1
|
Carmignani A, Battaglini M, Marino A, Pignatelli F, Ciofani G. Drug-Loaded Polydopamine Nanoparticles for Chemo/Photothermal Therapy against Colorectal Cancer Cells. ACS APPLIED BIO MATERIALS 2024; 7:2205-2217. [PMID: 38489294 DOI: 10.1021/acsabm.3c01203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2024]
Abstract
Colorectal cancer (CRC) is a common and deadly malignancy, ranking second in terms of mortality and third in terms of incidence on a global scale. The survival rates for CRC patients are unsatisfactory primarily because of the absence of highly effective clinical strategies. The efficacy of existing CRC treatments, such as chemotherapy (CT), is constrained by issues such as drug resistance and damage to healthy tissues. Alternative approaches such as photothermal therapy (PTT), while offering advantages over traditional therapies, suffer instead from a low efficiency in killing tumor cells when used alone. In this context, nanostructures can efficiently contribute to a selective and targeted treatment. Here, we combined CT and PTT by developing a nanoplatform based on polydopamine nanoparticles (PDNPs), selected for their biocompatibility, drug-carrying capabilities, and ability to produce heat upon exposure to near-infrared (NIR) irradiation. As a chemotherapy drug, sorafenib has been selected, a multikinase inhibitor already approved for clinical use. By encapsulating sorafenib in polydopamine nanoparticles (Sor-PDNPs), we were able to successfully improve the drug stability in physiological media and the consequent uptake by CRC cells, thereby increasing its therapeutic effects. Upon NIR stimulus, Sor-PDNPs can induce a temperature increment of about 10 °C, encompassing both PTT and triggering a localized and massive drug release. Sor-PDNPs were tested on healthy colon cells, showing minimal adverse outcomes; conversely, they demonstrated excellent efficacy against CRC cells, with a strong capability to hinder cancer cell proliferation and induce apoptosis. Obtained findings pave the way to new synergistic chemo-photothermal approaches, maximizing the therapeutic outcomes against CRC while minimizing side effects on healthy cells.
Collapse
Affiliation(s)
- Alessio Carmignani
- Smart Bio-Interfaces, Istituto Italiano di Tecnologia, Viale Rinaldo Piaggio 34, 56025 Pontedera, Italy
- Scuola Superiore Sant'Anna, The Biorobotics Institute, Viale Rinaldo Piaggio 34, 56025 Pontedera, Italy
| | - Matteo Battaglini
- Smart Bio-Interfaces, Istituto Italiano di Tecnologia, Viale Rinaldo Piaggio 34, 56025 Pontedera, Italy
| | - Attilio Marino
- Smart Bio-Interfaces, Istituto Italiano di Tecnologia, Viale Rinaldo Piaggio 34, 56025 Pontedera, Italy
| | - Francesca Pignatelli
- Smart Bio-Interfaces, Istituto Italiano di Tecnologia, Viale Rinaldo Piaggio 34, 56025 Pontedera, Italy
| | - Gianni Ciofani
- Smart Bio-Interfaces, Istituto Italiano di Tecnologia, Viale Rinaldo Piaggio 34, 56025 Pontedera, Italy
| |
Collapse
|
2
|
Chen M, Zhang S, Wang F, He J, Jiang W, Zhang L. DLGAP5 promotes lung adenocarcinoma growth via upregulating PLK1 and serves as a therapeutic target. J Transl Med 2024; 22:209. [PMID: 38414025 PMCID: PMC10900829 DOI: 10.1186/s12967-024-04910-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 01/21/2024] [Indexed: 02/29/2024] Open
Abstract
BACKGROUND Human discs large-associated protein 5 (DLGAP5) is reported to play a pivotal role in regulating the cell cycle and implicate in tumorigenesis and progression of various cancers. Our current research endeavored to explore the prognostic value, immune implication, biological function and targeting strategy of DLGAP5 in LUAD through approaches including bioinformatics, network pharmacology analysis and experimental study. METHODS Multiple databases, including TCGA, GEO, CPTAC and Human Protein Atlas, were utilized to explore the expression and clinical significance of DLGAP5 in LUAD. The genetic alterations of DLGAP5 were assessed through cBioPortal and COSMIC databases. The relationship between DLGAP5 expression and genetic abnormalities of driver genes in LUAD was analyzed through TIMER2.0 database. CancerSEA database was utilized to explore the function of DLGAP5 in 14 different states in LUAD at single-cell resolution. GDSC database was utilized to analyze the impact of DLGAP5 on IC50 of frequently-used anti-LUAD drugs. CIBERSORT method and TIMER2.0 database was utilized to explore the relationship between DLGAP5 and tumor immune infiltration. Network pharmacology was applied to screen potential DLGAP5 inhibitor. In vitro and in vivo experiments were utilized to evaluate biological function and downstream targets of DLGAP5, and the effect of screened DLGAP5 inhibitor on LUAD growth. RESULTS High DLGAP5 expression was commonly observed in LUAD and associated with mutation of major driver genes, poor prognosis, high IC50 values of frequently-used anti-LUAD drugs, increasing immune infiltration and elevated immune checkpoint blockade-related genes in LUAD. PLK1 was revealed as a potential DLGAP5 downstream target in LUAD. DLGAP5 overexpression or knockdown significantly promoted or inhibited LUAD cell proliferation and PLK1 expression. PLK1 overexpression well rescued DLGAP5 knockdown-induced cell proliferation inhibition, or vice versa. Furthermore, by virtual screening of an investigational drug library from the DrugBank database, AT9283 was screened and identified as a novel DLGAP5 inhibitor. AT9283 effectively suppressed growth of LUAD cells both in vitro and in vivo. DLGAP5 overexpression significantly reversed AT9283-induced proliferation inhibition. Moreover, AT9283 significantly suppressed DLGAP5 and PLK1 expression, while DLGAP5 overexpression significantly reversed AT9283-induced PLK1 suppression. CONCLUSION Our research has demonstrated that DLGAP5 is upregulated in LUAD and exhibits a strong correlation with unfavorable prognosis. Furthermore, DLGAP5 assumes a significant function in the regulation of tumor immunity and treatment outcome of immune checkpoint inhibitors. Of note, we found that DLGAP5 promotes cell proliferation of LUAD via upregulating PLK1. Targeting DLGAP5 by AT9283, our newly identified DLGAP5 inhibitor, suppresses LUAD growth. DLGAP5 may become a promising prognostic biomarker and therapeutic target for patients with LUAD.
Collapse
Affiliation(s)
- Maojian Chen
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, Guangdong, People's Republic of China
- Department of Respiratory Oncology, Guangxi Medical University Cancer Hospital, Nanning, 530021, Guangxi, People's Republic of China
| | - Shaoping Zhang
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, Guangdong, People's Republic of China
| | - Fan Wang
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, Guangdong, People's Republic of China
| | - Junyi He
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, Guangdong, People's Republic of China
| | - Wei Jiang
- Department of Respiratory Oncology, Guangxi Medical University Cancer Hospital, Nanning, 530021, Guangxi, People's Republic of China.
| | - Li Zhang
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, Guangdong, People's Republic of China.
| |
Collapse
|
3
|
Lei HJ, Wang SY, Chau IY, Li AFY, Chau YP, Hsia CY, Chou SC, Kao YC, Chau GY. Hepatoma upregulated protein and Ki-67 expression in resectable hepatocellular carcinoma. J Chin Med Assoc 2021; 84:623-632. [PMID: 33883465 DOI: 10.1097/jcma.0000000000000540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Hepatoma upregulated protein (HURP) and Ki-67 have been identified as cancer-related genes involved in cell growth and proliferation. Previous experimental studies have suggested an essential role for HURP expression in liver carcinogenesis. However, data regarding HURP expression in hepatocellular carcinoma (HCC) and its correlation with patient outcomes are limited. In this study, we examined the clinicopathologic features associated with HURP expression in HCC, and compared them to the results of the Ki-67 study. METHODS Eighty-seven resected HCC at tumor, node, metastasis (TNM) stages I (n = 28), II (n = 29), and III (n = 30) were evaluated. HURP and Ki-67 expression were assessed by immunohistochemistry. Multivariate analysis was used to examine the prognostic significance of HURP and Ki-67 expression. RESULTS HURP expression in HCC tissue was observed in 59% of patients and associated with female sex, low white blood cell count, and low platelet count. Ki-67 expression was observed in 67% of patients and associated with younger age, higher serum α-fetoprotein (AFP) levels, and frequent microvascular invasion. Univariate analysis showed that factors related to overall survival were: age >55 years, AFP >20 ng/mL, indocyanine green retention rate at 15 minutes (ICG-15) >15%, tumor size >5 cm, multiple tumors, macrovascular invasion, microvascular invasion, Ki-67 expression, and serum vascular endothelial growth factor >170 pg/mL. HURP expression was not associated with postresection survival. Multivariate analysis indicated that macrovascular invasion, multiple tumors, ICG-15 >15%, and Ki-67 expression were independent factors for overall survival. Multiple tumors and Ki-67 expression were independent factors related to recurrence-free survival. CONCLUSION In our study, HURP expression in HCC tissue was not associated with post-resection survival. Ki-67 expression was an independent prognostic factor for survival. Our results suggest that the effect of HURP activity on growth, invasion, and postresection outcome of HCC in actual patients is less than previously demonstrated in experimental studies.
Collapse
Affiliation(s)
- Hoa-Jan Lei
- Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| | - Sheng-Yu Wang
- Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Ivy Yenwen Chau
- Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Anna Fen-Yau Li
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- Department of Pathology, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Yat-Pang Chau
- Department of Medicine, Mackay Medical College, New Taipei City, Taiwan, ROC
| | - Cheng-Yuan Hsia
- Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| | - Shu-Cheng Chou
- Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| | - Yi-Chu Kao
- Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| | - Gar-Yang Chau
- Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| |
Collapse
|
4
|
Takahashi A, Yamanaka A, Takebayashi A, Kimura F, Murakami T. The expression of hepatoma upregulated protein in human endometrium during the menstrual cycle. Gynecol Endocrinol 2021; 37:171-176. [PMID: 32840162 DOI: 10.1080/09513590.2020.1811965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
AIMS Human endometrium resists embryo implantation except during the window period. Currently, uterine HURP expression is known to be involved in endometrial stromal proliferation during embryo implantation of mice. Thus, we demonstrated hepatoma up-regulated protein (HURP) expression in the human endometrium during the menstrual cycle, as well as HURP regulation in endometrial stromal cells (ESCs). MATERIALS AND METHODS We collected human endometrial samples from different menstrual cycle phases (early/late proliferative, and early/mid/late secretory), and then analyzed these samples by immunohistochemistry, reverse transcription-polymerase chain reaction, and Western blotting. We also assessed the effects of two sex-steroid hormones, 17β-estradiol (E2) and 4-pregnene-3,20-dione (P4) on the cultured stromal cells. RESULTS HURP protein was localized to the nucleus of the endometrial both epithelial and stromal cells in all stages. Also, HURP mRNA and protein in human endometrial tissue was significantly up-regulated during late-proliferative and secretory phase, compared with early-proliferative phase. In ESCs, HURP expression was regulated by E2, but not P4. CONCLUSIONS We indicated that cyclic changes in HURP expression in human normal ESC strongly suggested up-regulation by estrogen. Taken together, since estrogen responses are fundamental in endometrial biology, uterine expression of HURP may be involved in female reproductive function during the menstrual cycle.
Collapse
Affiliation(s)
- Akimasa Takahashi
- Department of Obstetrics and Gynecology, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Akiyoshi Yamanaka
- Department of Obstetrics and Gynecology, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Akie Takebayashi
- Department of Obstetrics and Gynecology, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Fuminori Kimura
- Department of Obstetrics and Gynecology, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Takashi Murakami
- Department of Obstetrics and Gynecology, Shiga University of Medical Science, Otsu, Shiga, Japan
| |
Collapse
|
5
|
Zheng R, Shi Z, Li W, Yu J, Wang Y, Zhou Q. Identification and prognostic value of DLGAP5 in endometrial cancer. PeerJ 2020; 8:e10433. [PMID: 33312770 PMCID: PMC7703392 DOI: 10.7717/peerj.10433] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 11/05/2020] [Indexed: 01/01/2023] Open
Abstract
Background Endometrial cancer poses a serious threat to women’s health worldwide, and its pathogenesis, although actively explored, is not fully understood. DLGAP5 is a recently identified cell cycle-regulation gene not reported in endometrial cancer. This study was aiming to analyze the role of DLGAP5 in tumorigenesis and development and to investigate its prognostic significance of patients with endometrial cancer. Methodology Microarray datasets (GSE17025, GSE39099 and GSE63678) from the GEO database were used for comparative analysis, and their intersection was obtained by applying the Venn diagram, and DLGAP5 was selected as the target gene. Next, transcriptome data (n = 578) was downloaded from TCGA-UCEC to analyze the mRNA expression profile of DLGAP5. Then, immunohistochemical data provided by HPA were used to identify the different protein expression levels of DLGAP5 in tumor tissues and normal tissues. Subsequently, the prognostic meaning of DLGAP5 in patients with endometrial cancer was explored based on survival data from TCGA-UCEC (n = 541). Finally, the reliability of DLGAP5 expression was verified by RT-qPCR. Results Transcriptome data from TCGA-UCEC, immunohistochemical data from HPA, and RT-qPCR results from clinical samples were used for triple validation to confirm that the expression of DLGAP5 in endometrial cancer tissues was significantly higher than that in normal endometrial tissues. Kaplan–Meier survival analysis announced that the expression level of DLGAP5 was negatively correlated with the overall survival of patients with endometrial cancer. Conclusions DLGAP5 is a potential oncogene with cell cycle regulation, and its overexpression can predict the poor prognosis of patients with endometrial cancer. As a candidate target for the diagnosis and treatment of endometrial cancer, it is worthwhile to make further study to reveal the carcinogenicity of DLGAP5 and the mechanism of its resistance of organisms.
Collapse
Affiliation(s)
- Ruoyi Zheng
- Department of Gynecology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhengzheng Shi
- Department of Gynecology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Wenzhi Li
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Jianqin Yu
- Department of Gynecology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yuli Wang
- Department of Gynecology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Qing Zhou
- Department of Gynecology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
6
|
Kim SY, Kim SM, Chang H, Chang HS, Park CS, Lee YS. Synergistic anticancer activity of sorafenib, paclitaxel, and radiation therapy on anaplastic thyroid cancer in vitro and in vivo. Head Neck 2020; 42:3678-3684. [PMID: 32896015 DOI: 10.1002/hed.26431] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/06/2020] [Accepted: 08/03/2020] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND This study aimed to investigate the antitumor activity of paclitaxel with radiation and sorafenib in anaplastic thyroid cancer (ATC) cells in vitro and in vivo. METHODS The 8505C ATC cell line was exposed to radiation, sorafenib, and paclitaxel each or in combination. The effects of combined treatment on the cell cycle and intracellular signaling pathways were assessed using flow cytometry and western blot analysis. An ATC cell line xenograft model was used to examine antitumor activity in vivo. RESULTS Radiation, paclitaxel plus sorafenib synergistically decreased cell viability in ATC cells and significantly increased apoptotic cell death. The combination of paclitaxel, sorafenib with radiation reduced the antiapoptotic factor in ATC. This combination therapy significantly reduced the tumor volume and increased survival in the ATC xenograft model. CONCLUSIONS These results suggest that the combination of radiation and paclitaxel plus sorafenib has significant anticancer activity in preclinical models.
Collapse
Affiliation(s)
- Soo Young Kim
- Department of Surgery, Thyroid Cancer Center, Gangnam Severance Hospital, Institute of Refractory Thyroid Cancer, Yonsei University College of Medicine, Seoul, South Korea
| | - Seok-Mo Kim
- Department of Surgery, Thyroid Cancer Center, Gangnam Severance Hospital, Institute of Refractory Thyroid Cancer, Yonsei University College of Medicine, Seoul, South Korea
| | - Hojin Chang
- Department of Surgery, Thyroid Cancer Center, Gangnam Severance Hospital, Institute of Refractory Thyroid Cancer, Yonsei University College of Medicine, Seoul, South Korea
| | - Hang-Seok Chang
- Department of Surgery, Thyroid Cancer Center, Gangnam Severance Hospital, Institute of Refractory Thyroid Cancer, Yonsei University College of Medicine, Seoul, South Korea
| | - Cheong Soo Park
- Department of Surgery, CHA Ilsan Medical Center, Goyang, South Korea
| | - Yong Sang Lee
- Department of Surgery, Thyroid Cancer Center, Gangnam Severance Hospital, Institute of Refractory Thyroid Cancer, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
7
|
Liu YC, Lu LF, Li CJ, Sun NK, Guo JY, Huang YH, Yeh CT, Chao CCK. Hepatitis B Virus X Protein Induces RHAMM-Dependent Motility in Hepatocellular Carcinoma Cells via PI3K-Akt-Oct-1 Signaling. Mol Cancer Res 2019; 18:375-389. [PMID: 31792079 DOI: 10.1158/1541-7786.mcr-19-0463] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 10/07/2019] [Accepted: 11/26/2019] [Indexed: 11/16/2022]
Abstract
Chronic hepatitis B virus (HBV) infection is a major risk factor for the development of hepatocellular carcinoma (HCC), which represents one of the most common cancers worldwide. Recent studies suggest that HBV's protein X (HBx) plays a crucial role in HCC development and progression. Earlier, genome-wide analysis identified that the receptor for hyaluronan-mediated motility (RHAMM) represents a putative oncogene and is overexpressed in many human cancers, including HCC. However, the mechanism underlying RHAMM upregulation and its role in tumorigenesis remain unclear. Here, we show that ectopic expression of HBx activates the PI3K/Akt/Oct-1 pathway and upregulates RHAMM expression in HCC cells. HBx overexpression leads to dissociation of C/EBPβ from the RHAMM gene promoter, thereby inducing RHAMM upregulation. RHAMM knockdown attenuates HBx-induced cell migration and invasion in vitro. In mice, HBx promotes cancer cell colonization via RHAMM upregulation, resulting in enhanced metastasis. Analysis of gene expression datasets reveals that RHAMM mRNA level is upregulated in patients with HCC with poor prognosis. IMPLICATIONS: These results indicate that RHAMM expression is upregulated by HBx, a process that depends on the inhibition of C/EBPβ activity and activation of the PI3K/Akt/Oct-1 pathway. These results have several implications for the treatment of HBV-positive HCC involving upregulation of RHAMM and cancer metastasis. VISUAL OVERVIEW: http://mcr.aacrjournals.org/content/molcanres/18/3/375/F1.large.jpg.
Collapse
Affiliation(s)
- Yu-Chin Liu
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan, Republic of China
| | - Li-Feng Lu
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan, Republic of China
| | - Chia-Jung Li
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan, Republic of China
| | - Nian-Kang Sun
- Department of Biochemistry and Molecular Biology, College of Medicine, Chang Gung University, Taoyuan, Taiwan, Republic of China.,Division of Biomedical Sciences, Chang Gung University of Science and Technology, Taoyuan, Taiwan, Republic of China
| | - Jing-You Guo
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Ya-Hui Huang
- Liver Research Center, Chang Gung Memorial Hospital Linkou Branch, Taoyuan, Taiwan, Republic of China
| | - Chau-Ting Yeh
- Liver Research Center, Chang Gung Memorial Hospital Linkou Branch, Taoyuan, Taiwan, Republic of China
| | - Chuck C-K Chao
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan, Republic of China. .,Department of Biochemistry and Molecular Biology, College of Medicine, Chang Gung University, Taoyuan, Taiwan, Republic of China.,Liver Research Center, Chang Gung Memorial Hospital Linkou Branch, Taoyuan, Taiwan, Republic of China
| |
Collapse
|
8
|
Verrico A, Rovella P, Di Francesco L, Damizia M, Staid DS, Le Pera L, Schininà ME, Lavia P. Importin-β/karyopherin-β1 modulates mitotic microtubule function and taxane sensitivity in cancer cells via its nucleoporin-binding region. Oncogene 2019; 39:454-468. [PMID: 31492900 DOI: 10.1038/s41388-019-0989-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Revised: 02/27/2019] [Accepted: 04/25/2019] [Indexed: 12/11/2022]
Abstract
The nuclear transport receptor importin-β/karyopherin-β1 is overexpressed in cancers that display genomic instability. It is regarded as a promising cancer target and inhibitors are being developed. In addition to its role in nucleo-cytoplasmic transport, importin-β regulates mitosis, but the programmes and pathways in which it operates are defined only in part. To unravel importin-β's mitotic functions we have developed cell lines expressing either wild-type or a mutant importin-β form in characterised residues required for nucleoporin binding. Both forms similarly disrupted spindle pole organisation, while only wild-type importin-β affected microtubule plus-end function and microtubule stability. A proteome-wide search for differential interactors identified a set of spindle regulators sensitive to mutations in the nucleoporin-binding region. Among those, HURP (hepatoma up-regulated protein) is an importin-β interactor and a microtubule-stabilising factor. We found that induction of wild type, but not mutant importin-β, under the same conditions that destabilise mitotic microtubules, delocalised HURP, indicating that the spatial distribution of HURP along the spindle requires importin-β's nucleoporin-binding residues. Concomitantly, importin-β overexpression sensitises cells to taxanes and synergistically increases mitotic cell death. Thus, the nucleoporin-binding domain is dispensable for importin-β function in spindle pole organisation, but regulates microtubule stability, at least in part via HURP, and renders cells vulnerable to certain microtubule-targeting drugs.
Collapse
Affiliation(s)
- Annalisa Verrico
- Institute of Molecular Biology and Pathology (IBPM), CNR Consiglio Nazionale delle Ricerche, 00185, Rome, Italy.,Institut Jacques Monod, UMR7592 CNRS-Université Paris Diderot, Sorbonne Paris Cité, F-75205, Paris, France
| | - Paola Rovella
- Institute of Molecular Biology and Pathology (IBPM), CNR Consiglio Nazionale delle Ricerche, 00185, Rome, Italy
| | - Laura Di Francesco
- Department of Biochemical Sciences "Alessandro Rossi-Fanelli", Sapienza University of Rome, 00185, Rome, Italy
| | - Michela Damizia
- Institute of Molecular Biology and Pathology (IBPM), CNR Consiglio Nazionale delle Ricerche, 00185, Rome, Italy.,Department of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome, 00185, Rome, Italy
| | - David Sasah Staid
- Institute of Molecular Biology and Pathology (IBPM), CNR Consiglio Nazionale delle Ricerche, 00185, Rome, Italy.,Department of Biochemical Sciences "Alessandro Rossi-Fanelli", Sapienza University of Rome, 00185, Rome, Italy
| | - Loredana Le Pera
- Institute of Molecular Biology and Pathology (IBPM), CNR Consiglio Nazionale delle Ricerche, 00185, Rome, Italy.,Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), CNR Consiglio Nazionale delle Ricerche, 70126, Bari, Italy
| | - M Eugenia Schininà
- Department of Biochemical Sciences "Alessandro Rossi-Fanelli", Sapienza University of Rome, 00185, Rome, Italy
| | - Patrizia Lavia
- Institute of Molecular Biology and Pathology (IBPM), CNR Consiglio Nazionale delle Ricerche, 00185, Rome, Italy. .,Department of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome, 00185, Rome, Italy.
| |
Collapse
|
9
|
Xiang Q, Tang J, Luo Q, Xue J, Tao Y, Jiang H, Tian J, Fan C. In vitro study of anti-ER positive breast cancer effect and mechanism of 1,2,3,4-6-pentyl-O-galloyl-beta-d-glucose (PGG). Biomed Pharmacother 2019; 111:813-820. [DOI: 10.1016/j.biopha.2018.12.062] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 11/30/2018] [Accepted: 12/14/2018] [Indexed: 01/16/2023] Open
|
10
|
Synergistic Activity of Paclitaxel, Sorafenib, and Radiation Therapy in advanced Renal Cell Carcinoma and Breast Cancer. Transl Oncol 2018; 12:381-388. [PMID: 30522045 PMCID: PMC6279801 DOI: 10.1016/j.tranon.2018.11.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 11/13/2018] [Accepted: 11/13/2018] [Indexed: 01/18/2023] Open
Abstract
Advanced cancer has been shown to be associated with a higher percentage of epigenetic changes than with genetic mutations. Preclinical models have shown that the combination of paclitaxel, sorafenib, and radiation therapy (RT) plays a crucial role in renal cell carcinoma (RCC) and breast cancer. This study aimed to investigate the involvement of mitochondrial cytochrome c-dependent apoptosis in the mechanism of action of a combination of paclitaxel, sorafenib, and RT in RCC and breast cancer. RCC and breast cancer cell lines were exposed to paclitaxel and sorafenib alone or combined in the presence of radiation, and cell viability was determined using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. The synergistic anticancer effects of the combination therapy on cell cycle and intracellular signaling pathways were estimated using flow cytometry and immunoblot analysis. RCC and breast cancer cell line xenograft models were used to examine the antitumor activity in vivo. Our results suggest that paclitaxel, sorafenib, and RT synergistically decreased the viability of RCC and breast cancer cells and significantly induced their apoptosis, as shown by caspase-3 cleavage. Paclitaxel, sorafenib, and radiation cotreatment reduced antiapoptotic factor levels in these cells and, thereby, significantly reduced the tumor volume of RCC and breast cancer cell xenografts. The current study suggests that paclitaxel, sorafenib, and radiation cotreatment was more effective than cotreatment with paclitaxel or sorafenib and radiation. These findings may offer a new therapeutic approach to RCC and breast cancer.
Collapse
|
11
|
Liu X, Li Y, Zhang X, Liu XY, Peng A, Chen Y, Meng L, Chen H, Zhang Y, Miao X, Zheng L, Huang K. Inhibition of kinesin family member 20B sensitizes hepatocellular carcinoma cell to microtubule-targeting agents by blocking cytokinesis. Cancer Sci 2018; 109:3450-3460. [PMID: 30191636 PMCID: PMC6215872 DOI: 10.1111/cas.13794] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 08/09/2018] [Accepted: 09/05/2018] [Indexed: 01/08/2023] Open
Abstract
Kinesin family member 20B (KIF20B, also known as MPHOSPH1) is a kinesin protein that plays a critical role in cytokinesis. Previously, we and others have demonstrated the oncogenic role of KIF20B in several cancers; however, the exact mechanisms underlying its tumorigenic effects remain unclear. Herein, we showed overexpression of KIF20B in human hepatocellular carcinoma (HCC) and reported a negative correlation between KIF20B level and prognosis of patients. Mechanistically, reducing KIF20B blockades mitotic exit of HCC cells at telophase in a spindle assembly checkpoint independent way. Importantly, reducing KIF20B acts synergistically with three microtubule-associated agents (MTA) to p53- or p14ARF-dependently suppress p53-wt or p53-null HCC cells. In addition to taxol, reducing KIF20B also enhanced the toxicity of two chemotherapeutic drugs, hydroxycamptothecin and mitomycin C. In conclusion, we found a novel mechanism in that blocking cytokinesis by KIF20B inhibition increases the efficacy of MTA; our results thus suggested a dual-mitotic suppression approach against HCC by combining MTA with KIF20B inhibition, which simultaneously blocks mitosis at both metaphase and telophase.
Collapse
Affiliation(s)
- Xinran Liu
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan, China.,Centre for Biomedicine Research, Wuhan Institute of Biotechnology, Wuhan, China
| | - Yangkai Li
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xia Zhang
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan, China
| | - Xin-Yuan Liu
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Anlin Peng
- The Third Hospital of Wuhan, Wuhan, China
| | - Yuchen Chen
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan, China
| | - Lijing Meng
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan, China
| | - Hong Chen
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Zhang
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoping Miao
- Tongji School of Public Health, Huazhong University of Science and Technology, Wuhan, China
| | - Ling Zheng
- College of Life Sciences, Wuhan University, Wuhan, China
| | - Kun Huang
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan, China.,Centre for Biomedicine Research, Wuhan Institute of Biotechnology, Wuhan, China
| |
Collapse
|
12
|
Harkness TAA. Activating the Anaphase Promoting Complex to Enhance Genomic Stability and Prolong Lifespan. Int J Mol Sci 2018; 19:ijms19071888. [PMID: 29954095 PMCID: PMC6073722 DOI: 10.3390/ijms19071888] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 06/19/2018] [Accepted: 06/20/2018] [Indexed: 12/19/2022] Open
Abstract
In aging cells, genomic instability is now recognized as a hallmark event. Throughout life, cells encounter multiple endogenous and exogenous DNA damaging events that are mostly repaired, but inevitably DNA mutations, chromosome rearrangements, and epigenetic deregulation begins to mount. Now that people are living longer, more and more late life time is spent suffering from age-related disease, in which genomic instability plays a critical role. However, several major questions remain heavily debated, such as the following: When does aging start? How long can we live? In order to minimize the impact of genomic instability on longevity, it is important to understand when aging starts, and to ensure repair mechanisms remain optimal from the very start to the very end. In this review, the interplay between the stress and nutrient response networks, and the regulation of homeostasis and genomic stability, is discussed. Mechanisms that link these two networks are predicted to be key lifespan determinants. The Anaphase Promoting Complex (APC), a large evolutionarily conserved ubiquitin ligase, can potentially serve this need. Recent work demonstrates that the APC maintains genomic stability, mounts a stress response, and increases longevity in yeast. Furthermore, inhibition of APC activity by glucose and nutrient response factors indicates a tight link between the APC and the stress/nutrient response networks.
Collapse
Affiliation(s)
- Troy A A Harkness
- Department of Anatomy and Cell Biology, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada.
| |
Collapse
|
13
|
Vishwakarma SK, Sharmila P, Bardia A, Chandrakala L, Raju N, Sravani G, Sastry BVS, Habeeb MA, Khan AA, Dhayal M. Use of Biocompatible Sorafenib-gold Nanoconjugates for Reversal of Drug Resistance in Human Hepatoblatoma Cells. Sci Rep 2017; 7:8539. [PMID: 28819176 PMCID: PMC5561190 DOI: 10.1038/s41598-017-08878-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 07/17/2017] [Indexed: 12/31/2022] Open
Abstract
The present study identifies the potential of highly biocompatible SF-GNP nano-conjugate to enhance the chemotherapeutic response to combat drug resistance in cancer cells. We developed a stable colloidal suspension of sorafenib-gold nanoconjugate (SF-GNP) of <10 nm size in aqueous medium for reverting the cancer drug resistance in SF-resistant HepG2 cells in a 3D ex-vivo model system. In-vivo biocompatibility assay of SF-GNPs showed absence of systemic toxicological effects including hematological, biochemical and histological parameters. More importantly, the histopathological analysis of vital organs such as liver, brain, lung, kidney and heart showed very least or no sign of inflammation, cell infiltration, necrosis, tissue disorganization or fibrotic reactions after intra-peritoneal administration of SF-GNP nanoconjugates in animals. However, SF-GNP nanoconjugates significantly reduced (>80%) the percentage cell survival and the size and number of SF resistant solid tumor colonies of HepG2 cells in 3D model system. The exposure of SF-GNP nanoconjugate to SF resistant HepG2 cell colonies also provided evidence for anti-proliferative effect and reversal of drug resistance by elucidating the molecular regulatory mechanisms of extracellular matrix factor (CD147), tumor growth factor (TGF-β), hepatoma upregulated protein (hURP) and drug transporter (ABCG-2).
Collapse
Affiliation(s)
- Sandeep Kumar Vishwakarma
- Clinical Research Facility, Medical Biotechnology Complex, CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Habsiguda, Hyderabad, 500007, Telangana, India
- Central Laboratory for Stem Cell Research and Translational Medicine, Centre for Liver Research and Diagnostics, Deccan College of Medical Sciences, Hyderabad, 500058, Telangana, India
| | - Priyanka Sharmila
- Clinical Research Facility, Medical Biotechnology Complex, CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Habsiguda, Hyderabad, 500007, Telangana, India
| | - Avinash Bardia
- Central Laboratory for Stem Cell Research and Translational Medicine, Centre for Liver Research and Diagnostics, Deccan College of Medical Sciences, Hyderabad, 500058, Telangana, India
| | - Lakkireddy Chandrakala
- Central Laboratory for Stem Cell Research and Translational Medicine, Centre for Liver Research and Diagnostics, Deccan College of Medical Sciences, Hyderabad, 500058, Telangana, India
| | - N Raju
- Central Laboratory for Stem Cell Research and Translational Medicine, Centre for Liver Research and Diagnostics, Deccan College of Medical Sciences, Hyderabad, 500058, Telangana, India
| | - G Sravani
- Central Laboratory for Stem Cell Research and Translational Medicine, Centre for Liver Research and Diagnostics, Deccan College of Medical Sciences, Hyderabad, 500058, Telangana, India
| | - B V S Sastry
- Central Laboratory for Stem Cell Research and Translational Medicine, Centre for Liver Research and Diagnostics, Deccan College of Medical Sciences, Hyderabad, 500058, Telangana, India
| | - Md Aejaz Habeeb
- Central Laboratory for Stem Cell Research and Translational Medicine, Centre for Liver Research and Diagnostics, Deccan College of Medical Sciences, Hyderabad, 500058, Telangana, India
| | - Aleem Ahmed Khan
- Central Laboratory for Stem Cell Research and Translational Medicine, Centre for Liver Research and Diagnostics, Deccan College of Medical Sciences, Hyderabad, 500058, Telangana, India.
| | - Marshal Dhayal
- Clinical Research Facility, Medical Biotechnology Complex, CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Habsiguda, Hyderabad, 500007, Telangana, India.
- School of Biomedical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India.
| |
Collapse
|
14
|
Elzeny H, Zhang F, Ali EN, Fathi HA, Zhang S, Li R, El-Mokhtar MA, Hamad MA, Wooley KL, Elsabahy M. Polyphosphoester nanoparticles as biodegradable platform for delivery of multiple drugs and siRNA. Drug Des Devel Ther 2017; 11:483-496. [PMID: 28260861 PMCID: PMC5327906 DOI: 10.2147/dddt.s128503] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Delivery of multiple therapeutics and/or diagnostic agents to diseased tissues is challenging and necessitates the development of multifunctional platforms. Among the various strategies for design of multifunctional nanocarriers, biodegradable polyphosphoester (PPE) polymers have been recently synthesized via a rapid and simple synthetic strategy. In addition, the chemical structure of the polymer could be tuned to form nanoparticles with varying surface chemistries and charges, which have shown exceptional safety and biocompatibility as compared to several commercial agents. The purpose of this study was to exploit a mixture of PPE nanoparticles of cationic and neutral surface charges for multiple delivery of anticancer drugs (ie, sorafenib and paclitaxel) and nucleic acids (ie, siRNA). Cationic PPE polymers could efficiently complex siRNA, and the stability of the nanoparticles could be maintained in physiological solutions and upon freeze-drying and were able to deliver siRNA in vivo when injected intravenously in mice. Commercially available cationic polyethylenimine polymer had LD50 of ca. 61.7 mg/kg in mice, whereas no animal died after injection of the cationic PPE polymer at a dose of >130 mg/kg. Neutral PPE nanoparticles were able to encapsulate two hydrophobic drugs, namely, sorafenib and paclitaxel, which are commonly used for the treatment of hepatocellular carcinoma. Mixing the neutral and cationic PPE nanoparticles did not result in any precipitation, and the size characteristics of both types of nanoparticles were maintained. Hence, PPE polymers might have potential for the delivery of multiple drugs and diagnostic agents to diseased tissues via simple synthesis of the individual polymers and assembly into nanoparticles that can host several drugs while being mixed in the same administration set, which is of importance for industrial and clinical development.
Collapse
Affiliation(s)
- Hadeel Elzeny
- Assiut International Center of Nanomedicine, Al-Rajhy Liver Hospital, Assiut University, Assiut, Egypt
| | - Fuwu Zhang
- Departments of Chemistry, Chemical Engineering and Materials Science and Engineering, Texas A&M University, College Station, TX, USA
| | - Esraa N Ali
- Assiut International Center of Nanomedicine, Al-Rajhy Liver Hospital, Assiut University, Assiut, Egypt
| | - Heba A Fathi
- Assiut International Center of Nanomedicine, Al-Rajhy Liver Hospital, Assiut University, Assiut, Egypt
| | - Shiyi Zhang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Richen Li
- Departments of Chemistry, Chemical Engineering and Materials Science and Engineering, Texas A&M University, College Station, TX, USA
| | | | - Mostafa A Hamad
- Department of Surgery, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Karen L Wooley
- Departments of Chemistry, Chemical Engineering and Materials Science and Engineering, Texas A&M University, College Station, TX, USA
- Laboratory for Synthetic-Biologic Interactions, Department of Chemistry, Texas A&M University, College Station, TX, USA
| | - Mahmoud Elsabahy
- Assiut International Center of Nanomedicine, Al-Rajhy Liver Hospital, Assiut University, Assiut, Egypt
- Laboratory for Synthetic-Biologic Interactions, Department of Chemistry, Texas A&M University, College Station, TX, USA
- Department of Pharmaceutics, Faculty of Pharmacy, Assiut University, Assiut
- Misr University for Science and Technology, 6th of October City, Egypt
| |
Collapse
|
15
|
Lin YT, Chao CCK. Identification of the β-catenin/JNK/prothymosin-alpha axis as a novel target of sorafenib in hepatocellular carcinoma cells. Oncotarget 2016; 6:38999-9017. [PMID: 26517516 PMCID: PMC4770752 DOI: 10.18632/oncotarget.5738] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 10/09/2015] [Indexed: 12/24/2022] Open
Abstract
Sorafenib is a kinase inhibitor used as anticancer drug against various human tumors, including advanced hepatocellular carcinoma (HCC). β-Catenin and prothymosin alpha (PTMA) are overexpressed in HCC and other tumors. Previous studies have shown that PTMA expression modulates the response of HCC cells to sorafenib. However, the underlying mechanism of PTMA activity in this context remains unclear. We show here that sorafenib inhibits both β-catenin and PTMA in a dose-dependent manner. Silencing β-catenin reduces PTMA level and sensitizes HCC cells to sorafenib. In contrast, ectopic expression of β-catenin induces PTMA expression and cell resistance to the drug. Sorafenib inhibits PTMA expression at the transcriptional level by inhibiting the β-catenin pathway. Nucleotide deletion analysis of the PTMA gene promoter reveals that a DNA segment lying 1,500–1,600 bp upstream of the PTMA transcription start site represents an AP-1-binding site that is critical for β-catenin modulation of gene transcription in response to sorafenib. In addition, chemical inhibitors that target JNK abrogate β-catenin/AP-1 binding to the endogenous PTMA gene and reduces PTMA transcription and protein expression. Silencing of β-catenin or c-Fos induces similar effects on gene regulation and these are reversed by ectopic expression of β-catenin. Mutations in the PTMA promoter at the predicted β-catenin/AP-1 binding site partly abrogate sorafenib's effects on PTMA transcription. These results indicate that PTMA is induced by the oncoprotein β-catenin and protects HCC cells against sorafenib-induced cell death. The β-catenin/JNK/PTMA axis may thus represent a novel target for chemotherapy against HCC.
Collapse
Affiliation(s)
- Yi-Te Lin
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan, Republic of China
| | - Chuck C-K Chao
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan, Republic of China.,Department of Biochemistry and Molecular Biology, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan, Republic of China
| |
Collapse
|
16
|
Jiang X, Kanda T, Wu S, Nakamoto S, Nakamura M, Sasaki R, Haga Y, Wakita T, Shirasawa H, Yokosuka O. Hepatitis C Virus Nonstructural Protein 5A Inhibits MG132-Induced Apoptosis of Hepatocytes in Line with NF-κB-Nuclear Translocation. PLoS One 2015; 10:e0131973. [PMID: 26133378 PMCID: PMC4489642 DOI: 10.1371/journal.pone.0131973] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Accepted: 06/09/2015] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Hepatitis C virus (HCV) infection is one of the major causes of cirrhosis and hepatocellular carcinoma. HCV nonstructural protein 5A (NS5A) is an attractive antiviral target and plays an important role in HCV replication as well as hepatocarcinogenesis. The aim of this study was to assess the effect of HCV NS5A protein in the abrogation of apoptotic cell death induced by the proteasome inhibitor MG132. METHODS Apoptotic responses to MG132 and the expression of molecules involved in NF-κB signaling pathways in human hepatocytes were investigated with or without the expression of HCV NS5A. RESULTS HCV NS5A protected HepG2 cells against MG132-induced apoptosis, in line with NF-κB-nuclear translocation. A similar NF-κB-nuclear translocation was observed in Huh7 cells infected with HCV JFH1. In agreement with this, after treatment with MG132, HCV NS5A could elevate the transcription of several NF-κB target genes such as BCL2 and BCLXL to inhibit MG132-induced apoptosis in hepatocytes. HCV HCV NS5A also enhanced phosphorylation of IκBα. Consistent with a conferred prosurvival advantage, HCV NS5A reduced MG132-induced poly(adenosine diphosphate-ribose) polymerase cleavage. CONCLUSIONS HCV NS5A expression enhances phosphorylation of IκBα, liberates NF-κB for nuclear translocation and downregulates MG132-induced apoptotic pathways in human hepatocytes. It is possible that the disruption of proteasome-associated apoptosis plays a role in the pathogenesis of HCV infection.
Collapse
Affiliation(s)
- Xia Jiang
- Departments of Gastroenterology and Nephrology, Chiba University, Graduate School of Medicine, Chiba, Japan
| | - Tatsuo Kanda
- Departments of Gastroenterology and Nephrology, Chiba University, Graduate School of Medicine, Chiba, Japan
| | - Shuang Wu
- Departments of Gastroenterology and Nephrology, Chiba University, Graduate School of Medicine, Chiba, Japan
| | - Shingo Nakamoto
- Departments of Molecular Virology, Chiba University, Graduate School of Medicine, Chiba, Japan
| | - Masato Nakamura
- Departments of Gastroenterology and Nephrology, Chiba University, Graduate School of Medicine, Chiba, Japan
| | - Reina Sasaki
- Departments of Gastroenterology and Nephrology, Chiba University, Graduate School of Medicine, Chiba, Japan
| | - Yuki Haga
- Departments of Gastroenterology and Nephrology, Chiba University, Graduate School of Medicine, Chiba, Japan
| | - Takaji Wakita
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Hiroshi Shirasawa
- Departments of Molecular Virology, Chiba University, Graduate School of Medicine, Chiba, Japan
| | - Osamu Yokosuka
- Departments of Gastroenterology and Nephrology, Chiba University, Graduate School of Medicine, Chiba, Japan
| |
Collapse
|
17
|
Kim SY, Hwang JY, Seo JW, Shin US. Production of CNT-taxol-embedded PCL microspheres using an ammonium-based room temperature ionic liquid: As a sustained drug delivery system. J Colloid Interface Sci 2015; 442:147-53. [DOI: 10.1016/j.jcis.2014.11.044] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 11/15/2014] [Accepted: 11/17/2014] [Indexed: 11/25/2022]
|
18
|
Lin YT, Lu HP, Chao CCK. Oncogenic c-Myc and prothymosin-alpha protect hepatocellular carcinoma cells against sorafenib-induced apoptosis. Biochem Pharmacol 2014; 93:110-24. [PMID: 25451688 DOI: 10.1016/j.bcp.2014.10.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2014] [Revised: 10/22/2014] [Accepted: 10/24/2014] [Indexed: 11/15/2022]
Abstract
Prothymosin alpha (PTMA) is overexpressed in various human tumors, including hepatocellular carcinoma (HCC). The significance of PTMA overexpression and its underlying mechanism remain unclear. We show here that silencing PTMA sensitizes HCC cells to the kinase inhibitor sorafenib. In contrast, ectopic expression of PTMA induces cell resistance to the drug. While inhibitors targeting JNK, ERK or PI3K reduce PTMA expression, only ERK activation is suppressed by sorafenib. In addition, inhibition of ERK produces a dramatic decrease in both endogenous PTMA level and promoter activation. Ectopic expression of active MKK1/2 considerably induces PTMA expression. We also identify a sorafenib-responsive segment lying 1000-1500-bp upstream of the PTMA transcription start site and observe that it is controlled by c-Myc and ERK. Mutation in the PTMA promoter at the predicted c-Myc binding site and silencing of c-Myc both abrogate sorafenib's effect on PTMA transcription. We also find that silencing PTMA potentiates Bax translocation to mitochondria in response to sorafenib and this is associated with increased cytochrome c release from mitochondria and enhanced caspase-9 activation. These results indicate that PTMA is positively regulated by the oncoprotein c-Myc and protects HCC cells against sorafenib-induced cell death, thus identifying PTMA as a new target for chemotherapy against HCC.
Collapse
Affiliation(s)
- Yi-Te Lin
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan, Republic of China
| | - Hsing-Pang Lu
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan, Republic of China
| | - Chuck C-K Chao
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan, Republic of China; Department of Biochemistry and Molecular Biology, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan, Republic of China.
| |
Collapse
|
19
|
Hatfield KJ, Reikvam H, Bruserud Ø. Identification of a subset of patients with acute myeloid leukemia characterized by long-termin vitroproliferation and altered cell cycle regulation of the leukemic cells. Expert Opin Ther Targets 2014; 18:1237-51. [DOI: 10.1517/14728222.2014.957671] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
20
|
Wei Y, Shen N, Wang Z, Yang G, Yi B, Yang N, Qiu Y, Lu J. Sorafenib sensitizes hepatocellular carcinoma cell to cisplatin via suppression of Wnt/β-catenin signaling. Mol Cell Biochem 2013; 381:139-44. [PMID: 23756716 DOI: 10.1007/s11010-013-1695-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Accepted: 05/16/2013] [Indexed: 12/27/2022]
Abstract
Hepatocellular carcinoma (HCC) is one of the most common cancers worldwide. Systemic chemotherapy plays an important role in the treatment of patients with advanced liver cancer. However, chemoresistance to cisplatin is a major limitation of cisplatin-based chemotherapy in the clinic, and the underlying mechanism of such resistance is not fully understood. In this study, we found that nuclear accumulation of β-catenin was higher in cisplatin-resistant Huh7 cells than in Huh7 cells, indicating that Wnt signaling was activated in cisplatin-resistant cells. Wnt signaling inhibition increased cisplatin-induced growth inhibition in hepatoma cell. We further demonstrated that sorafenib could inhibit Wnt signaling in Huh7 cells and cisplatin-resistant Huh7 cells. Co-treatment with cisplatin and sorafenib was more effective in inhibiting cancer cell proliferation than cisplatin alone in vitro and in vivo, whereas Wnt3a (Wnt activator) treatment abrogated sorafenib-induced growth inhibition. These data demonstrated that sorafenib sensitizes human HCC cell to cisplatin via suppression of Wnt/β-catenin signaling, thus offering a new target for chemotherapy of HCC.
Collapse
Affiliation(s)
- Yongpeng Wei
- The Fifth Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, The Second Military Medical University, Shanghai, China
| | | | | | | | | | | | | | | |
Collapse
|
21
|
PROL4 Elevates The Sensitivity of Lung Cancer Cell LTEP-a-2 to Cisplatin Treatment*. PROG BIOCHEM BIOPHYS 2012. [DOI: 10.3724/sp.j.1206.2011.00567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
22
|
Liang RR, Zhang S, Qi JA, Wang ZD, Li J, Liu PJ, Huang C, Le XF, Yang J, Li ZF. Preferential inhibition of hepatocellular carcinoma by the flavonoid Baicalein through blocking MEK-ERK signaling. Int J Oncol 2012; 41:969-78. [PMID: 22684543 DOI: 10.3892/ijo.2012.1510] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2012] [Accepted: 05/18/2012] [Indexed: 11/06/2022] Open
Abstract
Baicalein is a purified flavonoid extracted from the roots of Scutellaria baicalensis or Scutellaria radix. Although previous studies have suggested that Baicalein possesses an in vitro anti-hepatocellular carcinoma activity, its in vivo effects and mechanisms of action are still not completely understood. In this study, Baicalein at concentrations of 40-120 µM exhibited significant cytotoxicity to three hepatocellular carcinoma (HCC) cell lines but marginal cytotoxicity to a normal liver cell line in vitro. Compared to a standard chemotherapy drug, 5-fluorouracil (5-FU), Baicalein had greater effect on HCC cells but less toxicity on normal liver cells. Treatment with Baicalein dramatically reduced mitochondrial transmembrane potential, and activated caspase-9 and caspase-3. Blockade of Baicalein-induced apoptosis with a pan-caspase inhibitor partially attenuated Baicalein-induced growth inhibition in HCC. Baicalein treatment significantly inhibited tumor growth of HCC xenografts in mice. Induction of apoptosis was demonstrated in Baicalein-treated xenograft tumors by the terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay. Furthermore, Baicalein treatment dramatically decreased the levels of phosphorylation of MEK1, ERK1/2 and Bad in vitro and in vivo. Overexpression of human MEK1 partially blocked Baicalein-induced growth inhibition. Consequently, these findings suggest that Baicalein preferentially inhibits HCC tumor growth through inhibition of MEK-ERK signaling and by inducing intrinsic apoptosis.
Collapse
Affiliation(s)
- Rong-Rui Liang
- Department of General Surgery, Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an 710004, P.R. China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Wang H, Zuo B, Wang H, Ren L, Yang P, Zeng M, Duan D, Liu C, Li M. CGK733 enhances multinucleated cell formation and cytotoxicity induced by taxol in Chk1-deficient HBV-positive hepatocellular carcinoma cells. Biochem Biophys Res Commun 2012; 422:103-8. [PMID: 22564734 DOI: 10.1016/j.bbrc.2012.04.115] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2012] [Accepted: 04/22/2012] [Indexed: 12/31/2022]
Abstract
Hepatocellular carcinoma (HCC) is one of the most deadly human cancers. Chronic hepatitis B virus (HBV) infection is one of the predominant risk factors associated with the development of HCC and complicates the treatment of HCC. In this study, we demonstrate that a HBV-positive HCC cell line HepG2.2.15, was more resistant to chemotherapy agents than its parental HBV-negative cell line HepG2. HBV-positive HCC cells exhibited defective Chk1 phosphorylation and increased chromosomal instability. CGK733, a small molecule inhibitor reportedly targeting the kinase activities of ATM and ATR, significantly enhanced taxol-induced cytotoxicity in HBV-positive HepG2.2.15 cells. The mechanism lies in CGK733 triggers the formation of multinucleated cells thus promotes the premature mitotic exit of taxol-induced mitotic-damaged cells through multinucleation and mitotic catastrophe in HBV-positive HepG2.2.15 cells. These results suggest that CGK733 could potentially reverse the taxol resistance in HBV-positive HCC cells and may suggest a novel strategy to treat HBV-infected HCC patients.
Collapse
Affiliation(s)
- Huan Wang
- Department of Microbiology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, China
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Amoozgar Z, Yeo Y. Recent advances in stealth coating of nanoparticle drug delivery systems. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2012; 4:219-33. [PMID: 22231928 PMCID: PMC3288878 DOI: 10.1002/wnan.1157] [Citation(s) in RCA: 286] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Modifying surfaces of nanoparticles (NPs) with polyethylene glycol (PEG), the so-called PEGylation, is the most commonly used method for reducing premature clearance of NPs from the circulation. However, several reports point out that PEGylation may negatively influence the performance of NPs as a drug carrier. Alternative surface modification strategies, including substitute polymers, conditional removal of PEG, and biomimetic surface modification, may provide solutions for the limitations of PEG.
Collapse
Affiliation(s)
- Zohreh Amoozgar
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA
| | - Yoon Yeo
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
25
|
Li XF, Gong RY, Wang M, Yan ZL, Yuan B, Wang K, Shi LH. Sorafenib down-regulates c-IAP expression post-transcriptionally in hepatic carcinoma cells to suppress apoptosis. Biochem Biophys Res Commun 2012; 418:531-6. [PMID: 22285185 DOI: 10.1016/j.bbrc.2012.01.060] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Accepted: 01/12/2012] [Indexed: 02/06/2023]
Abstract
Hepatocellular carcinoma (HCC) is one of leading causes of cancer-related death with a heterogeneous patient demographic and divergent pathogenic pathways. Sorafenib is the first effective drug approved for the treatment of HCC. Although it is known that sorafenib promotes apoptosis of HCC cells, the underlying mechanism remains largely obscure. Here we report that sorafenib down-regulates protein expression of the anti-apoptotic protein c-IAP1 in a time- and dose-dependent manner in HCC cells in vitro and in vivo. Furthermore, we demonstrate that sorafenib represses c-IAP1 levels without altering its transcription or protein stability. Instead, sorafenib attenuates c-IAP1 translation by targeting the internal ribosome entry site (IRES) within the c-IAP1 mRNA. Finally, ectopic expression of c-IAP1 alleviates sorafenib induced cancer cell apoptosis. In conclusion, our data highlight a previously unidentified pathway that contributes to sorafenib mediated HCC cell apoptosis and as such provide novel mechanistic insight into the rational use of sorafenib in treating HCC.
Collapse
Affiliation(s)
- Xi-feng Li
- Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | | | | | | | | | | | | |
Collapse
|
26
|
Hoffmann K, Xiao Z, Franz C, Mohr E, Serba S, Büchler MW, Schemmer P. Involvement of the epidermal growth factor receptor in the modulation of multidrug resistance in human hepatocellular carcinoma cells in vitro. Cancer Cell Int 2011; 11:40. [PMID: 22088142 PMCID: PMC3228664 DOI: 10.1186/1475-2867-11-40] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Accepted: 11/17/2011] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is a molecular complex tumor with high intrinsic drug resistance. Recent evidence suggests an involvement of the tyrosine kinase pathway in the regulation of ATP-binding cassette protein (ABC-transport protein) mediated multidrug resistance in cancer cells. The aim of this study was to examine whether EGFR inhibition sensitizes HCCs to chemotherapy and to elucidate its mechanism. RESULTS Chemotherapeutic treatment induces multidrug resistance and significantly increases ABC-transport protein expression and function in a time- and dose-dependent manner in HCC cells. Furthermore, cytostatic treatment increases the mRNA expression of tyrosine kinases and induces the phosphorylation of ERK. EGF activation of the tyrosine kinase pathway up-regulated the ABC-transport protein mRNA expression and enhanced the survival of resistant HCC cells. Consistent with these effects, inhibition of the EGFR using siRNA decreased the ABC-transport protein mRNA expression and inhibited the proliferation of resistant cells. Additional treatment with Gefitinib, a clinically approved EGFR inhibitor, caused a dose-dependent reversal of resistance to conventional chemotherapy. CONCLUSION The present study demonstrates that the multidrug resistance of HCC is modulated through the EGF-activated tyrosine kinase cascade. Consequentially, the restoration of chemosensitivity by EGFR inhibition may lead towards new tailored therapies in patients with highly resistant tumors.
Collapse
Affiliation(s)
- Katrin Hoffmann
- Department of General and Transplantation Surgery, Ruprecht-Karls-University, Heidelberg, Germany
| | - Zhi Xiao
- Department of General and Transplantation Surgery, Ruprecht-Karls-University, Heidelberg, Germany
| | - Clemens Franz
- Department of General and Transplantation Surgery, Ruprecht-Karls-University, Heidelberg, Germany
| | - Elvira Mohr
- Department of General and Transplantation Surgery, Ruprecht-Karls-University, Heidelberg, Germany
| | - Susanne Serba
- Department of General and Transplantation Surgery, Ruprecht-Karls-University, Heidelberg, Germany
| | - Markus W Büchler
- Department of General and Transplantation Surgery, Ruprecht-Karls-University, Heidelberg, Germany
| | - Peter Schemmer
- Department of General and Transplantation Surgery, Ruprecht-Karls-University, Heidelberg, Germany
| |
Collapse
|