1
|
Salminen A. Aryl hydrocarbon receptor impairs circadian regulation in Alzheimer's disease: Potential impact on glymphatic system dysfunction. Eur J Neurosci 2024; 60:3901-3920. [PMID: 38924210 DOI: 10.1111/ejn.16450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 05/23/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024]
Abstract
Circadian clocks maintain diurnal rhythms of sleep-wake cycle of 24 h that regulate not only the metabolism of an organism but also many other periodical processes. There is substantial evidence that circadian regulation is impaired in Alzheimer's disease. Circadian clocks regulate many properties known to be disturbed in Alzheimer's patients, such as the integrity of the blood-brain barrier (BBB) as well as the diurnal glymphatic flow that controls waste clearance from the brain. Interestingly, an evolutionarily conserved transcription factor, that is, aryl hydrocarbon receptor (AhR), impairs the function of the core clock proteins and thus could disturb diurnal rhythmicity in the BBB. There is abundant evidence that the activation of AhR signalling inhibits the expression of the major core clock proteins, such as the brain and muscle arnt-like 1 (BMAL1), clock circadian regulator (CLOCK) and period circadian regulator 1 (PER1) in different experimental models. The expression of AhR is robustly increased in the brains of Alzheimer's patients, and protein level is enriched in astrocytes of the BBB. It seems that AhR signalling inhibits glymphatic flow since it is known that (i) activation of AhR impairs the function of the BBB, which is cooperatively interconnected with the glymphatic system in the brain, and (ii) neuroinflammation and dysbiosis of gut microbiota generate potent activators of AhR, which are able to impair glymphatic flow. I will examine current evidence indicating that activation of AhR signalling could disturb circadian functions of the BBB and impair glymphatic flow and thus be involved in the development of Alzheimer's pathology.
Collapse
Affiliation(s)
- Antero Salminen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
2
|
Thome T, Vugman NA, Stone LE, Wimberly K, Scali ST, Ryan TE. A tryptophan-derived uremic metabolite/Ahr/Pdk4 axis governs skeletal muscle mitochondrial energetics in chronic kidney disease. JCI Insight 2024; 9:e178372. [PMID: 38652558 PMCID: PMC11141944 DOI: 10.1172/jci.insight.178372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 04/12/2024] [Indexed: 04/25/2024] Open
Abstract
Chronic kidney disease (CKD) causes accumulation of uremic metabolites that negatively affect skeletal muscle. Tryptophan-derived uremic metabolites are agonists of the aryl hydrocarbon receptor (AHR), which has been shown to be activated in CKD. This study investigated the role of the AHR in skeletal muscle pathology of CKD. Compared with controls with normal kidney function, AHR-dependent gene expression (CYP1A1 and CYP1B1) was significantly upregulated in skeletal muscle of patients with CKD, and the magnitude of AHR activation was inversely correlated with mitochondrial respiration. In mice with CKD, muscle mitochondrial oxidative phosphorylation (OXPHOS) was markedly impaired and strongly correlated with the serum level of tryptophan-derived uremic metabolites and AHR activation. Muscle-specific deletion of the AHR substantially improved mitochondrial OXPHOS in male mice with the greatest uremic toxicity (CKD + probenecid) and abolished the relationship between uremic metabolites and OXPHOS. The uremic metabolite/AHR/mitochondrial axis in skeletal muscle was verified using muscle-specific AHR knockdown in C57BL/6J mice harboring a high-affinity AHR allele, as well as ectopic viral expression of constitutively active mutant AHR in mice with normal renal function. Notably, OXPHOS changes in AHRmKO mice were present only when mitochondria were fueled by carbohydrates. Further analyses revealed that AHR activation in mice led to significantly increased pyruvate dehydrogenase kinase 4 (Pdk4) expression and phosphorylation of pyruvate dehydrogenase enzyme. These findings establish a uremic metabolite/AHR/Pdk4 axis in skeletal muscle that governs mitochondrial deficits in carbohydrate oxidation during CKD.
Collapse
Affiliation(s)
- Trace Thome
- Department of Applied Physiology and Kinesiology and
| | | | | | - Keon Wimberly
- Department of Applied Physiology and Kinesiology and
| | - Salvatore T. Scali
- Division of Vascular Surgery and Endovascular Therapy, University of Florida, Gainesville, Florida, USA
- Malcom Randall VA Medical Center, Gainesville, Florida, USA
| | - Terence E. Ryan
- Department of Applied Physiology and Kinesiology and
- Center for Exercise Science and
- Myology Institute, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
3
|
Delen E, Kucukali CI, Karaaslan Z, Yuceer H, Punar S, Hakan MT, Yaylim I, Ozkok E. Investigation of the effects of oxidative stress, inflammation on the pathway of tryptophan/kynurenine in OCD. Acta Neuropsychiatr 2023; 37:e21. [PMID: 38012854 DOI: 10.1017/neu.2023.55] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
OBJECTIVES Recent studies have shown that the distribution of the tryptophan/kynurenine pathway (KP) plays a role in the development of obsessive-compulsive disorder (OCD). We aimed to reveal the relationship between CYP1A1 rs464903 and aryl hydrocarbon receptor (AhR) rs10249788 associated with the KP and interferon gamma (IFN γ) and oxidative stress in OCD. METHODS In our study, the serum and DNAs of 150 samples, including 100 OCD patients and 50 controls, were used. The activity of glutathione peroxidase (GSH-Px), and the levels of IFN γ, thiobarbituric acid reactive substances (TBARS), tryptophan, and kynurenine were determined by biochemical methods. AhR rs10249788 and cytochrome P450 family CYP1A1 rs4646903, which interact directly with the KP, were analysed by polymerase chain reaction followed by restriction fragment length polymorphism. P < 0.05 was considered statistically significant. RESULT There were no significant differences between groups in CYP1A1 rs4646903 and AhR rs10249788 while tryptophan and IFN γ were found to be higher in controls (p < 0.001, for both), and TBARS and indolamine-2,3-dioxygenase were found to be higher in OCD (p < 0.001, for both). There were significant correlations between IFN γ and TBARS and GSH-Px (p = 0.028, p = 0.020, respectively) in the OCD group. CONCLUSIONS For the first time studied in OCD, it has been shown that IFN γ, tryptophan, oxidative stress parameters, and gene variants of CYP1A1 rs4646903 anAhR rs10249788 are shown effective on the KP.
Collapse
Affiliation(s)
- Elif Delen
- Department of Neuroscience, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Cem Ismail Kucukali
- Department of Neuroscience, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Zerrin Karaaslan
- Department of Neuroscience, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Hande Yuceer
- Department of Neuroscience, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Seyma Punar
- Department of Genetics, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Mehmet Tolgahan Hakan
- Department of Molecular Medicine, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Ilhan Yaylim
- Department of Molecular Medicine, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Elif Ozkok
- Department of Neuroscience, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| |
Collapse
|
4
|
Salminen A. Aryl hydrocarbon receptor (AhR) impairs circadian regulation: impact on the aging process. Ageing Res Rev 2023; 87:101928. [PMID: 37031728 DOI: 10.1016/j.arr.2023.101928] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/23/2023] [Accepted: 04/06/2023] [Indexed: 04/11/2023]
Abstract
Circadian clocks control the internal sleep-wake rhythmicity of 24hours which is synchronized by the solar cycle. Circadian regulation of metabolism evolved about 2.5 billion years ago, i.e., the rhythmicity has been conserved from cyanobacteria and Archaea through to mammals although the mechanisms utilized have developed with evolution. While the aryl hydrocarbon receptor (AhR) is an evolutionarily conserved defence mechanism against environmental threats, it has gained many novel functions during evolution, such as the regulation of cell cycle, proteostasis, and many immune functions. There is robust evidence that AhR signaling impairs circadian rhythmicity, e.g., by interacting with the core BMAL1/CLOCK complex and disturbing the epigenetic regulation of clock genes. The maintenance of circadian rhythms is impaired with aging, disturbing metabolism and many important functions in aged organisms. Interestingly, it is known that AhR signaling promotes an age-related tissue degeneration, e.g., it is able to inhibit autophagy, enhance cellular senescence, and disrupt extracellular matrix. These alterations are rather similar to those induced by a long-term impairment of circadian rhythms. However, it is not known whether AhR signaling enhances the aging process by impairing circadian homeostasis. I will examine the experimental evidence indicating that AhR signaling is able to promote the age-related degeneration via a disruption of circadian rhythmicity.
Collapse
Affiliation(s)
- Antero Salminen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland.
| |
Collapse
|
5
|
Colombini B, Dinu M, Murgo E, Lotti S, Tarquini R, Sofi F, Mazzoccoli G. Ageing and Low-Level Chronic Inflammation: The Role of the Biological Clock. Antioxidants (Basel) 2022; 11:2228. [PMID: 36421414 PMCID: PMC9686908 DOI: 10.3390/antiox11112228] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 11/02/2022] [Accepted: 11/09/2022] [Indexed: 09/01/2023] Open
Abstract
Ageing is a multifactorial physiological manifestation that occurs inexorably and gradually in all forms of life. This process is linked to the decay of homeostasis due to the progressive decrease in the reparative and regenerative capacity of tissues and organs, with reduced physiological reserve in response to stress. Ageing is closely related to oxidative damage and involves immunosenescence and tissue impairment or metabolic imbalances that trigger inflammation and inflammasome formation. One of the main ageing-related alterations is the dysregulation of the immune response, which results in chronic low-level, systemic inflammation, termed "inflammaging". Genetic and epigenetic changes, as well as environmental factors, promote and/or modulate the mechanisms of ageing at the molecular, cellular, organ, and system levels. Most of these mechanisms are characterized by time-dependent patterns of variation driven by the biological clock. In this review, we describe the involvement of ageing-related processes with inflammation in relation to the functioning of the biological clock and the mechanisms operating this intricate interaction.
Collapse
Affiliation(s)
- Barbara Colombini
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
| | - Monica Dinu
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
| | - Emanuele Murgo
- Department of Medical Sciences, Division of Internal Medicine and Chronobiology Laboratory, Fondazione IRCCS “Casa Sollievo della Sofferenza”, Opera di Padre Pio da Pietrelcina, 71013 San Giovanni Rotondo, Italy
| | - Sofia Lotti
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
| | - Roberto Tarquini
- Division of Internal Medicine I, San Giuseppe Hospital, 50053 Empoli, Italy
| | - Francesco Sofi
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
| | - Gianluigi Mazzoccoli
- Department of Medical Sciences, Division of Internal Medicine and Chronobiology Laboratory, Fondazione IRCCS “Casa Sollievo della Sofferenza”, Opera di Padre Pio da Pietrelcina, 71013 San Giovanni Rotondo, Italy
| |
Collapse
|
6
|
Diurnal Variation in Biomarkers of Exposure to Endocrine-Disrupting Chemicals and Their Association with Oxidative Damage in Norwegian Adults: The EuroMix Study. TOXICS 2022; 10:toxics10040181. [PMID: 35448442 PMCID: PMC9028082 DOI: 10.3390/toxics10040181] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 03/27/2022] [Accepted: 04/02/2022] [Indexed: 11/23/2022]
Abstract
Much evidence on the adverse health effects of endocrine-disrupting chemicals (EDCs) has accumulated during recent decades. EDCs are commonly found in various foods and personal care products (PCP). Data documenting a diurnally varying EDC metabolism in humans is scarce. This study examined (i) the time-of-day effect on the diurnal magnitude and variance of urinary biomarkers of exposure to EDCs, and (ii) the association between EDC exposures and oxidative damage in a Norwegian adult subpopulation. This was a cross-sectional panel study using biobanked samples from the EuroMix project. During a typical weekday, participants were asked to collect all day’s urine voids and record dietary and PCP habitual uses in a diary. Collected time stamps of urine voids were classified into three distinct periods in the day (morning 6 a.m.−12 p.m., mid-day 12 p.m.−6 p.m., evening 6 p.m.−6 a.m.). Questionnaires regarding demographic characteristics, personal care product usage, and dietary habits were completed. Urinary levels of EDCs (phthalates, parabens, and bisphenols) were measured using mass spectrometry and adjusted for urinary volume using specific gravity. Urinary 4-hydroxynonenal (4HNE), a lipid peroxidation marker, was measured using an immunoassay kit. Linear mixed-effect models identified EDCs under the influence of a diurnal variation effect that was adjusted for dietary habits and PCP use and examined associations between EDC and 4HNE. p-values were FDR-adjusted. Most phthalates appeared to be diurnally varying with higher urinary levels towards the evening (q < 0.001) than those measured during mid-day; this strong diurnal variation effect was not present for parabens and bisphenols. Significant (q < 0.001) positive associations were observed between all phthalates, parabens, and bisphenols (except bisphenol S) and 4HNE. This study’s findings highlighted the diurnal variation of excretion for certain EDC, but not for others, in real-life conditions. The degree of EDC chronotoxicity in distinct diurnal windows of the day warrants further investigation with longitudinal human studies.
Collapse
|
7
|
Gang N, Van Allen K, Villeneuve PJ, MacDonald H, Bruin JE. Sex-specific Associations Between Type 2 Diabetes Incidence and Exposure to Dioxin and Dioxin-like Pollutants: A Meta-analysis. FRONTIERS IN TOXICOLOGY 2022; 3:685840. [PMID: 35295132 PMCID: PMC8915902 DOI: 10.3389/ftox.2021.685840] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 12/14/2021] [Indexed: 01/09/2023] Open
Abstract
The potential for persistent organic pollutants (POPs), including dioxins and dioxin-like polychlorinated biphenyls (DL-PCBs), to increase the risk of incident diabetes in adults has been extensively studied. However, there is substantial variability in the reported associations both between and within studies. Emerging data from rodent studies suggest that dioxin disrupts glucose homeostasis in a sex-specific manner. Thus, we performed a review and meta-analysis of relevant epidemiological studies to investigate sex differences in associations between dioxin or DL-PCB exposure and type 2 diabetes incidence. Articles that met our selection criteria (n = 81) were organized into the following subcategories: data stratified by sex (n = 13), unstratified data (n = 45), and data from only 1 sex (n = 13 male, n = 10 female). We also considered whether exposure occurred either abruptly at high concentrations through a contamination event (“disaster exposure”) or chronically at low concentrations (“non-disaster exposure”). There were 8 studies that compared associations between dioxin/DL-PCB exposure and diabetes risk in males versus females within the same population. When all sex-stratified or single-sex studies were considered in the meta-analysis (n = 18), the summary relative risk (RR) for incident diabetes among those exposed relative to reference populations was 1.78 (95% CI = 1.37–2.31) and 1.95 (95% CI = 1.56–2.43) for female and males, respectively. However, when we restricted the meta-analysis to disaster-exposed populations, the RR was higher in females than males (2.86 versus 1.59, respectively). In contrast, in non-disaster exposed populations the RR for females was lower than males (1.40 and 2.02, respectively). Our meta-analysis suggests that there are sex differences in the associations between dioxin/DL-PCBs exposure and incident diabetes, and that the mode of exposure modifies these differences.
Collapse
Affiliation(s)
- Noa Gang
- Department of Biology and Institute of Biochemistry, Carleton University, Ottawa, ON, Canada
| | - Kyle Van Allen
- Department of Biology and Institute of Biochemistry, Carleton University, Ottawa, ON, Canada
| | - Paul J. Villeneuve
- School of Mathematics and Statistics, Carleton University, Ottawa, ON, Canada
- Department of Public Health Sciences, Queen’s University, Kingston, ON, Canada
| | - Heather MacDonald
- Health and Biosciences Librarian, MacOdrum Library, Carleton University, Ottawa, ON, Canada
| | - Jennifer E. Bruin
- Department of Biology and Institute of Biochemistry, Carleton University, Ottawa, ON, Canada
- *Correspondence: Jennifer E. Bruin,
| |
Collapse
|
8
|
Mir IH, Guha S, Behera J, Thirunavukkarasu C. Targeting molecular signal transduction pathways in hepatocellular carcinoma and its implications for cancer therapy. Cell Biol Int 2021; 45:2161-2177. [PMID: 34270844 DOI: 10.1002/cbin.11670] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 06/22/2021] [Accepted: 07/11/2021] [Indexed: 12/27/2022]
Abstract
Hepatocellular carcinoma is a substantial health concern. It is currently the third dominating cause of mortality associated with cancer worldwide. The development of hepatocellular carcinoma is an intricate process that encompasses the impairment of genetic, epigenetic, and signal transduction mechanisms contributing to an aberrant metabolic system, enabling tumorigenesis. Throughout the past decade, research has led to the revelation of molecular pathways implicated in the progression of this notorious disorder. The altered signal transduction pathways, such as the mitogen-activated protein kinase pathway, phosphoinositol 3-kinase/protein kinase B/mammalian target of rapamycin pathway, WNT/β-catenin pathway, hepatocyte growth factor/c-MET pathway, and just another kinase/signal transducers and activators of transcription signaling pathway is of much therapeutic significance, as targeting them may avail to revert, retard or avert hepatocarcinogenesis. The present review article sums up the contemporary knowledge of such signaling mechanisms, including their therapeutic targets and betokens that novel and efficacious therapies can be developed only by the keen understanding of their character in hepatocarcinogenesis. In additament, we address the role of consequential therapeutic agents and preclinical nondrug therapies known for combating hepatocarcinogenesis.
Collapse
Affiliation(s)
- Ishfaq Hassan Mir
- Department of Biochemistry and Molecular Biology, Pondicherry University, Puducherry, India
| | - Shreyoshi Guha
- Department of Biochemistry and Molecular Biology, Pondicherry University, Puducherry, India
| | - Jajnasenee Behera
- Department of Biochemistry and Molecular Biology, Pondicherry University, Puducherry, India
| | | |
Collapse
|
9
|
Mazzoccoli G, Miele L, Marrone G, Mazza T, Vinciguerra M, Grieco A. A Role for the Biological Clock in Liver Cancer. Cancers (Basel) 2019; 11:1778. [PMID: 31718031 PMCID: PMC6895918 DOI: 10.3390/cancers11111778] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 11/06/2019] [Accepted: 11/06/2019] [Indexed: 12/24/2022] Open
Abstract
The biological clock controls at the molecular level several aspects of mammalian physiology, by regulating daily oscillations of crucial biological processes such as nutrient metabolism in the liver. Disruption of the circadian clock circuitry has recently been identified as an independent risk factor for cancer and classified as a potential group 2A carcinogen to humans. Hepatocellular carcinoma (HCC) is the prevailing histological type of primary liver cancer, one of the most important causes of cancer-related death worldwide. HCC onset and progression is related to B and C viral hepatitis, alcoholic and especially non-alcoholic fatty liver disease (NAFLD)-related milieu of fibrosis, cirrhosis, and chronic inflammation. In this review, we recapitulate the state-of-the-art knowledge on the interplay between the biological clock and the oncogenic pathways and mechanisms involved in hepatocarcinogenesis. Finally, we propose how a deeper understanding of circadian clock circuitry-cancer pathways' crosstalk is promising for developing new strategies for HCC prevention and management.
Collapse
Affiliation(s)
- Gianluigi Mazzoccoli
- Department of Medical Sciences and Chronobiology Laboratory, Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo (FG), Italy
| | - Luca Miele
- Fondazione Policlinico Universitario A Gemelli–IRCCS– Catholic University of the Sacred Heart, 00168 Rome, Italy; (L.M.); (G.M.); (A.G.)
| | - Giuseppe Marrone
- Fondazione Policlinico Universitario A Gemelli–IRCCS– Catholic University of the Sacred Heart, 00168 Rome, Italy; (L.M.); (G.M.); (A.G.)
| | - Tommaso Mazza
- Bioinformatics Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo (FG), Italy;
| | - Manlio Vinciguerra
- International Clinical Research Center (FNUSA-ICRC), St. Anne’s University Hospital, 65691 Brno, Czech Republic
| | - Antonio Grieco
- Fondazione Policlinico Universitario A Gemelli–IRCCS– Catholic University of the Sacred Heart, 00168 Rome, Italy; (L.M.); (G.M.); (A.G.)
| |
Collapse
|
10
|
Musashi‐2 and related stem cell proteins in the mouse suprachiasmatic nucleus and their potential role in circadian rhythms. Int J Dev Neurosci 2019; 75:44-58. [DOI: 10.1016/j.ijdevneu.2019.04.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 04/17/2019] [Accepted: 04/30/2019] [Indexed: 01/14/2023] Open
|
11
|
Kim BM, Kang S, Kim RO, Jung JH, Lee KW, Rhee JS, Lee YM. De novo transcriptome assembly of brackish water flea Diaphanosoma celebensis based on short-term cadmium and benzo[ a]pyrene exposure experiments. Hereditas 2018; 155:36. [PMID: 30473655 PMCID: PMC6240204 DOI: 10.1186/s41065-018-0075-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 11/06/2018] [Indexed: 02/08/2023] Open
Abstract
To develop a brackish water flea as a promising model for marine monitoring, Diaphanosoma celebensis were exposed to two pollutants, cadmium (Cd) and benzo[a]pyrene (BaP), which have different chemical characteristics and distinct modes of metabolic action on aquatic animals. Twenty-four hours after exposure to Cd (2 mg/L) or BaP (25 μg/L), whole body transcriptomes were analyzed. In total, 99.6 Mbp were assembled from nine libraries, resulting in 98,458 transcripts with an N50 of 1883 bp and an average contig length of 968 bp. Functional gene annotations were performed using Gene Ontology, Eukaryotic Orthologous Groups, and Kyoto Encyclopedia of Genes and Genomes pathway analyses. Cd significantly modulated endocrine and digestive enzyme system. Following BaP treatment, DNA repair and circadian rhythm related metabolisms were significantly modulated. Both the chemicals induced stress response and detoxification metabolism. This brackish water flea genomic information will be useful to monitor estuaries and coastal regions, as water fleas have been confirmed as promising sentinel models in freshwater ecosystems.
Collapse
Affiliation(s)
- Bo-Mi Kim
- 1Unit of Polar Genomics, Korea Polar Research Institute, Incheon, 21990 South Korea
| | - Seunghyun Kang
- 1Unit of Polar Genomics, Korea Polar Research Institute, Incheon, 21990 South Korea
| | - Ryeo-Ok Kim
- 2Department of Life Science, College of Natural Sciences, Sangmyung University, Seoul, 03016 South Korea
| | - Jee-Hyun Jung
- 3Oil and POPs Research Group, Korea Institute of Ocean Science and Technology, Geoje, 53201 South Korea
| | - Kyun-Woo Lee
- 4Korea Institute of Ocean Science and Technology, 385, Haeyang-ro, Youngdo, Busan, 49111 South Korea
| | - Jae-Sung Rhee
- 5Department of Marine Science, College of Natural Sciences, Incheon National University, Incheon, 22012 South Korea
| | - Young-Mi Lee
- 2Department of Life Science, College of Natural Sciences, Sangmyung University, Seoul, 03016 South Korea
| |
Collapse
|
12
|
Maruani J, Anderson G, Etain B, Lejoyeux M, Bellivier F, Geoffroy PA. The neurobiology of adaptation to seasons: Relevance and correlations in bipolar disorders. Chronobiol Int 2018; 35:1335-1353. [DOI: 10.1080/07420528.2018.1487975] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Julia Maruani
- Inserm, U1144, Paris, France
- Université Paris Descartes, UMR-S 1144, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, UMR-S 1144, Paris, France
- AP-HP, GH Saint-Louis – Lariboisière – F. Widal, Pôle de Psychiatrie et de Médecine Addictologique, Paris, France
- Fondation FondaMental, Créteil, France
| | | | - Bruno Etain
- Inserm, U1144, Paris, France
- Université Paris Descartes, UMR-S 1144, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, UMR-S 1144, Paris, France
- AP-HP, GH Saint-Louis – Lariboisière – F. Widal, Pôle de Psychiatrie et de Médecine Addictologique, Paris, France
- Fondation FondaMental, Créteil, France
| | - Michel Lejoyeux
- Université Paris Diderot, Sorbonne Paris Cité, UMR-S 1144, Paris, France
- Department of Epidemiology, Paris Hospital Group – Psychiatry & Neurosciences, Paris, France
- Department of Psychiatry and Addictive Medicine, Assistance Publique-Hôpitaux de Paris (AP-HP), University Hospital Bichat-Claude Bernard, Paris, France
- Paris Diderot University – Paris VII, Paris, France
| | - Frank Bellivier
- Inserm, U1144, Paris, France
- Université Paris Descartes, UMR-S 1144, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, UMR-S 1144, Paris, France
- AP-HP, GH Saint-Louis – Lariboisière – F. Widal, Pôle de Psychiatrie et de Médecine Addictologique, Paris, France
- Fondation FondaMental, Créteil, France
| | - Pierre A. Geoffroy
- Inserm, U1144, Paris, France
- Université Paris Descartes, UMR-S 1144, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, UMR-S 1144, Paris, France
- AP-HP, GH Saint-Louis – Lariboisière – F. Widal, Pôle de Psychiatrie et de Médecine Addictologique, Paris, France
- Fondation FondaMental, Créteil, France
| |
Collapse
|
13
|
Mazzoccoli G, De Cosmo S, Mazza T. The Biological Clock: A Pivotal Hub in Non-alcoholic Fatty Liver Disease Pathogenesis. Front Physiol 2018; 9:193. [PMID: 29662454 PMCID: PMC5890189 DOI: 10.3389/fphys.2018.00193] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 02/23/2018] [Indexed: 12/22/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most frequent hepatic pathology in the Western world and may evolve into steatohepatitis (NASH), increasing the risk of cirrhosis, portal hypertension and hepatocellular carcinoma. NAFLD derives from the accumulation of hepatic fat due to discrepant free fatty acid metabolism. Other factors contributing to this are deranged nutrients and bile acids fluxes as well as alterations in nuclear receptors, hormones, and intermediary metabolites, which impact on signaling pathways involved in metabolism and inflammation. Autophagy and host gut-microbiota interplay are also relevant to NAFLD pathogenesis. Notably, liver metabolic pathways and bile acid synthesis as well as autophagic and immune/inflammatory processes all show circadian patterns driven by the biological clock. Gut microbiota impacts on the biological clock, at the same time as the appropriate timing of metabolic fluxes, hormone secretion, bile acid turnover, autophagy and inflammation with behavioural cycles of fasting/feeding and sleeping/waking is required to circumvent hepatosteatosis, indicating significant interactions of the gut and circadian processes in NAFLD pathophysiology. Several time-related factors and processes interplay in NAFLD development, with the biological clock proposed to act as a network level hub. Deranged physiological rhythms (chronodisruption) may also play a role in liver steatosis pathogenesis. The current article reviews how the circadian clock circuitry intimately interacts with several mechanisms involved in the onset of hepatosteatosis and its progression to NASH, thereby contributing to the global NAFLD epidemic.
Collapse
Affiliation(s)
- Gianluigi Mazzoccoli
- Division of Internal Medicine and Chronobiology Unit, Department of Medical Sciences, IRCCS "Casa Sollievo della Sofferenza", San Giovanni Rotondo, Italy
| | - Salvatore De Cosmo
- Division of Internal Medicine and Chronobiology Unit, Department of Medical Sciences, IRCCS "Casa Sollievo della Sofferenza", San Giovanni Rotondo, Italy
| | - Tommaso Mazza
- Bioinformatics Unit, IRCCS "Casa Sollievo della Sofferenza", San Giovanni Rotondo, Italy
| |
Collapse
|
14
|
Jurado-Manzano BB, Zavala-Reyes D, Turrubiartes-Martínez EA, Portales-Pérez DP, González-Amaro R, Layseca-Espinosa E. FICZ generates human tDCs that induce CD4 + CD25 high Foxp3 + Treg-like cell differentiation. Immunol Lett 2017; 190:84-92. [PMID: 28765071 DOI: 10.1016/j.imlet.2017.07.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 07/21/2017] [Accepted: 07/25/2017] [Indexed: 02/01/2023]
Abstract
Dendritic cells (DCs) play a central role in the maintenance of immune homeostasis, their participation as professional antigen presenting cells is essential to the initiation of the adaptive immune response as well as to the induction of tolerance. The recently described role of the aryl hydrocarbon receptor (AhR) in the immune system, particularly in the modulation of the adaptive immune response has attracted the attention as a potential player in the induction of immune tolerance. However, the effects of AhR activation through endogenous ligands on human DCs have been poorly evaluated. In this study, we investigated the effect of FICZ, a natural AhR ligand, on monocyte-derived dendritic cells (Mo-DCs) from healthy subjects. We found that the activation of AhR through FICZ during DCs differentiation and maturation processes resulted in a decreased expression of CD83, an increased expression of the enzyme IDO and a reduced production of the pro-inflammatory cytokines IL-6 and TNF-α. More importantly, FICZ-treated DCs were able to induce the differentiation of naive T lymphocytes into CD4+ CD25high Foxp3+ T reg-like cells. Our results show that the activation of the AhR on human DCs induces a tolerogenic phenotype with potential implications in immunotherapy.
Collapse
Affiliation(s)
- Brenda B Jurado-Manzano
- Department of Immunology, School of Medicine, Universidad Autónoma de San Luis Potosí, San Luis Potosí, S.L.P., Mexico
| | - Daniel Zavala-Reyes
- Department of Immunology, School of Medicine, Universidad Autónoma de San Luis Potosí, San Luis Potosí, S.L.P., Mexico; Research Center of Health Sciences and Biomedicine (CICSaB), Universidad Autónoma de San Luis Potosí, San Luis Potosí, S.L.P., Mexico
| | - Edgar A Turrubiartes-Martínez
- Laboratory of Genetics and Molecular Diagnostic, Faculty of Chemical Science, Universidad Autónoma de San Luis Potosí, San Luis Potosí, S.L.P., Mexico
| | - Diana P Portales-Pérez
- Laboratory of Immunology and Cellular and Molecular Biology, Faculty of Chemical Science, Universidad Autónoma de San Luis Potosí, San Luis Potosí, S.L.P., Mexico; Research Center of Health Sciences and Biomedicine (CICSaB), Universidad Autónoma de San Luis Potosí, San Luis Potosí, S.L.P., Mexico
| | - Roberto González-Amaro
- Department of Immunology, School of Medicine, Universidad Autónoma de San Luis Potosí, San Luis Potosí, S.L.P., Mexico; Research Center of Health Sciences and Biomedicine (CICSaB), Universidad Autónoma de San Luis Potosí, San Luis Potosí, S.L.P., Mexico
| | - Esther Layseca-Espinosa
- Department of Immunology, School of Medicine, Universidad Autónoma de San Luis Potosí, San Luis Potosí, S.L.P., Mexico; Research Center of Health Sciences and Biomedicine (CICSaB), Universidad Autónoma de San Luis Potosí, San Luis Potosí, S.L.P., Mexico.
| |
Collapse
|
15
|
Hsu SH, Wang LT, Chai CY, Wu CC, Hsi E, Chiou SS, Wang SN. Aryl hydrocarbon receptor promotes hepatocellular carcinoma tumorigenesis by targeting intestine-specific homeobox expression. Mol Carcinog 2017; 56:2167-2177. [PMID: 28398627 DOI: 10.1002/mc.22658] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 03/22/2017] [Accepted: 04/08/2017] [Indexed: 12/20/2022]
Abstract
The aryl hydrocarbon receptor (AHR), a major chemical sensor, is thought to play a role in various biological contexts, including cell cycle regulation and tumorigenesis. However, its regulatory mechanisms remain unclear. We propose herein a novel mechanism through which AHR promotes tumorigenesis by targeting expression of the oncogene intestine-specific homeobox (ISX) in hepatocellular carcinoma (HCC). Compared to paired tumor-adjacent tissues and non-HCC tumors, HCCs exhibited an increased and hierarchical pattern of AHR expression. Patients exhibiting high AHR expression had a significantly shorter survival duration, compared to those with low and medium expression. Functionally, AHR was found to target the newly discovered proto-oncogene, ISX, resulting in the increased expression of this gene and its downstream targets, CCND1 and E2F1. Ablation of AHR or ISX in hepatoma cells suppressed cell growth, whereas overexpression promoted cell proliferation and led to enhanced tumorigenic activity in vitro and in vivo. These results provide evidence to support a critical role for the AHR/ISX axis in HCC tumorigenesis and suggest its potential utility as a new therapeutic and prognostic target for HCC.
Collapse
Affiliation(s)
- Shih-Hsien Hsu
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Li-Ting Wang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chee-Yin Chai
- Faculty of Medicine, Department of Pathology, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chi-Cheng Wu
- Department of Business Management, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Edward Hsi
- Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Shyh-Shin Chiou
- Faculty of Medicine, Department of Pediatrics, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Division of Hematology-Oncology, Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Shen-Nien Wang
- Division of Hepatobiliary Surgery, Department of Surgery, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Faculty of Medicine, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| |
Collapse
|
16
|
Aryl hydrocarbon receptor (AHR): "pioneer member" of the basic-helix/loop/helix per-Arnt-sim (bHLH/PAS) family of "sensors" of foreign and endogenous signals. Prog Lipid Res 2017; 67:38-57. [PMID: 28606467 DOI: 10.1016/j.plipres.2017.06.001] [Citation(s) in RCA: 200] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 05/05/2017] [Accepted: 06/05/2017] [Indexed: 12/21/2022]
Abstract
The basic-helix/loop/helix per-Arnt-sim (bHLH/PAS) family comprises many transcription factors, found throughout all three kingdoms of life; bHLH/PAS members "sense" innumerable intracellular and extracellular "signals" - including endogenous compounds, foreign chemicals, gas molecules, redox potential, photons (light), gravity, heat, and osmotic pressure. These signals then initiate downstream signaling pathways involved in responding to that signal. The term "PAS", abbreviation for "per-Arnt-sim" was first coined in 1991. Although the mouse Arnt gene was not identified until 1991, evidence of its co-transcriptional binding partner, aryl hydrocarbon receptor (AHR), was first reported in 1974 as a "sensor" of foreign chemicals, up-regulating cytochrome P450 family 1 (CYP1) and other enzyme activities that usually metabolize the signaling chemical. Within a few years, AHR was proposed also to participate in inflammation. The mouse [Ah] locus was shown (1973-1989) to be relevant to chemical carcinogenesis, mutagenesis, toxicity and teratogenesis, the mouse Ahr gene was cloned in 1992, and the first Ahr(-/-) knockout mouse line was reported in 1995. After thousands of studies from the early 1970s to present day, we now realize that AHR participates in dozens of signaling pathways involved in critical-life processes, affecting virtually every organ and cell-type in the animal, including many invertebrates.
Collapse
|
17
|
Schulte KW, Green E, Wilz A, Platten M, Daumke O. Structural Basis for Aryl Hydrocarbon Receptor-Mediated Gene Activation. Structure 2017; 25:1025-1033.e3. [PMID: 28602820 DOI: 10.1016/j.str.2017.05.008] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 04/28/2017] [Accepted: 05/10/2017] [Indexed: 12/15/2022]
Abstract
The aryl hydrocarbon receptor (AHR) and the AHR nuclear translocator (ARNT) constitute a heterodimeric basic helix-loop-helix-Per-ARNT-Sim (bHLH-PAS) domain containing transcription factor with central functions in development and cellular homeostasis. AHR is activated by xenobiotics, notably dioxin, as well as by exogenous and endogenous metabolites. Modulation of AHR activity holds promise for the treatment of diseases featuring altered cellular homeostasis, such as cancer or autoimmune disorders. Here, we present the crystal structure of a heterodimeric AHR:ARNT complex containing the PAS A and bHLH domain bound to its target DNA. The structure provides insights into the DNA binding mode of AHR and elucidates how stable dimerization of AHR:ARNT is achieved through sophisticated domain interplay via three specific interfaces. Using mutational analyses, we prove the relevance of the observed interfaces for AHR-mediated gene activation. Thus, our work establishes the structural basis of AHR assembly and DNA interaction and provides a template for targeted drug design.
Collapse
Affiliation(s)
- Kathrin Wiebke Schulte
- Crystallography Department, Max-Delbrück-Center for Molecular Medicine, Robert-Rössle-Strasse 10, 13125 Berlin, Germany; Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustrasse 6, 14195 Berlin, Germany
| | - Edward Green
- Department of Neurology, University Hospital Heidelberg and National Center for Tumor Diseases, 69120 Heidelberg, Germany; Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Annabel Wilz
- Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Michael Platten
- Department of Neurology, University Hospital Heidelberg and National Center for Tumor Diseases, 69120 Heidelberg, Germany; Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; Department of Neurology, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany.
| | - Oliver Daumke
- Crystallography Department, Max-Delbrück-Center for Molecular Medicine, Robert-Rössle-Strasse 10, 13125 Berlin, Germany; Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustrasse 6, 14195 Berlin, Germany.
| |
Collapse
|
18
|
Anderson G, Maes M. Interactions of Tryptophan and Its Catabolites With Melatonin and the Alpha 7 Nicotinic Receptor in Central Nervous System and Psychiatric Disorders: Role of the Aryl Hydrocarbon Receptor and Direct Mitochondria Regulation. Int J Tryptophan Res 2017; 10:1178646917691738. [PMID: 28469467 PMCID: PMC5398327 DOI: 10.1177/1178646917691738] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 01/11/2017] [Indexed: 11/16/2022] Open
Abstract
Recent work indicates an intimate interaction of the tryptophan catabolite (TRYCAT) pathways with the melatonergic pathways, primarily via TRYCAT pathway induction taking tryptophan away from the production of serotonin, which is a necessary precursor for the melatonergic pathways. The alpha 7 nicotinic receptor may be significantly modulated by this interaction, given its inactivation by the TRYCAT, kynurenic acid, and its induction by melatonin. Similarly, the aryl hydrocarbon receptor is activated by both kynurenic acid and kynurenine, leading to CYP1A2 and melatonin metabolism, whereas melatonin may act to inhibit the aryl hydrocarbon receptor. These 2 receptors and pathways may therefore be intimately linked, with relevance to a host of intracellular processes of clinical relevance. In this article, these interactions are reviewed. Interestingly, mitochondria may be a site for direct interactions of these pathways and receptors, suggesting that their differential induction may not only be modulating neuronal, glia, and immune cell processes and activity but also be directly acting to regulate mitochondrial functioning. This is likely to have significant consequences as to how an array of diverse central nervous system and psychiatric conditions are conceptualized and treated.
Collapse
Affiliation(s)
| | - Michael Maes
- Department of Psychiatry, Deakin University, Geelong, VIC, Australia
| |
Collapse
|
19
|
Jaeger C, Xu C, Sun M, Krager S, Tischkau SA. Aryl hydrocarbon receptor-deficient mice are protected from high fat diet-induced changes in metabolic rhythms. Chronobiol Int 2017; 34:318-336. [PMID: 28102700 DOI: 10.1080/07420528.2016.1256298] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
High fat diet (HFD) consumption alters the synchronized circadian timing system resulting in harmful loss, gain or shift of transcriptional oscillations. The aryl hydrocarbon receptor (AhR) shares structural homology to clock genes, containing both PAS domains and basic helix-loop helix structural motifs, allowing for interaction with components of the primary circadian feedback loop. Activation of AhR alters circadian rhythmicity, primarily through inhibition of Clock/Bmal1-mediated regulation of Per1. AhR-deficient mice are protected from diet-induced metabolic dysfunction, exhibiting enhanced insulin sensitivity and glucose tolerance. This study examined whether AhR haploinsufficiency can also protect against diet-induced alterations in rhythm. After feeding AhR+/+ and AhR+/- mice an HFD (60% fat) for 15 weeks, samples were collected every 4 hours over a 24-hour period. HFD altered the rhythm of serum glucose and the metabolic transcriptome, including hepatic nuclear receptors Rev-erbα and PPARγ in wild-type c57bl6/j mice. AhR reduction provided protection against diet-induced transcriptional oscillation changes; serum glucose and metabolic gene rhythms were protected from the disruption caused by HFD feeding. These data highlight the critical role of AhR signaling in the regulation of metabolism and provide a potential therapeutic target for diseases characterized by rhythmic desynchrony.
Collapse
Affiliation(s)
- Cassie Jaeger
- a Department of Pharmacology , Southern Illinois University School of Medicine , Springfield , IL , USA
| | - Canxin Xu
- a Department of Pharmacology , Southern Illinois University School of Medicine , Springfield , IL , USA
| | - Mingwei Sun
- a Department of Pharmacology , Southern Illinois University School of Medicine , Springfield , IL , USA
| | - Stacey Krager
- a Department of Pharmacology , Southern Illinois University School of Medicine , Springfield , IL , USA
| | - Shelley A Tischkau
- a Department of Pharmacology , Southern Illinois University School of Medicine , Springfield , IL , USA
| |
Collapse
|
20
|
Lu P, Xie W. Reply. Hepatology 2016; 63:1397-8. [PMID: 26109100 PMCID: PMC4691218 DOI: 10.1002/hep.27957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Affiliation(s)
- Peipei Lu
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Wen Xie
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania,Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
21
|
Vinciguerra M, Mazzoccoli G. Aryl hydrocarbon receptor-fibroblast growth factor 21 dissociation of fatty liver from insulin resistance: A timely matter? Hepatology 2016; 63:1396-7. [PMID: 26109218 DOI: 10.1002/hep.27958] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Manlio Vinciguerra
- Department of Medical Sciences, Division of Internal Medicine, IRCCS "Casa Sollievo della Sofferenza" Hospital, San Giovanni Rotondo, Italy.,Institute for Liver and Digestive Health, Royal Free Hospital, University College London, London, UK
| | - Gianluigi Mazzoccoli
- Institute for Liver and Digestive Health, Royal Free Hospital, University College London, London, UK
| |
Collapse
|
22
|
Ahi EP, Steinhäuser SS, Pálsson A, Franzdóttir SR, Snorrason SS, Maier VH, Jónsson ZO. Differential expression of the aryl hydrocarbon receptor pathway associates with craniofacial polymorphism in sympatric Arctic charr. EvoDevo 2015; 6:27. [PMID: 26388986 PMCID: PMC4574265 DOI: 10.1186/s13227-015-0022-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 09/04/2015] [Indexed: 12/03/2022] Open
Abstract
Background The developmental basis of craniofacial morphology hinges on interactions of numerous signalling systems. Extensive craniofacial variation in the polymorphic Arctic charr, a member of the salmonid family, from Lake Thingvallavatn (Iceland), offers opportunities to find and study such signalling pathways and their key regulators, thereby shedding light on the developmental pathways, and the genetics of trophic divergence. Results To identify genes involved in the craniofacial differences between benthic and limnetic Arctic charr, we used transcriptome data from different morphs, spanning early development, together with data on craniofacial expression patterns and skeletogenesis in model vertebrate species. Out of 20 genes identified, 7 showed lower gene expression in benthic than in limnetic charr morphs. We had previously identified a conserved gene network involved in extracellular matrix (ECM) organization and skeletogenesis, showing higher expression in developing craniofacial elements of benthic than in limnetic Arctic charr morphs. The present study adds a second set of genes constituting an expanded gene network with strong, benthic–limnetic differential expression. To identify putative upstream regulators, we performed knowledge-based motif enrichment analyses on the regulatory sequences of the identified genes which yielded potential binding sites for a set of known transcription factors (TFs). Of the 8 TFs that we examined using qPCR, two (Ahr2b and Ap2) were found to be differentially expressed between benthic and limnetic charr. Expression analysis of several known AhR targets indicated higher activity of the AhR pathway during craniofacial development in benthic charr morphotypes. Conclusion These results suggest a key role of the aryl hydrocarbon receptor (AhR) pathway in the observed craniofacial differences between distinct charr morphotypes. Electronic supplementary material The online version of this article (doi:10.1186/s13227-015-0022-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ehsan Pashay Ahi
- Institute of Life and Environmental Sciences, University of Iceland, Sturlugata 7, 101 Reykjavik, Iceland
| | - Sophie S Steinhäuser
- Biomedical Center, University of Iceland, Vatnsmýrarvegur 16, 101 Reykjavik, Iceland
| | - Arnar Pálsson
- Institute of Life and Environmental Sciences, University of Iceland, Sturlugata 7, 101 Reykjavik, Iceland ; Biomedical Center, University of Iceland, Vatnsmýrarvegur 16, 101 Reykjavik, Iceland
| | - Sigrídur Rut Franzdóttir
- Institute of Life and Environmental Sciences, University of Iceland, Sturlugata 7, 101 Reykjavik, Iceland
| | - Sigurdur S Snorrason
- Institute of Life and Environmental Sciences, University of Iceland, Sturlugata 7, 101 Reykjavik, Iceland
| | - Valerie H Maier
- Institute of Life and Environmental Sciences, University of Iceland, Sturlugata 7, 101 Reykjavik, Iceland ; Biomedical Center, University of Iceland, Vatnsmýrarvegur 16, 101 Reykjavik, Iceland
| | - Zophonías O Jónsson
- Institute of Life and Environmental Sciences, University of Iceland, Sturlugata 7, 101 Reykjavik, Iceland ; Biomedical Center, University of Iceland, Vatnsmýrarvegur 16, 101 Reykjavik, Iceland
| |
Collapse
|
23
|
Takuma M, Ushijima K, Kumazaki M, Ando H, Fujimura A. Influence of dioxin on the daily variation of insulin sensitivity in mice. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2015; 40:349-351. [PMID: 26233560 DOI: 10.1016/j.etap.2015.07.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 07/07/2015] [Accepted: 07/08/2015] [Indexed: 06/04/2023]
Abstract
To evaluate an influence of dioxin on a daily variation of insulin sensitivity, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) (100ng/kg) was given for 3 weeks in mice. Insulin tolerance test and oral glucose tolerance test were performed. TCDD decreased insulin sensitivity at an active period, but not at a rest period. TCDD elevated plasma TNF-α, and the value was significantly higher during an active period than during a rest period. These data suggest that TCDD blunts insulin sensitivity, mainly during an active period. Higher elevation in plasma TNF-α during an active period might be involved in this phenomenon.
Collapse
Affiliation(s)
- Masashi Takuma
- Division of Clinical Pharmacology, Department of Pharmacology, Jichi Medical University, Tochigi 329-0498, Japan
| | - Kentaro Ushijima
- Division of Clinical Pharmacology, Department of Pharmacology, Jichi Medical University, Tochigi 329-0498, Japan
| | - Masafumi Kumazaki
- Division of Clinical Pharmacology, Department of Pharmacology, Jichi Medical University, Tochigi 329-0498, Japan
| | - Hitoshi Ando
- Division of Clinical Pharmacology, Department of Pharmacology, Jichi Medical University, Tochigi 329-0498, Japan
| | - Akio Fujimura
- Division of Clinical Pharmacology, Department of Pharmacology, Jichi Medical University, Tochigi 329-0498, Japan.
| |
Collapse
|
24
|
Xie G, Raufman JP. Role of the Aryl Hydrocarbon Receptor in Colon Neoplasia. Cancers (Basel) 2015; 7:1436-46. [PMID: 26264025 PMCID: PMC4586780 DOI: 10.3390/cancers7030847] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 07/27/2015] [Accepted: 07/29/2015] [Indexed: 12/27/2022] Open
Abstract
For both men and women, colorectal cancer (CRC) is the second leading cause of cancer death in the United States, primarily as a consequence of limited therapies for metastatic disease. The aryl hydrocarbon receptor (AhR) is a ligand-dependent transcription factor with diverse functions in detoxification of xenobiotics, inflammatory responses, and tissue homeostasis. Emerging evidence indicates that AhR also plays an important role in regulating intestinal cell proliferation and tumorigenesis. Here, we review both the pro- and anti-carcinogenic properties of AhR signaling and its potential role as a therapeutic target in CRC.
Collapse
Affiliation(s)
- Guofeng Xie
- Division of Gastroenterology and Hepatology, Veterans Administration Maryland Health Care System, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| | - Jean-Pierre Raufman
- Division of Gastroenterology and Hepatology, Veterans Administration Maryland Health Care System, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| |
Collapse
|
25
|
Baerwald MR, Meek MH, Stephens MR, Nagarajan RP, Goodbla AM, Tomalty KMH, Thorgaard GH, May B, Nichols KM. Migration-related phenotypic divergence is associated with epigenetic modifications in rainbow trout. Mol Ecol 2015; 25:1785-1800. [PMID: 25958780 DOI: 10.1111/mec.13231] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 04/30/2015] [Accepted: 05/01/2015] [Indexed: 12/11/2022]
Abstract
Migration is essential for the reproduction and survival of many animals, yet little is understood about its underlying molecular mechanisms. We used the salmonid Oncorhynchus mykiss to gain mechanistic insight into smoltification, which is a morphological, physiological and behavioural transition undertaken by juveniles in preparation for seaward migration. O. mykiss is experimentally tractable and displays intra- and interpopulation variation in migration propensity. Migratory individuals can produce nonmigratory progeny and vice versa, indicating a high degree of phenotypic plasticity. One potential way that phenotypic plasticity might be linked to variation in migration-related life history tactics is through epigenetic regulation of gene expression. To explore this, we quantitatively measured genome-scale DNA methylation in fin tissue using reduced representation bisulphite sequencing of F2 siblings produced from a cross between steelhead (migratory) and rainbow trout (nonmigratory) lines. We identified 57 differentially methylated regions (DMRs) between smolt and resident O. mykiss juveniles. DMRs were high in magnitude, with up to 62% differential methylation between life history types, and over half of the gene-associated DMRs were in transcriptional regulatory regions. Many of the DMRs encode proteins with activity relevant to migration-related transitions (e.g. circadian rhythm pathway, nervous system development, protein kinase activity). This study provides the first evidence of a relationship between epigenetic variation and life history divergence associated with migration-related traits in any species.
Collapse
Affiliation(s)
- Melinda R Baerwald
- Department of Animal Science, University of California - Davis, Davis, CA, 95616
| | - Mariah H Meek
- Department of Animal Science, University of California - Davis, Davis, CA, 95616
| | - Molly R Stephens
- School of Natural Sciences, University of California - Merced, Merced, CA, 95343
| | - Raman P Nagarajan
- GlaxoSmithKline, Cancer Epigenetics Discovery Performance Unit, Collegeville, PA 19426
| | - Alisha M Goodbla
- Department of Animal Science, University of California - Davis, Davis, CA, 95616
| | | | - Gary H Thorgaard
- School of Biological Sciences and Center for Reproductive Biology, Washington State University, Pullman, WA, 99164
| | - Bernie May
- Department of Animal Science, University of California - Davis, Davis, CA, 95616
| | - Krista M Nichols
- Conservation Biology Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 2725 Montlake Blvd E, Seattle, WA 98112
| |
Collapse
|
26
|
Tavano F, Pazienza V, Fontana A, Burbaci FP, Panebianco C, Saracino C, Lombardi L, De Bonis A, di Mola FF, di Sebastiano P, Piepoli A, Vinciguerra M, Fracavilla M, Giuliani F, Rubino R, Andriulli A, Mazzoccoli G. SIRT1 and circadian gene expression in pancreatic ductal adenocarcinoma: Effect of starvation. Chronobiol Int 2015; 32:497-512. [PMID: 25798752 DOI: 10.3109/07420528.2014.1003351] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Pancreatic cancer (PC), the fourth leading cause of cancer-related deaths, is characterized by high aggressiveness and resistance to chemotherapy. Pancreatic carcinogenesis is kept going by derangement of essential cell processes, such as proliferation, apoptosis, metabolism and autophagy, characterized by rhythmic variations with 24-h periodicity driven by the biological clock. We assessed the expression of the circadian genes ARNLT, ARNLT2, CLOCK, PER1, PER2, PER3, CRY1, CRY2 and the starvation-activated histone/protein deacetylase SIRT1 in 34 matched tumor and non-tumor tissue specimens of PC patients, and evaluated in PC derived cell lines if the modulation of SIRT1 expression through starvation could influence the temporal pattern of expression of the circadian genes. We found a significant down-regulation of ARNLT (p = 0.015), CRY1 (p = 0.013), CRY2 (p = 0.001), PER1 (p < 0.0001), PER2 (p < 0.001), PER3 (p = 0.001) and SIRT1 (p = 0.017) in PC specimens. PER3 and CRY2 expression levels were lower in patients with jaundice at diagnosis ( < 0.05). Having adjusted for age, adjuvant therapy and tumor stage, we evidenced that patients with higher PER2 and lower SIRT1 expression levels showed lower mortality (p = 0.028). Levels and temporal patterns of expression of many circadian genes and SIRT1 significantly changed upon serum starvation in vitro, with differences among four different PC cell lines examined (BXPC3, CFPAC, MIA-PaCa-2 and PANC-1). Serum deprivation induced changes of the overall mean level of the wave and amplitude, lengthened or shortened the cycle time and phase-advanced or phase-delayed the rhythmic oscillation depending on the gene and the PC cell line examined. In conclusion, a severe deregulation of expression of SIRT1 and circadian genes was evidenced in the cancer specimens of PC patients, and starvation influenced gene expression in PC cell lines, suggesting that the altered interplay between SIRT1 and the core circadian proteins could represent a crucial player in the process of pancreatic carcinogenesis.
Collapse
Affiliation(s)
- Francesca Tavano
- Division of Gastroenterology, IRCCS Scientific Institute and Regional General Hospital "Casa Sollievo della Sofferenza" , San Giovanni Rotondo (FG) , Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Lin LL, Huang HC, Juan HF. Circadian systems biology in Metazoa. Brief Bioinform 2015; 16:1008-24. [PMID: 25758249 DOI: 10.1093/bib/bbv006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2014] [Indexed: 12/30/2022] Open
Abstract
Systems biology, which can be defined as integrative biology, comprises multistage processes that can be used to understand components of complex biological systems of living organisms and provides hierarchical information to decoding life. Using systems biology approaches such as genomics, transcriptomics and proteomics, it is now possible to delineate more complicated interactions between circadian control systems and diseases. The circadian rhythm is a multiscale phenomenon existing within the body that influences numerous physiological activities such as changes in gene expression, protein turnover, metabolism and human behavior. In this review, we describe the relationships between the circadian control system and its related genes or proteins, and circadian rhythm disorders in systems biology studies. To maintain and modulate circadian oscillation, cells possess elaborative feedback loops composed of circadian core proteins that regulate the expression of other genes through their transcriptional activities. The disruption of these rhythms has been reported to be associated with diseases such as arrhythmia, obesity, insulin resistance, carcinogenesis and disruptions in natural oscillations in the control of cell growth. This review demonstrates that lifestyle is considered as a fundamental factor that modifies circadian rhythm, and the development of dysfunctions and diseases could be regulated by an underlying expression network with multiple circadian-associated signals.
Collapse
|
28
|
Mazzoccoli G, Mazza T, Vinciguerra M, Castellana S, Scarpa M. The biological clock and the molecular basis of lysosomal storage diseases. JIMD Rep 2015; 18:93-105. [PMID: 25583520 DOI: 10.1007/8904_2014_354] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 08/06/2014] [Accepted: 08/08/2014] [Indexed: 12/16/2022] Open
Abstract
The lysosomal storage disorders encompass nearly fifty diseases provoked by lack or deficiency of enzymes essential for the breakdown of complex molecules and hallmarked by accumulation in the lysosomes of metabolic residues. Histochemistry and cytochemistry studies evidenced patterns of circadian variation of the lysosomal marker enzymes, suggesting that lysosomal function oscillates rhythmically during the 24-h day. The circadian rhythmicity of cellular processes is driven by the biological clock ticking through transcriptional/translational feedback loops hardwired by circadian genes and proteins. Malfunction of the molecular clockwork may provoke severe deregulation of downstream gene expression regulating a complex array of cellular functions leading to anatomical and functional changes. In this review we highlight that all the genes mutated in lysosomal storage disorders encode circadian transcripts suggesting a direct participation of the biological clock in the pathophysiological mechanisms underlying cellular and tissue derangements hallmarking these hereditary diseases. The 24-h periodicity of oscillation of gene transcription and translation could lead in physiological conditions to circadian rhythmicity of fluctuation of enzyme levels and activity, so that gene transfer could be envisaged to reproduce 24-h periodicity of variation of enzymatic dynamics and circadian rhythmicity could have an impact on the schedule of enzyme replacement therapy.
Collapse
Affiliation(s)
- Gianluigi Mazzoccoli
- Division of Internal Medicine and Chronobiology Unit, Department of Medical Sciences, IRCCS Scientific Institute and Regional General Hospital "Casa Sollievo della Sofferenza", S.Giovanni Rotondo, (FG), Italy,
| | | | | | | | | |
Collapse
|
29
|
Palmieri O, Mazzoccoli G, Bossa F, Maglietta R, Palumbo O, Ancona N, Corritore G, Latiano T, Martino G, Rubino R, Biscaglia G, Scimeca D, Carella M, Annese V, Andriulli A, Latiano A. Systematic analysis of circadian genes using genome-wide cDNA microarrays in the inflammatory bowel disease transcriptome. Chronobiol Int 2015; 32:903-916. [PMID: 26172092 DOI: 10.3109/07420528.2015.1050726] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Simultaneous analysis of the transcripts of thousands of genes by cDNA microarrays allows the identification of genetic regulatory mechanisms involved in disease pathophysiology. The circadian clock circuitry controls essential cell processes and the functioning of organ systems, which are characterized by rhythmic variations with 24-hour periodicity. The derangement of these processes is involved in the basic mechanisms of inflammatory, metabolic, degenerative and neoplastic diseases. We evaluated by genome-wide cDNA microarray analysis the transcriptome of endoscopic mucosal biopsies of patients with inflammatory bowel diseases (IBD) focusing on the expression of circadian genes in Crohn's disease (CD) and ulcerative colitis (UC). Twenty-nine IBD patients (15 with CD and 14 with UC) were enrolled and mucosal biopsies were sampled at either inflamed or adjacent non-inflamed areas of the colon. A total of 150 circadian genes involved in pathways controlling crucial cell processes and tissue functions were investigated. In CD specimens 50 genes were differentially expressed, and 21 genes resulted up-regulated when compared to healthy colonic mucosa. In UC specimens 50 genes were differentially expressed, and 27 genes resulted up-regulated when compared to healthy colonic mucosa. Among the core clock genes ARNTL2 and RORA were up-regulated, while CSNK2B, NPAS2, PER1 and PER3 were down-regulated in CD specimens. Conversely, ARNTL2, CRY1, CSNK1E, RORA and TIPIN were up-regulated, while NR1D2 and PER3 were down-regulated in UC. In conclusion, in CD and UC patients there are differences in the expression of circadian genes between normal and diseased intestinal mucosa. The deregulated genes evidenced by transcriptome analysis in the major IBDs may play a crucial role in the pathophysiological mechanisms and may suggest novel therapeutic approaches.
Collapse
Affiliation(s)
- Orazio Palmieri
- a Department of Medical Sciences , Division of Gastroenterology and
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Nie X, Liang L, Xi H, Jiang S, Jiang J, Tang C, Liu X, Liu S, Wan C, Zhao J, Yang J. 2, 3, 7, 8-Tetrachlorodibenzo-p-dioxin induces premature senescence of astrocytes via WNT/β-catenin signaling and ROS production. J Appl Toxicol 2014; 35:851-60. [PMID: 25382668 DOI: 10.1002/jat.3084] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 09/04/2014] [Accepted: 09/18/2014] [Indexed: 12/20/2022]
Abstract
2, 3, 7, 8-tetrachlorodibenzo-p-dioxin (TCDD) is a ubiquitous environmental contaminant that could exert significant neurotoxicity in the human nervous system. Nevertheless, the molecular mechanism underlying TCDD-mediated neurotoxicity has not been clarified clearly. Herein, we investigated the potential role of TCDD in facilitating premature senescence in astrocytes and the underlying molecular mechanisms. Using the senescence-associated β-galactosidase (SA-β-Gal) assay, we demonstrated that TCDD exposure triggered significant premature senescence of astrocyte cells, which was accompanied by a marked activation of the Wingless and int (WNT)/β-catenin signaling pathway. In addition, TCDD altered the expression of senescence marker proteins, such as p16, p21 and GFAP, which together have been reported to be upregulated in aging astrocytes, in both dose- and time-dependent manners. Further, TCDD led to cell-cycle arrest, F-actin reorganization and the accumulation of cellular reactive oxygen species (ROS). Moreover, the ROS scavenger N-acetylcysteine (NAC) markedly attenuated TCDD-induced ROS production, cellular oxidative damage and astrocyte senescence. Notably, the application of XAV939, an inhibitor of WNT/β-catenin signaling pathway, ameliorated the effect of TCDD on cellular β-catenin level, ROS production, cellular oxidative damage and premature senescence in astrocytes. In summary, our findings indicated that TCDD might induce astrocyte senescence via WNT/β-catenin and ROS-dependent mechanisms.
Collapse
Affiliation(s)
- Xiaoke Nie
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong, Jiangsu, 226001, China
| | - Lingwei Liang
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong, Jiangsu, 226001, China
| | - Hanqing Xi
- Department of Disease Prevention, Second People's Hospital of Nantong, Nantong, Jiangsu Province, 226001, China
| | - Shengyang Jiang
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong, Jiangsu, 226001, China
| | - Junkang Jiang
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong, Jiangsu, 226001, China
| | - Cuiying Tang
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong, Jiangsu, 226001, China
| | - Xipeng Liu
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong, Jiangsu, 226001, China
| | - Suyi Liu
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong, Jiangsu, 226001, China
| | - Chunhua Wan
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong, Jiangsu, 226001, China
| | - Jianya Zhao
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong, Jiangsu, 226001, China
| | - Jianbin Yang
- Department of Disease Prevention, Second People's Hospital of Nantong, Nantong, Jiangsu Province, 226001, China
| |
Collapse
|
31
|
Gramage E, Li J, Hitchcock P. The expression and function of midkine in the vertebrate retina. Br J Pharmacol 2014; 171:913-23. [PMID: 24460673 PMCID: PMC3925030 DOI: 10.1111/bph.12495] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Revised: 10/21/2013] [Accepted: 10/24/2013] [Indexed: 12/20/2022] Open
Abstract
The functional role of midkine during development, following injury and in disease has been studied in a variety of tissues. In this review, we summarize what is known about midkine in the vertebrate retina, focusing largely on recent studies utilizing the zebrafish (Danio rerio) as an animal model. Zebrafish are a valuable animal model for studying the retina, due to its very rapid development and amazing ability for functional neuronal regeneration following neuronal cell death. The zebrafish genome harbours two midkine paralogues, midkine-a (mdka) and midkine-b (mdkb), which, during development, are expressed in nested patterns among different cell types. mdka is expressed in the retinal progenitors and mdkb is expressed in newly post-mitotic cells. Interestingly, studies of loss-and gain-of-function in zebrafish larvae indicate that midkine-a regulates cell cycle kinetics. Moreover, both mdka and mdkb are expressed in different cell types in the normal adult zebrafish retina, but after light-induced death of photoreceptors, both are up-regulated and expressed in proliferating Müller glia and photoreceptor progenitors, suggesting an important and (perhaps) coincident role for these cytokines during stem cell-based neuronal regeneration. Based on its known role in other tissues and the expression and function of the midkine paralogues in the zebrafish retina, we propose that midkine has an important functional role both during development and regeneration in the retina. Further studies are needed to understand this role and the mechanisms that underlie it.
Collapse
Affiliation(s)
- E Gramage
- Department of Ophthalmology and Visual Sciences, W. K. Kellogg Eye Center, University of Michigan, Ann Arbor, MI, USA
| | | | | |
Collapse
|
32
|
Kanda T, Jiang X, Yokosuka O. Androgen receptor signaling in hepatocellular carcinoma and pancreatic cancers. World J Gastroenterol 2014; 20:9229-9236. [PMID: 25071315 PMCID: PMC4110552 DOI: 10.3748/wjg.v20.i28.9229] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 03/07/2014] [Accepted: 04/30/2014] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) and pancreatic cancer remain difficult to treat, and despite the ongoing development of new treatments, the overall survival rate has only modestly improved over the past decade. Liver and pancreatic progenitors commonly develop from endoderm cells in the embryonic foregut. A previous study showed that HCC and pancreatic cancer cell lines variably express androgen receptor (AR), and these cancers and the surrounding tissues also express AR. AR is a ligand-dependent transcription factor that belongs to the nuclear receptor superfamily. Androgen response element is present in regulatory elements on the AR-responsive target genes, such as transforming growth factor beta-1 (TGF beta-1) and vascular endothelial growth factor (VEGF). It is well known that the activation of AR is associated with human carcinogenesis in prostate cancer as well as HCC and pancreatic cancer and that GRP78, TGF beta, and VEGF all play important roles in carcinogenesis and cancer development in these cancers. HCC is a male-dominant cancer irrespective of its etiology. Previous work has reported that vertebrae forkhead box A 1/2 are involved in estrogen receptors and/or AR signaling pathways, which may contribute to the gender differences observed with HCC. Our recent work also showed that AR has a critical role in pancreatic cancer development, despite pancreatic cancer not being a male dominant cancer. Aryl hydrocarbon (or dioxin) receptor is also involved in both HCC and pancreatic cancer through the formation of complex with AR. It is possible that AR might be involved in their carcinogenesis through major histocompatibility complex class I chain-related gene A/B. This review article describes AR and its role in HCC and pancreatic cancer and suggests that more specific AR signaling-inhibitors may be useful in the treatment of these "difficult to treat" cancers.
Collapse
|
33
|
Interplay between Dioxin-mediated signaling and circadian clock: a possible determinant in metabolic homeostasis. Int J Mol Sci 2014; 15:11700-12. [PMID: 24987953 PMCID: PMC4139808 DOI: 10.3390/ijms150711700] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 06/13/2014] [Accepted: 06/17/2014] [Indexed: 11/16/2022] Open
Abstract
The rotation of the earth on its axis creates the environment of a 24 h solar day, which organisms on earth have used to their evolutionary advantage by integrating this timing information into their genetic make-up in the form of a circadian clock. This intrinsic molecular clock is pivotal for maintenance of synchronized homeostasis between the individual organism and the external environment to allow coordinated rhythmic physiological and behavioral function. Aryl hydrocarbon receptor (AhR) is a master regulator of dioxin-mediated toxic effects, and is, therefore, critical in maintaining adaptive responses through regulating the expression of phase I/II drug metabolism enzymes. AhR expression is robustly rhythmic, and physiological cross-talk between AhR signaling and circadian rhythms has been established. Increasing evidence raises a compelling argument that disruption of endogenous circadian rhythms contributes to the development of disease, including sleep disorders, metabolic disorders and cancers. Similarly, exposure to environmental pollutants through air, water and food, is increasingly cited as contributory to these same problems. Thus, a better understanding of interactions between AhR signaling and the circadian clock regulatory network can provide critical new insights into environmentally regulated disease processes. This review highlights recent advances in the understanding of the reciprocal interactions between dioxin-mediated AhR signaling and the circadian clock including how these pathways relate to health and disease, with emphasis on the control of metabolic function.
Collapse
|
34
|
Bard J. Generating anatomical variation through mutations in networks - implications for evolution. J Anat 2014; 225:123-31. [PMID: 24934180 DOI: 10.1111/joa.12205] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/30/2014] [Indexed: 12/01/2022] Open
Abstract
Genetic mutation leads to anatomical variation only indirectly because many proteins involved in generating anatomical structures in embryos operate cooperatively within molecular networks. These include gene-regulatory or control networks (CNs) for timing, signaling and patterning together with the process networks (PNs) for proliferation, apoptosis, differentiation and morphogenesis that they control. This paper argues that anatomical variation is achieved through a two-stage process: mutation alters the outputs of CNs and perhaps the proliferation network, and such changed outputs alter the ways that PNs construct tissues. This systems-biology approach has several implications: first, because networks contain many cooperating proteins, they amplify the effects of genetic variation so enabling mutation to generate a wider range of phenotypes than a single changed protein acting alone could. Second, this amplification helps explain how novel phenotypes can be produced relatively rapidly. Third, because even organisms with novel anatomical phenotypes derive from variants in standard networks, there is no genetic barrier to their producing viable offspring. This approach also clarifies a terminological difficulty: classical evolutionary genetics views genes in terms of phenotype heritability rather than as DNA sequences. This paper suggests that the molecular phenotype of the classical concept of a gene is often a protein network, with a mutation leading to an alteration in that network's dynamics.
Collapse
Affiliation(s)
- Jonathan Bard
- Department of Physiology, Anatomy & Genetics, University of Oxford, Oxford, UK
| |
Collapse
|
35
|
Mazzoccoli G, Vinciguerra M, Papa G, Piepoli A. Circadian clock circuitry in colorectal cancer. World J Gastroenterol 2014; 20:4197-4207. [PMID: 24764658 PMCID: PMC3989956 DOI: 10.3748/wjg.v20.i15.4197] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Revised: 11/18/2013] [Accepted: 01/20/2014] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer is the most prevalent among digestive system cancers. Carcinogenesis relies on disrupted control of cellular processes, such as metabolism, proliferation, DNA damage recognition and repair, and apoptosis. Cell, tissue, organ and body physiology is characterized by periodic fluctuations driven by biological clocks operating through the clock gene machinery. Dysfunction of molecular clockworks and cellular oscillators is involved in tumorigenesis, and altered expression of clock genes has been found in cancer patients. Epidemiological studies have shown that circadian disruption, that is, alteration of bodily temporal organization, is a cancer risk factor, and an increased incidence of colorectal neoplastic disease is reported in shift workers. In this review we describe the involvement of the circadian clock circuitry in colorectal carcinogenesis and the therapeutic strategies addressing temporal deregulation in colorectal cancer.
Collapse
|
36
|
Anderson G, Berk M, Dean O, Moylan S, Maes M. Role of immune-inflammatory and oxidative and nitrosative stress pathways in the etiology of depression: therapeutic implications. CNS Drugs 2014; 28:1-10. [PMID: 24150993 DOI: 10.1007/s40263-013-0119-1] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Accumulating data have led to a re-conceptualization of depression that emphasizes the role of immune-inflammatory processes, coupled to oxidative and nitrosative stress (O&NS). These in turn drive the production of neuroregulatory tryptophan catabolites (TRYCATs), driving tryptophan away from serotonin, melatonin, and N-acetylserotonin production, and contributing to central dysregulation. This revised perspective better encompasses the diverse range of biological changes occurring in depression and in doing so provides novel and readily attainable treatment targets, as well as potential screening investigations prior to treatment initiation. We briefly review the role that immune-inflammatory, O&NS, and TRYCAT pathways play in the etiology, course, and treatment of depression. We then discuss the pharmacological treatment implications arising from this, including the potentiation of currently available antidepressants by the adjunctive use of immune- and O&NS-targeted therapies. The use of such a frame of reference and the treatment benefits attained are likely to have wider implications and utility for depression-associated conditions, including the neuroinflammatory and (neuro)degenerative disorders.
Collapse
|
37
|
Vega L, Elizondo G. Aryl hydrocarbon receptor as a new therapeutic target for cancer and immune disorders. World J Pharmacol 2013; 2:107-114. [DOI: 10.5497/wjp.v2.i4.107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Revised: 07/20/2013] [Accepted: 08/16/2013] [Indexed: 02/06/2023] Open
Abstract
The aryl hydrocarbon receptor (AhR) was discovered more than three decades ago, and initially was characterized as a transcription factor with a role in xenobiotic metabolism. However, based on subsequent observations that AhR remains active under physiological conditions, exhibits constitutive expression during development, and has a high degree of conservation among species, it was hypothesized that AhR is responsible for functions in addition to its role in detoxification. Correspondingly, recent studies have elucidated novel physiological roles for this ligand-dependent transcription factor that link it to several pathways associated with disease development. In this review, studies are presented that support a role for AhR in cell proliferation, apoptosis, and immune homeostasis, thereby highlighting the therapeutic potential of this receptor for cancer and immune disorders.
Collapse
|
38
|
Mazzoccoli G, Tomanin R, Mazza T, D'Avanzo F, Salvalaio M, Rigon L, Zanetti A, Pazienza V, Francavilla M, Giuliani F, Vinciguerra M, Scarpa M. Circadian transcriptome analysis in human fibroblasts from Hunter syndrome and impact of iduronate-2-sulfatase treatment. BMC Med Genomics 2013; 6:37. [PMID: 24083598 PMCID: PMC3851237 DOI: 10.1186/1755-8794-6-37] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Accepted: 09/19/2013] [Indexed: 01/30/2023] Open
Abstract
Background Hunter syndrome (HS) is a lysosomal storage disease caused by iduronate-2-sulfatase (IDS) deficiency and loss of ability to break down and recycle the glycosaminoglycans, heparan and dermatan sulfate, leading to impairment of cellular processes and cell death. Cell activities and functioning of intracellular organelles are controlled by the clock genes (CGs), driving the rhythmic expression of clock controlled genes (CCGs). We aimed to evaluate the expression of CGs and downstream CCGs in HS, before and after enzyme replacement treatment with IDS. Methods The expression levels of CGs and CCGs were evaluated by a whole transcriptome analysis through Next Generation Sequencing in normal primary human fibroblasts and fibroblasts of patients affected by HS before and 24 h/144 h after IDS treatment. The time related expression of CGs after synchronization by serum shock was also evaluated by qRT-PCR before and after 24 hours of IDS treatment. Results In HS fibroblasts we found altered expression of several CGs and CCGs, with dynamic changes 24 h and 144 h after IDS treatment. A semantic hypergraph-based analysis highlighted five gene clusters significantly associated to important biological processes or pathways, and five genes, AHR, HIF1A, CRY1, ITGA5 and EIF2B3, proven to be central players in these pathways. After synchronization by serum shock and 24 h treatment with IDS the expression of ARNTL2 at 10 h (p = 0.036), PER1 at 4 h (p = 0.019), PER2 at 10 h (p = 0.041) and 16 h (p = 0.043) changed in HS fibroblasts. Conclusion CG and CCG expression is altered in HS fibroblasts and IDS treatment determines dynamic modifications, suggesting a direct involvement of the CG machinery in the physiopathology of cellular derangements that characterize HS.
Collapse
Affiliation(s)
- Gianluigi Mazzoccoli
- Department of Medical Sciences, Division of Internal Medicine and Chronobiology Unit, IRCCS Scientific Institute and Regional General Hospital "Casa Sollievo della Sofferenza", S,Giovanni Rotondo (FG), Italy.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Anderson G, Maes M. Neurodegeneration in Parkinson's disease: interactions of oxidative stress, tryptophan catabolites and depression with mitochondria and sirtuins. Mol Neurobiol 2013; 49:771-83. [PMID: 24085563 DOI: 10.1007/s12035-013-8554-z] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Accepted: 09/19/2013] [Indexed: 11/29/2022]
Abstract
The biological underpinnings to the etiology and course of neurodegeneration in Parkinson's disease are an area of extensive research that has yet to produce an early biological marker or disease-slowing or preventative treatment. Recent conceptualizations of Parkinson's disease have integrated immuno-inflammation and oxidative and nitrosative stress occurring in depression, somatization and peripheral inflammation into the course of Parkinson's disease. We review the data showing the importance of immuno-inflammatory processes and oxidative and nitrosative stress in such classically conceived 'comorbidities', suggesting that lifetime, prodromal and concurrent depression and somatization may be intricately involved in the etiology and course of Parkinson's disease, rather than psychiatric comorbidities. This produces a longer term developmental perspective of Parkinson's disease, which incorporates tryptophan catabolites (TRYCATs), lipid peroxidation, sirtuins, cyclic adenosine monophosphate, aryl hydrocarbon receptor, and circadian genes. This integrates wider bodies of data pertaining to neuronal loss in Parkinson's disease, emphasizing how these interact with susceptibility genes to drive changes in mitochondria, blood-brain barrier permeability and intercellular signalling. We review this data here in the context of neurodegeneration in Parkinson's disease and to the future directions indicated for slowing disease progression.
Collapse
|
40
|
Malik AI, Rowan-Carroll A, Williams A, Lemieux CL, Long AS, Arlt VM, Phillips DH, White PA, Yauk CL. Hepatic genotoxicity and toxicogenomic responses in Muta™Mouse males treated with dibenz[a,h]anthracene. Mutagenesis 2013; 28:543-54. [PMID: 23793610 DOI: 10.1093/mutage/get031] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Dibenz[a,h]anthracene (DB[a,h]A) is a polycyclic aromatic hydrocarbon that is a by-product of combustion and a potent carcinogen. Few studies have investigated the effects of DB[a,h]A on mRNA and microRNA expression to dissect the mechanisms involved in carcinogenesis. In this study, mature male mice (Muta(™)Mouse) were exposed to 6.25, 12.5 and 25mg/kg/day DB[a,h]A by oral gavage for 28 consecutive days. Results were compared with mice similarly exposed to benzo[a]pyrene (B[a]P) in our previous work. Liver DNA adduct levels and lacZ mutant frequency increased dose dependently for both chemicals. Aryl hydrocarbon receptor (AhR) potency was greater for DB[a,h]A than B[a]P using the chemical-activated luciferase expression assay. Microarray analysis revealed 19 up-regulated and 22 down-regulated genes (false discovery rate-adjusted P ≤ 0.05; fold change ≥ 1.5) following treatment with 6.25 mg/kg/day DB[a,h]A. Thirteen transcripts were up-regulated and 32 down-regulated in the 12.5mg/kg/day group. The 25mg/kg/day dose had major effects on mRNA expression with 135 up-regulated and 104 down-regulated genes. Overall, perturbations were greater for DB[a,h]A than for B[a]P; in vitro chemical-activated luciferase expression supports that this may be driven by the AhR. Many of the DB[a,h]A-affected genes are implicated in cancer and are essential in vital biological functions including circadian rhythm, glucose metabolism, lipid metabolism, immune response, cell cycle and apoptosis. Although a number of functional groups were similarly affected by B[a]P and DB[a,h]A, in general the responses generated by each chemical were quite distinct. Commonalities included a DNA damage response leading to induction of cell cycle arrest and apoptosis in both Tp53-dependent and Tp53-independent manners. MicroRNA expression was identical for both chemicals, with only miR-34a showing a dose-dependent increase in treated mice.
Collapse
Affiliation(s)
- Amal I Malik
- Environmental Health Science and Research Bureau, Health Canada, 50 Colombine Driveway, Ottawa, Ontario K1A 0K9, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|