1
|
Bergkamp DJ, Neumaier JF. How omics is revealing new roles for glia in addiction. Glia 2025; 73:608-618. [PMID: 38894643 DOI: 10.1002/glia.24584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 06/05/2024] [Accepted: 06/07/2024] [Indexed: 06/21/2024]
Abstract
Experiments to study the biology of addiction have historically focused on the mechanisms through which drugs of abuse drive changes in the functioning of neurons and neural circuits. Glia have often been ignored in these studies, however, and this has left many questions in the field unanswered, particularly, surrounding how glia contribute to changes in synaptic plasticity, regulation of neuroinflammation, and functioning of neural ensembles given massive changes in signaling across the CNS. Omics methods (transcriptomics, translatomics, epigenomics, proteomics, metabolomics, and others) have expanded researchers' abilities to generate hypotheses and carry out mechanistic studies of glial cells during acquisition of drug taking, intoxication, withdrawal, and relapse to drug seeking. Here, we present a survey of how omics technological advances are revising our understanding of astrocytes, microglia, oligodendrocytes, and ependymal cells in addiction biology.
Collapse
Affiliation(s)
- David J Bergkamp
- Department of Pharmacology, University of Washington, Seattle, Washington, USA
- VISN 20 Mental Illness Research, Education and Clinical Center, VA Puget Sound Health Care System, Seattle, Washington, USA
| | - John F Neumaier
- Department of Pharmacology, University of Washington, Seattle, Washington, USA
- VISN 20 Mental Illness Research, Education and Clinical Center, VA Puget Sound Health Care System, Seattle, Washington, USA
- Department of Psychiatry & Behavioral Sciences, University of Washington, Seattle, Washington, USA
| |
Collapse
|
2
|
Van Horn S, Driscoll H, Toufexis DJ. Transcriptomic Dysregulation in Animal Models of Attention-Deficit Hyperactivity Disorder and Nicotine Dependence Suggests Shared Neural Mechanisms. Brain Behav 2025; 15:e70444. [PMID: 40135637 PMCID: PMC11938115 DOI: 10.1002/brb3.70444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 03/04/2025] [Accepted: 03/06/2025] [Indexed: 03/27/2025] Open
Abstract
INTRODUCTION Attention-deficit-hyperactivity disorder (ADHD) is highly heritable and increases the likelihood of nicotine dependence (ND). The self-medication hypothesis of nicotine use in ADHD proposes that ADHD patients seek nicotine for its ability to improve their symptoms, and they have less success quitting, possibly due to the worsening of ADHD symptoms in withdrawal. METHODS The present analysis compared transcriptomic data from the brains of rodent models of ADHD and those of ND, with a focus on striatal gene expression. Differential expression analysis, pathway enrichment analysis, and gene-network mapping identified signaling networks and candidate genes that may contribute to the high co-occurrence between ADHD and ND. RESULTS We identified novel differentially expressed genes (PRKAG2, MAPK1), and genes with known associations to either ADHD or ND (ANK3, CALD1, CHRNA4, CHRNA7, CMTM8, DLG4, DUSP6, GNG3, GNG11, GRIK5, GRINA2, GRM5, ICAM2, KCNJ6, PRKAB1, SNAP25, SYNPO, SYT1, VAMP2). In addition, synaptic transmission (hsa04728, R-HAS-112315, R-HSA-442755) and MAPK signaling pathways (hsa04010, hsa04014, hsa04015, R-HSA-5673001, R-HSA-5684996) were enriched in both ADHD and ND. CONCLUSION The signaling pathways implicated by this analysis mediate neurological mechanisms known to contribute to ND. The association of analogous differently expressed genes and common signaling pathways suggests an important causal relationship between ND and ADHD that may be clinically important.
Collapse
Affiliation(s)
- Sarah Van Horn
- Patrick Leahy Honors CollegeUniversity of VermontBurlingtonVermontUSA
| | - Heather Driscoll
- Vermont Biomedical Research NetworkBurlingtonVermontUSA
- Department of BiologyNorwich UniversityNorthfieldVermontUSA
| | - Donna J Toufexis
- Department of PsychologyUniversity of VermontBurlingtonVermontUSA
| |
Collapse
|
3
|
Sinclair P, Hakeem J, Kumar SG, Loser D, Dixit K, Leist M, Kraushaar U, Kabbani N. Proteomic responses in the human dopaminergic LUHMES cell line to imidacloprid and its metabolites imidacloprid-olefin and desnitro-imidacloprid. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 194:105473. [PMID: 37532312 DOI: 10.1016/j.pestbp.2023.105473] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/08/2023] [Accepted: 05/18/2023] [Indexed: 08/04/2023]
Abstract
Neonicotinoids (neonics) are amongst the most commonly used class of pesticides globally. In the United States, imidacloprid (IMI) is extensively used for agriculture and in other common applications such as house-hold pest control. Regular exposure to IMI, and several of its known metabolites including IMI-olefin and desnitro-imidacloprid (DN-IMI), has been shown to be harmful to many organisms including mammals, birds, and fish. Studies show that neonics bind human nicotinicacetylcholine receptors (nAChRs) and cause cellular toxicity. In the dopaminergic Lund human mesencephalic (LUHMES) cell line, IMI and other neonics (10-100 μM) have been recently shown to activate intracellular calcium signaling through nAChRs. Thus, we examined proteomic responses of LUHMES cells to a 48-h treatment with 50 μM IMI, IMI-olefin, or DN-IMI. Our findings show differential effects of these neonics on cellular protein expression. Bioinformatic analysis of significantly altered proteins indicates an effect of IMI, IMI-olefin, and DN-IMI on protein synthesis and ribosomal function. These findings suggest a role for protein synthesis and transcriptional regulation in neonic-mediated dopaminergic neurotoxicity.
Collapse
Affiliation(s)
| | - Julia Hakeem
- Interdisciplinary Program in Neuroscience, George Mason University
| | - Sreehari G Kumar
- Interdisciplinary Program in Neuroscience, George Mason University
| | - Dominik Loser
- NMI Natural and Medical Sciences Institute at the University of Tübingen, 72770, Reutlingen, Germany
| | - Kushan Dixit
- Interdisciplinary Program in Neuroscience, George Mason University
| | - Marcel Leist
- In Vitro Toxicology and Biomedicine, Department Inaugurated by the Doerenkamp-Zbinden Foundation, University of Konstanz, Universitaetsstr. 10, 78457 Constance, Germany
| | - Udo Kraushaar
- NMI Natural and Medical Sciences Institute at the University of Tübingen, 72770, Reutlingen, Germany
| | - Nadine Kabbani
- Interdisciplinary Program in Neuroscience, George Mason University; School of Systems Biology, George Mason University.
| |
Collapse
|
4
|
Wang Y, Hou X, Wei S, Yan J, Chen Z, Zhang M, Zhang Q, Lu Y, Zhang Q, Zheng T, Jia J, Dong B, Li Y, Zhang Y, Liang J, Li G. The roles of ubiquitin-proteasome system and regulator of G protein signaling 4 in behavioral sensitization induced by a single morphine exposure. Brain Behav 2023; 13:e2922. [PMID: 36793204 PMCID: PMC10013946 DOI: 10.1002/brb3.2922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/23/2022] [Accepted: 02/04/2023] [Indexed: 02/17/2023] Open
Abstract
AIMS Opioid addiction is a major public health issue, yet its underlying mechanism is still unknown. The aim of this study was to explore the roles of ubiquitin-proteasome system (UPS) and regulator of G protein signaling 4 (RGS4) in morphine-induced behavioral sensitization, a well-recognized animal model of opioid addiction. METHODS We explored the characteristics of RGS4 protein expression and polyubiquitination in the development of behavioral sensitization induced by a single morphine exposure in rats, and the effect of a selective proteasome inhibitor, lactacystin (LAC), on behavioral sensitization. RESULTS Polyubiquitination expression was increased in time-dependent and dose-related fashions during the development of behavioral sensitization, while RGS4 protein expression was not significantly changed during this phase. Stereotaxic administration of LAC into nucleus accumbens (NAc) core inhibited the establishment of behavioral sensitization. CONCLUSION UPS in NAc core is positively involved in behavioral sensitization induced by a single morphine exposure in rats. Polyubiquitination was observed during the development phase of behavioral sensitization, while RGS4 protein expression was not significantly changed, indicating that other members of RGS family might be substrate proteins in UPS-mediated behavioral sensitization.
Collapse
Affiliation(s)
- Yanting Wang
- Department of Pharmacy, National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Xingzi Hou
- State Key Laboratory of Natural and Biomimetic Drugs and Department of Natural Medicines, School of Pharmaceutical SciencesPeking University Health Science CenterBeijingChina
| | - Shoupeng Wei
- Laboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and AlcoholismNational Institutes of HealthBethesdaMarylandUSA
| | - Jiaqing Yan
- Department of Pharmacy, National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Zhe Chen
- Department of Pharmacy, National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Mingyu Zhang
- Department of Pharmacy, National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Qingying Zhang
- State Key Laboratory of Natural and Biomimetic Drugs and Department of Natural Medicines, School of Pharmaceutical SciencesPeking University Health Science CenterBeijingChina
| | - Yingyuan Lu
- State Key Laboratory of Natural and Biomimetic Drugs and Department of Natural Medicines, School of Pharmaceutical SciencesPeking University Health Science CenterBeijingChina
| | - Qingjie Zhang
- Department of Molecular and Cellular Pharmacology, School of Pharmaceutical SciencesPeking UniversityBeijingChina
| | - Tiange Zheng
- Department of Molecular and Cellular Pharmacology, School of Pharmaceutical SciencesPeking UniversityBeijingChina
| | - Jingyi Jia
- Department of Molecular and Cellular Pharmacology, School of Pharmaceutical SciencesPeking UniversityBeijingChina
| | - Bin Dong
- Department of Pharmacy, National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Ying Li
- Department of Pharmacy, National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Yuanyuan Zhang
- Department of Pharmacy, National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Jianhui Liang
- Department of Molecular and Cellular Pharmacology, School of Pharmaceutical SciencesPeking UniversityBeijingChina
| | - Guohui Li
- Department of Pharmacy, National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| |
Collapse
|
5
|
Chang XW, Sun Y, Muhai JN, Li YY, Chen Y, Lu L, Chang SH, Shi J. Common and distinguishing genetic factors for substance use behavior and disorder: an integrated analysis of genomic and transcriptomic studies from both human and animal studies. Addiction 2022; 117:2515-2529. [PMID: 35491750 DOI: 10.1111/add.15908] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 04/04/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND AND AIMS Genomic and transcriptomic findings greatly broaden the biological knowledge regarding substance use. However, systematic convergence and comparison evidence of genome-wide findings is lacking for substance use. Here, we combined all the genome-wide findings from both substance use behavior and disorder (SUBD) and identified common and distinguishing genetic factors for different SUBDs. METHODS Systemic literature search for genome-wide association (GWAS) and RNA-seq studies of alcohol/nicotine/drug use behavior (partially meets or not reported diagnostic criteria) and alcohol use behavior and disorder (AUBD), nicotine use behavior and disorder (NUBD) and drug use behavior and disorder (DUBD) was performed using PubMed and the GWAS catalog. Drug use was focused upon cannabis, opioid, cocaine and methamphetamine use. GWAS studies required case-control or case/cohort samples. RNA-seq studies were based on brain tissues. The genes which contained significant single nucleotide polymorphism (P ≤ 1 × 10-6 ) in GWAS and reported as significant in RNA-seq studies were extracted. Pathway enrichment was performed by using Metascape. Gene interaction networks were identified by using the Protein Interaction Network Analysis database. RESULTS Total SUBD-related 2910 genes were extracted from 75 GWAS studies (2 773 889 participants) and 17 RNA-seq studies. By overlapping the genes and pathways of AUBD, NUBD and DUBD, four shared genes (CACNB2, GRIN2B, PLXDC2 and PKNOX2), four shared pathways [two Gene Ontology (GO) terms of 'modulation of chemical synaptic transmission', 'regulation of trans-synaptic signaling', two Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways of 'dopaminergic synapse', 'cocaine addiction'] were identified (significantly higher than random, P < 1 × 10-5 ). The top shared KEGG pathways (Benjamini-Hochberg-corrected P-value < 0.05) in the pairwise comparison of AUBD versus DUBD, NUBD versus DUBD, AUBD versus NUBD were 'Epstein-Barr virus infection', 'protein processing in endoplasmic reticulum' and 'neuroactive ligand-receptor interaction', respectively. We also identified substance-specific genetic factors: i.e. ADH1B and ALDH2 were unique for AUBD, while CHRNA3 and CHRNA4 were unique for NUBD. CONCLUSIONS This systematic review identifies the shared and unique genes and pathways for alcohol, nicotine and drug use behaviors and disorders at the genome-wide level and highlights critical biological processes for the common and distinguishing vulnerability of substance use behaviors and disorders.
Collapse
Affiliation(s)
- Xiang-Wen Chang
- Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China.,National Institute on Drug Dependence, Peking University, Beijing, China
| | - Yan Sun
- Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China.,National Institute on Drug Dependence, Peking University, Beijing, China
| | - Jia-Na Muhai
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Yang-Yang Li
- Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China.,National Institute on Drug Dependence, Peking University, Beijing, China
| | - Yun Chen
- Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China.,National Institute on Drug Dependence, Peking University, Beijing, China
| | - Lin Lu
- National Institute on Drug Dependence, Peking University, Beijing, China.,Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Su-Hua Chang
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Jie Shi
- National Institute on Drug Dependence, Peking University, Beijing, China.,Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing, China.,The State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, China.,The Key Laboratory for Neuroscience of the Ministry of Education and Health, Peking University, Beijing, China
| |
Collapse
|
6
|
Ryu IS, Kim J, Yang JH, Seo SY, Sohn S, Kim S, Lee K, Seo JW, Choe ES. Exposure to Commercial Cigarette Smoke Produces Psychomotor Sensitization Via Hyperstimulation of Glutamate Response in the Dorsal Striatum. Brain Sci 2020; 11:brainsci11010014. [PMID: 33374316 PMCID: PMC7830476 DOI: 10.3390/brainsci11010014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/11/2020] [Accepted: 12/22/2020] [Indexed: 11/16/2022] Open
Abstract
Cigarette smoke is a highly complex mixture of nicotine and non-nicotine constituents. Exposure to cigarette smoke enhances tobacco dependence by potentiating glutamatergic neurotransmission via stimulation of nicotinic acetylcholine receptors (nAChRs). We investigated the effects of nicotine and non-nicotine alkaloids in the cigarette smoke condensates extracted from two commercial cigarette brands in South Korea (KCSC A and KCSC B) on psychomotor behaviors and glutamate levels in the dorsal striatum. Repeated and challenge administration of KCSCs (nicotine content: 0.4 mg/kg, subcutaneous) increased psychomotor behaviors (ambulatory, rearing, and rotational activities) and time spent in psychoactive behavioral states compared to exposure to nicotine (0.4 mg/kg) alone. The increase in psychomotor behaviors lasted longer when exposed to repeated and challenge administration of KCSCs compared to nicotine alone. In parallel with sustained increase in psychomotor behaviors, repeated administration of KCSCs also caused long-lasting glutamate release in the dorsal striatum compared to nicotine alone. KCSC-induced changes in psychomotor behaviors and glutamate levels in the dorsal striatum were found to be strongly correlated. These findings suggest that non-nicotine alkaloids in commercial cigarette smoke synergistically act with nicotine on nAChRs, thereby upregulating glutamatergic response in the dorsal striatum, which contributes to the hypersensitization of psychomotor behaviors.
Collapse
Affiliation(s)
- In Soo Ryu
- Department of Biological Sciences, Pusan National University, 63-2 Busandaehak-ro, Geumjeong-gu, Busan 46241, Korea; (J.K.); (J.H.Y.); (S.Y.S.); (S.S.); (S.K.)
- Research Center for Convergence Toxicology, Korea Institute of Toxicology, 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, Korea;
- Correspondence: (I.S.R.); (E.S.C.); Tel.: +82-42-610-8293 (I.S.R.); +82-51-510-2272 (E.S.C.)
| | - Jieun Kim
- Department of Biological Sciences, Pusan National University, 63-2 Busandaehak-ro, Geumjeong-gu, Busan 46241, Korea; (J.K.); (J.H.Y.); (S.Y.S.); (S.S.); (S.K.)
| | - Ju Hwan Yang
- Department of Biological Sciences, Pusan National University, 63-2 Busandaehak-ro, Geumjeong-gu, Busan 46241, Korea; (J.K.); (J.H.Y.); (S.Y.S.); (S.S.); (S.K.)
| | - Su Yeon Seo
- Department of Biological Sciences, Pusan National University, 63-2 Busandaehak-ro, Geumjeong-gu, Busan 46241, Korea; (J.K.); (J.H.Y.); (S.Y.S.); (S.S.); (S.K.)
- Korean Medicine Fundamental Research Division, Korea Institute of Oriental Medicine, 1672 Yuseong-daero, Yuseong-gu, Daejeon 34054, Korea
| | - Sumin Sohn
- Department of Biological Sciences, Pusan National University, 63-2 Busandaehak-ro, Geumjeong-gu, Busan 46241, Korea; (J.K.); (J.H.Y.); (S.Y.S.); (S.S.); (S.K.)
| | - Sunghyun Kim
- Department of Biological Sciences, Pusan National University, 63-2 Busandaehak-ro, Geumjeong-gu, Busan 46241, Korea; (J.K.); (J.H.Y.); (S.Y.S.); (S.S.); (S.K.)
| | - Kyuhong Lee
- Inhalation Toxicology Research Center, Korea Institute of Toxicology, 30 Baekhak 1-gil, Jeongeup 56212, Korea;
| | - Joung-Wook Seo
- Research Center for Convergence Toxicology, Korea Institute of Toxicology, 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, Korea;
| | - Eun Sang Choe
- Department of Biological Sciences, Pusan National University, 63-2 Busandaehak-ro, Geumjeong-gu, Busan 46241, Korea; (J.K.); (J.H.Y.); (S.Y.S.); (S.S.); (S.K.)
- Correspondence: (I.S.R.); (E.S.C.); Tel.: +82-42-610-8293 (I.S.R.); +82-51-510-2272 (E.S.C.)
| |
Collapse
|
7
|
Abstract
Motor control in the striatum is an orchestra played by various neuronal populations. Loss of harmony due to dopamine deficiency is considered the primary pathological cause of the symptoms of Parkinson’s disease (PD). Recent progress in experimental approaches has enabled us to examine the striatal circuitry in a much more comprehensive manner, not only reshaping our understanding of striatal functions in movement regulation but also leading to new opportunities for the development of therapeutic strategies for treating PD. In addition to dopaminergic innervation, giant aspiny cholinergic interneurons (ChIs) within the striatum have long been recognized as a critical node for balancing dopamine signaling and regulating movement. With the roles of ChIs in motor control further uncovered and more specific manipulations available, striatal ChIs and their corresponding receptors are emerging as new promising therapeutic targets for PD. This review summarizes recent progress in functional studies of striatal circuitry and discusses the translational implications of these new findings for the treatment of PD.
Collapse
|
8
|
Yang J, Long Y, Xu DM, Zhu BL, Deng XJ, Yan Z, Sun F, Chen GJ. Age- and Nicotine-Associated Gene Expression Changes in the Hippocampus of APP/PS1 Mice. J Mol Neurosci 2019; 69:608-622. [PMID: 31399937 DOI: 10.1007/s12031-019-01389-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 07/18/2019] [Indexed: 12/17/2022]
Abstract
The etiology of Alzheimer's disease (AD) has been intensively studied. However, little is known about the molecular alterations in early-stage and late-stage AD. Hence, we performed RNA sequencing and assessed differentially expressed genes (DEGs) in the hippocampus of 18-month and 7-month-old APP/PS1 mice. Moreover, the DEGs induced by treatment with nicotine, the nicotinic acetylcholine receptor agonist that is known to improve cognition in AD, were also analyzed in old and young APP/PS1 mice. When comparing old APP/PS1 mice with their younger littermates, we found an upregulation in genes associated with calcium overload, immune response, cancer, and synaptic function; the transcripts of 14 calcium ion channel subtypes were significantly increased in aged mice. In contrast, the downregulated genes in aged mice were associated with ribosomal components, mitochondrial respiratory chain complex, and metabolism. Through comparison with DEGs in normal aging from previous reports, we found that changes in calcium channel genes remained one of the prominent features in aged APP/PS1 mice. Nicotine treatment also induced changes in gene expression. Indeed, nicotine augmented glycerolipid metabolism, but inhibited PI3K and MAPK signaling in young mice. In contrast, nicotine affected genes associated with cell senescence and death in old mice. Our study suggests a potential network connection between calcium overload and cellular signaling, in which additional nicotinic activation might not be beneficial in late-stage AD.
Collapse
Affiliation(s)
- Jie Yang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, 1 Youyi Road, Chongqing, 400016, China
| | - Yan Long
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, 1 Youyi Road, Chongqing, 400016, China
| | - De-Mei Xu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, 1 Youyi Road, Chongqing, 400016, China
| | - Bing-Lin Zhu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, 1 Youyi Road, Chongqing, 400016, China
| | - Xiao-Juan Deng
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, 1 Youyi Road, Chongqing, 400016, China
| | - Zhen Yan
- Department of Physiology and Biophysics, State University of New York at Buffalo, Buffalo, NY, 14214, USA
| | - Fei Sun
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Guo-Jun Chen
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, 1 Youyi Road, Chongqing, 400016, China.
| |
Collapse
|
9
|
Bono F, Mutti V, Savoia P, Barbon A, Bellucci A, Missale C, Fiorentini C. Nicotine prevents alpha-synuclein accumulation in mouse and human iPSC-derived dopaminergic neurons through activation of the dopamine D3- acetylcholine nicotinic receptor heteromer. Neurobiol Dis 2019; 129:1-12. [PMID: 31051233 DOI: 10.1016/j.nbd.2019.04.017] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 04/05/2019] [Accepted: 04/29/2019] [Indexed: 12/25/2022] Open
Abstract
We recently found that in mouse dopaminergic neurons, the heteromer formed by the dopamine D3 receptor (D3R) and the β2 subunit of acetylcholine nicotinic receptor (nAChR) exerts neurotrophic effects when activated by nicotine, leading to neurons with enlarged cell bodies and increased dendrite arborization. Beside this action, we now show that nicotine, by activating the D3R-nAChR heteromer, protects dopaminergic neurons against neuronal injury. In primary cultures of mouse dopaminergic neurons, in fact, the ability of nicotine to inhibit both the pathological accumulation of alpha-synuclein induced by glucose deprivation and the consequent morphological defects were strongly prevented by disrupting the D3R-nAChR heteromer with specific interfering TAT-peptides; the relevance of the phosphoinositide 3-kinase (PI3K) intracellular signaling in mediating nicotine prevention of alpha-synuclein aggregation has been also demonstrated. Moreover, the ability of nicotine in restoring the ubiquitin-proteasome system has been found as a mechanism contributing to the neuroprotective properties of nicotine. By using the proximity ligation assay, we have shown that the D3R-nAChR heteromer is also expressed in human dopaminergic neurons derived from induced pluripotent stem cells. In this human cell model, nicotine exerts neuroprotective effects specifically acting through the D3R-nAChR complex thus indicating that this heteromer is a relevant molecular effector involved in the protection of human dopaminergic neurons.
Collapse
Affiliation(s)
- Federica Bono
- Unit of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; Laboratory of Personalized and Preventive Medicine, University of Brescia, 25123 Brescia, Italy
| | - Veronica Mutti
- Unit of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Paola Savoia
- Unit of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Alessandro Barbon
- Unit of Biology and Genetic, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Arianna Bellucci
- Unit of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; Laboratory of Personalized and Preventive Medicine, University of Brescia, 25123 Brescia, Italy
| | - Cristina Missale
- Unit of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Chiara Fiorentini
- Unit of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy.
| |
Collapse
|
10
|
Nicotine promotes neuron survival and partially protects from Parkinson's disease by suppressing SIRT6. Acta Neuropathol Commun 2018; 6:120. [PMID: 30409187 PMCID: PMC6223043 DOI: 10.1186/s40478-018-0625-y] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 10/28/2018] [Indexed: 12/27/2022] Open
Abstract
Parkinson’s disease is characterized by progressive death of dopaminergic neurons, leading to motor and cognitive dysfunction. Epidemiological studies consistently show that the use of tobacco reduces the risk of Parkinson’s. We report that nicotine reduces the abundance of SIRT6 in neuronal culture and brain tissue. We find that reduction of SIRT6 is partly responsible for neuroprotection afforded by nicotine. Additionally, SIRT6 abundance is greater in Parkinson’s patient brains, and decreased in the brains of tobacco users. We also identify SNPs that promote SIRT6 expression and simultaneously associate with an increased risk of Parkinson’s. Furthermore, brain-specific SIRT6 knockout mice are protected from MPTP-induced Parkinson’s, while SIRT6 overexpressing mice develop more severe pathology. Our data suggest that SIRT6 plays a pathogenic and pro-inflammatory role in Parkinson’s and that nicotine can provide neuroprotection by accelerating its degradation. Inhibition of SIRT6 may be a promising strategy to ameliorate Parkinson’s and neurodegeneration.
Collapse
|
11
|
De Sa Nogueira D, Merienne K, Befort K. Neuroepigenetics and addictive behaviors: Where do we stand? Neurosci Biobehav Rev 2018; 106:58-72. [PMID: 30205119 DOI: 10.1016/j.neubiorev.2018.08.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 07/28/2018] [Accepted: 08/29/2018] [Indexed: 12/21/2022]
Abstract
Substance use disorders involve long-term changes in the brain that lead to compulsive drug seeking, craving, and a high probability of relapse. Recent findings have highlighted the role of epigenetic regulations in controlling chromatin access and regulation of gene expression following exposure to drugs of abuse. In the present review, we focus on data investigating genome-wide epigenetic modifications in the brain of addicted patients or in rodent models exposed to drugs of abuse, with a particular focus on DNA methylation and histone modifications associated with transcriptional studies. We highlight critical factors for epigenomic studies in addiction. We discuss new findings related to psychostimulants, alcohol, opiate, nicotine and cannabinoids. We examine the possible transmission of these changes across generations. We highlight developing tools, specifically those that allow investigation of structural reorganization of the chromatin. These have the potential to increase our understanding of alteration of chromatin architecture at gene regulatory regions. Neuroepigenetic mechanisms involved in addictive behaviors could explain persistent phenotypic effects of drugs and, in particular, vulnerability to relapse.
Collapse
Affiliation(s)
- David De Sa Nogueira
- Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), UMR 7364, CNRS, Université de Strasbourg, Team 3 « Abuse of Drugs and Neuroadaptations », Faculté de Psychologie, 12 rue Goethe, F-67000, France
| | - Karine Merienne
- Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), UMR 7364, CNRS, Université de Strasbourg, Team 1 « Dynamics of Memory and Epigenetics », Faculté de Psychologie, 12 rue Goethe, F-67000, France
| | - Katia Befort
- Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), UMR 7364, CNRS, Université de Strasbourg, Team 3 « Abuse of Drugs and Neuroadaptations », Faculté de Psychologie, 12 rue Goethe, F-67000, France.
| |
Collapse
|
12
|
Conti MM, Chambers N, Bishop C. A new outlook on cholinergic interneurons in Parkinson's disease and L-DOPA-induced dyskinesia. Neurosci Biobehav Rev 2018; 92:67-82. [PMID: 29782883 DOI: 10.1016/j.neubiorev.2018.05.021] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 01/05/2018] [Accepted: 05/16/2018] [Indexed: 02/07/2023]
Abstract
Traditionally, dopamine (DA) and acetylcholine (ACh) striatal systems were considered antagonistic and imbalances or aberrant signaling between these neurotransmitter systems could be detrimental to basal ganglia activity and pursuant motor function, such as in Parkinson's disease (PD) and L-DOPA-induced dyskinesia (LID). Herein, we discuss the involvement of cholinergic interneurons (ChIs) in striatally-mediated movement in a healthy, parkinsonian, and dyskinetic state. ChIs integrate numerous neurotransmitter signals using intrinsic glutamate, serotonin, and DA receptors and convey the appropriate transmission onto nearby muscarinic and nicotinic ACh receptors to produce movement. In PD, severe DA depletion causes abnormal rises in ChI activity which promote striatal signaling to attenuate normal movement. When treating PD with L-DOPA, hyperkinetic side effects, or LID, develop due to increased striatal DA; however, the role of ChIs and ACh transmission, until recently has been unclear. Fortunately, new technology and pharmacological agents have facilitated understanding of ChI function and ACh signaling in the context of LID, thus offering new opportunities to modify existing and discover future therapeutic strategies in movement disorders.
Collapse
Affiliation(s)
- Melissa M Conti
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University, 4400 Vestal Parkway East, Binghamton, NY 13902-6000, USA.
| | - Nicole Chambers
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University, 4400 Vestal Parkway East, Binghamton, NY 13902-6000, USA.
| | - Christopher Bishop
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University, 4400 Vestal Parkway East, Binghamton, NY 13902-6000, USA.
| |
Collapse
|
13
|
Ryu IS, Kim J, Seo SY, Yang JH, Oh JH, Lee DK, Cho HW, Lee K, Yoon SS, Seo JW, Shim I, Choe ES. Repeated Administration of Cigarette Smoke Condensate Increases Glutamate Levels and Behavioral Sensitization. Front Behav Neurosci 2018; 12:47. [PMID: 29615877 PMCID: PMC5864865 DOI: 10.3389/fnbeh.2018.00047] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 02/28/2018] [Indexed: 01/09/2023] Open
Abstract
Nicotine, a nicotinic acetylcholine receptor agonist, produces the reinforcing effects of tobacco dependence by potentiating dopaminergic and glutamatergic neurotransmission. Non-nicotine alkaloids in tobacco also contribute to dependence by activating the cholinergic system. However, glutamatergic neurotransmission in the dorsal striatum associated with behavioral changes in response to cigarette smoking has not been investigated. In this study, the authors investigated alterations in glutamate levels in the rat dorsal striatum related to behavioral alterations after repeated administration of cigarette smoke condensate (CSC) using the real-time glutamate biosensing and an open-field behavioral assessment. Repeated administration of CSC including 0.4 mg nicotine (1.0 mL/kg/day, subcutaneous) for 14 days significantly increased extracellular glutamate concentrations more than repeated nicotine administration. In parallel with the hyperactivation of glutamate levels, repeated administration of CSC-evoked prolonged hypersensitization of psychomotor activity, including locomotor and rearing activities. These findings suggest that the CSC-induced psychomotor activities are closely associated with the elevation of glutamate concentrations in the rat dorsal striatum.
Collapse
Affiliation(s)
- In Soo Ryu
- Department of Biological Sciences, Pusan National University, Busan, South Korea.,Research Center for Safety Pharmacology, Korea Institute of Toxicology, Daejeon, South Korea
| | - Jieun Kim
- Department of Biological Sciences, Pusan National University, Busan, South Korea
| | - Su Yeon Seo
- Department of Biological Sciences, Pusan National University, Busan, South Korea.,Fundamental Research Division, Korea Institute of Oriental Medicine, Daejeon, South Korea
| | - Ju Hwan Yang
- Department of Biological Sciences, Pusan National University, Busan, South Korea
| | - Jeong Hwan Oh
- College of Fisheries Sciences, National Institute of Fisheries (NIFS), Busan, South Korea
| | - Dong Kun Lee
- Department of Physiology, Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju, South Korea
| | - Hyun-Wook Cho
- Department of Biology, Sunchon National University, Sunchon, South Korea
| | - Kyuhong Lee
- Inhalation Toxicology Research Center, Korea Institute of Toxicology, Jeongeup, South Korea
| | - Seong Shoon Yoon
- Research Center for Safety Pharmacology, Korea Institute of Toxicology, Daejeon, South Korea
| | - Joung-Wook Seo
- Research Center for Safety Pharmacology, Korea Institute of Toxicology, Daejeon, South Korea
| | - Insop Shim
- Department of Science in Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Eun Sang Choe
- Department of Biological Sciences, Pusan National University, Busan, South Korea
| |
Collapse
|
14
|
Deletion of lynx1 reduces the function of α6* nicotinic receptors. PLoS One 2017; 12:e0188715. [PMID: 29206881 PMCID: PMC5716591 DOI: 10.1371/journal.pone.0188715] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 11/13/2017] [Indexed: 11/19/2022] Open
Abstract
The α6 nicotinic acetylcholine receptor (nAChR) subunit is an attractive drug target for treating nicotine addiction because it is present at limited sites in the brain including the reward pathway. Lynx1 modulates several nAChR subtypes; lynx1-nAChR interaction sites could possibly provide drug targets. We found that dopaminergic cells from the substantia nigra pars compacta (SNc) express lynx1 mRNA transcripts and, as assessed by co-immunoprecipitation, α6 receptors form stable complexes with lynx1 protein, although co-transfection with lynx1 did not affect nicotine-induced currents from cell lines transfected with α6 and β2. To test whether lynx1 is important for the function of α6 nAChRs in vivo, we bred transgenic mice carrying a hypersensitive mutation in the α6 nAChR subunit (α6L9′S) with lynx1 knockout mice, providing a selective probe of the effects of lynx1 on α6* nAChRs. Lynx1 removal reduced the α6 component of nicotine-mediated rubidium efflux and dopamine (DA) release from synaptosomal preparations with no effect on numbers of α6β2 binding sites, indicating that lynx1 is functionally important for α6* nAChR activity. No effects of lynx1 removal were detected on nicotine-induced currents in slices from SNc, suggesting that lynx1 affects presynaptic α6* nAChR function more than somatic function. In the absence of agonist, lynx1 removal did not alter DA release in dorsal striatum as measured by fast scan cyclic voltammetry. Lynx1 removal affected some behaviors, including a novel-environment assay and nicotine-stimulated locomotion. Trends in 24-hour home-cage behavior were also suggestive of an effect of lynx1 removal. Conditioned place preference for nicotine was not affected by lynx1 removal. The results show that some functional and behavioral aspects of α6-nAChRs are modulated by lynx1.
Collapse
|
15
|
Behavioral changes after nicotine challenge are associated with α7 nicotinic acetylcholine receptor-stimulated glutamate release in the rat dorsal striatum. Sci Rep 2017; 7:15009. [PMID: 29118361 PMCID: PMC5678080 DOI: 10.1038/s41598-017-15161-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 10/23/2017] [Indexed: 01/28/2023] Open
Abstract
Neurochemical alterations associated with behavioral responses induced by re-exposure to nicotine have not been sufficiently characterized in the dorsal striatum. Herein, we report on changes in glutamate concentrations in the rat dorsal striatum associated with behavioral alterations after nicotine challenge. Nicotine challenge (0.4 mg/kg/day, subcutaneous) significantly increased extracellular glutamate concentrations up to the level observed with repeated nicotine administration. This increase occurred in parallel with an increase in behavioral changes in locomotor and rearing activities. In contrast, acute nicotine administration and nicotine withdrawal on days 1 and 6 did not alter glutamate levels or behavioral changes. Blockade of α7 nicotinic acetylcholine receptors (nAChRs) significantly decreased the nicotine challenge-induced increases in extracellular glutamate concentrations and locomotor and rearing activities. These findings suggest that behavioral changes in locomotor and rearing activities after re-exposure to nicotine are closely associated with hyperactivation of the glutamate response by stimulating α7 nAChRs in the rat dorsal striatum.
Collapse
|
16
|
Yang J, Liu AY, Tang B, Luo D, Lai YJ, Zhu BL, Wang XF, Yan Z, Chen GJ. Chronic nicotine differentially affects murine transcriptome profiling in isolated cortical interneurons and pyramidal neurons. BMC Genomics 2017; 18:194. [PMID: 28219337 PMCID: PMC5319194 DOI: 10.1186/s12864-017-3593-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Accepted: 02/14/2017] [Indexed: 12/18/2022] Open
Abstract
Background Nicotine is known to differentially regulate cortical interneuron and pyramidal neuron activities in the neocortex, while the underlying molecular mechanisms have not been well studied. In this study, RNA-sequencing was performed in acutely isolated cortical somatostatin (Sst)- positive interneurons and pyramidal neurons (Thy1) from mice treated with systemic nicotine for 14 days. We assessed the differentially expressed genes (DEGs) by nicotine in Sst- or Thy1- neurons, respectively, and then compared DEGs between Sst- and Thy1- neurons in the absence and presence of nicotine. Results In Sst-neurons, the DEGs by nicotine were associated with glycerophospholipid and nicotinate and nicotinamide metabolism; while in Thy1-neurons those related to immune response and purine and pyrimidine metabolisms were affected. Under basal condition, the DEGs between Sst- and Thy1- neurons were frequently associated with signal transduction, phosphorylation and potassium channel regulation. However, some new DEGs between Sst- and Thy1- neurons were found after nicotine, the majority of which belong to mitochondrial respiratory chain complex. Conclusions Nicotine differentially affected subset of genes in Sst- and Thy1- neurons, which might contribute to the distinct effect of nicotine on interneuron and pyramidal neuron activities. Meanwhile, the altered transcripts associated with mitochondrial activity were found between interneurons and pyramidal neurons after chronic nicotine. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3593-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jie Yang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, 1 Youyi Road, Chongqing, 400016, China
| | - Ai-Yi Liu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, 1 Youyi Road, Chongqing, 400016, China
| | - Bo Tang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, 1 Youyi Road, Chongqing, 400016, China
| | - Dong Luo
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, 1 Youyi Road, Chongqing, 400016, China
| | - Yu-Jie Lai
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, 1 Youyi Road, Chongqing, 400016, China
| | - Bing-Lin Zhu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, 1 Youyi Road, Chongqing, 400016, China
| | - Xue-Feng Wang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, 1 Youyi Road, Chongqing, 400016, China
| | - Zhen Yan
- Department of Physiology and Biophysics, State University of New York at Buffalo, Buffalo, NY, 14214, USA
| | - Guo-Jun Chen
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, 1 Youyi Road, Chongqing, 400016, China.
| |
Collapse
|
17
|
Henley BM, Cohen BN, Kim CH, Gold HD, Srinivasan R, McKinney S, Deshpande P, Lester HA. Reliable Identification of Living Dopaminergic Neurons in Midbrain Cultures Using RNA Sequencing and TH-promoter-driven eGFP Expression. J Vis Exp 2017. [PMID: 28287593 DOI: 10.3791/54981] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
In Parkinson's Disease (PD) there is widespread neuronal loss throughout the brain with pronounced degeneration of dopaminergic neurons in the SNc, leading to bradykinesia, rigidity, and tremor. The identification of living dopaminergic neurons in primary Ventral Mesencephalic (VM) cultures using a fluorescent marker provides an alternative way to study the selective vulnerability of these neurons without relying on the immunostaining of fixed cells. Here, we isolate, dissociate, and culture mouse VM neurons for 3 weeks. We then identify dopaminergic neurons in the cultures using eGFP fluorescence (driven by a Tyrosine Hydroxylase (TH) promoter). Individual neurons are harvested into microcentrifuge tubes using glass micropipettes. Next, we lyse the harvested cells, and conduct cDNA synthesis and transposon-mediated "tagmentation" to produce single cell RNA-Seq libraries1,2,3,4,5. After passing a quality-control check, single-cell libraries are sequenced and subsequent analysis is carried out to measure gene expression. We report transcriptome results for individual dopaminergic and GABAergic neurons isolated from midbrain cultures. We report that 100% of the live TH-eGFP cells that were harvested and sequenced were dopaminergic neurons. These techniques will have widespread applications in neuroscience and molecular biology.
Collapse
Affiliation(s)
- Beverley M Henley
- Division of Biology and Biological Engineering, California Institute of Technology (Caltech);
| | - Bruce N Cohen
- Division of Biology and Biological Engineering, California Institute of Technology (Caltech)
| | - Charlene H Kim
- Division of Biology and Biological Engineering, California Institute of Technology (Caltech)
| | - Heather D Gold
- Division of Biology and Biological Engineering, California Institute of Technology (Caltech)
| | - Rahul Srinivasan
- Division of Biology and Biological Engineering, California Institute of Technology (Caltech)
| | - Sheri McKinney
- Division of Biology and Biological Engineering, California Institute of Technology (Caltech)
| | - Purnima Deshpande
- Division of Biology and Biological Engineering, California Institute of Technology (Caltech)
| | - Henry A Lester
- Division of Biology and Biological Engineering, California Institute of Technology (Caltech)
| |
Collapse
|
18
|
Fish RN, Bostick M, Lehman A, Farmer A. Transcriptome Analysis at the Single-Cell Level Using SMART Technology. ACTA ACUST UNITED AC 2016; 116:4.26.1-4.26.24. [PMID: 27723086 DOI: 10.1002/cpmb.23] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
RNA sequencing (RNA-seq) is a powerful method for analyzing cell state, with minimal bias, and has broad applications within the biological sciences. However, transcriptome analysis of seemingly homogenous cell populations may in fact overlook significant heterogeneity that can be uncovered at the single-cell level. The ultra-low amount of RNA contained in a single cell requires extraordinarily sensitive and reproducible transcriptome analysis methods. As next-generation sequencing (NGS) technologies mature, transcriptome profiling by RNA-seq is increasingly being used to decipher the molecular signature of individual cells. This unit describes an ultra-sensitive and reproducible protocol to generate cDNA and sequencing libraries directly from single cells or RNA inputs ranging from 10 pg to 10 ng. Important considerations for working with minute RNA inputs are given. © 2016 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Rachel N Fish
- Takara Bio USA, Inc. (formerly Clontech Laboratories, Inc.), Mountain View, California
| | - Magnolia Bostick
- Takara Bio USA, Inc. (formerly Clontech Laboratories, Inc.), Mountain View, California
| | - Alisa Lehman
- Takara Bio USA, Inc. (formerly Clontech Laboratories, Inc.), Mountain View, California.,Current affiliation: 23andMe, Mountain View, California
| | - Andrew Farmer
- Takara Bio USA, Inc. (formerly Clontech Laboratories, Inc.), Mountain View, California
| |
Collapse
|
19
|
Kim J, Henley BM, Kim CH, Lester HA, Yang C. Incubator embedded cell culture imaging system (EmSight) based on Fourier ptychographic microscopy. BIOMEDICAL OPTICS EXPRESS 2016; 7:3097-110. [PMID: 27570701 PMCID: PMC4986817 DOI: 10.1364/boe.7.003097] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Revised: 07/07/2016] [Accepted: 07/17/2016] [Indexed: 05/20/2023]
Abstract
Multi-day tracking of cells in culture systems can provide valuable information in bioscience experiments. We report the development of a cell culture imaging system, named EmSight, which incorporates multiple compact Fourier ptychographic microscopes with a standard multiwell imaging plate. The system is housed in an incubator and presently incorporates six microscopes. By using the same low magnification objective lenses as the objective and the tube lens, the EmSight is configured as a 1:1 imaging system that, providing large field-of-view (FOV) imaging onto a low-cost CMOS imaging sensor. The EmSight improves the image resolution by capturing a series of images of the sample at varying illumination angles; the instrument reconstructs a higher-resolution image by using the iterative Fourier ptychographic algorithm. In addition to providing high-resolution brightfield and phase imaging, the EmSight is also capable of fluorescence imaging at the native resolution of the objectives. We characterized the system using a phase Siemens star target, and show four-fold improved coherent resolution (synthetic NA of 0.42) and a depth of field of 0.2 mm. To conduct live, long-term dopaminergic neuron imaging, we cultured ventral midbrain from mice driving eGFP from the tyrosine hydroxylase promoter. The EmSight system tracks movements of dopaminergic neurons over a 21 day period.
Collapse
Affiliation(s)
- Jinho Kim
- Department of Electrical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Beverley M. Henley
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Charlene H. Kim
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Henry A. Lester
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Changhuei Yang
- Department of Electrical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| |
Collapse
|
20
|
Menthol Alone Upregulates Midbrain nAChRs, Alters nAChR Subtype Stoichiometry, Alters Dopamine Neuron Firing Frequency, and Prevents Nicotine Reward. J Neurosci 2016; 36:2957-74. [PMID: 26961950 DOI: 10.1523/jneurosci.4194-15.2016] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Upregulation of β2 subunit-containing (β2*) nicotinic acetylcholine receptors (nAChRs) is implicated in several aspects of nicotine addiction, and menthol cigarette smokers tend to upregulate β2* nAChRs more than nonmenthol cigarette smokers. We investigated the effect of long-term menthol alone on midbrain neurons containing nAChRs. In midbrain dopaminergic (DA) neurons from mice containing fluorescent nAChR subunits, menthol alone increased the number of α4 and α6 nAChR subunits, but this upregulation did not occur in midbrain GABAergic neurons. Thus, chronic menthol produces a cell-type-selective upregulation of α4* nAChRs, complementing that of chronic nicotine alone, which upregulates α4 subunit-containing (α4*) nAChRs in GABAergic but not DA neurons. In mouse brain slices and cultured midbrain neurons, menthol reduced DA neuron firing frequency and altered DA neuron excitability following nAChR activation. Furthermore, menthol exposure before nicotine abolished nicotine reward-related behavior in mice. In neuroblastoma cells transfected with fluorescent nAChR subunits, exposure to 500 nm menthol alone also increased nAChR number and favored the formation of (α4)3(β2)2 nAChRs; this contrasts with the action of nicotine itself, which favors (α4)2(β2)3 nAChRs. Menthol alone also increases the number of α6β2 receptors that exclude the β3 subunit. Thus, menthol stabilizes lower-sensitivity α4* and α6 subunit-containing nAChRs, possibly by acting as a chemical chaperone. The abolition of nicotine reward-related behavior may be mediated through menthol's ability to stabilize lower-sensitivity nAChRs and alter DA neuron excitability. We conclude that menthol is more than a tobacco flavorant: administered alone chronically, it alters midbrain DA neurons of the nicotine reward-related pathway.
Collapse
|
21
|
Yu P, Lin W. Single-cell Transcriptome Study as Big Data. GENOMICS PROTEOMICS & BIOINFORMATICS 2016; 14:21-30. [PMID: 26876720 PMCID: PMC4792842 DOI: 10.1016/j.gpb.2016.01.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 01/09/2016] [Accepted: 01/10/2016] [Indexed: 12/31/2022]
Abstract
The rapid growth of single-cell RNA-seq studies (scRNA-seq) demands efficient data storage, processing, and analysis. Big-data technology provides a framework that facilitates the comprehensive discovery of biological signals from inter-institutional scRNA-seq datasets. The strategies to solve the stochastic and heterogeneous single-cell transcriptome signal are discussed in this article. After extensively reviewing the available big-data applications of next-generation sequencing (NGS)-based studies, we propose a workflow that accounts for the unique characteristics of scRNA-seq data and primary objectives of single-cell studies.
Collapse
Affiliation(s)
- Pingjian Yu
- Genomics and Bioinformatics Lab, Baylor Institute for Immunology Research, Dallas, TX 75204, USA
| | - Wei Lin
- Genomics and Bioinformatics Lab, Baylor Institute for Immunology Research, Dallas, TX 75204, USA.
| |
Collapse
|
22
|
Srinivasan R, Henley BM, Henderson BJ, Indersmitten T, Cohen BN, Kim CH, McKinney S, Deshpande P, Xiao C, Lester HA. Smoking-Relevant Nicotine Concentration Attenuates the Unfolded Protein Response in Dopaminergic Neurons. J Neurosci 2016; 36:65-79. [PMID: 26740650 PMCID: PMC4701966 DOI: 10.1523/jneurosci.2126-15.2016] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 11/09/2015] [Accepted: 11/13/2015] [Indexed: 01/01/2023] Open
Abstract
Retrospective epidemiological studies show an inverse correlation between susceptibility to Parkinson's disease and a person's history of tobacco use. Animal model studies suggest nicotine as a neuroprotective agent and nicotinic acetylcholine (ACh) receptors (nAChRs) as targets for neuroprotection, but the underlying neuroprotective mechanism(s) are unknown. We cultured mouse ventral midbrain neurons for 3 weeks. Ten to 20% of neurons were dopaminergic (DA), revealed by tyrosine hydroxylase (TH) immunoreactivity. We evoked mild endoplasmic reticulum (ER) stress with tunicamycin (Tu), producing modest increases in the level of nuclear ATF6, phosphorylated eukaryotic initiation factor 2α, nuclear XBP1, and the downstream proapoptotic effector nuclear C/EBP homologous protein. We incubated cultures for 2 weeks with 200 nm nicotine, the approximate steady-state concentration between cigarette smoking or vaping, or during nicotine patch use. Nicotine incubation suppressed Tu-induced ER stress and the unfolded protein response (UPR). Study of mice with fluorescent nAChR subunits showed that the cultured TH+ neurons displayed α4, α6, and β3 nAChR subunit expression and ACh-evoked currents. Gene expression profile in cultures from TH-eGFP mice showed that the TH+ neurons also express several other genes associated with DA release. Nicotine also upregulated ACh-induced currents in DA neurons by ∼2.5-fold. Thus, nicotine, at a concentration too low to activate an appreciable fraction of plasma membrane nAChRs, induces two sequelae of pharmacological chaperoning in the ER: UPR suppression and nAChR upregulation. Therefore, one mechanism of neuroprotection by nicotine is pharmacological chaperoning, leading to UPR suppression. Measuring this pathway may help in assessing neuroprotection. SIGNIFICANCE STATEMENT Parkinson's disease (PD) cannot yet be cured or prevented. However, many retrospective epidemiological studies reveal that PD is diagnosed less frequently in tobacco users. Existing programs attempting to develop nicotinic drugs that might exert this apparent neuroprotective effect are asking whether agonists, antagonists, partial agonists, or channel blockers show the most promise. The underlying logic resembles the previous development of varenicline for smoking cessation. We studied whether, and how, nicotine produces neuroprotective effects in cultured dopaminergic neurons, an experimentally tractable, mechanistically revealing neuronal system. We show that nicotine, operating via nicotinic receptors, does protect these neurons against endoplasmic reticulum stress. However, the mechanism is probably "inside-out": pharmacological chaperoning in the endoplasmic reticulum. This cellular-level insight could help to guide neuroprotective strategies.
Collapse
Affiliation(s)
- Rahul Srinivasan
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125
| | - Beverley M Henley
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125
| | - Brandon J Henderson
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125
| | - Tim Indersmitten
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125
| | - Bruce N Cohen
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125
| | - Charlene H Kim
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125
| | - Sheri McKinney
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125
| | - Purnima Deshpande
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125
| | - Cheng Xiao
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125
| | - Henry A Lester
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125
| |
Collapse
|
23
|
Webb A, Papp AC, Curtis A, Newman LC, Pietrzak M, Seweryn M, Handelman SK, Rempala GA, Wang D, Graziosa E, Tyndale RF, Lerman C, Kelsoe JR, Mash DC, Sadee W. RNA sequencing of transcriptomes in human brain regions: protein-coding and non-coding RNAs, isoforms and alleles. BMC Genomics 2015; 16:990. [PMID: 26597164 PMCID: PMC4657279 DOI: 10.1186/s12864-015-2207-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 11/12/2015] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND We used RNA sequencing to analyze transcript profiles of ten autopsy brain regions from ten subjects. RNA sequencing techniques were designed to detect both coding and non-coding RNA, splice isoform composition, and allelic expression. Brain regions were selected from five subjects with a documented history of smoking and five non-smokers. Paired-end RNA sequencing was performed on SOLiD instruments to a depth of >40 million reads, using linearly amplified, ribosomally depleted RNA. Sequencing libraries were prepared with both poly-dT and random hexamer primers to detect all RNA classes, including long non-coding (lncRNA), intronic and intergenic transcripts, and transcripts lacking poly-A tails, providing additional data not previously available. The study was designed to generate a database of the complete transcriptomes in brain region for gene network analyses and discovery of regulatory variants. RESULTS Of 20,318 protein coding and 18,080 lncRNA genes annotated from GENCODE and lncipedia, 12 thousand protein coding and 2 thousand lncRNA transcripts were detectable at a conservative threshold. Of the aligned reads, 52 % were exonic, 34 % intronic and 14 % intergenic. A majority of protein coding genes (65 %) was expressed in all regions, whereas ncRNAs displayed a more restricted distribution. Profiles of RNA isoforms varied across brain regions and subjects at multiple gene loci, with neurexin 3 (NRXN3) a prominent example. Allelic RNA ratios deviating from unity were identified in > 400 genes, detectable in both protein-coding and non-coding genes, indicating the presence of cis-acting regulatory variants. Mathematical modeling was used to identify RNAs stably expressed in all brain regions (serving as potential markers for normalizing expression levels), linked to basic cellular functions. An initial analysis of differential expression analysis between smokers and nonsmokers implicated a number of genes, several previously associated with nicotine exposure. CONCLUSIONS RNA sequencing identifies distinct and consistent differences in gene expression between brain regions, with non-coding RNA displaying greater diversity between brain regions than mRNAs. Numerous RNAs exhibit robust allele selective expression, proving a means for discovery of cis-acting regulatory factors with potential clinical relevance.
Collapse
Affiliation(s)
- Amy Webb
- Center for Pharmacogenomics, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA.
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA.
| | - Audrey C Papp
- Center for Pharmacogenomics, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA.
| | - Amanda Curtis
- Center for Pharmacogenomics, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA.
| | - Leslie C Newman
- Center for Pharmacogenomics, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA.
| | - Maciej Pietrzak
- Center for Pharmacogenomics, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA.
- Division of Biostatistics, College of Public Health, and Mathematical Biosciences Institute, The Ohio State University, Columbus, OH, USA.
| | - Michal Seweryn
- Division of Biostatistics, College of Public Health, and Mathematical Biosciences Institute, The Ohio State University, Columbus, OH, USA.
| | - Samuel K Handelman
- Center for Pharmacogenomics, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA.
| | - Grzegorz A Rempala
- Division of Biostatistics, College of Public Health, and Mathematical Biosciences Institute, The Ohio State University, Columbus, OH, USA.
| | - Daqing Wang
- Thermo Fisher Scientific, South San Francisco, CA, 94080, USA.
| | - Erica Graziosa
- Thermo Fisher Scientific, South San Francisco, CA, 94080, USA.
| | - Rachel F Tyndale
- Center for Addiction and Mental Health and Departments of Psychiatry and Pharmacology & Toxicology, University of Toronto, Toronto, Ontario, Canada.
| | - Caryn Lerman
- Department of Psychiatry, Annenberg School for Communication, and Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA.
| | - John R Kelsoe
- Department of Psychiatry, Laboratory of Psychiatric Genomics, University of California, San Diego, USA.
- VA San Diego Healthcare System, La Jolla, San Diego, CA, USA.
| | - Deborah C Mash
- Department of Neurology, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA.
| | - Wolfgang Sadee
- Center for Pharmacogenomics, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA.
- Departments of Pharmacology, College of Medicine; Colleges of Pharmacy and Environmental Health Sciences, The Ohio State University, Columbus, OH, USA.
- Departments of Psychiatry, College of Medicine; Colleges of Pharmacy and Environmental Health Sciences, The Ohio State University, Columbus, OH, USA.
- Departments of Human Genetics/Internal Medicine, College of Medicine; Colleges of Pharmacy and Environmental Health Sciences, The Ohio State University, 5078 Graves Hall, 333 W. 10th Avenue, Columbus, OH, 43210, USA.
| |
Collapse
|
24
|
Massaly N, Francès B, Moulédous L. Roles of the ubiquitin proteasome system in the effects of drugs of abuse. Front Mol Neurosci 2015; 7:99. [PMID: 25610367 PMCID: PMC4285073 DOI: 10.3389/fnmol.2014.00099] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 12/08/2014] [Indexed: 12/21/2022] Open
Abstract
Because of its ability to regulate the abundance of selected proteins the ubiquitin proteasome system (UPS) plays an important role in neuronal and synaptic plasticity. As a result various stages of learning and memory depend on UPS activity. Drug addiction, another phenomenon that relies on neuroplasticity, shares molecular substrates with memory processes. However, the necessity of proteasome-dependent protein degradation for the development of addiction has been poorly studied. Here we first review evidences from the literature that drugs of abuse regulate the expression and activity of the UPS system in the brain. We then provide a list of proteins which have been shown to be targeted to the proteasome following drug treatment and could thus be involved in neuronal adaptations underlying behaviors associated with drug use and abuse. Finally we describe the few studies that addressed the need for UPS-dependent protein degradation in animal models of addiction-related behaviors.
Collapse
Affiliation(s)
- Nicolas Massaly
- Centre de Recherches sur la Cognition Animale, Centre National de la Recherche Scientifique UMR 5169 Toulouse, France ; Institut de Pharmacologie et de Biologie Structurale, Centre National de la Recherche Scientifique UMR 5089 Toulouse, France ; Université Paul Sabatier Toulouse III Toulouse, France
| | - Bernard Francès
- Centre de Recherches sur la Cognition Animale, Centre National de la Recherche Scientifique UMR 5169 Toulouse, France ; Université Paul Sabatier Toulouse III Toulouse, France
| | - Lionel Moulédous
- Institut de Pharmacologie et de Biologie Structurale, Centre National de la Recherche Scientifique UMR 5089 Toulouse, France ; Université Paul Sabatier Toulouse III Toulouse, France
| |
Collapse
|