1
|
Li D, Shen S, Liu C, Guo T, Liu Y, Pan P, Zhao X, Ma Y, Li L, Huang S, Shen W, YoupingZhang, Jiang B, Wang W, Yin Q, Zhang Y. Discovery of novel and highly potent anticancer agents enabled by selenium scanning of noscapine. Eur J Med Chem 2025; 293:117714. [PMID: 40339472 DOI: 10.1016/j.ejmech.2025.117714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 04/20/2025] [Accepted: 04/29/2025] [Indexed: 05/10/2025]
Abstract
Herein, the structural modification of noscapine via an elegant selenium scanning strategy has been demonstrated, which enables the production of three classes of novel seleno-containing noscapinoids, namely 6', 7', and 9'-seleno-substituted noscapines. Among them, 9'-seleno-substituted noscapines exhibited superior in vitro anti-proliferative activity, and 9'-cycloheptylselenomethyl-noscapine 17a16 with a large hydrophobic cycloheptyl group showed the most potent activity and good selectivity. Unlike most of the reported noscapinoids that induce G2/M phase arrest by targeting microtubules, 17a16 exhibited a distinct ability to induce S-phase arrest and displayed superior potency in inducing apoptosis, which attribute to the activation of two parallel checkpoint pathways orchestrating DNA damage response, including DNA-PKcs-dependent p53 stabilization and ATR-Chk1 axis activation. Dissecting the upstream mechanism revealed that 17a16 targets mitochondria and induces mitochondrial dysfunction. This study elucidates the interplay of mitochondrial stress, DNA damage response, p53 and ATR-Chk1 checkpoint activation in mediating the anticancer effects of 17a16. Furthermore, 17a16 treatment significantly suppressed tumor growth in p53-deficient JeKo-1 subcutaneous xenograft model in vivo, without inducing systemic toxicity. Overall, our findings highlight 17a16 as a promising lead compound in cancer therapy and demonstrate the potential of selenium scanning as a valuable strategy for anticancer drug discovery.
Collapse
Affiliation(s)
- Defeng Li
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, and School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Shuting Shen
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, 201210, PR China; School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, PR China
| | - Chuanxu Liu
- Department of Lymphoma, Fudan University Shanghai Cancer Center, Shanghai, 200032, PR China
| | - Tingyu Guo
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, and School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Yuhuan Liu
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, and School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Peng Pan
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, and School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Xiaoyi Zhao
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, and School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Yiwen Ma
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, and School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Lei Li
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, 201210, PR China; School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, PR China
| | - Shitao Huang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, 201210, PR China; School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, PR China
| | - Wenhao Shen
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, 201210, PR China; School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, PR China
| | - YoupingZhang
- School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, PR China
| | - Biao Jiang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, 201210, PR China
| | - Wei Wang
- Department of Pharmacology and Toxicology and BIO5 Institute, University of Arizona, Tucson, AZ, 85721-0207, USA.
| | - Qianqian Yin
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, 201210, PR China.
| | - Yongqiang Zhang
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, and School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, PR China.
| |
Collapse
|
2
|
Nemati F, Ata Bahmani Asl A, Salehi P. Synthesis and modification of noscapine derivatives as promising future anticancer agents. Bioorg Chem 2024; 153:107831. [PMID: 39321713 DOI: 10.1016/j.bioorg.2024.107831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 09/15/2024] [Accepted: 09/16/2024] [Indexed: 09/27/2024]
Abstract
Noscapine, a tetrahydroisoquinoline alkaloid, was first isolated from Papaver somniferum and identified by Rabiquet in 1817. It has been used as an anti-tussive agent since the mid-1950 s. After the discovery of its anti-mitotic potential, it was into the limelight once again. Due to its low toxicity, high bioactivity and oral administration, It was regarded as a formidable framework for subsequent modification and advancement in the pursuit of innovative chemotherapeutic agents. Up to now, the rational derivatives of the noscapine have been designed and the biological activities of these analogues have been extensively investigated. This review provides a comprehensive examination of the chemical characteristics of noscapine and its semi-synthetic derivatives up to the present, encompassing a concise investigation into the biological properties of these compounds and additionally a discussion about biosynthesis and total synthesis of noscapine is also provided. In summary, our aim is to contribute to a more thorough comprehension of this structure. It can be asserted that a promising future lies ahead for noscapine and its engineered derivatives as noteworthy candidates for pharmaceutical drugs.
Collapse
Affiliation(s)
- Faezeh Nemati
- Department of Synthesis of Medicinal Organic Compounds, Institute of Medicinal Chemistry, Iranian Research Organization for Science and Technology (IROST), P.O. Box 33535111, Tehran, Iran
| | - Amir Ata Bahmani Asl
- Department of Phytochemistry, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Evin, 1983963113 Tehran, Iran
| | - Peyman Salehi
- Department of Phytochemistry, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Evin, 1983963113 Tehran, Iran.
| |
Collapse
|
3
|
Manikandan DB, Arumugam M, Sridhar A, Perumalsamy B, Ramasamy T. Sustainable fabrication of hybrid silver-copper nanocomposites (Ag-CuO NCs) using Ocimum americanum L. as an effective regime against antibacterial, anticancer, photocatalytic dye degradation and microalgae toxicity. ENVIRONMENTAL RESEARCH 2023; 228:115867. [PMID: 37044164 DOI: 10.1016/j.envres.2023.115867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 04/05/2023] [Accepted: 04/08/2023] [Indexed: 05/16/2023]
Abstract
In this study, a sustainable fabrication of hybrid silver-copper oxide nanocomposites (Ag-CuO NCs) was accomplished utilizing Ocimum americanum L. by one pot green chemistry method. The multifarious biological and environmental applications of the green fabricated Ag-CuO NCs were evaluated through their antibacterial, anticancer, dye degradation, and microalgae growth inhibition activities. The morphological features of the surface functionalized hybrid Ag-CuO NCs were confirmed by FE-SEM and HR-TEM techniques. The surface plasmon resonance λmax peak appeared at 441.56 nm. The average hydrodynamic size distribution of synthesized nanocomposite was 69.80 nm. Zeta potential analysis of Ag-CuO NCs confirmed its remarkable stability at -21.5 mV. XRD and XPS techniques validated the crystalline structure and electron binding affinity of NCs, respectively. The Ag-CuO NCs demonstrated excellent inhibitory activity against Vibrio cholerae (19.93 ± 0.29 mm) at 100 μg/mL. Anticancer efficacy of Ag-CuO NCs was investigated against the A549 lung cancer cell line, and Ag-CuO NCs exhibited outstanding antiproliferative activity with a low IC50 of 2.8 ± 0.05 μg/mL. Furthermore, staining and comet assays substantiated that the Ag-CuO NCs hindered the progression of the A549 cells and induced apoptosis as a result of cell cycle arrest at the G0/G1 phase. Concerning the environmental applications, the Ag-CuO NCs displayed efficient photocatalytic activity against eosin yellow degradation up to 80.94% under sunlight irradiation. Microalgae can be used as an early bio-indicator/prediction of environmental contaminants and toxic substances. The treatment of the Ag-CuO NCs on the growth of marine microalgae Tetraselmis suecica demonstrated the dose and time-dependent growth reduction and variations in the chlorophyll content. Therefore, the efficient multifunctional properties of hybrid Ag-CuO NCs could be exploited as a regime against infective diseases and cancer. Further, the findings of our investigation witness the remarkable scope and potency of Ag-CuO NCs for environmental applications.
Collapse
Affiliation(s)
- Dinesh Babu Manikandan
- Laboratory of Aquabiotics/Nanoscience, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, 620 024, Tamil Nadu, India
| | - Manikandan Arumugam
- Laboratory of Aquabiotics/Nanoscience, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, 620 024, Tamil Nadu, India
| | - Arun Sridhar
- Laboratory of Aquabiotics/Nanoscience, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, 620 024, Tamil Nadu, India
| | - Balaji Perumalsamy
- National Centre for Alternatives to Animal Experiments (NCAAE), Bharathidasan University, Tiruchirappalli, 620 024, Tamil Nadu, India
| | - Thirumurugan Ramasamy
- Laboratory of Aquabiotics/Nanoscience, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, 620 024, Tamil Nadu, India; National Centre for Alternatives to Animal Experiments (NCAAE), Bharathidasan University, Tiruchirappalli, 620 024, Tamil Nadu, India.
| |
Collapse
|
4
|
Pragyandipta P, Naik MR, Bastia B, Naik PK. Development of 9-( N-arylmethylamino) congeners of noscapine: the microtubule targeting drugs for the management of breast cancer. 3 Biotech 2023; 13:38. [PMID: 36636578 PMCID: PMC9829942 DOI: 10.1007/s13205-022-03445-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 12/17/2022] [Indexed: 01/10/2023] Open
Abstract
Noscapine is a natural lead molecule with anticancer activity at a higher concentrations. So, there is an urge for the development of more potent derivatives of noscapine. In this study, we have approached for development of 9-N-arylmethylamino derivatives of noscapine that kills cancer cells without affecting the normal cells. They were designed by substituting N-aryl methyl pharmacophore at the C-9 position and screened out top-ranked three derivatives 13a-c using molecular docking. Further, their theoretical free energy of binding with tubulin was calculated followed by chemical synthesis and experimental validation. In vitro antiproliferative activity of noscapine and its 9-N-arylmethylamino derivatives (13a-c) was carried out using MCF-7 (a triple receptors positive) and MDA-MB-231 (a triple receptor negative) breast cancer cell lines. Further, cytotoxicity to normal cells was examined using human embryonic kidney cells (HEK cells). Inhibition to cell cycle progression and induction of apoptosis was monitored using FACS. The binding of noscapine and 13a-c with tubulin was examined using fluorescence quenching assay. The 9-N-arylmethylamino derivatives of noscapine (13a-c) were found to inhibit the proliferation of cancer cells at a much lower concentration (IC50 values range between 9.1 to 47.3 µM) compared to noscapine (IC50 value is 45.8-59.3 µM). Surprisingly, the proliferation of HEK cells was not inhibited even at a concentration of 100 µM (cytotoxicity is < 5%). These derivatives induced apoptosis by arresting cells at G2/M-phase and also bind to tubulin. The 9-(N-arylmethylamino) noscapinoids have the potential to be a novel therapeutic agent for the treatment of breast cancer. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-022-03445-3.
Collapse
Affiliation(s)
- Pratyush Pragyandipta
- Centre of Excellence in Natural Products and Therapeutics, Department of Biotechnology and Bioinformatics, Sambalpur University, Jyoti Vihar, Burla, Sambalpur, Odisha 768019 India
| | - Manas Ranjan Naik
- Department of Pharmacology, SLN Medical College Koraput, Koraput, Odisha 464020 India
| | - Banajit Bastia
- Centre of Excellence in Natural Products and Therapeutics, Department of Biotechnology and Bioinformatics, Sambalpur University, Jyoti Vihar, Burla, Sambalpur, Odisha 768019 India
| | - Pradeep Kumar Naik
- Centre of Excellence in Natural Products and Therapeutics, Department of Biotechnology and Bioinformatics, Sambalpur University, Jyoti Vihar, Burla, Sambalpur, Odisha 768019 India
| |
Collapse
|
5
|
Kumar Pedapati R, Pragyandipta P, Pranathi Abburi N, Chirra N, Kantevari S, Naik PK. Antiproliferative Noscapinoids Bearing an Amidothiadiazole Scaffold as Apoptosis Inducers: Design, Synthesis and Molecular Docking. Chem Biodivers 2023; 20:e202201089. [PMID: 36690497 DOI: 10.1002/cbdv.202201089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 01/03/2023] [Indexed: 01/25/2023]
Abstract
Noscapine an FDA-approved antitussive agent. With low cytotoxicity with higher concentrations, noscapine and its derivatives have been shown to have exceptional anticancer properties against a variety of cancer cell lines. In order to increase its potency, in this study, we synthesized a series of new amido-thiadiazol coupled noscapinoids and tested their cytotoxicity in vitro. All of the newly synthesised compounds demonstrated potent cytotoxic potential, with IC50 values ranging from 2.1 to 61.2 μM than the lead molecule, noscapine (IC50 value ranges from 31 to 65.5 μM) across all cell lines, without affecting normal cells (IC50 value is>300 μM). Molecular docking of all these molecules with tubulin (PDB ID: 6Y6D, resolution 2.20 Å) also revealed better binding affinity (docking score range from -5.418 to -9.679 kcal/mol) compared to noscapine (docking score is -5.304 kcal/mol). One of the most promising synthetic derivatives 6aa (IC50 value ranges from 2.5 to 7.3 μM) was found to bind tubulin with the highest binding affinity (ΔGbinding is -28.97 kcal/mol) and induced apoptosis in cancer cells more effectively.
Collapse
Affiliation(s)
- Ravi Kumar Pedapati
- Fluoro and Agrochemicals Department, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Pratyush Pragyandipta
- Center of Excellence in Natural Products and Therapeutics, Department of Biotechnology and Bioinformatics, Sambalpur University, Jyoti Vihar, Burla, Sambalpur768 019, Odisha, India
| | - Naga Pranathi Abburi
- Fluoro and Agrochemicals Department, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Nagaraju Chirra
- Fluoro and Agrochemicals Department, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Srinivas Kantevari
- Fluoro and Agrochemicals Department, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Pradeep K Naik
- Center of Excellence in Natural Products and Therapeutics, Department of Biotechnology and Bioinformatics, Sambalpur University, Jyoti Vihar, Burla, Sambalpur768 019, Odisha, India
| |
Collapse
|
6
|
Awasthi A, Kumar N, Mishra A, Ravi R, Dalal A, Shankar S, Chandra R. Noscapine-Amino Acid Conjugates Suppress the Progression of Cancer Cells. ACS Pharmacol Transl Sci 2022; 5:1292-1304. [PMID: 36524011 PMCID: PMC9745893 DOI: 10.1021/acsptsci.2c00172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Indexed: 11/16/2022]
Abstract
Lung cancer is the leading cause of cancer deaths globally; 1 in 16 people are diagnosed with lung cancer in their lifetime. Microtubules, a critical cytoskeletal assembly, have an essential role in cell division. Interference with the microtubule assembly leads to genetic instability during mitosis and cancer cell death. Currently, available antimitotic drugs such as vincas and taxanes are limited due to side effects such as alopecia, myelosuppression, and drug resistance. Noscapine, an opium alkaloid, is a tubulin-binding agent and can alter the microtubule assembly, causing cancer cell death. Amino acids are fundamental building blocks for protein synthesis, making them essential for the biosynthesis of cancer cells. However, the ability of amino acids in drug transportation has yet to be exploited in developing noscapine analogues as a potential drug candidate for cancer. Hence, in the present study, we have explored the ninth position of noscapine by introducing a hydroxymethylene group using the Blanc reaction and further coupled it with a series of amino acids to construct five target conjugates in good yields. The synthesized amino acid conjugate molecules were biologically evaluated against the A549 lung cancer cell line, among which the noscapine-tryptophan conjugate showed IC50 = 32 μM, as compared to noscapine alone (IC50 = 73 μM). Morphological changes in cancer cells, cell cycle arrest in the G1 phase, and ethidium bromide/acridine orange staining indicated promising anticancer properties. Molecular docking confirmed strong binding to tubulin, with a score of -41.47 kJ/mol with all 3D coordinates and significant involvement of molecular forces, including the hydrogen bonds and hydrophobic interactions. Molecular dynamics simulations demonstrated a stable binding of noscapine-tryptophan conjugate for a prolonged time (100 ns) with the involvement of free energy through the reaction coordinates analyses, solving the bioavailability of parent noscapine to the body.
Collapse
Affiliation(s)
- Amardeep Awasthi
- Department of Chemistry, University of Delhi, Delhi-110007, India
| | - Neeraj Kumar
- Department of Neurology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois60611, United States
| | - Abhijeet Mishra
- Department of Biochemistry, Shivaji College, University of Delhi, Delhi-110027, India
| | - Rangnath Ravi
- Department of Chemistry, Shivaji College, University of Delhi, Delhi-110027, India
| | - Anu Dalal
- Department of Chemistry, Indian Institute of Technology, Delhi, Delhi-110016, India
| | - Saurav Shankar
- Department of Chemistry, University of Delhi, Delhi-110007, India
| | - Ramesh Chandra
- Department of Chemistry, University of Delhi, Delhi-110007, India
- Dr. B. R. Ambedkar Centre for Biomedical Research, University of Delhi, Delhi-110007, India
- Institute of Nano Medical Sciences, University of Delhi, Delhi-110007, India
| |
Collapse
|
7
|
Hasanpour Z, Salehi P, Bararjanian M, Esmaeili MA, Alilou M, Mohebbi M. Semi-Synthesis of New 1,2,3-Triazole Derivatives of 9-Bromonoscapine and their Anticancer Activities. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2021; 20:546-560. [PMID: 34567181 PMCID: PMC8457714 DOI: 10.22037/ijpr.2020.113213.14170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Novel 1,2,3-triazole-tethered 9-bromonoscapine derivatives were synthesized by the propargylation of N-nornoscapine followed by Huisgen's 1,3-dipolar cycloaddition of the terminal alkynes with different azides. Cytotoxicity of the products was studied by MTT assay against the MCF-7 breast cancer cell line. Most of the compounds revealed a better cytotoxicity than N-nornoscapine and 9-bromonornoscapine as the parent compounds. Among the synthesized compounds, those with a hydroxylated aliphatic side chain (5p, 5q, and 5r) showed the highest activities (IC50s: 47.2, 37.9, and 32.3 μg/mL, respectively). Molecular docking studies showed that these compounds also had the highest docking scores and effective interactions with binding sites equal to -8.074, -7.425 and -7.820 kcal/mol, respectively.
Collapse
Affiliation(s)
- Zahra Hasanpour
- Department of Phytochemistry, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran, Iran
| | - Peyman Salehi
- Department of Phytochemistry, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran, Iran
| | - Morteza Bararjanian
- Department of Phytochemistry, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran, Iran
| | - Mohammad-Ali Esmaeili
- Schulich School of Medicine and Dentistry and Robarts Research Institute, Western University, London, Ontario, Canada
| | - Mostafa Alilou
- Institute of Pharmacy, Pharmacognosy, Center for Molecular Biosciences, University of Innsbruck, 6020 Innsbruck, Austria
| | - Maryam Mohebbi
- Department of Phytochemistry, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran, Iran
| |
Collapse
|
8
|
Meher RK, Pragyandipta P, Pedapati RK, Nagireddy PKR, Kantevari S, Nayek AK, Naik PK. Rational design of novel N-alkyl amine analogues of noscapine, their chemical synthesis and cellular activity as potent anticancer agents. Chem Biol Drug Des 2021; 98:445-465. [PMID: 34051055 DOI: 10.1111/cbdd.13901] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 04/30/2021] [Accepted: 05/23/2021] [Indexed: 01/12/2023]
Abstract
The scaffold structure of noscapine (an antitussive plant alkaloid) was modified by inducting N-aryl methyl pharmacophore at C-9 position of the isoquinoline ring to rationally design and screened three novel 9-(N-arylmethylamino) noscapinoids, 15-17 with robust binding affinity with tubulin. The selected 9-(N-arylmethylamino) noscapinoids revealed improved predicted binding energy of -6.694 kcal/mol for 15, -7.118 kcal/mol for 16 and -7.732 kcal/mol for 17, respectively in comparison to the lead molecule (-5.135 kcal/mol). These novel derivatives were chemically synthesized and validated their anticancer activity based on cellular studies using two human breast adenocarcinoma, MCF-7 and MDA-MB-231, as well as with a panel of primary breast tumor cells. These derivatives inhibited cellular proliferation in all the cancer cells that ranged between 3.2 and 32.2 μM, which is 11.9 to 1.8 fold lower than that of noscapine. These novel derivatives effectively arrest the cell cycle in the G2/M phase followed by apoptosis and appearance of apoptotic cells. Thus, we conclude that 9-(N-arylmethyl amino) noscapinoids, 15-17 have a high probability to be a novel therapeutic agent for breast cancers.
Collapse
Affiliation(s)
- Rajesh Kumar Meher
- Department of Biotechnology and Bioinformatics, Centre of Excellence in Natural Products and Therapeutics, Sambalpur University, Sambalpur, India
| | - Pratyush Pragyandipta
- Department of Biotechnology and Bioinformatics, Centre of Excellence in Natural Products and Therapeutics, Sambalpur University, Sambalpur, India
| | - Ravi K Pedapati
- Fluoro and Agrochemicals Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, India
| | - Praveen K R Nagireddy
- Fluoro and Agrochemicals Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, India
| | - Srinivas Kantevari
- Fluoro and Agrochemicals Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, India
| | - Arnab K Nayek
- Department of Biotechnology and Bioinformatics, Centre of Excellence in Natural Products and Therapeutics, Sambalpur University, Sambalpur, India
| | - Pradeep K Naik
- Department of Biotechnology and Bioinformatics, Centre of Excellence in Natural Products and Therapeutics, Sambalpur University, Sambalpur, India
| |
Collapse
|
9
|
Manikandan DB, Arumugam M, Veeran S, Sridhar A, Krishnasamy Sekar R, Perumalsamy B, Ramasamy T. Biofabrication of ecofriendly copper oxide nanoparticles using Ocimum americanum aqueous leaf extract: analysis of in vitro antibacterial, anticancer, and photocatalytic activities. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:33927-33941. [PMID: 33410001 DOI: 10.1007/s11356-020-12108-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 12/14/2020] [Indexed: 06/12/2023]
Abstract
Nanotechnology tends to be a swiftly growing field of research that actively influences and inhibits the growth of bacteria/cancer. Noble metal nanoparticles (NPs) such as silver, copper, and gold have been used to damage bacterial and cancer growth over recent years; however, the toxicity of higher NPs concentrations remains a major issue. The copper oxide nanoparticles (CuONPs) were therefore fabricated using a simple green chemistry approach. Biofabricated CuONPs were characterized using UV-visible, FE-SEM with EDS, HR-TEM, FT-IR, XRD, Raman spectroscopy, and XPS analysis. Formations of CuONPs have been observed by UV-visible absorbance peak at 360.74 nm. The surface morphology of the CuONPs showed the spherical structure and size (~ 68 nm). The EDS spectrum of CuONPs has proved to be the key signals of copper (Cu) and oxygen (O) components. FT-IR analysis, to validate the important functional biomolecules (O-H, C=C, C-H, C-O) are responsible for reduction and stabilization of CuONPs. The monoclinic end-centered crystalline structures of CuONPs were confirmed with XRD planes. The electrochemical oxygen states of the CuONPs have been studied using spectroscopy of the Raman and X-ray photoelectron. After successful preparation, CuONPs examined their antibacterial, anticancer, and photocatalytic activities. Green-fabricated CuONPs were promising antibacterial candidate against human pathogenic gram-negative bacteria Escherichia coli, Vibrio cholerae, Salmonella typhimurium, Klebsiella pneumoniae, Aeromonas hydrophila, and Pseudomonas aeruginosa. CuONPs were demonstrated the excellent anticancer activity against A549 human lung adenocarcinoma cell line. Furthermore, CuONPs exhibited photocatalytic degradation of azo dyes such as eosin yellow (EY), rhodamine 123 (Rh 123), and methylene blue (MB). Biofabricated CuONPs may therefore be an important biomedical research for the aid of bacterial/cancer diseases and photocatalytic degradation of azo dyes.
Collapse
Affiliation(s)
- Dinesh Babu Manikandan
- Laboratory of Aquabiotics/Nanoscience, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620 024, India
| | - Manikandan Arumugam
- Laboratory of Aquabiotics/Nanoscience, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620 024, India
| | - Srinivasan Veeran
- Laboratory of Aquabiotics/Nanoscience, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620 024, India
| | - Arun Sridhar
- Laboratory of Aquabiotics/Nanoscience, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620 024, India
| | - Rajkumar Krishnasamy Sekar
- Laboratory of Aquabiotics/Nanoscience, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620 024, India
| | - Balaji Perumalsamy
- National Centre for Alternatives to Animal Experiments, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620 024, India
| | - Thirumurugan Ramasamy
- Laboratory of Aquabiotics/Nanoscience, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620 024, India.
- National Centre for Alternatives to Animal Experiments, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620 024, India.
| |
Collapse
|
10
|
Agrahari AK, Bose P, Jaiswal MK, Rajkhowa S, Singh AS, Hotha S, Mishra N, Tiwari VK. Cu(I)-Catalyzed Click Chemistry in Glycoscience and Their Diverse Applications. Chem Rev 2021; 121:7638-7956. [PMID: 34165284 DOI: 10.1021/acs.chemrev.0c00920] [Citation(s) in RCA: 182] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Copper(I)-catalyzed 1,3-dipolar cycloaddition between organic azides and terminal alkynes, commonly known as CuAAC or click chemistry, has been identified as one of the most successful, versatile, reliable, and modular strategies for the rapid and regioselective construction of 1,4-disubstituted 1,2,3-triazoles as diversely functionalized molecules. Carbohydrates, an integral part of living cells, have several fascinating features, including their structural diversity, biocompatibility, bioavailability, hydrophilicity, and superior ADME properties with minimal toxicity, which support increased demand to explore them as versatile scaffolds for easy access to diverse glycohybrids and well-defined glycoconjugates for complete chemical, biochemical, and pharmacological investigations. This review highlights the successful development of CuAAC or click chemistry in emerging areas of glycoscience, including the synthesis of triazole appended carbohydrate-containing molecular architectures (mainly glycohybrids, glycoconjugates, glycopolymers, glycopeptides, glycoproteins, glycolipids, glycoclusters, and glycodendrimers through regioselective triazole forming modular and bio-orthogonal coupling protocols). It discusses the widespread applications of these glycoproducts as enzyme inhibitors in drug discovery and development, sensing, gelation, chelation, glycosylation, and catalysis. This review also covers the impact of click chemistry and provides future perspectives on its role in various emerging disciplines of science and technology.
Collapse
Affiliation(s)
- Anand K Agrahari
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Priyanka Bose
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Manoj K Jaiswal
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Sanchayita Rajkhowa
- Department of Chemistry, Jorhat Institute of Science and Technology (JIST), Jorhat, Assam 785010, India
| | - Anoop S Singh
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Srinivas Hotha
- Department of Chemistry, Indian Institute of Science and Engineering Research (IISER), Pune, Maharashtra 411021, India
| | - Nidhi Mishra
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Vinod K Tiwari
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| |
Collapse
|
11
|
Yong C, Devine SM, Abel AC, Tomlins SD, Muthiah D, Gao X, Callaghan R, Steinmetz MO, Prota AE, Capuano B, Scammells PJ. 1,3-Benzodioxole-Modified Noscapine Analogues: Synthesis, Antiproliferative Activity, and Tubulin-Bound Structure. ChemMedChem 2021; 16:2882-2894. [PMID: 34159741 DOI: 10.1002/cmdc.202100363] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Indexed: 11/08/2022]
Abstract
Since the revelation of noscapine's weak anti-mitotic activity, extensive research has been conducted over the past two decades, with the goal of discovering noscapine derivatives with improved potency. To date, noscapine has been explored at the 1, 7, 6', and 9'-positions, though the 1,3-benzodioxole motif in the noscapine scaffold that remains unexplored. The present investigation describes the design, synthesis and pharmacological evaluation of noscapine analogues consisting of modifications to the 1,3-benzodioxole moiety. This includes expansion of the dioxolane ring and inclusion of metabolically robust deuterium and fluorine atoms. Favourable structural modifications were subsequently incorporated into multi-functionalised noscapine derivatives that also possessed modifications previously shown to promote anti-proliferative activity in the 1-, 6'- and 9'-positions. Our research efforts afforded the deuterated noscapine derivative 14 e and the dioxino-containing analogue 20 as potent cytotoxic agents with EC50 values of 1.50 and 0.73 μM, respectively, against breast cancer (MCF-7) cells. Compound 20 also exhibited EC50 values of <2 μM against melanoma, non-small cell lung carcinoma, and cancers of the brain, kidney and breast in an NCI screen. Furthermore, compounds 14 e and 20 inhibit tubulin polymerisation and are not vulnerable to the overexpression of resistance conferring P-gp efflux pumps in drug-resistant breast cancer cells (NCIADR/RES ). We also conducted X-ray crystallography studies that yielded the high-resolution structure of 14 e bound to tubulin. Our structural analysis revealed the key interactions between this noscapinoid and tubulin and will assist with the future design of noscapine derivatives with improved properties.
Collapse
Affiliation(s)
- Cassandra Yong
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Shane M Devine
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Anne-Catherine Abel
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institut, 5232, Villigen PSI, Switzerland
| | - Stefan D Tomlins
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Divya Muthiah
- Research School of Biology, Australian National University, Canberra, ACT, 2061, Australia
| | - Xuexin Gao
- Research School of Biology, Australian National University, Canberra, ACT, 2061, Australia
| | - Richard Callaghan
- Research School of Biology, Australian National University, Canberra, ACT, 2061, Australia
| | - Michel O Steinmetz
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institut, 5232, Villigen PSI, Switzerland.,Biozentrum, University of Basel, 4056, Basel, Switzerland
| | - Andrea E Prota
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institut, 5232, Villigen PSI, Switzerland
| | - Ben Capuano
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Peter J Scammells
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| |
Collapse
|
12
|
Abstract
Inflammatory processes occur as a generic response of the immune system and can be triggered by various factors, such as infection with pathogenic microorganisms or damaged tissue. Due to the complexity of the inflammation process and its role in common diseases like asthma, cancer, skin disorders or Alzheimer's disease, anti-inflammatory drugs are of high pharmaceutical interest. Nature is a rich source for compounds with anti-inflammatory properties. Several studies have focused on the structural optimization of natural products to improve their pharmacological properties. As derivatization through total synthesis is often laborious with low yields and limited stereoselectivity, the use of biosynthetic, enzyme-driven reactions is an attractive alternative for synthesizing and modifying complex bioactive molecules. In this minireview, we present an outline of the biotechnological methods used to derivatize anti-inflammatory natural products, including precursor-directed biosynthesis, mutasynthesis, combinatorial biosynthesis, as well as whole-cell and in vitro biotransformation.
Collapse
Affiliation(s)
- Lea Winand
- Department of Biochemical and Chemical EngineeringLaboratory of Technical BiologyTU Dortmund UniversityEmil-Figge-Strasse 6644227DortmundGermany
| | - Angela Sester
- Department of Biochemical and Chemical EngineeringLaboratory of Technical BiologyTU Dortmund UniversityEmil-Figge-Strasse 6644227DortmundGermany
- Current address: Chair of Technical BiochemistryTechnical University of DresdenBergstrasse 6601069DresdenGermany
| | - Markus Nett
- Department of Biochemical and Chemical EngineeringLaboratory of Technical BiologyTU Dortmund UniversityEmil-Figge-Strasse 6644227DortmundGermany
| |
Collapse
|
13
|
Chugh H, Kumar P, Kumar N, Gaur RK, Dhawan G, Chandra R. Ex vivo binding studies of the anti-cancer drug noscapine with human hemoglobin: a spectroscopic and molecular docking study. NEW J CHEM 2021. [DOI: 10.1039/d0nj03334k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Noscapine binds human hemoglobin spontaneously forming a stable complex that affects noscapine's ADMET profile, bioavailability and toxicity.
Collapse
Affiliation(s)
- Heerak Chugh
- Department of Chemistry
- University of Delhi
- Delhi 110007
- India
| | - Pramod Kumar
- Department of Chemistry
- Mahamana Malviya College Khekra (Baghpat)
- C. C. S. University
- Meerut
- India
| | - Neeraj Kumar
- Department of Chemistry
- University of Delhi
- Delhi 110007
- India
| | - Rajesh K. Gaur
- Division of Medical Oncology
- University of Southern California
- USA
| | - Gagan Dhawan
- Department of Biomedical Science
- Acharya Narendra Dev College
- University of Delhi
- India
| | - Ramesh Chandra
- Department of Chemistry
- University of Delhi
- Delhi 110007
- India
| |
Collapse
|
14
|
Nambiar N, Nagireddy PKR, Pedapati R, Kantevari S, Lopus M. Tubulin- and ROS-dependent antiproliferative mechanism of a potent analogue of noscapine, N-propargyl noscapine. Life Sci 2020; 258:118238. [PMID: 32791146 DOI: 10.1016/j.lfs.2020.118238] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 07/27/2020] [Accepted: 08/05/2020] [Indexed: 11/15/2022]
Abstract
AIM To rationally-design, synthesize, characterize, biologically evaluate, and to elucidate the anticancer mechanism of action of a novel analogue of noscapine, N-propargyl noscapine (NPN), as a potential drug candidate against triple-negative breast cancer (TNBC). MATERIALS AND METHODS After the synthesis and IR, 1H, 13C NMR and mass spectral characterization of NPN, its antiproliferative efficacy against different cancer cell lines was investigated using Sulforhodamine B assay. Cell cycle progression was analysed using flow cytometry. The drug-tubulin interactions were studied using tryptophan-quenching assay, ANS-binding assay, and colchicine-binding assay. Immunofluorescence imaging was used to examine the effect of NPN on cellular microtubules. Levels of reactive oxygen species (ROS), loss of mitochondrial membrane potential (MMP), and cell death were studied by staining the cells with DCFDA, Rhodamine 123, and acridine orange/ethidium bromide, respectively. KEY FINDINGS NPN strongly inhibited the viability (IC50, 1.35 ± 0.2 μM) and clonogenicity (IC50, 0.56 ± 0.06 μM) of the TNBC cell line, MDA-MB-231, with robust G2/M arrest. In vitro, the drug bound to tubulin and disrupted the latter's structural integrity and promoted colchicine binding to tubulin. NPN triggered an unusual form of microtubule disruption in cells, repressed recovery of cold-depolymerized cellular microtubules and suppressed their dynamicity. These effects on microtubules were facilitated by elevated levels of ROS and loss of MMP. SIGNIFICANCE NPN can be explored further as a chemotherapeutic agent against TNBC.
Collapse
Affiliation(s)
- Nayana Nambiar
- School of Biological Sciences, UM-DAE Centre for Excellence in Basic Sciences, University of Mumbai, Kalina, Mumbai 400098, India
| | - Praveen Kumar Reddy Nagireddy
- Fluoro & Agrochemicals Division (Organic Chemistry Division-II), CSIR- Indian Institute of Chemical Technology, Hyderabad 500007, Telangana, India
| | - Ravikumar Pedapati
- Fluoro & Agrochemicals Division (Organic Chemistry Division-II), CSIR- Indian Institute of Chemical Technology, Hyderabad 500007, Telangana, India
| | - Srinivas Kantevari
- Fluoro & Agrochemicals Division (Organic Chemistry Division-II), CSIR- Indian Institute of Chemical Technology, Hyderabad 500007, Telangana, India.
| | - Manu Lopus
- School of Biological Sciences, UM-DAE Centre for Excellence in Basic Sciences, University of Mumbai, Kalina, Mumbai 400098, India.
| |
Collapse
|
15
|
Oliva MA, Prota AE, Rodríguez-Salarichs J, Bennani YL, Jiménez-Barbero J, Bargsten K, Canales Á, Steinmetz MO, Díaz JF. Structural Basis of Noscapine Activation for Tubulin Binding. J Med Chem 2020; 63:8495-8501. [DOI: 10.1021/acs.jmedchem.0c00855] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- María A. Oliva
- Centro de Investigaciones Biológicas Margarita Salas-CSIC, Ramiro de Maeztu, 9, C.P. 28040 Madrid, Spain
| | - Andrea E. Prota
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institut, CH-5232 Villigen PSI, Switzerland
| | - Javier Rodríguez-Salarichs
- Centro de Investigaciones Biológicas Margarita Salas-CSIC, Ramiro de Maeztu, 9, C.P. 28040 Madrid, Spain
| | - Youssef L. Bennani
- adMare Bio Innovations, Centre d’innovation NÉOMED, 7171 Frederick-Banting, Montréal, Quebec H4S 1Z9, Canada
| | - Jesús Jiménez-Barbero
- CIC bioGUNE, Basque Research Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48170 Derio, Spain
- Ikerbasque, Basque Foundation for Science, María Díaz de Haro 13, Bilbao 48009, Spain
- Department of Organic Chemistry II, Faculty of Science & Technology, University of the Basque Country, 48940 Leioa, Bizkaia, Spain
| | - Katja Bargsten
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institut, CH-5232 Villigen PSI, Switzerland
| | - Ángeles Canales
- Departamento Química Orgánica I, Facultad Ciencias Químicas, Universidad Complutense de Madrid, Avd. Complutense s/n, C.P. 28040 Madrid, Spain
| | - Michel O. Steinmetz
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institut, CH-5232 Villigen PSI, Switzerland
- University of Basel, Biozentrum, Basel CH-4056, Switzerland
| | - J. Fernando Díaz
- Centro de Investigaciones Biológicas Margarita Salas-CSIC, Ramiro de Maeztu, 9, C.P. 28040 Madrid, Spain
| |
Collapse
|
16
|
Kumar Reddy Nagireddy P, Krishna Kommalapati V, Siva Krishna V, Sriram D, Devi Tangutur A, Kantevari S. Anticancer Potential of
N
‐Sulfonyl Noscapinoids: Synthesis and Evaluation. ChemistrySelect 2020. [DOI: 10.1002/slct.202000142] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
| | | | - Vagolu Siva Krishna
- Medicinal Chemistry and Antimycobacterial Research LaboratoryPharmacy GroupBirla Institute of Technology & Science Pilani Hyderabad Campus Hyderabad 500078 India
| | - Dharmarajan Sriram
- Medicinal Chemistry and Antimycobacterial Research LaboratoryPharmacy GroupBirla Institute of Technology & Science Pilani Hyderabad Campus Hyderabad 500078 India
| | - Anjana Devi Tangutur
- Department of Applied BiologyCSIR-Indian Institute of Chemical Technology Hyderabad 500007 India
- Academy of Scientific and Innovative ResearchCSIR-Indian Institute of Chemical Technology Hyderabad 500007 India
| | - Srinivas Kantevari
- Fluoro & Agrochemicals DivisionCSIR-Indian Institute of Chemical Technology Hyderabad 500007 India
- Academy of Scientific and Innovative ResearchCSIR-Indian Institute of Chemical Technology Hyderabad 500007 India
| |
Collapse
|
17
|
Mandavi S, Verma SK, Banjare L, Dubey A, Bhatt R, Thareja S, Jain AK. A Comprehension into Target Binding and Spatial Fingerprints of Noscapinoid Analogues as Inhibitors of Tubulin. Med Chem 2020; 17:611-622. [PMID: 31951171 DOI: 10.2174/1573406416666200117120348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 12/10/2019] [Accepted: 12/16/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Owing to its potential to interfere in microtubule dynamics in the mitotic phase of cell cycle and selectively induce apoptosis in cancer cells without affecting normal cells, noscapine and its synthetic analogues have been investigated by other research groups in different cell lines for their capability to be used as anti-cancer agents. OBJECTIVE The present study is focused on the investigation of the mode of binding of noscapinoids with tubulin, prediction of target binding affinities and mapping of their spatial fingerprints (shape and electrostatic). METHODS Molecular docking assisted alignment based 3D-QSAR was used on a dataset (43 molecules) having an inhibitory activity (IC50 = 1.2-250 μM) against human lymphoblast (CEM) cell line. RESULTS AND CONCLUSION Key amino acid residues of target tubulin were mapped for the binding of most potent noscapine analogue (Compound 11) and were compared with noscapine. Spatial fingerprints of noscapinoids for favorable tubulin inhibitory activity were generated and are proposed herewith for further pharmacophoric amendments of noscapine analogues to design and develop novel potent noscapine based anti-cancer agents that may enter into drug development pipeline.
Collapse
Affiliation(s)
- Seema Mandavi
- Department of Biotechnology, Guru Ghasidas Central University, Bilaspur- 495 009 (C.G.), India
| | - Sant Kumar Verma
- School of Pharmaceutical Sciences, Guru Ghasidas Central University, Bilaspur- 495 009 (C.G.), India
| | - Laxmi Banjare
- School of Pharmaceutical Sciences, Guru Ghasidas Central University, Bilaspur- 495 009 (C.G.), India
| | - Amit Dubey
- Chhattisgarh Council of Science and Technology, Raipur-492 014 (C.G.), India
| | - Renu Bhatt
- Department of Biotechnology, Guru Ghasidas Central University, Bilaspur- 495 009 (C.G.), India
| | - Suresh Thareja
- School of Pharmaceutical Sciences, Guru Ghasidas Central University, Bilaspur- 495 009 (C.G.), India
| | - Akhlesh Kumar Jain
- School of Pharmaceutical Sciences, Guru Ghasidas Central University, Bilaspur- 495 009 (C.G.), India
| |
Collapse
|
18
|
Tomar V, Kumar N, Tomar R, Sood D, Dhiman N, Dass SK, Prakash S, Madan J, Chandra R. Biological Evaluation of Noscapine analogues as Potent and Microtubule-Targeted Anticancer Agents. Sci Rep 2019; 9:19542. [PMID: 31862933 PMCID: PMC6925231 DOI: 10.1038/s41598-019-55839-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 11/19/2019] [Indexed: 12/11/2022] Open
Abstract
In present investigation, an attempt was undertaken to modify the C-9 position of noscapine (Nos), an opium alkaloid to yield 9 -hydroxy methyl and 9 -carbaldehyde oxime analogues for augmenting anticancer potential. The synthesis of 9-hydroxy methyl analogue of Nos was carried out by Blanc reaction and 9-carbaldehyde oxime was engineered by oxime formation method and characterized using FT-IR, 1H NMR, 13C NMR, mass spectroscopy, and so on techniques. In silico docking techniques informed that 9-hydroxy methyl and 9-carbaldehyde oxime analogues of Nos had higher binding energy score as compared to Nos. The IC50 of Nos was estimated to be 46.8 µM signficantly (P < 0.05) higher than 8.2 µM of 9-carbaldehyde oxime and 4.6 µM of 9-hydroxy methyl analogue of Nos in U87, human glioblastoma cells. Moreover, there was significant (P < 0.05) difference between the IC50 of 9-carbaldehyde oxime and 9-hydroxy methyl analogue of Nos. Consistent to in vitro cytotoxicity data, 9-hydroxy methyl analogue of Nos induced significantly (P < 0.05) higher degree of apoptosis of 84.6% in U87 cells as compared to 78.5% and 64.3% demonstrated by 9-carbaldehyde oxime and Nos, respectively. Thus the higher therapeutic efficacy of 9-hydroxy methyl analogue of Nos may be credited to higher solubility and inhibitory constant (K).
Collapse
Affiliation(s)
- Vartika Tomar
- Department of Chemistry, University of Delhi, Delhi, 110007, India.,BioMedical Engineering Department, Faculty of Medicine, McGill University, Montreal, Canada
| | - Neeraj Kumar
- Department of Chemistry, University of Delhi, Delhi, 110007, India
| | - Ravi Tomar
- Department of Chemistry, University of Delhi, Delhi, 110007, India
| | - Damini Sood
- Department of Chemistry, University of Delhi, Delhi, 110007, India
| | | | | | - Satya Prakash
- BioMedical Engineering Department, Faculty of Medicine, McGill University, Montreal, Canada
| | | | - Ramesh Chandra
- Department of Chemistry, University of Delhi, Delhi, 110007, India. .,Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, 110007, India.
| |
Collapse
|
19
|
Nagireddy PR, Kommalapati VK, Siva Krishna V, Sriram D, Tangutur AD, Kantevari S. Imidazo[2,1- b]thiazole-Coupled Natural Noscapine Derivatives as Anticancer Agents. ACS OMEGA 2019; 4:19382-19398. [PMID: 31763563 PMCID: PMC6868913 DOI: 10.1021/acsomega.9b02789] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 10/23/2019] [Indexed: 06/10/2023]
Abstract
Noscapine, a phthalide isoquinoline alkaloid isolated from the opium poppy Papaver somniferum, is traditionally being used as an anticough drug. With a safe in vitro toxicological profile, noscapine and its analogues have been explored to show microtubule-regulating properties and anticancer activity against various mammalian cancer cell lines. Since then, our group and other research groups worldwide are working on developing new noscapinoids to tap its potential as the leading drug molecule. With our continuing efforts, we herein present synthesis and anticancer evaluation of a series of imidazothiazole-coupled noscapinoids 7a-o and 11a-o. Natural α-noscapine was N-demethylated to nornoscapine 4 and then reacted with 4-(chloromethyl) thiazole-2-amine. The resultant noscapinoid 5 was coupled with various bromomethyl ketones 10a-o to give N-imidazothiazolyl noscapinoids 7a-o in very good yields. Similarly, natural α-noscapine 1 was O-demethylated using sodium azide/sodium iodide, reacted with 4-(chloromethyl)thiazole-2-amine, and coupled with bromomethyl ketones 10a-o to result in O-imidazothiazolyl noscapinoids 11a-o. All the new analogues 7a-o and 11a-o were fully characterized by their NMR and mass spectral analysis. In vitro cytotoxicity assay was performed for compounds 5, 7a-o, 9, and 11a-o against four different cancer cell lines: HeLa (cervical), MIA PaCa-2 (pancreatic), SK-N-SH (neuroblastoma), and DU145 (prostate cancer). Among these conjugates, 5, 7a, 9, 11b, 11c, 11e, and 11o showed potent cytotoxicity with low IC50 values. Further, flow cytometry analysis revealed that MIA PaCa-2 cells treated with these compounds induced cell cycle G2/M-phase arrest. In addition, Western blot analysis revealed that the cells treated with these conjugates accumulate tubulin in the soluble fraction and also elevate cyclin-B1 protein expression levels. Moreover, the conjugates also increased the expression of caspase-3 and PARP levels which is indicative of apoptotic cell death. In silico molecular docking studies showed several noncovalent interactions like van der Waals and hydrogen-bonding with tubulin protein and with good binding energy. The results indicated that these noscapine analogues may serve as novel compounds that can possibly inhibit tubulin protein and can be considered for further optimization as a clinical candidate for treating pancreatic cancer.
Collapse
Affiliation(s)
- Praveen
Kumar Reddy Nagireddy
- Fluoro
and Agrochemicals Division and Applied Biology Division, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, Telangana, India
| | - Vamsi Krishna Kommalapati
- Fluoro
and Agrochemicals Division and Applied Biology Division, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, Telangana, India
| | - Vagolu Siva Krishna
- Medicinal
Chemistry and Antimycobacterial Research Laboratory, Pharmacy Group, Birla Institute of Technology & Science Pilani, Hyderabad Campus, Hyderabad 500078, Telangana, India
| | - Dharmarajan Sriram
- Medicinal
Chemistry and Antimycobacterial Research Laboratory, Pharmacy Group, Birla Institute of Technology & Science Pilani, Hyderabad Campus, Hyderabad 500078, Telangana, India
| | - Anjana Devi Tangutur
- Fluoro
and Agrochemicals Division and Applied Biology Division, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, Telangana, India
- Academy
of Scientific and Innovative Research (AcSIR), Chennai 600113, Tamil Nadu, India
| | - Srinivas Kantevari
- Fluoro
and Agrochemicals Division and Applied Biology Division, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, Telangana, India
- Academy
of Scientific and Innovative Research (AcSIR), Chennai 600113, Tamil Nadu, India
| |
Collapse
|
20
|
Mishra KB, Tiwari N, Bose P, Singh R, Rawat AK, Singh SK, Mishra RC, Singh RK, Tiwari VK. Design, Synthesis and Pharmacological Evaluation of Noscapine Glycoconjugates. ChemistrySelect 2019. [DOI: 10.1002/slct.201803588] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Kunj B Mishra
- Department of ChemistryInstitute of ScienceBanaras Hindu University, Varanasi U.P.–221005 INDIA
| | - Neeraj Tiwari
- Department of BiochemistryInstitute of ScienceBanaras Hindu University, Varanasi U.P.–221005 INDIA
| | - Priyanka Bose
- Department of ChemistryInstitute of ScienceBanaras Hindu University, Varanasi U.P.–221005 INDIA
| | - Rajan Singh
- Department of BiochemistryInstitute of ScienceBanaras Hindu University, Varanasi U.P.–221005 INDIA
| | - Arun K Rawat
- Department of BiochemistryInstitute of ScienceBanaras Hindu University, Varanasi U.P.–221005 INDIA
| | - Sumit K. Singh
- Department of ChemistryInstitute of ScienceBanaras Hindu University, Varanasi U.P.–221005 INDIA
| | - Ram C. Mishra
- College of PharmacyUniversity of Georgia, Athens GA 30602 USA
| | - Rakesh K Singh
- Department of BiochemistryInstitute of ScienceBanaras Hindu University, Varanasi U.P.–221005 INDIA
| | - Vinod K. Tiwari
- Department of ChemistryInstitute of ScienceBanaras Hindu University, Varanasi U.P.–221005 INDIA
| |
Collapse
|
21
|
Alsayari A, Muhsinah AB, Hassan MZ, Ahsan MJ, Alshehri JA, Begum N. Aurone: A biologically attractive scaffold as anticancer agent. Eur J Med Chem 2019; 166:417-431. [PMID: 30739824 DOI: 10.1016/j.ejmech.2019.01.078] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 01/28/2019] [Accepted: 01/29/2019] [Indexed: 12/11/2022]
Abstract
Aurones are very simple, promising anticancer lead molecules containing three rings (A, B and C). A very slight structural variation in the aurones elicits diverse affinity and specificity towards different molecular targets. The present review discusses the design, discovery and development of natural and synthetic aurones as small molecule anticancer agents. Detailed structure-activity relationship and intermolecular interactions at different targets are also discussed. Due to their rare occurrence in nature and minimal mention in literature, the anticancer potential of aurones is rather recent but in constant progress.
Collapse
Affiliation(s)
| | | | | | | | | | - Naseem Begum
- College of Applied Medical Sciences, King Khalid University, Abha, 62529, Saudi Arabia
| |
Collapse
|
22
|
Muthiah D, Henshaw GK, DeBono AJ, Capuano B, Scammells PJ, Callaghan R. Overcoming P-Glycoprotein-Mediated Drug Resistance with Noscapine Derivatives. Drug Metab Dispos 2019; 47:164-172. [PMID: 30478158 DOI: 10.1124/dmd.118.083188] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 11/20/2018] [Indexed: 02/13/2025] Open
Abstract
The antitussive agent noscapine has been shown to inhibit the proliferation of cancer cells by disruption of tubulin dynamic. However, the efficacy of several anticancer drugs that inhibit tublin dynamics (vinca alkaloids and taxanes) is reduced by the multidrug resistance phenotype. These compounds are substrates for P-glycoprotein (P-gp)-mediated extrusion from cells. Consequently, the antiproliferative activity of noscapine and a series of derivatives was measured in drug-sensitive and drug-resistant cells that overexpress P-gp. None of the noscapine derivatives displayed lower potency in cells overexpressing P-gp, thereby suggesting a lack of interaction with this pump. However, the cellular efflux of a fluorescent substrate by P-gp was potently inhibited by noscapine and most derivatives. Further investigation with purified, reconstituted P-gp demonstrated that inhibition of P-gp function was due to direct interaction of noscapine derivatives with the transporter. Moreover, coadministration of vinblastine with two of the noscapine derivatives displayed synergistic inhibition of proliferation, even in P-gp-expressing resistant cell lines. Therefore, noscapine derivatives offer a dual benefit of overcoming the significant impact of P-gp in conferring multidrug resistance and synergy with tubulin-disrupting anticancer drugs.
Collapse
Affiliation(s)
- Divya Muthiah
- Division of Biomedical Science and Biochemistry, Research School of Biology and Medical School, Australian National University, Canberra, Australian Capital Territory (D.M., G.K.H., R.C.), and Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria (A.J.D., B.C., P.J.S.), Australia
| | - Georgia K Henshaw
- Division of Biomedical Science and Biochemistry, Research School of Biology and Medical School, Australian National University, Canberra, Australian Capital Territory (D.M., G.K.H., R.C.), and Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria (A.J.D., B.C., P.J.S.), Australia
| | - Aaron J DeBono
- Division of Biomedical Science and Biochemistry, Research School of Biology and Medical School, Australian National University, Canberra, Australian Capital Territory (D.M., G.K.H., R.C.), and Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria (A.J.D., B.C., P.J.S.), Australia
| | - Ben Capuano
- Division of Biomedical Science and Biochemistry, Research School of Biology and Medical School, Australian National University, Canberra, Australian Capital Territory (D.M., G.K.H., R.C.), and Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria (A.J.D., B.C., P.J.S.), Australia
| | - Peter J Scammells
- Division of Biomedical Science and Biochemistry, Research School of Biology and Medical School, Australian National University, Canberra, Australian Capital Territory (D.M., G.K.H., R.C.), and Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria (A.J.D., B.C., P.J.S.), Australia
| | - Richard Callaghan
- Division of Biomedical Science and Biochemistry, Research School of Biology and Medical School, Australian National University, Canberra, Australian Capital Territory (D.M., G.K.H., R.C.), and Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria (A.J.D., B.C., P.J.S.), Australia
| |
Collapse
|
23
|
Zerenler Çalışkan Z, Ay EN. Synthesis of Dihydrobenzofuranone Derivatives with Biotechnological Methods. JOURNAL OF THE TURKISH CHEMICAL SOCIETY, SECTION A: CHEMISTRY 2018. [DOI: 10.18596/jotcsa.448551] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
24
|
Ghaly PE, Abou El-Magd RM, Churchill CDM, Tuszynski JA, West FG. A new antiproliferative noscapine analogue: chemical synthesis and biological evaluation. Oncotarget 2018; 7:40518-40530. [PMID: 27777381 PMCID: PMC5130025 DOI: 10.18632/oncotarget.9642] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 04/10/2016] [Indexed: 11/25/2022] Open
Abstract
Noscapine, a naturally occurring opium alkaloid, is a widely used antitussive medication. Noscapine has low toxicity and recently it was also found to possess cytotoxic activity which led to the development of many noscapine analogues. In this paper we report on the synthesis and testing of a novel noscapine analogue. Cytotoxicity was assessed by MTT colorimetric assay using SKBR-3 and paclitaxel-resistant SKBR-3 breast cancer cell lines using different concentrations for both noscapine and the novel compound. Microtubule polymerization assay was used to determine the effect of the new compound on microtubules. To compare the binding affinity of noscapine and the novel compound to tubulin, we have done a fluorescence quenching assay. Finally, in silico methods using docking calculations were used to illustrate the binding mode of the new compound to α,β-tubulin. Our cytotoxicity results show that the new compound is more cytotoxic than noscapine on both SKBR-3 cell lines. This was confirmed by the stronger binding affinity of the new compound, compared to noscapine, to tubulin. Surprisingly, our new compound was found to have strong microtubule-destabilizing properties, while noscapine is shown to slightly stabilize microtubules. Our calculation indicated that the new compound has more binding affinity to the colchicine-binding site than to the noscapine site. This novel compound has a more potent cytotoxic effect on cancer cell lines than its parent, noscapine, and hence should be of interest as a potential anti-cancer drug.
Collapse
Affiliation(s)
- Peter E Ghaly
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada
| | - Rabab M Abou El-Magd
- Department of Oncology, University of Alberta, Edmonton, AB T6G 1Z2, Canada.,Genetic Engineering and Biotechnology Institute, City of Scientific Research and Technological Application, New Borg El-Arab City, Alexandria, 21934, Egypt
| | | | - Jack A Tuszynski
- Department of Oncology, University of Alberta, Edmonton, AB T6G 1Z2, Canada.,Department of Physics, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - F G West
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada
| |
Collapse
|
25
|
Choudhury SK, Rout P, Parida BB, Florent JC, Johannes L, Phaomei G, Bertounesque E, Rout L. Metal-Free Activation of C(sp3
)-H Bond, and a Practical and Rapid Synthesis of Privileged 1-Substituted 1,2,3,4-Tetrahydroisoquinolines. European J Org Chem 2017. [DOI: 10.1002/ejoc.201700471] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
| | - Pragati Rout
- Department of Chemistry; Institution: Berhampur University; Odisha India
| | - Bibhuti Bhusan Parida
- Chemical Biology of Membranes and Therapeutic Delivery; Institut Curie; Research Center; U1143 INSERM, UMR 3666 CNRS; 26 rue d'Ulm 75248 Paris, Cedex 05 France
| | - Jean-Claude Florent
- Chemical Biology of Membranes and Therapeutic Delivery; Institut Curie; Research Center; U1143 INSERM, UMR 3666 CNRS; 26 rue d'Ulm 75248 Paris, Cedex 05 France
| | - Ludger Johannes
- Chemical Biology of Membranes and Therapeutic Delivery; Institut Curie; Research Center; U1143 INSERM, UMR 3666 CNRS; 26 rue d'Ulm 75248 Paris, Cedex 05 France
| | - Ganngam Phaomei
- Department of Chemistry; Institution: Berhampur University; Odisha India
| | - Emmanuel Bertounesque
- Chemical Biology of Membranes and Therapeutic Delivery; Institut Curie; Research Center; U1143 INSERM, UMR 3666 CNRS; 26 rue d'Ulm 75248 Paris, Cedex 05 France
| | - Laxmidhar Rout
- Department of Chemistry; Institution: Berhampur University; Odisha India
- Chemical Biology of Membranes and Therapeutic Delivery; Institut Curie; Research Center; U1143 INSERM, UMR 3666 CNRS; 26 rue d'Ulm 75248 Paris, Cedex 05 France
| |
Collapse
|
26
|
Rout L, Parida BB, Florent JC, Johannes L, Choudhury SK, Phaomei G, Scanlon J, Bertounesque E. Metal-Free Activation of a C(sp)-H Bond of Aryl Acetylenes. Chemistry 2016; 22:14812-14815. [PMID: 27504988 DOI: 10.1002/chem.201603003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Indexed: 11/11/2022]
Abstract
C(sp)-H Bond activation of acetylene molecule still remains a challenge for synthetic organic chemists. In practice, acetylenes are activated by strong bases and metals. The first example for activating acetylenic protons under base and metal-free conditions is reported here. It involves a general method for synthesizing propargylic derivatives of cotarnine. An array of tetrahydroisoquinolines alkaloids was synthesized by C(sp)-H bond activation of aromatic acetylenes with cotarnine at room temperature. A DFT-based mechanism is proposed for the reaction.
Collapse
Affiliation(s)
- Laxmidhar Rout
- Department of Chemistry, Berhampur University, Bhanjabihar, Odisha, 760007, India. , .,Chemical Biology of Membranes and Therapeutic Delivery, Institut de Curie, Centre de Recherche U1143 INSERM, UMR 3666 CNRS, 26 rue d'Ulm, 75248, Paris, Cedex 05, France. ,
| | - Bibhuti Bhusan Parida
- Chemical Biology of Membranes and Therapeutic Delivery, Institut de Curie, Centre de Recherche U1143 INSERM, UMR 3666 CNRS, 26 rue d'Ulm, 75248, Paris, Cedex 05, France.
| | - Jean-Claude Florent
- Chemical Biology of Membranes and Therapeutic Delivery, Institut de Curie, Centre de Recherche U1143 INSERM, UMR 3666 CNRS, 26 rue d'Ulm, 75248, Paris, Cedex 05, France
| | - Ludger Johannes
- Chemical Biology of Membranes and Therapeutic Delivery, Institut de Curie, Centre de Recherche U1143 INSERM, UMR 3666 CNRS, 26 rue d'Ulm, 75248, Paris, Cedex 05, France
| | | | - Ganngam Phaomei
- Department of Chemistry, Berhampur University, Bhanjabihar, Odisha, 760007, India
| | - Joe Scanlon
- Department of Chemistry, Rippon College, 316 Farr Hall, Ripon, WI, USA
| | - Emmanuel Bertounesque
- Chemical Biology of Membranes and Therapeutic Delivery, Institut de Curie, Centre de Recherche U1143 INSERM, UMR 3666 CNRS, 26 rue d'Ulm, 75248, Paris, Cedex 05, France.
| |
Collapse
|
27
|
Zghaib Z, Guichou JF, Vappiani J, Bec N, Hadj-Kaddour K, Vincent LA, Paniagua-Gayraud S, Larroque C, Moarbess G, Cuq P, Kassab I, Deleuze-Masquéfa C, Diab-Assaf M, Bonnet PA. New imidazoquinoxaline derivatives: Synthesis, biological evaluation on melanoma, effect on tubulin polymerization and structure-activity relationships. Bioorg Med Chem 2016; 24:2433-2440. [PMID: 27094151 DOI: 10.1016/j.bmc.2016.04.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 03/25/2016] [Accepted: 04/01/2016] [Indexed: 12/14/2022]
Abstract
Microtubules are considered as important targets of anticancer therapy. EAPB0503 and its structural imidazo[1,2-a]quinoxaline derivatives are major microtubule-interfering agents with potent anticancer activity. In this study, the synthesis of several new derivatives of EAPB0503 is described, and the anticancer efficacy of 13 novel derivatives on A375 human melanoma cell line is reported. All new compounds show significant antiproliferative activity with IC50 in the range of 0.077-122μM against human melanoma cell line (A375). Direct inhibition of tubulin polymerization assay in vitro is also assessed. Results show that compounds 6b, 6e, 6g, and EAPB0503 highly inhibit tubulin polymerization with percentages of inhibition of 99%, 98%, 90%, and 84% respectively. Structure-activity relationship studies within the series are also discussed in line with molecular docking studies into the colchicine-binding site of tubulin.
Collapse
Affiliation(s)
- Zahraa Zghaib
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, Université de Montpellier, ENSCM, Faculté de Pharmacie, 15, avenue Charles Flahault, BP14491, 34093 Montpellier cedex 5, France; Tumorigenèse et Pharmacologie Antitumorale, Lebanese University, BP 90656, Fanar Jdeideh, Lebanon
| | - Jean-François Guichou
- CNRS, UMR5048 - Université de Montpellier, Centre de Biochimie Structurale, F-34090 Montpellier, France; INSERM, U1054, F-34090 Montpellier, France
| | - Johanna Vappiani
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, Université de Montpellier, ENSCM, Faculté de Pharmacie, 15, avenue Charles Flahault, BP14491, 34093 Montpellier cedex 5, France
| | - Nicole Bec
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U896, 34298 Montpellier, France
| | - Kamel Hadj-Kaddour
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, Université de Montpellier, ENSCM, Faculté de Pharmacie, 15, avenue Charles Flahault, BP14491, 34093 Montpellier cedex 5, France
| | - Laure-Anaïs Vincent
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, Université de Montpellier, ENSCM, Faculté de Pharmacie, 15, avenue Charles Flahault, BP14491, 34093 Montpellier cedex 5, France
| | - Stéphanie Paniagua-Gayraud
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, Université de Montpellier, ENSCM, Faculté de Pharmacie, 15, avenue Charles Flahault, BP14491, 34093 Montpellier cedex 5, France
| | - Christian Larroque
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U896, 34298 Montpellier, France
| | - Georges Moarbess
- Tumorigenèse et Pharmacologie Antitumorale, Lebanese University, BP 90656, Fanar Jdeideh, Lebanon
| | - Pierre Cuq
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, Université de Montpellier, ENSCM, Faculté de Pharmacie, 15, avenue Charles Flahault, BP14491, 34093 Montpellier cedex 5, France
| | - Issam Kassab
- Tumorigenèse et Pharmacologie Antitumorale, Lebanese University, BP 90656, Fanar Jdeideh, Lebanon
| | - Carine Deleuze-Masquéfa
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, Université de Montpellier, ENSCM, Faculté de Pharmacie, 15, avenue Charles Flahault, BP14491, 34093 Montpellier cedex 5, France.
| | - Mona Diab-Assaf
- Tumorigenèse et Pharmacologie Antitumorale, Lebanese University, BP 90656, Fanar Jdeideh, Lebanon
| | - Pierre-Antoine Bonnet
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, Université de Montpellier, ENSCM, Faculté de Pharmacie, 15, avenue Charles Flahault, BP14491, 34093 Montpellier cedex 5, France
| |
Collapse
|
28
|
Tiwari VK, Mishra BB, Mishra KB, Mishra N, Singh AS, Chen X. Cu-Catalyzed Click Reaction in Carbohydrate Chemistry. Chem Rev 2016; 116:3086-240. [PMID: 26796328 DOI: 10.1021/acs.chemrev.5b00408] [Citation(s) in RCA: 556] [Impact Index Per Article: 61.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Cu(I)-catalyzed azide-alkyne 1,3-dipolar cycloaddition (CuAAC), popularly known as the "click reaction", serves as the most potent and highly dependable tool for facile construction of simple to complex architectures at the molecular level. Click-knitted threads of two exclusively different molecular entities have created some really interesting structures for more than 15 years with a broad spectrum of applicability, including in the fascinating fields of synthetic chemistry, medicinal science, biochemistry, pharmacology, material science, and catalysis. The unique properties of the carbohydrate moiety and the advantages of highly chemo- and regioselective click chemistry, such as mild reaction conditions, efficient performance with a wide range of solvents, and compatibility with different functionalities, together produce miraculous neoglycoconjugates and neoglycopolymers with various synthetic, biological, and pharmaceutical applications. In this review we highlight the successful advancement of Cu(I)-catalyzed click chemistry in glycoscience and its applications as well as future scope in different streams of applied sciences.
Collapse
Affiliation(s)
- Vinod K Tiwari
- Department of Chemistry, Centre of Advanced Study, Institute of Science, Banaras Hindu University , Varanasi, Uttar Pradesh-221005, India
| | - Bhuwan B Mishra
- Department of Chemistry, Centre of Advanced Study, Institute of Science, Banaras Hindu University , Varanasi, Uttar Pradesh-221005, India
| | - Kunj B Mishra
- Department of Chemistry, Centre of Advanced Study, Institute of Science, Banaras Hindu University , Varanasi, Uttar Pradesh-221005, India
| | - Nidhi Mishra
- Department of Chemistry, Centre of Advanced Study, Institute of Science, Banaras Hindu University , Varanasi, Uttar Pradesh-221005, India
| | - Anoop S Singh
- Department of Chemistry, Centre of Advanced Study, Institute of Science, Banaras Hindu University , Varanasi, Uttar Pradesh-221005, India
| | - Xi Chen
- Department of Chemistry, One Shields Avenue, University of California-Davis , Davis, California 95616, United States
| |
Collapse
|
29
|
Rida PCG, LiVecche D, Ogden A, Zhou J, Aneja R. The Noscapine Chronicle: A Pharmaco-Historic Biography of the Opiate Alkaloid Family and its Clinical Applications. Med Res Rev 2015; 35:1072-96. [PMID: 26179481 DOI: 10.1002/med.21357] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Given its manifold potential therapeutic applications and amenability to modification, noscapine is a veritable "Renaissance drug" worthy of commemoration. Perhaps the only facet of noscapine's profile more astounding than its versatility is its virtual lack of side effects and addictive properties, which distinguishes it from other denizens of Papaver somniferum. This review intimately chronicles the rich intellectual and pharmacological history behind the noscapine family of compounds, the length of whose arms was revealed over decades of patient scholarship and experimentation. We discuss the intriguing story of this family of nontoxic alkaloids, from noscapine's purification from opium at the turn of the 19th century in Paris to the recent torrent of rationally designed analogs with tremendous anticancer potential. In between, noscapine's unique pharmacology; impact on cellular signaling pathways, the mitotic spindle, and centrosome clustering; use as an antimalarial drug and cough suppressant; and exceptional potential as a treatment for polycystic ovarian syndrome, strokes, and diverse malignancies are catalogued. Seminal experiments involving some of its more promising analogs, such as amino-noscapine, 9-nitronoscapine, 9-bromonoscapine, and reduced bromonoscapine, are also detailed. Finally, the bright future of these oftentimes even more exceptional derivatives is described, rounding out a portrait of a truly remarkable family of compounds.
Collapse
Affiliation(s)
- Padmashree C G Rida
- Novazoi Theranostics, Inc, Plano, Texas, 75025, USA.,Department of Biology, Georgia State University, Atlanta, GA, 30303, USA
| | - Dillon LiVecche
- Department of Biology, Georgia State University, Atlanta, GA, 30303, USA
| | - Angela Ogden
- Department of Biology, Georgia State University, Atlanta, GA, 30303, USA
| | - Jun Zhou
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Ritu Aneja
- Department of Biology, Georgia State University, Atlanta, GA, 30303, USA
| |
Collapse
|
30
|
DeBono A, Capuano B, Scammells PJ. Progress Toward the Development of Noscapine and Derivatives as Anticancer Agents. J Med Chem 2015; 58:5699-727. [PMID: 25811651 DOI: 10.1021/jm501180v] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Many nitrogen-moiety containing alkaloids derived from plant origins are bioactive and play a significant role in human health and emerging medicine. Noscapine, a phthalideisoquinoline alkaloid derived from Papaver somniferum, has been used as a cough suppressant since the mid 1950s, illustrating a good safety profile. Noscapine has since been discovered to arrest cells at mitosis, albeit with moderately weak activity. Immunofluorescence staining of microtubules after 24 h of noscapine exposure at 20 μM elucidated chromosomal abnormalities and the inability of chromosomes to complete congression to the equatorial plane for proper mitotic separation ( Proc. Natl. Acad. Sci. U. S. A. 1998 , 95 , 1601 - 1606 ). A number of noscapine analogues possessing various modifications have been described within the literature and have shown significantly improved antiprolific profiles for a large variety of cancer cell lines. Several semisynthetic antimitotic alkaloids are emerging as possible candidates as novel anticancer therapies. This perspective discusses the advancing understanding of noscapine and related analogues in the fight against malignant disease.
Collapse
Affiliation(s)
- Aaron DeBono
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 381 Royal Parade, Parkville, Victoria 3052 Australia
| | - Ben Capuano
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 381 Royal Parade, Parkville, Victoria 3052 Australia
| | - Peter J Scammells
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 381 Royal Parade, Parkville, Victoria 3052 Australia
| |
Collapse
|
31
|
Mishra RC, Gundala SR, Karna P, Lopus M, Gupta KK, Nagaraju M, Hamelberg D, Tandon V, Panda D, Reid MD, Aneja R. Design, synthesis and biological evaluation of di-substituted noscapine analogs as potent and microtubule-targeted anticancer agents. Bioorg Med Chem Lett 2015; 25:2133-40. [PMID: 25891106 DOI: 10.1016/j.bmcl.2015.03.076] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 03/23/2015] [Accepted: 03/25/2015] [Indexed: 11/24/2022]
Abstract
Noscapine is an opium-derived kinder-gentler microtubule-modulating drug, currently in Phase I/II clinical trials for cancer chemotherapy. Here, we report the synthesis of four more potent di-substituted brominated derivatives of noscapine, 9-Br-7-OH-NOS (2), 9-Br-7-OCONHEt-NOS (3), 9-Br-7-OCONHBn-NOS (4), and 9-Br-7-OAc-NOS (5) and their chemotherapeutic efficacy on PC-3 and MDA-MB-231 cells. The four derivatives were observed to have higher tubulin binding activity than noscapine and significantly affect tubulin polymerization. The equilibrium dissociation constant (KD) for the interaction between tubulin and 2, 3, 4, 5 was found to be, 55±6μM, 44±6μM, 26±3μM, and 21±1μM respectively, which is comparable to parent analog. The effects of these di-substituted noscapine analogs on cell cycle parameters indicate that the cells enter a quiescent phase without undergoing further cell division. The varying biological activity of these analogs and bulk of substituent at position-7 of the benzofuranone ring system of the parent molecule was rationalized utilizing predictive in silico molecular modeling. Furthermore, the immunoblot analysis of protein lysates from cells treated with 4 and 5, revealed the induction of apoptosis and down-regulation of survivin levels. This result was further supported by the enhanced activity of caspase-3/7 enzymes in treated samples compared to the controls. Hence, these compounds showed a great potential for studying microtubule-mediated processes and as chemotherapeutic agents for the management of human cancers.
Collapse
Affiliation(s)
- Ram C Mishra
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA
| | - Sushma R Gundala
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA
| | - Prasanthi Karna
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA
| | - Manu Lopus
- Department of Experimental Cancer Therapeutics and Chemical Biology, UM-DAE Centre for Excellence in Basic Sciences, Kalina, Mumbai 400098, India
| | - Kamlesh K Gupta
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, USA
| | - Mulpuri Nagaraju
- Department of Chemistry, Georgia State University, Atlanta, GA, USA
| | - Donald Hamelberg
- Department of Chemistry, Georgia State University, Atlanta, GA, USA
| | - Vibha Tandon
- Department of Chemistry, University of Delhi, Delhi, India; Special Centre of Molecular Medicine, Jawaharlal Nehru University, Delhi, India
| | - Dulal Panda
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Michelle D Reid
- Department of Pathology, Emory University School of Medicine, Atlanta, GA, USA
| | - Ritu Aneja
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA.
| |
Collapse
|
32
|
Chen X, Dang TTT, Facchini PJ. Noscapine comes of age. PHYTOCHEMISTRY 2015; 111:7-13. [PMID: 25583437 DOI: 10.1016/j.phytochem.2014.09.008] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 09/10/2014] [Accepted: 09/16/2014] [Indexed: 06/04/2023]
Abstract
Noscapine is a phthalideisoquinoline alkaloid, which represents a class of plant specialized metabolites within the large and structurally diverse group of benzylisoquinoline alkaloids. Along with the narcotic analgesic morphine, noscapine is a major alkaloid in the latex of opium poppy (Papaver somniferum) that has long been used as a cough suppressant and has undergone extensive investigation as a potential anticancer drug. Cultivated opium poppy plants remain the only commercial source of noscapine. Despite its isolation from opium more than two centuries ago, the almost complete biosynthesis of noscapine has only recently been established based on an impressive combination of molecular genetics, functional genomics, and metabolic biochemistry. In this review, we provide a historical account of noscapine from its discovery through to initial investigations of its formation in opium poppy. We also describe recent breakthroughs that have led to an elucidation of the noscapine biosynthetic pathway, and we discuss the pharmacological properties that have prompted intensive evaluation of the potential pharmaceutical applications of noscapine and several semi-synthetic derivatives. Finally, we speculate on the future potential for the production of noscapine using metabolic engineering and synthetic biology in plants and microbes.
Collapse
Affiliation(s)
- Xue Chen
- Department of Biological Sciences, University of Calgary, Alberta, Canada
| | - Thu-Thuy T Dang
- Department of Biological Sciences, University of Calgary, Alberta, Canada
| | - Peter J Facchini
- Department of Biological Sciences, University of Calgary, Alberta, Canada.
| |
Collapse
|
33
|
Lopus M, Naik PK. Taking aim at a dynamic target: Noscapinoids as microtubule-targeted cancer therapeutics. Pharmacol Rep 2015; 67:56-62. [DOI: 10.1016/j.pharep.2014.09.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2014] [Revised: 09/06/2014] [Accepted: 09/08/2014] [Indexed: 10/24/2022]
|
34
|
Mishra KB, Mishra RC, Tiwari VK. First noscapine glycoconjugates inspired by click chemistry. RSC Adv 2015. [DOI: 10.1039/c5ra07321a] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The first click chemistry-inspired noscapine glycoconjugates have been developed in good to excellent yields to increase the therapeutic efficacy of noscapine.
Collapse
Affiliation(s)
- Kunj B. Mishra
- Department of Chemistry
- Centre of Advanced Study
- Faculty of Science
- Banaras Hindu University
- Varanasi-221005
| | | | - Vinod K. Tiwari
- Department of Chemistry
- Centre of Advanced Study
- Faculty of Science
- Banaras Hindu University
- Varanasi-221005
| |
Collapse
|
35
|
Qu HJ, Qian Y. Metabolism profiling of amino-noscapine. Eur J Drug Metab Pharmacokinet 2014; 41:171-7. [PMID: 25527252 DOI: 10.1007/s13318-014-0241-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 11/20/2014] [Indexed: 11/30/2022]
Abstract
Amino-noscapine is a promising noscapine derivative undergoing R&D as an efficient anti-tumor drug. In vitro phase I metabolism incubation system was employed. In vitro samples were analyzed using ultra-performance liquid chromatography coupled with electrospray ionization quadrupole time-of-flight mass spectrometry. In vitro recombinant CYP isoforms screening was used to identify the drug-metabolizing enzymes involved in the metabolism of amino-noscapine. Multiple metabolics were formed, including the formation of metabolite undergoing cleavage of methylenedioxy group, hydroxylated metabolites, demethylated metabolites, and metabolites undergoing C-C cleavage. Nearly, all the CYP isoforms were involved in the metabolism of metabolites II, III, VII, IX, and X. CYP1A1 was demonstrated to be the major CYP isoform for the formation of metabolites IV and V. CYP1A1 and CYP3A4 mainly catalyzed the formation of metabolite VI. The metabolic formation of VIII was mainly catalyzed by CYP2C19 and CYP3A4. CYP3A4 was the main enzyme for the formation of XI. CYP2C9 mainly catalyzed the generation of metabolite XII. In conclusion, the metabolic pathway of amino-noscapine was elucidated in the present study using in vitro phase I incubation experiment, including the structural elucidation of metabolites and involved phase I drug-metabolizing enzymes. This information was helpful for the R&D of amino-noscapine.
Collapse
Affiliation(s)
- Hua-Jun Qu
- Oncology Department, Yantai Yuhuangding, Yuhuangding East Road No. 20, Zhifu District, Yantai, Shandong, China
| | - Yang Qian
- Department of radiotherapy, Zhongshan Hospital Affiliated to Fudan University, No. 180, Fenglin Road, Xuhui District, Shanghai, 200032, China.
| |
Collapse
|
36
|
Manchukonda NK, Naik PK, Sridhar B, Kantevari S. Synthesis and biological evaluation of novel biaryl type α-noscapine congeners. Bioorg Med Chem Lett 2014; 24:5752-5757. [DOI: 10.1016/j.bmcl.2014.10.046] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 10/10/2014] [Accepted: 10/15/2014] [Indexed: 11/25/2022]
|
37
|
Metabolic pathway profiling of the derivative of important herbal component noscapine. Eur J Drug Metab Pharmacokinet 2014; 41:27-32. [PMID: 25336326 DOI: 10.1007/s13318-014-0231-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 10/08/2014] [Indexed: 10/24/2022]
Abstract
The present study aims to investigate the influence of metabolic behavior by the introduction of bromo atom into the structure of noscapine. Oral gavage of 50 mg/kg bromo-noscapine for 6- to 8-week-old male mice with C57BL/6 background resulted in the detection of the metabolite undergoing cleavage of methylenedioxy group (II), demethylated bromo-noscapine (III, IV), meconine (V), bromo-cotarnine (VI), bisdemethylated bromo-noscapine (VII), and their corresponding glucuronides (G1-G4) in urine, feces, and serum (24 h). In vitro human liver microsomes or mice liver microsomes incubation system can also give the formation of phase I metabolites. Furthermore, the phase I drug-metabolizing enzymes involved in the metabolism of bromo-noscapine was screened. Many CYP isoforms were involved in the formation of metabolite II, and CYP3A4, CYP1A1, CYP2C19, and CYP2D6 were major CYP isoforms. All the determined CYP isoforms showed the catalytic activity towards the formation of metabolites III, V, and VI. The major CYP isoforms involved in the catalytic formation of metabolite IV were CYP2C19, CYP2D6, and CYP2E1. In conclusion, to date, many structural derivatives of noscapine have been synthesized based on the efficiency. However, the metabolic behavior remains to be elucidated, and the present study gave an example through the investigation of metabolic pathway of bromo-noscapine. The introduction of bromo atom into the structure of noscapine did not alter the metabolites profile, but changed the drug-metabolizing enzyme profiles.
Collapse
|
38
|
Novel third-generation water-soluble noscapine analogs as superior microtubule-interfering agents with enhanced antiproliferative activity. Biochem Pharmacol 2014; 92:192-205. [PMID: 25124704 DOI: 10.1016/j.bcp.2014.07.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 07/20/2014] [Accepted: 07/21/2014] [Indexed: 01/22/2023]
Abstract
Noscapine, an opium-derived 'kinder-gentler' microtubule-modulating drug is in Phase I/II clinical trials for cancer chemotherapy. However, its limited water solubility encumbers its development into an oral anticancer drug with clinical promise. Here we report the synthesis of 9 third-generation, water-soluble noscapine analogs with negatively charged sulfonato and positively charged quaternary ammonium groups using noscapine, 9-bromonoscapine and 9-aminonoscapine as scaffolds. The predictive free energy of solvation was found to be lower for sulfonates (6a-c; 8a-c) compared to the quaternary ammonium-substituted counterparts, explaining their higher water solubility. In addition, sulfonates showed higher charge dispersability, which may effectively shield the hydrophobicity of isoquinoline nucleus as indicated by hydrophobicity mapping methods. These in silico data underscore efficient net charge balancing, which may explain higher water solubility and thus enhanced antiproliferative efficacy and improved bioavailability. We observed that 6b, 8b and 8c strongly inhibited tubulin polymerization and demonstrated significant antiproliferative activity against four cancer cell lines compared to noscapine. Molecular simulation and docking studies of tubulin-drug complexes revealed that the brominated compound with a four-carbon chain (4b, 6b, and 8b) showed optimal binding with tubulin heterodimers. Interestingly, 6b, 8b and 8c treated PC-3 cells resulted in preponderance of mitotic cells with multipolar spindle morphology, suggesting that they stall the cell cycle. Furthermore, in vivo pharmacokinetic evaluation of 6b, 8b and 8c revealed at least 1-2-fold improvement in their bioavailability compared to noscapine. To our knowledge, this is the first report to demonstrate novel water-soluble noscapine analogs that may pave the way for future pre-clinical drug development.
Collapse
|
39
|
Porcù E, Sipos A, Basso G, Hamel E, Bai R, Stempfer V, Udvardy A, Bényei AC, Schmidhammer H, Antus S, Viola G. Novel 9'-substituted-noscapines: synthesis with Suzuki cross-coupling, structure elucidation and biological evaluation. Eur J Med Chem 2014; 84:476-90. [PMID: 25050880 DOI: 10.1016/j.ejmech.2014.07.050] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2014] [Revised: 07/14/2014] [Accepted: 07/15/2014] [Indexed: 10/25/2022]
Abstract
Tubulin is a major molecular target for anticancer drugs. The dynamic process of microtubule assembly and disassembly can be blocked by various agents that bind to distinct sites on tubulin, usually its β-subunit. Among the antimitotic agents that perturb microtubule dynamics, noscapinoids represent an emerging class of agents. In particular, 9'-bromonoscapine (EM011) has been identified as a potent noscapine analog. Here we present high yielding, efficient synthetic methods based on Suzuki coupling of 9'-alkyl and 9'-arylnoscapines and an evaluation of their antiproliferative properties. Our results showed that 9'-alkyl and 9'-aryl derivatives inhibit proliferation of human cancer cells. The most active compounds were the 9'-methyl and the 9'-phenyl derivatives, which showed similar cytotoxic potency in comparison to the 9'-brominated derivative. Interestingly these newly synthesized derivatives did not induce cell death in normal human lymphocytes, suggesting that the compounds may be selective against cancer cells. All of these derivatives, except 9'-(2-methoxyphenyl)-noscapine, efficiently induced a cell cycle arrest in the G2/M phase of the cell cycle in HeLa and Jurkat cells. Furthermore, we showed that the most active compounds in HeLa cells induced apoptosis following the mitochondrial pathway with the activation of both caspase-9 and caspase-3. In addition, these compounds significantly reduced the expression of the anti-apoptotic proteins Mcl-1 and Bcl-2.
Collapse
Affiliation(s)
- Elena Porcù
- Department of Woman's and Child's Health, Laboratory of Oncohematology, University of Padova, Via Giustiniani 2, Padova 35128, Italy
| | - Attila Sipos
- Department of Pharmaceutical Chemistry, Medical and Health Science Center, University of Debrecen, Hungary
| | - Giuseppe Basso
- Department of Woman's and Child's Health, Laboratory of Oncohematology, University of Padova, Via Giustiniani 2, Padova 35128, Italy
| | - Ernest Hamel
- Screening Technologies Branch, Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis, Frederick National Laboratory for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Ruoli Bai
- Screening Technologies Branch, Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis, Frederick National Laboratory for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Verena Stempfer
- Department of Pharmaceutical Chemistry, Institute of Pharmacy and Center for Molecular Biosciences Innsbruck, University of Innsbruck, Austria
| | - Antal Udvardy
- Department of Physical Chemistry, University of Debrecen, Hungary
| | - Attila Cs Bényei
- Department of Physical Chemistry, University of Debrecen, Hungary; Department of Pharmaceutical Chemistry, Medical and Health Science Center, University of Debrecen, Hungary
| | - Helmut Schmidhammer
- Department of Pharmaceutical Chemistry, Institute of Pharmacy and Center for Molecular Biosciences Innsbruck, University of Innsbruck, Austria
| | - Sándor Antus
- Department of Organic Chemistry, University of Debrecen, Hungary
| | - Giampietro Viola
- Department of Woman's and Child's Health, Laboratory of Oncohematology, University of Padova, Via Giustiniani 2, Padova 35128, Italy.
| |
Collapse
|
40
|
Nagy L, Kuki Á, Szabó K, Sipos A, Zsuga M, Kéki S. Fragmentation study of noscapine derivatives under electrospray conditions. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2014; 28:822-828. [PMID: 24573814 DOI: 10.1002/rcm.6847] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 01/18/2014] [Accepted: 01/19/2014] [Indexed: 06/03/2023]
Abstract
RATIONALE Noscapine is a biologically active molecule with anticancer activity among other things. Therefore, from an analytical point of view, knowledge of the mass spectrometric properties of noscapine and its derivatives is essential. The goal of the present study is to describe the collision-induced dissociation behavior of noscapine and its seven derivatives ionized by protons and lithium and sodium ions. METHODS Protonated noscapines were produced using electrospray ionization (ESI) mass spectrometry (MS). For the tandem mass spectrometry (MS/MS) experiments nitrogen was used as the collision gas and the collision energies were varied in the range of 1-53 eV (in the laboratory frame). RESULTS The ESI-MS/MS measurements showed that the MS/MS spectra of the protonated noscapines were more informative than the lithiated and sodiated ones. Based on the MS/MS studies, the main fragmentation channels of the protonated noscapines were found to be the loss of water and the loss of a meconine moiety from the precursor ion; furthermore, methyl transfer was also observed in the MS/MS spectra. CONCLUSIONS The MS/MS study of the protonated noscapines gives more structural information than that of lithiated and sodiated noscapines. However, the most important fragmentation channel, which leads to the formation of the most intensive product ion in the MS/MS spectra, is independent of the ionization agent.
Collapse
Affiliation(s)
- Lajos Nagy
- Department of Applied Chemistry, University of Debrecen, Egyetem tér 1, H-4032, Debrecen, Hungary
| | | | | | | | | | | |
Collapse
|
41
|
Chougule MB, Patel AR, Patlolla R, Jackson T, Singh M. Epithelial transport of noscapine across cell monolayer and influence of absorption enhancers on in vitro permeation and bioavailability: implications for intestinal absorption. J Drug Target 2014; 22:498-508. [PMID: 24731057 DOI: 10.3109/1061186x.2014.894046] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The purpose of this study was to investigate the permeation of Noscapine (Nos) across the Caco-2 and Madin-Darby canine kidney (MDCK) cell monolayers and to evaluate the influence of absorption enhancers on in vitro and in vivo absorption of Nos. The bidirectional transport of Nos was studied in Caco-2 and MDCK cell monolayers at pH 5.0-7.8. The effect of 0.5% w/v chitosan (CH) or Captisol (CP) on Nos permeability was investigated at pH 5.0 and 5.8. The effect of 1-5% w/v of CP on oral bioavailability of Nos (150 mg/kg) was evaluated in Sprague-Dawley rats. The effective permeability coefficients (Peff) of Nos across Caco-2 and MDCK cell monolayers was found to be in the order of pH 5.0 > 5.8 > 6.8 > 7.8. The efflux ratios of Peff < 2 demonstrated that active efflux does not limit the absorption of Nos. The use of CH or CP have shown significant (***, p < 0.001) enhancement in Peff of Nos across cell monolayer compared with the control group. The CP (1-5% w/v) based Nos formulations resulted in significant (***, p < 0.001) increase in the bioavailability of Nos compared with Nos solution. The use of CP represents viable approach for enhancing the oral bioavailability of Nos and reducing the required dose.
Collapse
Affiliation(s)
- Mahavir B Chougule
- Department of Pharmaceutical Sciences, the Daniel K. Inouye College of Pharmacy, University of Hawaii at Hilo , Hilo, HI , USA and
| | | | | | | | | |
Collapse
|
42
|
DeBono AJ, Mistry SJ, Xie J, Muthiah D, Phillips J, Ventura S, Callaghan R, Pouton CW, Capuano B, Scammells PJ. The Synthesis and Biological Evaluation of Multifunctionalised Derivatives of Noscapine as Cytotoxic Agents. ChemMedChem 2013; 9:399-410. [DOI: 10.1002/cmdc.201300395] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Indexed: 11/07/2022]
|
43
|
Manchukonda NK, Naik PK, Santoshi S, Lopus M, Joseph S, Sridhar B, Kantevari S. Rational design, synthesis, and biological evaluation of third generation α-noscapine analogues as potent tubulin binding anti-cancer agents. PLoS One 2013; 8:e77970. [PMID: 24205049 PMCID: PMC3804772 DOI: 10.1371/journal.pone.0077970] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2013] [Accepted: 09/06/2013] [Indexed: 11/26/2022] Open
Abstract
Systematic screening based on structural similarity of drugs such as colchicine and podophyllotoxin led to identification of noscapine, a microtubule-targeted agent that attenuates the dynamic instability of microtubules without affecting the total polymer mass of microtubules. We report a new generation of noscapine derivatives as potential tubulin binding anti-cancer agents. Molecular modeling experiments of these derivatives 5a, 6a-j yielded better docking score (-7.252 to -5.402 kCal/mol) than the parent compound, noscapine (-5.505 kCal/mol) and its existing derivatives (-5.563 to -6.412 kCal/mol). Free energy (ΔGbind) calculations based on the linear interaction energy (LIE) empirical equation utilizing Surface Generalized Born (SGB) continuum solvent model predicted the tubulin-binding affinities for the derivatives 5a, 6a-j (ranging from -4.923 to -6.189 kCal/mol). Compound 6f showed highest binding affinity to tubulin (-6.189 kCal/mol). The experimental evaluation of these compounds corroborated with theoretical studies. N-(3-brormobenzyl) noscapine (6f) binds tubulin with highest binding affinity (KD, 38 ± 4.0 µM), which is ~ 4.0 times higher than that of the parent compound, noscapine (KD, 144 ± 1.0 µM) and is also more potent than that of the first generation clinical candidate EM011, 9-bromonoscapine (KD, 54 ± 9.1 µM). All these compounds exhibited substantial cytotoxicity toward cancer cells, with IC50 values ranging from 6.7 µM to 72.9 µM; compound 6f showed prominent anti-cancer efficacy with IC50 values ranging from 6.7 µM to 26.9 µM in cancer cells of different tissues of origin. These compounds perturbed DNA synthesis, delayed the cell cycle progression at G2/M phase, and induced apoptotic cell death in cancer cells. Collectively, the study reported here identified potent, third generation noscapinoids as new anti-cancer agents.
Collapse
Affiliation(s)
- Naresh Kumar Manchukonda
- Organic Chemistry Division-II (Crop Protection Chemicals Division), CSIR-Indian Institute of Chemical Technology, Hyderabad, India
| | - Pradeep Kumar Naik
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, Distt, Solan, Himachal Pradesh, India
- * E-mail: (PKN); (SK)
| | - Seneha Santoshi
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, Distt, Solan, Himachal Pradesh, India
| | - Manu Lopus
- Department of Molecular, Cellular, and Developmental Biology, and the Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, California, United States of America
- UM-DAE Centre for Excellence in Basic Sciences, University of Mumbai campus, Kalina, Santa Cruz (E), Mumbai, India
| | - Silja Joseph
- Department of Molecular, Cellular, and Developmental Biology, and the Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, California, United States of America
| | - Balasubramanian Sridhar
- X-Ray Crystallography Laboratory, CSIR-Indian Institute of Chemical Technology, Hyderabad-500007, India
| | - Srinivas Kantevari
- Organic Chemistry Division-II (Crop Protection Chemicals Division), CSIR-Indian Institute of Chemical Technology, Hyderabad, India
- Academy of Scientific and Innovative Research, CSIR-Indian Institute of Chemical Technology, Hyderabad, India
- * E-mail: (PKN); (SK)
| |
Collapse
|
44
|
Verma AK, Jha RR, Chaudhary R, Tiwari RK, Danodia AK. 2-(1-Benzotriazolyl)pyridine: A Robust Bidentate Ligand for the Palladium-Catalyzed CC (Suzuki, Heck, Fujiwara-Moritani, Sonogashira), CN and CS Coupling Reactions. Adv Synth Catal 2013. [DOI: 10.1002/adsc.201200583] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
45
|
DeBono AJ, Xie JH, Ventura S, Pouton CW, Capuano B, Scammells PJ. Synthesis and biological evaluation of N-substituted noscapine analogues. ChemMedChem 2012; 7:2122-33. [PMID: 23055449 DOI: 10.1002/cmdc.201200365] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Revised: 09/12/2012] [Indexed: 11/07/2022]
Abstract
Noscapine is a phthalideisoquinoline alkaloid isolated from the opium poppy Papaver somniferum. It has long been used as an antitussive agent, but has more recently been found to possess microtubule-modulating properties and anticancer activity. Herein we report the synthesis and pharmacological evaluation of a series of 6'-substituted noscapine derivatives. To underpin this structure-activity study, an efficient synthesis of N-nornoscapine and its subsequent reduction to the cyclic ether derivative of N-nornoscapine was developed. Reaction of the latter with a range of alkyl halides, acid chlorides, isocyanates, thioisocyanates, and chloroformate reagents resulted in the formation of the corresponding N-alkyl, N-acyl, N-carbamoyl, N-thiocarbamoyl, and N-carbamate derivatives, respectively. The ability of these compounds to inhibit cell proliferation was assessed in cell-cycle cytotoxicity assays using prostate cancer (PC3), breast cancer (MCF-7), and colon cancer (Caco-2) cell lines. Compounds that showed activity in the cell-cycle assay were further evaluated in cell viability assays using PC3 and MCF-7 cells.
Collapse
Affiliation(s)
- Aaron J DeBono
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville VIC 3052, Australia
| | | | | | | | | | | |
Collapse
|
46
|
Induction of robust de novo centrosome amplification, high-grade spindle multipolarity and metaphase catastrophe: a novel chemotherapeutic approach. Cell Death Dis 2012; 3:e346. [PMID: 22785532 PMCID: PMC3406581 DOI: 10.1038/cddis.2012.82] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Centrosome amplification (CA) and resultant chromosomal instability have long been associated with tumorigenesis. However, exacerbation of CA and relentless centrosome declustering engender robust spindle multipolarity (SM) during mitosis and may induce cell death. Recently, we demonstrated that a noscapinoid member, reduced bromonoscapine, (S)-3-(R)-9-bromo-5-(4,5-dimethoxy-1,3-dihydroisobenzofuran-1-yl)-4-methoxy-6-methyl-5,6,7,8-tetrahydro-[1,3]dioxolo-[4,5-g]isoquinoline (Red-Br-nos), induces reactive oxygen species (ROS)-mediated autophagy and caspase-independent death in prostate cancer PC-3 cells. Herein, we show that Red-Br-nos induces ROS-dependent DNA damage that resulted in high-grade CA and SM in PC-3 cells. Unlike doxorubicin, which causes double-stranded DNA breaks and chronic G2 arrest accompanied by ‘templated' CA, Red-Br-nos-mediated DNA damage elicits de novo CA during a transient S/G2 stall, followed by checkpoint abrogation and mitotic entry to form aberrant mitotic figures with supernumerary spindle poles. Attenuation of multipolar phenotype in the presence of tiron, a ROS inhibitor, indicated that ROS-mediated DNA damage was partly responsible for driving CA and SM. Although a few cells (∼5%) yielded to aberrant cytokinesis following an ‘anaphase catastrophe', most mitotically arrested cells (∼70%) succumbed to ‘metaphase catastrophe,' which was caspase-independent. This report is the first documentation of rapid de novo centrosome formation in the presence of parent centrosome by a noscapinoid family member, which triggers death-inducing SM via a unique mechanism that distinguishes it from other ROS-inducers, conventional DNA-damaging agents, as well as other microtubule-binding drugs.
Collapse
|
47
|
Peloruside, Laulimalide, and Noscapine Interactions with Beta-Tubulin. Pharm Res 2012; 29:2985-93. [DOI: 10.1007/s11095-012-0809-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Accepted: 06/11/2012] [Indexed: 02/04/2023]
|
48
|
Madan J, Baruah B, Nagaraju M, Abdalla MO, Yates C, Turner T, Rangari V, Hamelberg D, Aneja R. Molecular cycloencapsulation augments solubility and improves therapeutic index of brominated noscapine in prostate cancer cells. Mol Pharm 2012; 9:1470-80. [PMID: 22540277 DOI: 10.1021/mp300063v] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
We have previously shown that a novel microtubule-modulating noscapinoid, EM011 (9-Br-Nos), displays potent anticancer activity by inhibition of cellular proliferation and induction of apoptosis in prostate cancer cells and preclinical mice models. However, physicochemical and cellular barriers encumber the development of viable formulations for future clinical translation. To circumvent these limitations, we have synthesized EM011-cyclodextrin inclusion complexes to improve solubility and enhance therapeutic index of EM011. Phase solubility analysis indicated that EM011 formed a 1:1 stoichiometric complex with β-CD and methyl-β-CD, with a stability constant (K(c)) of 2.42 × 10(-3) M and 4.85 × 10(-3) M, respectively. Fourier transform infrared spectroscopy suggested the penetrance of either a O-CH(2) or OCH(3)-C(6)H(4)-OCH(3) moiety of EM011 in the β-CD or methyl-β-CD cavity. In addition, multifarious techniques, namely, differential scanning calorimetry, powder X-ray diffraction, scanning electron microscopy, NMR spectroscopy, and computational studies validated the cage complex of EM011 with β-CD and methyl-β-CD. Moreover, rotating frame overhauser enhancement spectroscopy showed that the H(a) proton of the OCH(3)-C(6)H(4)-OCH(3) moiety was in close proximity with H3 proton of the β-CD or methyl-β-CD cavity. Furthermore, we found that the solubility of EM011 in phosphate buffer saline (pH 7.4) was enhanced by ~11 fold and ~21 fold upon complexation with β-CD and methyl-β-CD, respectively. The enhanced dissolution of the drug CD-complexes in aqueous phase remarkably decreased their IC(50) to 28.5 μM (9-Br-Nos-β-CD) and 12.5 μM (9-Br-Nos-methyl-β-CD) in PC-3 cells compared to free EM011 (~200 μM). This is the first report to demonstrate the novel construction of cylcodextrin-based nanosupramolecular vehicles for enhanced delivery of EM011 that warrants in vivo evaluation for the superior management of prostate cancer.
Collapse
Affiliation(s)
- Jitender Madan
- Departments of Biology, Georgia State University, Atlanta, Georgia 30303, United States
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Copper(I) mediated facile synthesis of potent tubulin polymerization inhibitor, 9-amino-α-noscapine from natural α-noscapine. Bioorg Med Chem Lett 2012; 22:2983-7. [DOI: 10.1016/j.bmcl.2012.02.033] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Revised: 01/29/2012] [Accepted: 02/13/2012] [Indexed: 11/22/2022]
|
50
|
Near infrared active heptacyanine dyes with unique cancer-imaging and cytotoxic properties. Bioorg Med Chem Lett 2011; 22:1242-6. [PMID: 22177785 DOI: 10.1016/j.bmcl.2011.11.070] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Revised: 11/15/2011] [Accepted: 11/18/2011] [Indexed: 12/22/2022]
Abstract
Three near-infrared fluorescent heptacarbocyanine dyes have been synthesized using a facile one-pot synthetic approach. The reaction methodology afforded a mixture of three symmetric and unsymmetric heptacyanines containing various N-indolenine substituents, a dicarbocyclic acid (DA), a monoester (ME), and a diester (DE). These compounds were isolated, purified, characterized and biologically investigated for tumor cell cytotoxicity and uptake selectivity. Using cell viability and in vitro proliferation assays, we found that the esterified dyes (monoester, ME and diester, DE) were selectively cytotoxic to cancer cells and spared normal fibroblast cells. Additionally, confocal fluorescence imaging confirmed selective uptake of these dyes in cancer cells, thus suggesting tumor cell targeting.
Collapse
|