HH-GLI components (GSK3β, PTEN) and caused apoptosis in CSCs. Reduction of GLI1 at mRNA and promoter level were noted after NQC exposure. The expressions of HH-GLI components, GLI1 promoter activity and apoptosis were unaltered in NQC treated GLI1-knockdown cells. In silico, cell based and in vitro reconstitution assay revealed that NQC inhibit HH-GLI cascade by binding to the consensus sequence (5'GACCACCCA3') of GLI1 in GLI-DNA complex through destabilizing DNA-GLI1 complex. NQC reduced the tumors size and proliferation marker Ki-67 in an in vivo xenograft mice model. Thus, NQC induced apoptosis in cancers through inhibition of HH-GLI cascade by GLI1. Detail interaction of QC-DNA-GLI complex can pave path for anticancer drug design.
Collapse
|
19
|
Antoniou A, Chatzopoulou M, Bantzi M, Athanassopoulos CM, Giannis A, Pitsinos EN. Identification of Gli-mediated transcription inhibitors through synthesis and evaluation of taepeenin D analogues. MEDCHEMCOMM 2016. [DOI: 10.1039/c6md00354k] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Abietic acid derivatives related to taepeenin D were identified as new Hh pathway inhibitors that operate downstream of Smo.
Collapse
Affiliation(s)
- A. Antoniou
- Natural Products Synthesis & Bioorganic Chemistry Laboratory
- I.N.N
- NCSR “Demokritos”
- Athens
- Greece
| | - M. Chatzopoulou
- Natural Products Synthesis & Bioorganic Chemistry Laboratory
- I.N.N
- NCSR “Demokritos”
- Athens
- Greece
| | - M. Bantzi
- Universität Leipzig, Fakultät für Chemie und Mineralogie
- Institut für Organische Chemie
- 04103 Leipzig
- Germany
| | - C. M. Athanassopoulos
- Laboratory of Synthetic Organic Chemistry
- Department of Chemistry
- University of Patras
- Patras
- Greece
| | - A. Giannis
- Universität Leipzig, Fakultät für Chemie und Mineralogie
- Institut für Organische Chemie
- 04103 Leipzig
- Germany
| | - E. N. Pitsinos
- Natural Products Synthesis & Bioorganic Chemistry Laboratory
- I.N.N
- NCSR “Demokritos”
- Athens
- Greece
| |
Collapse
|
20
|
Blassberg R, Macrae JI, Briscoe J, Jacob J. Reduced cholesterol levels impair Smoothened activation in Smith-Lemli-Opitz syndrome. Hum Mol Genet 2015; 25:693-705. [PMID: 26685159 PMCID: PMC4743690 DOI: 10.1093/hmg/ddv507] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 12/08/2015] [Indexed: 12/21/2022] Open
Abstract
Smith-Lemli-Opitz syndrome (SLOS) is a common autosomal-recessive disorder that results from mutations in the gene encoding the cholesterol biosynthetic enzyme 7-dehydrocholesterol reductase (DHCR7). Impaired DHCR7 function is associated with a spectrum of congenital malformations, intellectual impairment, epileptiform activity and autism spectrum disorder. Biochemically, there is a deficit in cholesterol and an accumulation of its metabolic precursor 7-dehydrocholesterol (7DHC) in developing tissues. Morphological abnormalities in SLOS resemble those seen in congenital Sonic Hedgehog (SHH)-deficient conditions, leading to the proposal that the pathogenesis of SLOS is mediated by aberrant SHH signalling. SHH signalling is transduced through the transmembrane protein Smoothened (SMO), which localizes to the primary cilium of a cell on activation and is both positively and negatively regulated by sterol molecules derived from cholesterol biosynthesis. One proposed mechanism of SLOS involves SMO dysregulation by altered sterol levels, but the salient sterol species has not been identified. Here, we clarify the relationship between disrupted cholesterol metabolism and reduced SHH signalling in SLOS by modelling the disorder in vitro. Our results indicate that a deficit in cholesterol, as opposed to an accumulation of 7DHC, impairs SMO activation and its localization to the primary cilium.
Collapse
Affiliation(s)
- Robert Blassberg
- The Francis Crick Institute, Mill Hill Laboratory, Mill Hill, London NW7 1AA, UK
| | - James I Macrae
- The Francis Crick Institute, Mill Hill Laboratory, Mill Hill, London NW7 1AA, UK
| | - James Briscoe
- The Francis Crick Institute, Mill Hill Laboratory, Mill Hill, London NW7 1AA, UK
| | - John Jacob
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, Level 6, West Wing, Oxford OX3 9DU, UK, Department of Neurology, Milton Keynes Hospital, Standing Way, Milton Keynes, Buckinghamshire MK6 5LD, UK and Department of Neurology, John Radcliffe Hospital, Headley Way, Oxford OX3 9DU, UK
| |
Collapse
|
21
|
Abstract
Defined cellular mechanisms have evolved that recognize and repair DNA to protect the integrity of its structure and sequence when encountering assaults from endogenous and exogenous sources. There are five major DNA repair pathways: mismatch repair, nucleotide excision repair, direct repair, base excision repair and DNA double strand break repair (including non-homologous end joining and homologous recombination repair). Aberrant activation of the Hedgehog (Hh) signaling pathway is a feature of many cancer types. The Hh pathway has been documented to be indispensable for epithelial-mesenchymal transition, invasion and metastasis, cancer stemness, and chemoresistance. The functional transcription activators of the Hh pathway include the GLI proteins. Inhibition of the activity of GLI can interfere with almost all DNA repair types in human cancer, indicating that Hh/GLI functions may play an important role in enabling tumor cells to survive lethal types of DNA damage induced by chemotherapy and radiotherapy. Thus, Hh signaling presents an important therapeutic target to overcome DNA repair-enabled multi-drug resistance and consequently increase chemotherapeutic response in the treatment of cancer.
Collapse
|
22
|
Mode and specificity of binding of the small molecule GANT61 to GLI determines inhibition of GLI-DNA binding. Oncotarget 2015; 5:4492-503. [PMID: 24962990 PMCID: PMC4147340 DOI: 10.18632/oncotarget.2046] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The GLI genes, GLI1 and GLI2, are transcription factors that regulate target genes at the distal end of the canonical Hedgehog (HH) signaling pathway (SHH->PTCH->SMO->GLI), tightly regulated in embryonic development, tissue patterning and differentiation. Both GLI1 and GLI2 are oncogenes, constitutively activated in many types of human cancers. In colon cancer cells oncogenic KRAS-GLI signaling circumvents the HH-SMO-GLI axis to channel through and activate GLI in the transcriptional regulation of target genes. We have observed extensive cell death in a panel of 7 human colon carcinoma cell lines using the small molecule GLI inhibitor GANT61. Using computational docking and experimental confirmation by Surface Plasmon Resonance, GANT61 binds to the 5-zinc finger GLI1 protein between zinc fingers 2 and 3 at sites E119 and E167, independent of the GLI-DNA binding region, and conserved between GLI1 and GLI2. GANT61 does not bind to other zinc finger transcription factors (KLF4, TFIIβ). Mutating the predicted GANT61 binding sites in GLI1 significantly inhibits GANT61-GLI binding and GLI-luciferase activity. Data establish the specificity of GANT61 for targeting GLI, and substantiate the critical role of GLI in cancer cell survival. Thus, targeting GLI in cancer therapeutics may be of high impact.
Collapse
|
23
|
Kugler MC, Joyner AL, Loomis CA, Munger JS. Sonic hedgehog signaling in the lung. From development to disease. Am J Respir Cell Mol Biol 2015; 52:1-13. [PMID: 25068457 DOI: 10.1165/rcmb.2014-0132tr] [Citation(s) in RCA: 123] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Over the past two decades, the secreted protein sonic hedgehog (SHH) has emerged as a critical morphogen during embryonic lung development, regulating the interaction between epithelial and mesenchymal cell populations in the airway and alveolar compartments. There is increasing evidence that the SHH pathway is active in adult lung diseases such as pulmonary fibrosis, asthma, chronic obstructive pulmonary disease, and lung cancer, which raises two questions: (1) What role does SHH signaling play in these diseases? and (2) Is it a primary driver of the disease or a response (perhaps beneficial) to the primary disturbance? In this review we aim to fill the gap between the well-studied period of embryonic lung development and the adult diseased lung by reviewing the hedgehog (HH) pathway during the postnatal period and in adult uninjured and injured lungs. We elucidate the similarities and differences in the epithelial-mesenchymal interplay during the fibrosis response to injury in lung compared with other organs and present a critical appraisal of tools and agents available to evaluate HH signaling.
Collapse
|
24
|
Infante P, Mori M, Alfonsi R, Ghirga F, Aiello F, Toscano S, Ingallina C, Siler M, Cucchi D, Po A, Miele E, D'Amico D, Canettieri G, De Smaele E, Ferretti E, Screpanti I, Uccello Barretta G, Botta M, Botta B, Gulino A, Di Marcotullio L. Gli1/DNA interaction is a druggable target for Hedgehog-dependent tumors. EMBO J 2014; 34:200-17. [PMID: 25476449 PMCID: PMC4298015 DOI: 10.15252/embj.201489213] [Citation(s) in RCA: 141] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Hedgehog signaling is essential for tissue development and stemness, and its deregulation has been observed in many tumors. Aberrant activation of Hedgehog signaling is the result of genetic mutations of pathway components or other Smo-dependent or independent mechanisms, all triggering the downstream effector Gli1. For this reason, understanding the poorly elucidated mechanism of Gli1-mediated transcription allows to identify novel molecules blocking the pathway at a downstream level, representing a critical goal in tumor biology. Here, we clarify the structural requirements of the pathway effector Gli1 for binding to DNA and identify Glabrescione B as the first small molecule binding to Gli1 zinc finger and impairing Gli1 activity by interfering with its interaction with DNA. Remarkably, as a consequence of its robust inhibitory effect on Gli1 activity, Glabrescione B inhibited the growth of Hedgehog-dependent tumor cells in vitro and in vivo as well as the self-renewal ability and clonogenicity of tumor-derived stem cells. The identification of the structural requirements of Gli1/DNA interaction highlights their relevance for pharmacologic interference of Gli signaling.
Collapse
Affiliation(s)
- Paola Infante
- Center for Life NanoScience@Sapienza, Istituto Italiano di Tecnologia, Rome, Italy
| | - Mattia Mori
- Center for Life NanoScience@Sapienza, Istituto Italiano di Tecnologia, Rome, Italy
| | - Romina Alfonsi
- Department of Molecular Medicine, University La Sapienza, Rome, Italy
| | - Francesca Ghirga
- Dipartimento di Chimica e Tecnologie del Farmaco, University La Sapienza, Rome, Italy
| | - Federica Aiello
- Department of Chemistry and Industrial Chemistry, University of Pisa, Pisa, Italy
| | - Sara Toscano
- Center for Life NanoScience@Sapienza, Istituto Italiano di Tecnologia, Rome, Italy
| | - Cinzia Ingallina
- Center for Life NanoScience@Sapienza, Istituto Italiano di Tecnologia, Rome, Italy
| | - Mariangela Siler
- Department of Molecular Medicine, University La Sapienza, Rome, Italy
| | - Danilo Cucchi
- Department of Molecular Medicine, University La Sapienza, Rome, Italy
| | - Agnese Po
- Department of Molecular Medicine, University La Sapienza, Rome, Italy
| | - Evelina Miele
- Center for Life NanoScience@Sapienza, Istituto Italiano di Tecnologia, Rome, Italy
| | - Davide D'Amico
- Department of Molecular Medicine, University La Sapienza, Rome, Italy
| | | | - Enrico De Smaele
- Department of Experimental Medicine, University La Sapienza, Rome, Italy
| | | | | | | | - Maurizio Botta
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy Sbarro Institute for Cancer Research and Molecular Medicine, Temple University, Philadelphia, PA, USA
| | - Bruno Botta
- Dipartimento di Chimica e Tecnologie del Farmaco, University La Sapienza, Rome, Italy
| | - Alberto Gulino
- Center for Life NanoScience@Sapienza, Istituto Italiano di Tecnologia, Rome, Italy Department of Molecular Medicine, University La Sapienza, Rome, Italy Istituto Pasteur, Fondazione Cenci-Bolognetti - University La Sapienza, Rome, Italy IRCCS Neuromed, Pozzilli, Italy
| | | |
Collapse
|
25
|
Abstract
The Hedgehog pathway has been shown to be an important developmental signaling pathway in many organisms (Ingham and McMahon. Genes Dev 15:3059-3087, 2001). Recently that work has been extended to developing echinoderm embryos (Walton et al. Dev Biol 331(1):26-37, 2009). Here we describe several methods to perturb the Hedgehog signaling pathway in the sea urchin. These include microinjection of Morpholinos and mRNA constructs as well as treatments with small molecule inhibitors. Finally we provide simple methods for assaying Hedgehog phenotypes in the sea urchin embryo.
Collapse
|
26
|
Kim J, Hsia EYC, Kim J, Sever N, Beachy PA, Zheng X. Simultaneous measurement of smoothened entry into and exit from the primary cilium. PLoS One 2014; 9:e104070. [PMID: 25119726 PMCID: PMC4132089 DOI: 10.1371/journal.pone.0104070] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Accepted: 07/05/2014] [Indexed: 11/19/2022] Open
Abstract
Ciliary accumulation of signaling proteins must result from a rate of ciliary entry that exceeds ciliary exit, but approaches for distinguishing ciliary entry vs. exit are lacking. Using a photoconvertible fluorescent protein tag, we establish an assay that allows a separate but simultaneous examination of ciliary entry and exit of the Hedgehog signaling protein Smoothened in individual cells. We show that KAAD-cyclopamine selectively blocks entry, whereas ciliobrevin interferes initially with exit and eventually with both entry and exit of ciliary Smoothened. Our study provides an approach to understanding regulation of ciliary entry vs. exit of Hedgehog signaling components as well as other ciliary proteins.
Collapse
Affiliation(s)
- Jynho Kim
- Departments of Biochemistry and Developmental Biology, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, United States of America
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, United States of America
| | - Elaine Y. C. Hsia
- Department of Anatomy and Regenerative Biology, George Washington University School of Medicine and Health Sciences, Washington, DC, United States of America
| | - James Kim
- Departments of Biochemistry and Developmental Biology, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, United States of America
- Division of Hematology-Oncology, Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern, Dallas, TX, United States of America
| | - Navdar Sever
- Departments of Biochemistry and Developmental Biology, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, United States of America
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, United States of America
| | - Philip A. Beachy
- Departments of Biochemistry and Developmental Biology, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, United States of America
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, United States of America
- * E-mail: (PAB); (XZ)
| | - Xiaoyan Zheng
- Departments of Biochemistry and Developmental Biology, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, United States of America
- Department of Anatomy and Regenerative Biology, George Washington University School of Medicine and Health Sciences, Washington, DC, United States of America
- * E-mail: (PAB); (XZ)
| |
Collapse
|
27
|
Lee ST, Welch KD, Panter KE, Gardner DR, Garrossian M, Chang CWT. Cyclopamine: from cyclops lambs to cancer treatment. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:7355-7362. [PMID: 24754790 DOI: 10.1021/jf5005622] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
In the late 1960s, the steroidal alkaloid cyclopamine was isolated from the plant Veratrum californicum and identified as the teratogen responsible for craniofacial birth defects including cyclops in the offspring of sheep grazing on mountain ranges in the western United States. Cyclopamine was found to inhibit the hedgehog (Hh) signaling pathway, which plays a critical role in embryonic development. More recently, aberrant Hh signaling has been implicated in several types of cancer. Thus, inhibitors of the Hh signaling pathway, including cyclopamine derivatives, have been targeted as potential treatments for certain cancers and other diseases associated with the Hh signaling pathway. A brief history of cyclopamine and cyclopamine derivatives investigated for the treatment of cancer is presented.
Collapse
Affiliation(s)
- Stephen T Lee
- Poisonous Plant Research Laboratory, Agricultural Research Service, U.S. Department of Agriculture, 1150 East 1400 North, Logan, Utah 84341, United States
| | | | | | | | | | | |
Collapse
|
28
|
Chatzopoulou M, Antoniou A, Pitsinos EN, Bantzi M, Koulocheri SD, Haroutounian SA, Giannis A. A fast entry to furanoditerpenoid-based Hedgehog signaling inhibitors: identifying essential structural features. Org Lett 2014; 16:3344-7. [PMID: 24895068 DOI: 10.1021/ol501370j] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
New, small molecule Hedgehog (Hh) pathway inhibitors, such as the furanoditerpenoid taepeenin D, are of high medicinal importance. To establish key structure-activity relationships (SARs) for this lead, a synthetic sequence has been developed for the expedient preparation of several derivatives and their evaluation as Hh inhibitors exploiting its structural similarity to abietic acid. While C(14) substitution is not essential for biological activity, the presence of a hydrogen bond acceptor at C(6) and an intact benzofuran moiety are.
Collapse
Affiliation(s)
- Maria Chatzopoulou
- NCSR "Demokritos", P.O. Box 60228, GR-153 10 Ag. Paraskevi, Athens, Greece
| | | | | | | | | | | | | |
Collapse
|
29
|
Betti M, Genesio E, Marconi G, Sanna Coccone S, Wiedenau P. A Scalable Route to the SMO Receptor Antagonist SEN826: Benzimidazole Synthesis via Enhanced in Situ Formation of the Bisulfite–Aldehyde Complex. Org Process Res Dev 2014. [DOI: 10.1021/op4002092] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Matteo Betti
- Process
Chemistry Unit, Siena Biotech SpA, 53100 Siena, Italy
| | - Eva Genesio
- Compound Management & Analysis Unit, Siena Biotech SpA, 53100 Siena, Italy
| | | | | | | |
Collapse
|
30
|
The sonic hedgehog factor GLI1 imparts drug resistance through inducible glucuronidation. Nature 2014; 511:90-3. [PMID: 24870236 PMCID: PMC4138053 DOI: 10.1038/nature13283] [Citation(s) in RCA: 148] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Accepted: 03/26/2014] [Indexed: 12/18/2022]
Abstract
Drug resistance is a major hurdle in oncology. Responses of acute myeloid leukaemia (AML) patients to cytarabine (Ara-C)-based therapies are often short lived with a median overall survival of months. Therapies are under development to improve outcomes and include targeting the eukaryotic translation initiation factor (eIF4E) with its inhibitor ribavirin. In a Phase II clinical trial in poor prognosis AML, ribavirin monotherapy yielded promising responses including remissions; however, all patients relapsed. Here we identify a novel form of drug resistance to ribavirin and Ara-C. We observe that the sonic hedgehog transcription factor glioma-associated protein 1 (GLI1) and the UDP glucuronosyltransferase (UGT1A) family of enzymes are elevated in resistant cells. UGT1As add glucuronic acid to many drugs, modifying their activity in diverse tissues. GLI1 alone is sufficient to drive UGT1A-dependent glucuronidation of ribavirin and Ara-C, and thus drug resistance. Resistance is overcome by genetic or pharmacological inhibition of GLI1, revealing a potential strategy to overcome drug resistance in some patients.
Collapse
|
31
|
Trinh TN, McLaughlin EA, Gordon CP, McCluskey A. Hedgehog signalling pathway inhibitors as cancer suppressing agents. MEDCHEMCOMM 2014. [DOI: 10.1039/c3md00334e] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
32
|
Ruat M, Faure H, Daynac M. Smoothened, Stem Cell Maintenance and Brain Diseases. TOPICS IN MEDICINAL CHEMISTRY 2014. [DOI: 10.1007/7355_2014_83] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
33
|
Amable L, Gavin E, Kudo K, Meng E, Rocconi RP, Shevde LA, Reed E. GLI1 upregulates C-JUN through a specific 130-kDa isoform. Int J Oncol 2013; 44:655-61. [PMID: 24366538 PMCID: PMC3928471 DOI: 10.3892/ijo.2013.2222] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Accepted: 06/04/2013] [Indexed: 01/02/2023] Open
Abstract
The Hedgehog pathway is molecularly linked to increased resistance to cisplatin and increased repair of platinum-DNA damage, through C-JUN. GLI1, which has five known isoforms, is a positive transcriptional regulator in Hedgehog. Southwestern blot assay, EMSA and ChIP assays indicate that only one of five isoforms of GLI1 may be responsible for the Hedgehog link with C-JUN and thus, increased platinum-DNA adduct repair. Cancer tissues express this 130-kDa isoform at levels 6-fold higher than non-malignant tissues; and this isoform exists in abundance in six of seven ovarian cancer cell lines examined.
Collapse
Affiliation(s)
- Lauren Amable
- National Institute on Minority Health and Health Disparities, National Institutes of Health, Bethesda, MD 20892, USA
| | - Elaine Gavin
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA
| | - Kenji Kudo
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA
| | - Erhong Meng
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA
| | - Rodney P Rocconi
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA
| | - Lalita A Shevde
- Department of Pathology, Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Eddie Reed
- National Institute on Minority Health and Health Disparities, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
34
|
O’Reilly KE, Vega-Saenz de Miera E, Segura MF, Friedman E, Poliseno L, Han SW, Zhong J, Zavadil J, Pavlick A, Hernando E, Osman I. Hedgehog pathway blockade inhibits melanoma cell growth in vitro and in vivo. Pharmaceuticals (Basel) 2013; 6:1429-50. [PMID: 24287465 PMCID: PMC3854019 DOI: 10.3390/ph6111429] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Revised: 10/24/2013] [Accepted: 10/31/2013] [Indexed: 12/12/2022] Open
Abstract
Previous reports have demonstrated a role for hedgehog signaling in melanoma progression, prompting us to explore the therapeutic benefit of targeting this pathway in melanoma. We profiled a panel of human melanoma cell lines and control melanocytes for altered expression of hedgehog pathway members and determined the consequences of both genetic and pharmacological inhibition of the hedgehog pathway activator Smoothened (SMO) in melanoma, both in vitro and in vivo. We also examined the relationship between altered expression of hedgehog pathway mediators and survival in a well-characterized cohort of metastatic melanoma patients with prospectively collected follow up information. Studies revealed that over 40% of the melanoma cell lines examined harbored significantly elevated levels of the hedgehog pathway mediators SMO, GLI2, and PTCH1 compared to melanocytes (p < 0.05). SMO inhibition using siRNA and the small molecule inhibitor, NVP-LDE-225, suppressed melanoma growth in vitro, particularly in those cell lines with moderate SMO and GLI2 expression. NVP-LDE-225 also induced apoptosis in vitro and inhibited melanoma growth in a xenograft model. Gene expression data also revealed evidence of compensatory up-regulation of two other developmental pathways, Notch and WNT, in response to hedgehog pathway inhibition. Pharmacological and genetic SMO inhibition also downregulated genes involved in human embryonic stem cell pluripotency. Finally, increased SMO expression and decreased expression of the hedgehog pathway repressor GLI3 correlated with shorter post recurrence survival in metastatic melanoma patients. Our data demonstrate that hedgehog pathway inhibition might be a promising targeted therapy in appropriately selected metastatic melanoma patients.
Collapse
Affiliation(s)
- Kathryn E. O’Reilly
- Department of Dermatology, New York University School of Medicine, New York, NY 10016, USA; E-Mails: (K.E.O.); (E.V.-s.M.)
| | - Eleazar Vega-Saenz de Miera
- Department of Dermatology, New York University School of Medicine, New York, NY 10016, USA; E-Mails: (K.E.O.); (E.V.-s.M.)
| | - Miguel F. Segura
- Department of Pathology, New York University School of Medicine, New York, NY 10016, USA; E-Mails: (M.F.S.); (J.Z.); (E.H.)
- Laboratory of Translational Research in Childhood Cancer, Vall d’Hebron Research Institute, Barcelona 08035, Spain
| | - Erica Friedman
- Department of Surgery, New York University School of Medicine, New York, NY 10016, USA; E-Mail:
| | - Laura Poliseno
- Oncogenomics Unit, Core Research Laboratory, Istituto Toscano Tumori, Pisa 56124, Italy; E-Mail:
| | - Sung Won Han
- Department of Population Health, New York University School of Medicine, New York, NY 10016, USA; E-Mails: (S.W.H.); (J.Z.)
| | - Judy Zhong
- Department of Population Health, New York University School of Medicine, New York, NY 10016, USA; E-Mails: (S.W.H.); (J.Z.)
| | - Jiri Zavadil
- Department of Pathology, New York University School of Medicine, New York, NY 10016, USA; E-Mails: (M.F.S.); (J.Z.); (E.H.)
- NYU Center for Health Informatics and Bioinformatics, New York University Langone Medical Center, New York, NY 10016, USA
- International Agency for Research on Cancer, 69372 Lyon Cedex 08, France
| | - Anna Pavlick
- Department of Medicine, New York University School of Medicine, New York, NY 10016, USA; E-Mail:
| | - Eva Hernando
- Department of Pathology, New York University School of Medicine, New York, NY 10016, USA; E-Mails: (M.F.S.); (J.Z.); (E.H.)
| | - Iman Osman
- Department of Dermatology, New York University School of Medicine, New York, NY 10016, USA; E-Mails: (K.E.O.); (E.V.-s.M.)
- Department of Medicine, New York University School of Medicine, New York, NY 10016, USA; E-Mail:
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-212-263-9076; Fax: +1-212-263-9090
| |
Collapse
|
35
|
Gajjar A, Stewart CF, Ellison DW, Kaste S, Kun LE, Packer RJ, Goldman S, Chintagumpala M, Wallace D, Takebe N, Boyett JM, Gilbertson RJ, Curran T. Phase I study of vismodegib in children with recurrent or refractory medulloblastoma: a pediatric brain tumor consortium study. Clin Cancer Res 2013; 19:6305-12. [PMID: 24077351 DOI: 10.1158/1078-0432.ccr-13-1425] [Citation(s) in RCA: 159] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
PURPOSE To investigate the safety, dose-limiting toxicities, and pharmacokinetics of the smoothened inhibitor vismodegib in children with refractory or relapsed medulloblastoma. EXPERIMENTAL DESIGN Initially, vismodegib was administered daily at 85 mg/m(2) and escalated to 170 mg/m(2). The study was then revised to investigate a flat-dosing schedule of 150 mg for patients with small body surface area (BSA, 0.67-1.32 m(2)) or 300 mg for those who were larger (BSA, 1.33-2.20 m(2)). Pharmacokinetics were performed during the first course of therapy, and the right knees of all patients were imaged to monitor bone toxicity. Immunohistochemical analysis was done to identify patients with Sonic Hedgehog (SHH)-subtype medulloblastoma. RESULTS Thirteen eligible patients were enrolled in the initial study: 6 received 85 mg/m(2) vismodegib, and 7 received 170 mg/m(2). Twenty eligible patients were enrolled in the flat-dosing part of the study: 10 at each dosage level. Three dose-limiting toxicities were observed, but no drug-related bone toxicity was documented. The median (range) vismodegib penetration in the cerebrospinal fluid (CSF) was 0.53 (0.26-0.78), when expressed as a ratio of the concentration of vismodegib in the CSF to that of the unbound drug in plasma. Antitumor activity was seen in 1 of 3 patients with SHH-subtype disease whose tumors were evaluable, and in none of the patients in the other subgroups. CONCLUSIONS Vismodegib was well tolerated in children with recurrent or refractory medulloblastoma; only two dose-limiting toxicities were observed with flat dosing. The recommended phase II study dose is 150 or 300 mg, depending on the patient's BSA. Clin Cancer Res; 19(22); 6305-12. ©2013 AACR.
Collapse
Affiliation(s)
- Amar Gajjar
- Authors' Affiliations: Departments of Oncology, Pharmaceutical Sciences, Pathology, Radiological Sciences, Biostatistics, and Developmental Neurobiology, St Jude Children's Research Hospital, Memphis, Tennessee; Center for Neuroscience Research, Children's National Medical Center, Washington, DC; Division of Hematology-Oncology, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois; Department of Pediatrics, Texas Children's Hospital, Houston, Texas; Investigational Drug Branch, Cancer Therapy Evaluation Program, National Cancer Institute, Bethesda, Maryland; and Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Shevde LA, Samant RS. Nonclassical hedgehog-GLI signaling and its clinical implications. Int J Cancer 2013; 135:1-6. [PMID: 23929208 DOI: 10.1002/ijc.28424] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Accepted: 07/25/2013] [Indexed: 01/07/2023]
Abstract
Hedgehog (Hh) signaling regulates embryonic patterning and organ morphogenesis. It is also involved in regeneration and repair of tissues. Aberrant Hh pathway activation is a feature of many human malignancies. Classical Hh signaling is activated by Hh ligands that can signal in an autocrine or paracrine manner generating a tumor-stromal crosstalk. In contrast to canonical Hh signaling that culminates in the activation of GLI transcription factors, "noncanonical" Hh signaling does not involve GLI transcriptional activity. Several Hh pathway inhibitors have progressed to clinical trials, where the outcomes have not been very encouraging in many solid tumors. Here we discuss the likely role of "nonclassical" Hh-GLI signaling that is activated by growth factors and cytokines from the tumor and/or its microenvironment; these uncouple Hh signaling from the vital regulatory protein Smoothened, and result in the activation of GLI. While efforts are being made to target tumor-intrinsic Hh targets, it is imperative to acknowledge the role of the complex molecular networks and crosstalk between different components of the tumor microenvironment that can result in the emergence of resistance to conventional Hh therapy. These considerations have an important bearing on appreciating the need to mitigate the effects of tumor microenvironment to combat resistance to Hh inhibitors.
Collapse
Affiliation(s)
- Lalita A Shevde
- Department of Pathology, The UAB Comprehensive Cancer Center, University of Alabama, Birmingham, AL
| | | |
Collapse
|
37
|
Chung Y, Fu E. Crosstalk between Shh and TGF-β signaling in cyclosporine-enhanced cell proliferation in human gingival fibroblasts. PLoS One 2013; 8:e70128. [PMID: 23922933 PMCID: PMC3724833 DOI: 10.1371/journal.pone.0070128] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Accepted: 06/14/2013] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Immunosuppressant cyclosporine-A induces gingival hyperplasia, which is characterized by increased fibroblast proliferation and overproduction of extracellular matrix components and regulated by transforming growth factor-beta (TGF-β). The TGF-β and Sonic hedgehog (Shh) pathways both mediate cell proliferation. Crosstalk between these pathways in cancer has recently been proposed, but the hierarchical pattern of this crosstalk remains unclear. In normal fibroblasts, a TGF-β-stimulating Shh pattern was observed in induced fibrosis. However, Shh pathway involvement in cyclosporine-enhanced gingival proliferation and the existence of crosstalk with the TGF-β pathway remain unclear. METHODOLOGY/PRINCIPAL FINDINGS Cyclosporine enhanced mRNA and protein levels of TGF-β and Shh in human gingival fibroblasts (RT-PCR and western blotting). A TGF-β pathway inhibitor mitigated cyclosporine-enhanced cell proliferation and an Shh pathway inhibitor attenuated cyclosporine-enhanced proliferation in fibroblasts (MTS assay and/or RT-PCR of PCNA). Exogenous TGF-β increased Shh expression; however, exogenous Shh did not alter TGF-β expression. The TGF-β pathway inhibitor mitigated cyclosporine-upregulated Shh expression, but the Shh pathway inhibitor did not alter cyclosporine-upregulated TGF-β expression. CONCLUSIONS/SIGNIFICANCE The TGF-β and Shh pathways mediate cyclosporine-enhanced gingival fibroblast proliferation. Exogenous TGF-β increased Shh expression, and inhibition of TGF-β signaling abrogated the cyclosporine-induced upregulation of Shh expression; however, TGF-β expression appeared unchanged by enhanced or inhibited Shh signaling. This is the first study demonstrating the role of Shh in cyclosporine-enhanced gingival cell proliferation; moreover, it defines a hierarchical crosstalk pattern in which TGF-β regulates Shh in gingival fibroblasts. Understanding the regulation of cyclosporine-related Shh and TGF-β signaling and crosstalk in gingival overgrowth will clarify the mechanism of cyclosporine-induced gingival enlargement and help develop targeted therapeutics for blocking these pathways, which can be applied in pre-clinical and clinical settings.
Collapse
Affiliation(s)
- Yi Chung
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan, Republic of China
- Department of Periodontology, School of Dentistry, National Defense Medical Center and Tri-Service General Hospital, Taipei, Taiwan, Republic of China
| | - Earl Fu
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan, Republic of China
- Department of Periodontology, School of Dentistry, National Defense Medical Center and Tri-Service General Hospital, Taipei, Taiwan, Republic of China
- * E-mail:
| |
Collapse
|
38
|
Gonnissen A, Isebaert S, Haustermans K. Hedgehog signaling in prostate cancer and its therapeutic implication. Int J Mol Sci 2013; 14:13979-4007. [PMID: 23880852 PMCID: PMC3742228 DOI: 10.3390/ijms140713979] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Revised: 06/28/2013] [Accepted: 07/01/2013] [Indexed: 01/02/2023] Open
Abstract
Activation of Hedgehog (Hh) signaling is implicated in the development and progression of several tumor types, including prostate cancer, which is still the most common non-skin malignancy and the third leading cause of cancer-related mortality in men in industrialized countries worldwide. Several studies have indicated that the Hh pathway plays a crucial role in the development as well as in the progression of this disease to more aggressive and even therapy-resistant disease states. Moreover, preclinical data have shown that inhibition of Hh signaling has the potential to reduce prostate cancer invasiveness and metastatic potential. Clinical trials investigating the benefit of Hh inhibitors in patients with prostate cancer have recently been initiated. However, acquired drug resistance has already been observed in other tumor types after long-term Hh inhibition. Therefore, combining Hh inhibitors with ionizing radiation, chemotherapy or other molecular targeted agents could represent an alternative therapeutic strategy. In this review, we will highlight the role of Hh signaling in the development and progression of prostate cancer and summarize the different therapeutic applications of Hedgehog inhibition.
Collapse
Affiliation(s)
- Annelies Gonnissen
- Laboratory of Experimental Radiotherapy, Department of Oncology, KU Leuven, & Radiation Oncology, University Hospitals Leuven, Herestraat 49, 3000 Leuven, Belgium.
| | | | | |
Collapse
|
39
|
Briscoe J, Thérond PP. The mechanisms of Hedgehog signalling and its roles in development and disease. Nat Rev Mol Cell Biol 2013; 14:416-29. [DOI: 10.1038/nrm3598] [Citation(s) in RCA: 1212] [Impact Index Per Article: 101.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
40
|
The unfolded protein response selectively targets active smoothened mutants. Mol Cell Biol 2013; 33:2375-87. [PMID: 23572559 DOI: 10.1128/mcb.01445-12] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Hedgehog signaling pathway, an essential regulator of developmental patterning, has been implicated in playing causative and survival roles in a range of human cancers. The signal-transducing component of the pathway, Smoothened, has revealed itself to be an efficacious therapeutic target in combating oncogenic signaling. However, therapeutic challenges remain in cases where tumors acquire resistance to Smoothened antagonists, and also in cases where signaling is driven by active Smoothened mutants that exhibit reduced sensitivity to these compounds. We previously demonstrated that active Smoothened mutants are subjected to prolonged endoplasmic reticulum (ER) retention, likely due to their mutations triggering conformation shifts that are detected by ER quality control. We attempted to exploit this biology and demonstrate that deregulated Hedgehog signaling driven by active Smoothened mutants is specifically attenuated by ER stressors that induce the unfolded protein response (UPR). Upon UPR induction, active Smoothened mutants are targeted by ER-associated degradation, resulting in attenuation of inappropriate pathway activity. Accordingly, we found that the UPR agonist thapsigargin attenuated mutant Smoothened-induced phenotypes in vivo in Drosophila melanogaster. Wild-type Smoothened and physiological Hedgehog patterning were not affected, suggesting that UPR modulation may provide a novel therapeutic window to be evaluated for targeting active Smoothened mutants in disease.
Collapse
|
41
|
Spaccapelo L, Galantucci M, Neri L, Contri M, Pizzala R, D'Amico R, Ottani A, Sandrini M, Zaffe D, Giuliani D, Guarini S. Up-regulation of the canonical Wnt-3A and Sonic hedgehog signaling underlies melanocortin-induced neurogenesis after cerebral ischemia. Eur J Pharmacol 2013; 707:78-86. [PMID: 23535605 DOI: 10.1016/j.ejphar.2013.03.030] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 03/05/2013] [Accepted: 03/07/2013] [Indexed: 12/31/2022]
Abstract
In experimental cerebral ischemia, melanocortin MC4 receptor agonists induce neuroprotection and neurogenesis with subsequent long-lasting functional recovery. Here we investigated the molecular mechanisms underlying melanocortin-induced neurogenesis. Gerbils were subjected to transient global cerebral ischemia, then they were treated every 12 h, and until sacrifice, with 5-bromo-2'-deoxyuridine (BrdU; to label proliferating cells), and the melanocortin analog [Nle(4),d-Phe(7)]α-melanocyte-stimulating hormone (NDP-α-MSH) or saline. NDP-α-MSH increased hippocampus dentate gyrus (DG) expression of Wnt-3A, β-catenin, Sonic hedgehog (Shh), Zif268, interleukin-10 (IL-10) and doublecortin (DCX), as detected at days 3, 6 and 10 after the ischemic insult. Further, an elevated number of BrdU immunoreactive cells was found at days 3 and 10, and an improved histological picture with reduced neuronal loss at day 10, associated with learning and memory recovery. Pharmacological blockade of the Wnt-3A/β-catenin and Shh pathways, as well as of melanocortin MC4 receptors, prevented all effects of NDP-α-MSH. These data indicate that, in experimental brain ischemia, treatment with melanocortins acting at MC4 receptors induces neural stem/progenitor cell proliferation in the DG by promptly and effectively triggering the canonical Wnt-3A/β-catenin and Shh signaling pathways. Activation of these pathways is associated with up-regulation of the repair factor Zif268 and the neurogenesis facilitating factor IL-10, and it seems to address mainly toward a neuronal fate, as indicated by the increase in DCX positive cells.
Collapse
Affiliation(s)
- Luca Spaccapelo
- Department of Biomedical, Metabolic and Neural Sciences, Section of Pharmacology and Molecular Medicine, University of Modena and Reggio Emilia, Via G. Campi 287, 41125 Modena, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Hedgehog signalling pathway in adult liver: a major new player in hepatocyte metabolism and zonation? Med Hypotheses 2013; 80:589-94. [PMID: 23433827 DOI: 10.1016/j.mehy.2013.01.032] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Accepted: 01/27/2013] [Indexed: 12/13/2022]
Abstract
Metabolic Zonation, i.e. the heterogeneous distribution of different metabolic pathways in different zones of the lobules, forms the basis of proper function of the liver in metabolic homeostasis and its regulation. According to recent results, Metabolic Zonation is controlled by the Wnt/β-catenin signalling pathway. Here, we hypothesize that hedgehog signalling via Indian hedgehog ligands plays an equal share in this control although, up to now, hedgehog signalling is considered not to be active in healthy adult hepatocytes. We provide broad evidence taken mainly by analogy from other mature organs that hedgehog signalling in adult hepatocytes may particularly control liver lipid and cholesterol metabolism as well as certain aspects of hormone biosynthesis. Like Wnt/β-catenin signalling, it seems to act on a very low level forming a porto-central gradient in the lobules opposite to that of Wnt/β-catenin signalling with which it is interacting by mutual inhibition. Consequently, modulation of hedgehog signalling by endogenous and exogenous agents may considerably impact on liver lipid metabolism and beyond. If functioning improperly, it may possibly contribute to diseases like non-alcoholic fatty liver disease (NAFLD) and other diseases such as lipodystrophy.
Collapse
|
43
|
Betti M, Castagnoli G, Panico A, Sanna Coccone S, Wiedenau P. Development of a Scalable Route to the SMO Receptor Antagonist SEN794. Org Process Res Dev 2012. [DOI: 10.1021/op300170q] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Matteo Betti
- Process Chemistry, Siena Biotech SpA, Strada del Petriccio e Belriguardo 35,
53100 Siena, Italy
| | - Giulio Castagnoli
- Process Chemistry, Siena Biotech SpA, Strada del Petriccio e Belriguardo 35,
53100 Siena, Italy
| | - Alessandro Panico
- Process Chemistry, Siena Biotech SpA, Strada del Petriccio e Belriguardo 35,
53100 Siena, Italy
| | - Salvatore Sanna Coccone
- Process Chemistry, Siena Biotech SpA, Strada del Petriccio e Belriguardo 35,
53100 Siena, Italy
| | - Paul Wiedenau
- Process Chemistry, Siena Biotech SpA, Strada del Petriccio e Belriguardo 35,
53100 Siena, Italy
| |
Collapse
|
44
|
Alison MR, Lin WR, Lim SML, Nicholson LJ. Cancer stem cells: in the line of fire. Cancer Treat Rev 2012; 38:589-598. [PMID: 22469558 DOI: 10.1016/j.ctrv.2012.03.003] [Citation(s) in RCA: 166] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Revised: 03/07/2012] [Accepted: 03/09/2012] [Indexed: 12/20/2022]
Abstract
Most tumours appear to contain a sub-population(s) of self-renewing and expanding stem cells known as cancer stem cells (CSCs). The CSC model proposes that CSCs are at the apex of a hierarchically organized cell population, somewhat akin to normal tissue organization. Selection pressures may also facilitate the stochastic clonal expansion of sub-sets of cancer cells that may co-exist with CSCs and their progeny, moreover the trait of stemness may be more fluid than hitherto expected, and cells may switch between the stem and non-stem cell state. A large body of evidence points to the fact that CSCs are particularly resistant to radiotherapy and chemotherapy. In this review we discuss the basis of such resistance that highlights the roles of ABC transporters, aldehyde dehydrogenase (ALDH) activity, intracellular signalling pathways, the DNA damage response, hypoxia and proliferative quiescence as being significant determinants. In the light of such observations, we outline strategies for the successful eradication of CSCs, including targeting the self-renewal controlling pathways (Wnt, Notch and Hedgehog), ALDH activity and ABC transporters, blocking epithelial mesenchymal transition (EMT), differentiation therapy and niche targeting.
Collapse
Affiliation(s)
- Malcolm R Alison
- Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK.
| | | | | | | |
Collapse
|
45
|
Agyeman A, Mazumdar T, Houghton JA. Regulation of DNA damage following termination of Hedgehog (HH) survival signaling at the level of the GLI genes in human colon cancer. Oncotarget 2012; 3:854-68. [PMID: 23097684 PMCID: PMC3478462 DOI: 10.18632/oncotarget.586] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Accepted: 08/18/2012] [Indexed: 01/23/2023] Open
Abstract
Transcriptional regulation of the Hedgehog (HH) signaling response is mediated by GLI genes (GLI1, GLI2) downstream of SMO, that are also activated by oncogenic signaling pathways. We have demonstrated the importance of targeting GLI downstream of SMO in the induction of cell death in human colon carcinoma cells. In HT29 cells inhibition of GLI1/GLI2 by the small molecule inhibitor GANT61 induced DNA double strand breaks (DSBs) and activation of ATM, MDC1 and NBS1; γH2AX and MDC1, NBS1 and MDC1 co-localized in nuclear foci. Early activation of ATM was decreased by 24 hr, when p-NBS1Ser343, activated by ATM, was significantly reduced in cell extracts. Bound γH2AX was detected in isolated chromatin fractions or nuclei during DNA damage but not during DNA repair. MDC1 was tightly bound to chromatin at 32 hr as cells accumulated in early S-phase prior to becoming subG1, and during DNA repair. Limited binding of NBS1 was detected at all times during DNA damage but was strongly bound during DNA repair. Transient overexpression of NBS1 protected HT29 cells from GANT61-induced cell death, while knockdown of H2AX by H2AXshRNA delayed DNA damage signaling. Data demonstrate following GLI1/GLI2 inhibition: 1) induction of DNA damage in cells that are also resistant to SMO inhibitors, 2) dynamic interactions between γH2AX, MDC1 and NBS1 in single cell nuclei and in isolated chromatin fractions, 3) expression and chromatin binding properties of key mediator proteins that mark DNA damage or DNA repair, and 4) the importance of NBS1 in the DNA damage response mechanism.
Collapse
Affiliation(s)
- Akwasi Agyeman
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | | | | |
Collapse
|
46
|
Riobo NA. Cholesterol and its derivatives in Sonic Hedgehog signaling and cancer. Curr Opin Pharmacol 2012; 12:736-41. [PMID: 22832232 DOI: 10.1016/j.coph.2012.07.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Revised: 07/02/2012] [Accepted: 07/03/2012] [Indexed: 10/28/2022]
Abstract
The connection between the Hedgehog (HH) pathway and cholesterol has been recognized since the early days that shaped our current understanding of this unique pathway. Cholesterol and related lipids are intricately linked to HH signaling: from the role of cholesterol in HH biosynthesis to the modulation of HH signal reception and transduction by other sterols, passing by the phylogenetic relationships among many components of the HH pathway that resemble or contain lipid-binding domains. Here I review the connections between HH signaling, cholesterol and its derivatives and analyze the potential implications for HH-dependent cancers.
Collapse
Affiliation(s)
- Natalia A Riobo
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA, USA.
| |
Collapse
|
47
|
Rosow DE, Liss AS, Strobel O, Fritz S, Bausch D, Valsangkar NP, Alsina J, Kulemann B, Park JK, Yamaguchi J, LaFemina J, Thayer SP. Sonic Hedgehog in pancreatic cancer: from bench to bedside, then back to the bench. Surgery 2012; 152:S19-32. [PMID: 22770959 DOI: 10.1016/j.surg.2012.05.030] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Accepted: 05/11/2012] [Indexed: 12/21/2022]
Affiliation(s)
- David E Rosow
- Pancreatic Biology Laboratory, Department of Surgery, Massachusetts General Hospital, Boston, MA, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Detection of canonical hedgehog signaling in breast cancer by 131-iodine-labeled derivatives of the sonic hedgehog protein. J Biomed Biotechnol 2012; 2012:639562. [PMID: 22811598 PMCID: PMC3395403 DOI: 10.1155/2012/639562] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Revised: 04/23/2012] [Accepted: 05/07/2012] [Indexed: 01/09/2023] Open
Abstract
Activation of hedgehog (HH) pathway signaling is observed in many tumors. Due to a feedback loop, the HH receptor Patched (PTCH-1) is overexpressed in tumors with activated HH signaling. Therefore, we sought to radiolabel the PTCH-1 ligand sonic (SHH) for detection of cancer cells with canonical HH activity. Receptor binding of 131I-SHH was increased in cell lines with high HH pathway activation. Our findings also show that PTCH-1 receptor expression is decreased upon treatment with HH signaling inhibitors, and receptor binding of 131I-SHH is significantly decreased following treatment with cyclopamine. In vivo imaging and biodistribution studies revealed significant accumulation of 131I-SHH within tumor tissue as compared to normal organs. Tumor-to-muscle ratios were approximately 8 : 1 at 5 hours, while tumor to blood and tumor to bone were 2 : 1 and 5 : 1, respectively. Significant uptake was also observed in liver and gastrointestinal tissue. These studies show that 131I-SHH is capable of in vivo detection of breast tumors with high HH signaling. We further demonstrate that the hedgehog receptor PTCH-1 is downregulated upon treatment with hedgehog inhibitors. Our data suggests that radiolabeled SHH derivatives may provide a method to determine response to SHH-targeted therapies.
Collapse
|
49
|
Rodriguez-Blanco J, Schilling NS, Tokhunts R, Giambelli C, Long J, Liang Fei D, Singh S, Black KE, Wang Z, Galimberti F, Bejarano PA, Elliot S, Glassberg MK, Nguyen DM, Lockwood WW, Lam WL, Dmitrovsky E, Capobianco AJ, Robbins DJ. The hedgehog processing pathway is required for NSCLC growth and survival. Oncogene 2012; 32:2335-45. [PMID: 22733134 DOI: 10.1038/onc.2012.243] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Considerable interest has been generated from the results of recent clinical trials using smoothened (SMO) antagonists to inhibit the growth of hedgehog (HH) signaling-dependent tumors. This interest is tempered by the discovery of SMO mutations mediating resistance, underscoring the rationale for developing therapeutic strategies that interrupt HH signaling at levels distinct from those inhibiting SMO function. Here, we demonstrate that HH-dependent non-small cell lung carcinoma (NSCLC) growth is sensitive to blockade of the HH pathway upstream of SMO, at the level of HH ligand processing. Individually, the use of different lentivirally delivered shRNA constructs targeting two functionally distinct HH-processing proteins, skinny hedgehog (SKN) or dispatched-1 (DISP-1), in NSCLC cell lines produced similar decreases in cell proliferation and increased cell death. Further, providing either an exogenous source of processed HH or a SMO agonist reverses these effects. The attenuation of HH processing, by knocking down either of these gene products, also abrogated tumor growth in mouse xenografts. Finally, we extended these findings to primary clinical specimens, showing that SKN is frequently overexpressed in NSCLC and that higher DISP-1 expression is associated with an unfavorable clinical outcome. Our results show a critical role for HH processing in HH-dependent tumors, identifies two potential druggable targets in the HH pathway, and suggest that similar therapeutic strategies could be explored to treat patients harboring HH ligand-dependent cancers.
Collapse
Affiliation(s)
- J Rodriguez-Blanco
- Molecular Oncology Program, Department of Surgery, University of Miami, Miami, FL 33136, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Abstract
The Veratrum alkaloid cyclopamine, an inhibitor of cancer stem cell growth, was used as a representative scaffold to evaluate the inhibitory impact of glycosylation with a group of nonmetabolic saccharides, such as d-threose. In a five-step divergent process, a 32-member glycoside library was created and assayed to determine that glycosides of such sugars notably improved the GI50 value of cyclopamine while metabolic sugars, such as d-glucose, did not.
Collapse
|