1
|
Kounatidou NE, Vitkos E, Palioura S. Ocular surface squamous neoplasia: Update on genetics, epigenetics and opportunities for targeted therapy. Ocul Surf 2025; 35:1-14. [PMID: 39608452 DOI: 10.1016/j.jtos.2024.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 11/09/2024] [Accepted: 11/25/2024] [Indexed: 11/30/2024]
Abstract
PURPOSE The purpose of this review is to explore the molecular foundations of ocular surface squamous neoplasia (OSSN), focusing on the genetic and epigenetic aspects. While current management strategies include surgical excision and medical therapies, the understanding of OSSN's molecular basis remains limited, hindering the development of targeted treatments. METHODS A comprehensive MEDLINE search was conducted for literature published between January 1993 and October 2023. Only studies with original data on molecular, genetic, or epigenetic mechanisms, such as mutations, gene expression, and genetic predispositions were included. Articles were excluded if they focused solely on clinical management without addressing these factors, or if they were reviews, editorials, or opinion pieces. RESULTS The search yielded a total of 108 articles, out of which 39 articles met the criteria for further analysis. Investigations into OSSN have identified key DNA mutations in the TP53, HGF, EGFR, TERT, and CDKN2A genes, indicating common oncogenic pathways shared with other squamous cell carcinomas (SCCs). Significant epigenetic changes were identified, including DNA methylation, histone modifications, and altered miRNA expression patterns. Epigenetic dysregulation of critical tumor suppressors and oncoproteins, further highlight the complex genetic landscape of OSSN. CONCLUSION The molecular alterations identified in OSSN not only enhance our understanding of its biology but also have potential as novel biomarkers for early detection, prognostic evaluation, and as therapeutic targets. The identification of genetic and epigenetic markers in OSSN signifies progress towards personalized medicine approaches. Further studies and collaborative efforts are essential to validate these molecular markers and translate them into clinical practice, potentially revolutionizing OSSN management and improving patient outcomes.
Collapse
Affiliation(s)
| | - Evangelos Vitkos
- Department of Oral and Maxillofacial Surgery, Klinikum Dortmund, Dortmund, Germany
| | - Sotiria Palioura
- Department of Ophthalmology, University of Cyprus Medical School, Nicosia, Cyprus.
| |
Collapse
|
2
|
Zhou M, Wei L, Lu R. Emerging role of sirtuins in non‑small cell lung cancer (Review). Oncol Rep 2024; 52:127. [PMID: 39092574 PMCID: PMC11304160 DOI: 10.3892/or.2024.8786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 07/15/2024] [Indexed: 08/04/2024] Open
Abstract
Non‑small cell lung cancer (NSCLC) is a highly prevalent lung malignancy characterized by insidious onset, rapid progression and advanced stage at the time of diagnosis, making radical surgery impossible. Sirtuin (SIRT) is a histone deacetylase that relies on NAD+ for its function, regulating the aging process through modifications in protein activity and stability. It is intricately linked to various processes, including glycolipid metabolism, inflammation, lifespan regulation, tumor formation and stress response. An increasing number of studies indicate that SIRTs significantly contribute to the progression of NSCLC by regulating pathophysiological processes such as energy metabolism, autophagy and apoptosis in tumor cells through the deacetylation of histones or non‑histone proteins. The present review elaborates on the roles of different SIRTs and their mechanisms in NSCLC, while also summarizing novel therapeutic agents based on SIRTs. It aims to present new ideas and a theoretical basis for NSCLC treatment.
Collapse
Affiliation(s)
- Min Zhou
- Department of Cardiothoracic Surgery, Chongqing University Central Hospital, Chongqing 400014, P.R. China
- Department of Cardiothoracic Surgery, Chongqing Emergency Medical Center, Chongqing 400014, P.R. China
| | - Lin Wei
- Department of Cardiothoracic Surgery, Chongqing University Central Hospital, Chongqing 400014, P.R. China
- Department of Cardiothoracic Surgery, Chongqing Emergency Medical Center, Chongqing 400014, P.R. China
| | - Renfu Lu
- Department of Cardiothoracic Surgery, Chongqing University Central Hospital, Chongqing 400014, P.R. China
- Department of Cardiothoracic Surgery, Chongqing Emergency Medical Center, Chongqing 400014, P.R. China
| |
Collapse
|
3
|
Liu K, Liu J, Xu A, Ding J. The role of polydatin in inhibiting oxidative stress through SIRT1 activation: A comprehensive review of molecular targets. JOURNAL OF ETHNOPHARMACOLOGY 2024; 331:118322. [PMID: 38729537 DOI: 10.1016/j.jep.2024.118322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 04/26/2024] [Accepted: 05/07/2024] [Indexed: 05/12/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Reynoutria japonica Houtt is a medicinal plant renowned for its diverse pharmacological properties, including heat-clearing, toxin-removing, blood circulation promotion, blood stasis removal, diuretic action, and pain relief. The plant is commonly utilized in Traditional Chinese Medicine (TCM), and its major bioactive constituents consist of polydatin (PD) and resveratrol (RES). AIM OF THE STUDY To summarize the relevant targets of PD in various oxidative stress-related diseases through the activation of Silence information regulator1 (SIRT1). Furthermore, elucidating the pharmacological effects and signaling mechanisms to establish the basis for PD's secure clinical implementation and expanded range of application. MATERIALS AND METHODS Literature published before November 2023 on the structural analysis and pharmacological activities of PD was collected using online databases such as Google Scholar, PubMed, and Web of Science. The keywords were "polydatin", "SIRT1" and "oxidative stress". The inclusion criteria were research articles published in English, including in vivo and in vitro experiments and clinical studies. Non-research articles such as reviews, meta-analyses, and letters were excluded. RESULTS PD has been found to have significantly protective and curative effects on diseases associated with oxidative stress by regulating SIRT1-related targets including peroxisome proliferator-activated receptor γ coactivator 1-alpha (PGC-1α), nuclear factor erythroid2-related factor 2 (Nrf2), high mobility group box 1 protein (HMGB1), NOD-like receptor thermal protein domain associated protein 3 (NLRP3), p38/p53, as well as endothelial nitric oxide synthase (eNOs), among others. Strong evidence suggests that PD is an effective natural product for treating diseases related to oxidative stress. CONCLUSION PD holds promise as an effective treatment for a wide range of diseases, with SIRT1-mediated oxidative stress as its potential pathway.
Collapse
Affiliation(s)
- Ke Liu
- Beijing Institute of Chinese Medicine, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Jiaxi Liu
- Beijing University of Chinese Medicine, Beijing, China
| | - Anjian Xu
- Beijing Friendship Hospital, Capital Medical University, Beijing, China.
| | - Junying Ding
- Beijing Institute of Chinese Medicine, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China.
| |
Collapse
|
4
|
Livraghi V, Mazza L, Chiappori F, Cardano M, Cazzalini O, Puglisi R, Capoferri R, Pozzi A, Stivala LA, Zannini L, Savio M. A proteasome-dependent inhibition of SIRT-1 by the resveratrol analogue 4,4'-dihydroxy- trans-stilbene. J Tradit Complement Med 2024; 14:534-543. [PMID: 39262665 PMCID: PMC11384077 DOI: 10.1016/j.jtcme.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 02/29/2024] [Accepted: 03/03/2024] [Indexed: 09/13/2024] Open
Abstract
Background and aim Resveratrol (RSV), is a stilbene-based compound exerting wide biological properties. Its analogue 4,4'-dihydroxy-trans-stilbene (DHS) has shown improved bioavailability and antiproliferative activity in vitro and in vivo. One of the hypotheses on how resveratrol works is based on SIRT1 activation. Since their strict structural similarities, we have explored a potential interaction between DHS and SIRT1, in comparison with the parental molecule. Experimental procedure Timing of incubation and concentrations of DHS have been determined using MTT assay in normal human lung fibroblasts. Untreated, DHS- or RSV-treated cells were harvested and analysed by Western Blotting or RT-PCR, in order to evaluate SIRT1 levels/activity and expression, and by Cellular Thermal shift assay (CETSA) to check potential DHS or RSV-SIRT1 interaction. Transfection experiments have been performed with two SIRT1 mutants, based on the potential binding pockets identified by Molecular Docking analysis. Results and conclusion We unexpectedly found that DHS, but not RSV, exerted a time-dependent inhibitory effect on both SIRT1 protein levels and activity, the latter measured as p53 acetylation. At the mRNA level no significant changes were observed, whereas a proteasome-dependent mechanism was highlighted for the reduction of SIRT1 levels by DHS in experiments performed with the proteasome inhibitor MG132. Bioinformatics analysis suggested a higher affinity of RSV in binding all SIRT1 complexes compared to DHS, except comparable results for complex SIRT1-p53. Nevertheless, both CETSA and SIRT1 mutants transfected in cells did not confirm this interaction. In conclusion, DHS reduces SIRT1 protein level, thereby inhibiting its activity through a proteasome-mediated mechanism.
Collapse
Affiliation(s)
- Vittoria Livraghi
- Department of Molecular Medicine, Immunology and General Pathology Unit, University of Pavia, Pavia, Italy
| | - Laura Mazza
- Department of Molecular Medicine, Immunology and General Pathology Unit, University of Pavia, Pavia, Italy
| | - Federica Chiappori
- National Research Council - Institute for Biomedical Technologies (CNR - ITB), Segrate, Mi, Italy
| | - Miriana Cardano
- Institute of Molecular Genetics Luigi Luca Cavalli-Sforza - National Research Council (IGM-CNR), Pavia, Italy
| | - Ornella Cazzalini
- Department of Molecular Medicine, Immunology and General Pathology Unit, University of Pavia, Pavia, Italy
| | - Roberto Puglisi
- Italian Experimental Institute "Lazzaro Spallanzani" Rivolta D'Adda, Italy
| | - Rossana Capoferri
- Italian Experimental Institute "Lazzaro Spallanzani" Rivolta D'Adda, Italy
| | - Anna Pozzi
- Italian Experimental Institute "Lazzaro Spallanzani" Rivolta D'Adda, Italy
| | - Lucia Anna Stivala
- Department of Molecular Medicine, Immunology and General Pathology Unit, University of Pavia, Pavia, Italy
| | - Laura Zannini
- Institute of Molecular Genetics Luigi Luca Cavalli-Sforza - National Research Council (IGM-CNR), Pavia, Italy
| | - Monica Savio
- Department of Molecular Medicine, Immunology and General Pathology Unit, University of Pavia, Pavia, Italy
| |
Collapse
|
5
|
Campagna R, Mazzanti L, Pompei V, Alia S, Vignini A, Emanuelli M. The Multifaceted Role of Endothelial Sirt1 in Vascular Aging: An Update. Cells 2024; 13:1469. [PMID: 39273039 PMCID: PMC11394039 DOI: 10.3390/cells13171469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/21/2024] [Accepted: 08/28/2024] [Indexed: 09/15/2024] Open
Abstract
NAD+-dependent deacetylase sirtuin-1 (Sirt1) belongs to the sirtuins family, known to be longevity regulators, and exerts a key role in the prevention of vascular aging. By aging, the expression levels of Sirt1 decline with a severe impact on vascular function, such as the rise of endothelial dysfunction, which in turn promotes the development of cardiovascular diseases. In this context, the impact of Sirt1 activity in preventing endothelial senescence is particularly important. Given the key role of Sirt1 in counteracting endothelial senescence, great efforts have been made to deepen the knowledge about the intricate cross-talks and interactions of Sirt1 with other molecules, in order to set up possible strategies to boost Sirt1 activity to prevent or treat vascular aging. The aim of this review is to provide a proper background on the regulation and function of Sirt1 in the vascular endothelium and to discuss the recent advances regarding the therapeutic strategies of targeting Sirt1 to counteract vascular aging.
Collapse
Affiliation(s)
- Roberto Campagna
- Department of Clinical Sciences, Polytechnic University of Marche, 60100 Ancona, Italy; (V.P.); (S.A.); (A.V.); (M.E.)
| | - Laura Mazzanti
- Department of Clinical Sciences, Polytechnic University of Marche, 60100 Ancona, Italy; (V.P.); (S.A.); (A.V.); (M.E.)
- Fondazione Salesi, Ospedale G. Salesi, 60100 Ancona, Italy
| | - Veronica Pompei
- Department of Clinical Sciences, Polytechnic University of Marche, 60100 Ancona, Italy; (V.P.); (S.A.); (A.V.); (M.E.)
| | - Sonila Alia
- Department of Clinical Sciences, Polytechnic University of Marche, 60100 Ancona, Italy; (V.P.); (S.A.); (A.V.); (M.E.)
| | - Arianna Vignini
- Department of Clinical Sciences, Polytechnic University of Marche, 60100 Ancona, Italy; (V.P.); (S.A.); (A.V.); (M.E.)
- Research Center of Health Education and Health Promotion, Università Politecnica delle Marche, 60100 Ancona, Italy
| | - Monica Emanuelli
- Department of Clinical Sciences, Polytechnic University of Marche, 60100 Ancona, Italy; (V.P.); (S.A.); (A.V.); (M.E.)
| |
Collapse
|
6
|
Lu Y, Xie XN, Xin QQ, Yuan R, Miao Y, Cong WH, Chen KJ. Advance on Chinese Medicine for Hypertensive Renal Damage: Focus on the Complex Molecular Mechanisms. Chin J Integr Med 2024:10.1007/s11655-024-3662-3. [PMID: 38958884 DOI: 10.1007/s11655-024-3662-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/21/2024] [Indexed: 07/04/2024]
Abstract
Hypertensive renal damage (HRD) is a major cause of end-stage renal disease. Among the causes of end-stage renal disease, HRD accounts for nearly 34% of the total number of cases. Antihypertensive treatment is primarily drug-based, but therapeutic efficacy is less effective and can have serious side effects. Chinese medicine (CM) has significant advantages in the treatment of HRD. CM is rich in various active ingredients and has the property of targeting multiple targets and channels. Therefore, the regulatory network of CM on disease is complex. A large number of CM have been employed to treat HRD, either as single applications or as part of compound formulations. The key possible mechanisms of CM for HRD include regulation of the renin-angiotensin-aldosterone system, antioxidation, anti-inflammation, rescue of endothelial function, regulation of vasoactive substance secretion and obesity-related factors, etc. This review summarized and discussed the recent advance in the basic research mechanisms of CM interventions for HRD and pointed out the challenges and future prospects.
Collapse
Affiliation(s)
- Yan Lu
- Laboratory of Cardiovascular Diseases, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Xue-Na Xie
- School of Pharmacy, Macau University of Science and Technology, Taipa, Macau, 999078, China
| | - Qi-Qi Xin
- Laboratory of Cardiovascular Diseases, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, 100091, China
- National Clinical Research Center for Chinese Medicine Cardiology, Beijing, 100091, China
| | - Rong Yuan
- Laboratory of Cardiovascular Diseases, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, 100091, China
- National Clinical Research Center for Chinese Medicine Cardiology, Beijing, 100091, China
| | - Yu Miao
- Laboratory of Cardiovascular Diseases, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, 100091, China
- National Clinical Research Center for Chinese Medicine Cardiology, Beijing, 100091, China
| | - Wei-Hong Cong
- Laboratory of Cardiovascular Diseases, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, 100091, China.
- National Clinical Research Center for Chinese Medicine Cardiology, Beijing, 100091, China.
| | - Ke-Ji Chen
- Laboratory of Cardiovascular Diseases, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, 100091, China
- National Clinical Research Center for Chinese Medicine Cardiology, Beijing, 100091, China
| |
Collapse
|
7
|
D'Incal C, Van Dijck A, Ibrahim J, De Man K, Bastini L, Konings A, Elinck E, Theys C, Gozes I, Marusic Z, Anicic M, Vukovic J, Van der Aa N, Mateiu L, Vanden Berghe W, Kooy RF. ADNP dysregulates methylation and mitochondrial gene expression in the cerebellum of a Helsmoortel-Van der Aa syndrome autopsy case. Acta Neuropathol Commun 2024; 12:62. [PMID: 38637827 PMCID: PMC11027339 DOI: 10.1186/s40478-024-01743-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 02/11/2024] [Indexed: 04/20/2024] Open
Abstract
BACKGROUND Helsmoortel-Van der Aa syndrome is a neurodevelopmental disorder in which patients present with autism, intellectual disability, and frequent extra-neurological features such as feeding and gastrointestinal problems, visual impairments, and cardiac abnormalities. All patients exhibit heterozygous de novo nonsense or frameshift stop mutations in the Activity-Dependent Neuroprotective Protein (ADNP) gene, accounting for a prevalence of 0.2% of all autism cases worldwide. ADNP fulfills an essential chromatin remodeling function during brain development. In this study, we investigated the cerebellum of a died 6-year-old male patient with the c.1676dupA/p.His559Glnfs*3 ADNP mutation. RESULTS The clinical presentation of the patient was representative of the Helsmoortel-Van der Aa syndrome. During his lifespan, he underwent two liver transplantations after which the child died because of multiple organ failure. An autopsy was performed, and various tissue samples were taken for further analysis. We performed a molecular characterization of the cerebellum, a brain region involved in motor coordination, known for its highest ADNP expression and compared it to an age-matched control subject. Importantly, epigenome-wide analysis of the ADNP cerebellum identified CpG methylation differences and expression of multiple pathways causing neurodevelopmental delay. Interestingly, transcription factor motif enrichment analysis of differentially methylated genes showed that the ADNP binding motif was the most significantly enriched. RNA sequencing of the autopsy brain further identified downregulation of the WNT signaling pathway and autophagy defects as possible causes of neurodevelopmental delay. Ultimately, label-free quantification mass spectrometry identified differentially expressed proteins involved in mitochondrial stress and sirtuin signaling pathways amongst others. Protein-protein interaction analysis further revealed a network including chromatin remodelers (ADNP, SMARCC2, HDAC2 and YY1), autophagy-related proteins (LAMP1, BECN1 and LC3) as well as a key histone deacetylating enzyme SIRT1, involved in mitochondrial energy metabolism. The protein interaction of ADNP with SIRT1 was further biochemically validated through the microtubule-end binding proteins EB1/EB3 by direct co-immunoprecipitation in mouse cerebellum, suggesting important mito-epigenetic crosstalk between chromatin remodeling and mitochondrial energy metabolism linked to autophagy stress responses. This is further supported by mitochondrial activity assays and stainings in patient-derived fibroblasts which suggest mitochondrial dysfunctions in the ADNP deficient human brain. CONCLUSION This study forms the baseline clinical and molecular characterization of an ADNP autopsy cerebellum, providing novel insights in the disease mechanisms of the Helsmoortel-Van der Aa syndrome. By combining multi-omic and biochemical approaches, we identified a novel SIRT1-EB1/EB3-ADNP protein complex which may contribute to autophagic flux alterations and impaired mitochondrial metabolism in the Helsmoortel-Van der Aa syndrome and holds promise as a new therapeutic target.
Collapse
Affiliation(s)
- Claudio D'Incal
- Department of Medical Genetics, University of Antwerp, Prins Boudewijnlaan 43/6, 2650, Edegem, Antwerp, Belgium
- Protein Chemistry, Proteomics and Epigenetic Signaling (PPES), Epigenetic Signaling lab (PPES), Department of Biomedical Sciences, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Antwerp, Belgium
| | - Anke Van Dijck
- Department of Medical Genetics, University of Antwerp, Prins Boudewijnlaan 43/6, 2650, Edegem, Antwerp, Belgium
- Family Medicine and Population Health (FAMPOP), Department of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Joe Ibrahim
- Department of Medical Genetics, University of Antwerp, Prins Boudewijnlaan 43/6, 2650, Edegem, Antwerp, Belgium
| | - Kevin De Man
- Department of Medical Genetics, University of Antwerp, Prins Boudewijnlaan 43/6, 2650, Edegem, Antwerp, Belgium
- Protein Chemistry, Proteomics and Epigenetic Signaling (PPES), Epigenetic Signaling lab (PPES), Department of Biomedical Sciences, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Antwerp, Belgium
| | - Lina Bastini
- Protein Chemistry, Proteomics and Epigenetic Signaling (PPES), Epigenetic Signaling lab (PPES), Department of Biomedical Sciences, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Antwerp, Belgium
| | - Anthony Konings
- Protein Chemistry, Proteomics and Epigenetic Signaling (PPES), Epigenetic Signaling lab (PPES), Department of Biomedical Sciences, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Antwerp, Belgium
| | - Ellen Elinck
- Department of Medical Genetics, University of Antwerp, Prins Boudewijnlaan 43/6, 2650, Edegem, Antwerp, Belgium
| | - Claudia Theys
- Protein Chemistry, Proteomics and Epigenetic Signaling (PPES), Epigenetic Signaling lab (PPES), Department of Biomedical Sciences, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Antwerp, Belgium
| | - Illana Gozes
- The Elton Laboratory for Molecular Neuroendocrinology, Department of Human Molecular Genetics and Biochemistry, Faculty of Medical & Health Sciences, Adams Super Center for Brain Studies and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Zlatko Marusic
- Clinical Department of Pathology and Cytology, University Hospital Centre Zagreb, Zagreb, Croatia
| | - Mirna Anicic
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, School of Medicine, University Hospital Centre Zagreb, Zagreb, Croatia
| | - Jurica Vukovic
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, School of Medicine, University Hospital Centre Zagreb, Zagreb, Croatia
| | - Nathalie Van der Aa
- Department of Medical Genetics, University of Antwerp, Prins Boudewijnlaan 43/6, 2650, Edegem, Antwerp, Belgium
| | - Ligia Mateiu
- Department of Medical Genetics, University of Antwerp, Prins Boudewijnlaan 43/6, 2650, Edegem, Antwerp, Belgium
| | - Wim Vanden Berghe
- Protein Chemistry, Proteomics and Epigenetic Signaling (PPES), Epigenetic Signaling lab (PPES), Department of Biomedical Sciences, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Antwerp, Belgium.
| | - R Frank Kooy
- Department of Medical Genetics, University of Antwerp, Prins Boudewijnlaan 43/6, 2650, Edegem, Antwerp, Belgium.
| |
Collapse
|
8
|
Jiménez AG, Paul KD, Benson M, Lalwani S, Cipolli W. Cellular metabolic pathways of aging in dogs: could p53 and SIRT1 be at play? GeroScience 2024; 46:1895-1908. [PMID: 37768524 PMCID: PMC10828300 DOI: 10.1007/s11357-023-00942-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023] Open
Abstract
Aging and cancer seem to be closely associated, such that cancer is generally considered a disease of the elderly in both humans and dogs. Additionally, cancer is a metabolic shift in itself towards aerobic glycolysis. Larger dog breeds with shorter lifespans, and increased glycolytic cellular metabolic rates, die of cancer more often than smaller breeds. The tumor suppressor p53 factor is a key suppressor oncogene, and the p53 pathway arrests cellular proliferation and prevents DNA mutations from accumulating during cellular stress. The p53 pathway is also associated with the control of cellular metabolism to prevent cellular metabolic shifts common to cancerous phenotypes. SIRT1 deacetylates the p53 tumor suppressor protein, downregulating p53 via effects on stability and activity during stress. Here, we used primary fibroblast cells from small and large puppies and old dogs. Using UV radiation to upregulate the p53 system (100 J/m2), control cells and UV-treated cells were used to measure aerobic and glycolytic metabolic rates using a Seahorse XFe96 oxygen flux analyzer. We also quantified p53 expression and SIRT1 concentration in canine primary fibroblasts before and after UV treatment. We demonstrate that, due to a higher p53 nuclear to cytoplasmic ratio in large breed dogs after UV treatment, p53 could have a more regulatory effect on large breed dogs' metabolism compared with smaller breeds. Thus, there may be a link between p53 upregulation and inhibition of glycolysis in large breed dogs during times of cellular stress compared with small breed dogs. However, SIRT1 concentrations decrease with age in domestic dogs of both size classes, suggesting a possible release of inhibition of p53 through the SIRT1 pathway with age. This may lead to increased incidences of cancer, especially due to the more pronounced upregulation of p53 with cellular stress.
Collapse
Affiliation(s)
- Ana Gabriela Jiménez
- Department of Biology, Colgate University, 13 Oak Dr., Hamilton, NY, 13346, USA.
| | - Kailey D Paul
- Department of Biology, Colgate University, 13 Oak Dr., Hamilton, NY, 13346, USA
| | - Mitchel Benson
- Department of Biology, Colgate University, 13 Oak Dr., Hamilton, NY, 13346, USA
| | - Sahil Lalwani
- Stanford Law School, Crown Quadrangle, 559 Nathan Abbott Way, Stanford, CA, 94305, USA
| | - William Cipolli
- Department of Mathematics, Colgate University, 13 Oak Dr., Hamilton, NY, 13346, USA
| |
Collapse
|
9
|
Karisola P, Nikkola V, Joronen H, Ylianttila L, Grönroos M, Partonen T, Snellman E, Alenius H. Narrow-band UVB radiation triggers diverse changes in the gene expression and induces the accumulation of M1 macrophages in human skin. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 253:112887. [PMID: 38460430 DOI: 10.1016/j.jphotobiol.2024.112887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 02/22/2024] [Accepted: 03/05/2024] [Indexed: 03/11/2024]
Abstract
BACKGROUND The underlying molecular mechanisms that determine the biological effects of UVB radiation exposure on human skin are still only partially comprehended. OBJECTIVES Our goal is to examine the human skin transcriptome and related molecular mechanisms following a single exposure to UVB in the morning versus evening. METHODS We exposed 20 volunteer females to four-fold standard erythema doses (SED4) of narrow-band UVB (309-313 nm) in the morning or evening and studied skin transcriptome 24 h after the exposure. We performed enrichment analyses of gene pathways, predicted changes in skin cell composition using cellular deconvolution, and correlated cell proportions with gene expression. RESULTS In the skin transcriptome, UVB exposure yielded 1384 differentially expressed genes (DEGs) in the morning and 1295 DEGs in the evening, of which the most statistically significant DEGs enhanced proteasome and spliceosome pathways. Unexposed control samples showed difference by 321 DEGs in the morning vs evening, which was related to differences in genes associated with the circadian rhythm. After the UVB exposure, the fraction of proinflammatory M1 macrophages was significantly increased at both timepoints, and this increase was positively correlated with pathways on Myc targets and mTORC1 signaling. In the evening, the skin clinical erythema was more severe and had stronger positive correlation with the number of M1 macrophages than in the morning after UVB exposure. The fractions of myeloid and plasmacytoid dendritic cells and CD8 T cells were significantly decreased in the morning but not in the evening. CONCLUSIONS NB-UVB-exposure causes changes in skin transcriptome, inhibiting cell division, and promoting proteasome activity and repair responses, both in the morning and in the evening. Inflammatory M1 macrophages may drive the UV-induced skin responses by exacerbating inflammation and erythema. These findings highlight how the same UVB exposure influences skin responses differently in morning versus evening and presents a possible explanation to the differences in gene expression in the skin after UVB irradiation at these two timepoints.
Collapse
Affiliation(s)
- Piia Karisola
- Faculty of Medicine, Human Microbiome Research Program, University of Helsinki, Finland.
| | - Veera Nikkola
- Tampere University, Faculty of Medicine and Health Technology, Department of Dermatology and Venereology, Tampere, Finland
| | - Heli Joronen
- Tampere University, Faculty of Medicine and Health Technology, Department of Dermatology and Venereology, Tampere, Finland; Päijät-Häme Social and Health Care Group, Department of Dermatology and Allergology, Lahti, Finland.
| | - Lasse Ylianttila
- Radiation and Nuclear Safety Authority (STUK), Helsinki, Finland.
| | - Mari Grönroos
- Päijät-Häme Social and Health Care Group, Department of Dermatology and Allergology, Lahti, Finland.
| | - Timo Partonen
- Finnish Institute for Health and Welfare, Department of Public Health and Welfare, Finland.
| | - Erna Snellman
- Tampere University, Faculty of Medicine and Health Technology, Department of Dermatology and Venereology, Tampere, Finland.
| | - Harri Alenius
- Faculty of Medicine, Human Microbiome Research Program, University of Helsinki, Finland; Institute of Environmental Medicine, Karolinska Institute, Stockholm, Sweden.
| |
Collapse
|
10
|
Shin S, Kim HW, Ko MK, Park SH, Kim SM, Park JH, Lee MJ. Inactivated vaccine with glycyrrhizic acid adjuvant elicits potent innate and adaptive immune responses against foot-and-mouth disease. Front Microbiol 2023; 14:1289065. [PMID: 38029108 PMCID: PMC10644816 DOI: 10.3389/fmicb.2023.1289065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 10/18/2023] [Indexed: 12/01/2023] Open
Abstract
Background Foot-and-mouth disease (FMD) is an extremely contagious viral disease that is fatal to young animals and is a major threat to the agricultural economy by reducing production and limiting the movement of livestock. The currently commercially-available FMD vaccine is prepared using an inactivated viral antigen in an oil emulsion, with aluminum hydroxide [Al(OH)3] as an adjuvant. However, oil emulsion-based options possess limitations including slow increases in antibody titers (up to levels adequate for defense against viral infection) and risks of local reactions at the vaccination site. Further, Al(OH)3 only induces a T helper 2 (Th2) cell response. Therefore, novel adjuvants that can address these limitations are urgently needed. Glycyrrhizic acid (extracted from licorice roots) is a triterpenoid saponin and has great advantages in terms of price and availability. Methods To address the limitations of the currently used commercial FMD vaccine, we added glycyrrhizic acid as an adjuvant (immunostimulant) to the FMD bivalent (O PA2 + A YC) vaccine. We then evaluated its efficacy in promoting both innate and adaptive (cellular and humoral) immune reactions in vitro [using murine peritoneal exudate cells (PECs) and porcine peripheral blood mononuclear cells (PBMCs)] and in vivo (using mice and pigs). Results Glycyrrhizic acid has been revealed to induce an innate immune response and enhance early, mid-, and long-term immunity. The studied bivalent vaccine with glycyrrhizic acid increased the expression of immunoregulatory genes such as pattern-recognition receptors (PRRs), cytokines, transcription factors, and co-stimulatory molecules. Conclusion Collectively, glycyrrhizic acid could have utility as a novel vaccine adjuvant that can address the limitations of commercialized FMD vaccines by inducing potent innate and adaptive immune responses.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Min Ja Lee
- Animal and Plant Quarantine Agency, Gimcheon-si, Gyeongsangbuk-do, Republic of Korea
| |
Collapse
|
11
|
Suvakov S, Kattah AG, Gojkovic T, Enninga EAL, Pruett J, Jayachandran M, Sousa C, Santos J, Abou Hassan C, Gonzales-Suarez M, Garovic VD. Impact of Aging and Cellular Senescence in the Pathophysiology of Preeclampsia. Compr Physiol 2023; 13:5077-5114. [PMID: 37770190 DOI: 10.1002/cphy.c230003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
The incidence of hypertensive disorders of pregnancy is increasing, which may be due to several factors, including an increased age at pregnancy and more comorbid health conditions during reproductive years. Preeclampsia, the most severe hypertensive disorder of pregnancy, has been associated with an increased risk of future disease, including cardiovascular and kidney diseases. Cellular senescence, the process of cell cycle arrest in response to many physiologic and maladaptive stimuli, may play an important role in the pathogenesis of preeclampsia and provide a mechanistic link to future disease. In this article, we will discuss the pathophysiology of preeclampsia, the many mechanisms of cellular senescence, evidence for the involvement of senescence in the development of preeclampsia, as well as evidence that cellular senescence may link preeclampsia to the risk of future disease. Lastly, we will explore how a better understanding of the role of cellular senescence in preeclampsia may lead to therapeutic trials. © 2023 American Physiological Society. Compr Physiol 13:5077-5114, 2023.
Collapse
Affiliation(s)
- Sonja Suvakov
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | - Andrea G Kattah
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | - Tamara Gojkovic
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | - Elizabeth A L Enninga
- Division of Research, Department of Obstetrics and Gynecology, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Jacob Pruett
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Ciria Sousa
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | - Janelle Santos
- Division of Research, Department of Obstetrics and Gynecology, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Coline Abou Hassan
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Vesna D Garovic
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
- Division of Research, Department of Obstetrics and Gynecology, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| |
Collapse
|
12
|
Zhou Q, Jiang N, Dong Y, Tian K. Dexmedetomidine alleviates anxiety-like behaviors in female mice with musculoskeletal pain through SIRT1/p53 axis. Brain Res Bull 2023; 201:110698. [PMID: 37406884 DOI: 10.1016/j.brainresbull.2023.110698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/25/2023] [Accepted: 07/02/2023] [Indexed: 07/07/2023]
Abstract
BACKGROUND Musculoskeletal pain is the most common form of chronic pain. Anxiety increases pain intensity and appears to have a major impact on the prevalence and also disability of musculoskeletal pain in women. We examined the effect of dexmedetomidine (DEX) on anxiety-like behaviors associated with musculoskeletal pain and the underlying molecular mechanism in female mice. METHODS Musculoskeletal pain was induced by injection of acidified saline into the gastrocnemius muscle in adult female mice, and the von Frey filament test is used to measure mechanical sensitivity. DEX and EX527 (SIRT1 inhibitor) were administered after modelling. Behavioral tests were used for anxiety and motor activity tests. SIRT1, p53 and acetyl-p53 were quantified by Western blot. RESULTS Adult female mice with musculoskeletal pain exhibit increased fear-like behavior by reducing SIRT1 expression in the medial prefrontal cortex (mPFC). While administration of DEX was able to alleviate mechanical hypersensitivity and anxiety-like behaviors by blocking SIRT1 decline and acetyl-p53 upregulation in mPFC, EX527 inhibited acetyl-p53 rise and reversed the antinociceptive and anxiolytic effects of DEX. CONCLUSION DEX may alleviate anxiety-like behaviors in mice with musculoskeletal pain via the SIRT1/p53 axis. These results suggest that DEX may have a potential therapeutic role in musculoskeletal pain-induced anxiety.
Collapse
Affiliation(s)
- Quan Zhou
- Department of Anesthesiology, Shenzhen University General Hospital, Shenzhen University, Shenzhen, 518055, China; School of Psychology, Shenzhen University, Shenzhen, 518060, China
| | - Ningbin Jiang
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital,Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, 518116, China
| | - Yinv Dong
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Ke Tian
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
13
|
Yin JY, Lu XT, Hou ML, Cao T, Tian Z. Sirtuin1-p53: a potential axis for cancer therapy. Biochem Pharmacol 2023; 212:115543. [PMID: 37037265 DOI: 10.1016/j.bcp.2023.115543] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 03/31/2023] [Accepted: 04/03/2023] [Indexed: 04/12/2023]
Abstract
Sirtuin1 (SIRT1) is a conserved nicotinamide adenine dinucleotide (NAD+)-dependent histone deacetylase that plays key roles in a range of cellular events, including the maintenance of genome stability, gene regulation, cell proliferation, and apoptosis. P53 is one of the most studied tumor suppressors and the first identified non-histone target of SIRT1. SIRT1 deacetylates p53 in a NAD+-dependent manner and inhibits its transcriptional activity, thus exerting action on a series of pathways related to tissue homeostasis and various pathological states. The SIRT1-p53 axis is thought to play a central role in tumorigenesis. Although SIRT1 was initially identified as a tumor promoter, evidence now indicates that SIRT1 may also act as a tumor suppressor. This seemingly contradictory evidence indicates that the functionality of SIRT1 may be dictated by different cell types and intracellular localization patterns. In this review, we summarize recent evidence relating to the interactions between SIRT1 and p53 and discuss the relative roles of these two molecules with regards to cancer-associated cellular events. We also provide an overview of current knowledge of SIRT1-p53 signaling in tumorigenesis. Given the vital role of the SIRT1-p53 pathway, targeting this axis may provide promising strategies for the treatment of cancer.
Collapse
Affiliation(s)
- Jia-Yi Yin
- College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| | - Xin-Tong Lu
- College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| | - Meng-Ling Hou
- College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| | - Ting Cao
- College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| | - Zhen Tian
- College of Pharmaceutical Sciences, Southwest University, Chongqing, China.
| |
Collapse
|
14
|
Wang Y, Tang T, Ren J, Zhao Y, Hou Y, Nie X. Hypoxia aggravates the burden of yellowstripe goby (Mugilogobius chulae) under atorvastatin exposure. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 255:106381. [PMID: 36587518 DOI: 10.1016/j.aquatox.2022.106381] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 12/02/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
In the present study, an estuarine benthic fish, Mugilogobius chulae (M. chulae), was exposed to hypoxia, atorvastatin (ATV), a highly used and widely detected lipid-lowering drug in aquatic environment, and the combination of hypoxia and ATV for 7 days, respectively, so as to address and compare the effects of the combination of hypoxia and ATV exposure on M. chulae. The results showed that lipid metabolism in M. chulae was greatly affected: lipid synthesis was blocked and catabolism was enhanced, exhibiting that lipids content were heavily depleted. The combined exposure of hypoxia and ATV caused oxidative stress and induced massive inflammatory response in the liver of M. chulae. Signaling pathways involving in energy metabolism and redox responses regulated by key factors such as HIF, PPAR, p53 and sirt1 play important regulatory roles in hypoxia-ATV stress. Critically, we found that the response of M. chulae to ATV was more sensitive under hypoxia than normoxia. ATV exposure to aquatic non-target organisms under hypoxic conditions may make a great impact on the detoxification and energy metabolism, especially lipid metabolism, and aggravate the oxidative pressure of the exposed organisms.
Collapse
Affiliation(s)
- Yimeng Wang
- Department of Ecology, Jinan University, Guangzhou, 510632, China
| | - Tianli Tang
- Department of Ecology, Jinan University, Guangzhou, 510632, China
| | - Jinzhi Ren
- Department of Ecology, Jinan University, Guangzhou, 510632, China
| | - Yufei Zhao
- Department of Ecology, Jinan University, Guangzhou, 510632, China
| | - Yingshi Hou
- Department of Ecology, Jinan University, Guangzhou, 510632, China
| | - Xiangping Nie
- Department of Ecology, Jinan University, Guangzhou, 510632, China; Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
15
|
Lu L, Tian Z, Lu J, Jiang M, Chen J, Guo S, Huang Y. LINC00106/RPS19BP1/p53 axis promotes the proliferation and migration of human prostate cancer cells. PeerJ 2023; 11:e15232. [PMID: 37180577 PMCID: PMC10174055 DOI: 10.7717/peerj.15232] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 03/24/2023] [Indexed: 05/16/2023] Open
Abstract
Background Prostate cancer (PCa) is among the most prevalent cancers in males with high biochemical recurrence risk. LINC00106 contributes to the carcinogenesis of Hepatocellular carcinoma (HCC). However, it is unclear how it affects PCa advancement. Here, we studied LINC00106's effects on PCa cells' ability to proliferate, invade, and metastasize. Methods The data of LINC00106 from The Cancer Genome Atlas (TCGA) in human PCa tissues were analyzed using TANRIC and survival analysis. In order to determine the expression levels of genes and proteins, we also performed reverse transcription-quantitative PCR and western blot analysis. The migration, invasion, colony formation, and proliferation (CCK-8) of PCa cells with LINC00106 knockdown were investigated. The impact of LINC00106 on cell proliferation and invasion was also analyzed in mice. LncRNA prediction software catRAPID omics v2.1 (catRAPID omics v2.0 (tartaglialab.com)) was used to predict proteins that might interact with LINC00106. The interactions were verified via RNA immunoprecipitation and RNA pull-down assays and finally, the interaction between LINC00106 and its target protein and the p53 signaling pathway was studied using a dual-luciferase reporter assay. Results In PCa, LINC00106 was over-expressed in comparison to normal tissues, and it was linked to an unfavorableprognosis. In vitro and in vivo analyses showed that downregulating LINC00106 decreased PCa cells'ability to proliferate and migrate. A common regulatory axis generated by LINC00106 and RPS19BP1 prevents p53 activity. Conclusion Our experimental data indicate that LINC00106 functions as an oncogene in the onset of PCa, and the LINC00106/RPS19BP1/P53 axis canserve as a novel therapeutic target for PCa treatment.
Collapse
Affiliation(s)
- Lingxiang Lu
- Department of Urinary Surgery, Suzhou Ninth People’s Hospital, Soochow University, Suzhou, Jiangsu, China
| | - Zhen Tian
- Department of Urinary Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Jicheng Lu
- Oncology Department, Suzhou Ninth People’s Hospital, Soochow University, Suzhou, Jiangsu, China
| | - Minjun Jiang
- Department of Urinary Surgery, Suzhou Ninth People’s Hospital, Soochow University, Suzhou, Jiangsu, China
| | - Jianchun Chen
- Department of Urinary Surgery, Suzhou Ninth People’s Hospital, Soochow University, Suzhou, Jiangsu, China
| | - Shuai Guo
- Department of Urinary Surgery, Suzhou Ninth People’s Hospital, Soochow University, Suzhou, Jiangsu, China
| | - Yuhua Huang
- Department of Urinary Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
16
|
The Beneficial Role of Sirtuin 1 in Preventive or Therapeutic Options of Neurodegenerative Diseases. Neuroscience 2022; 504:79-92. [DOI: 10.1016/j.neuroscience.2022.09.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 09/08/2022] [Accepted: 09/28/2022] [Indexed: 11/06/2022]
|
17
|
Pharmacological Approaches to Decelerate Aging: A Promising Path. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:4201533. [PMID: 35860429 PMCID: PMC9293537 DOI: 10.1155/2022/4201533] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 05/24/2022] [Accepted: 06/26/2022] [Indexed: 11/17/2022]
Abstract
Biological aging or senescence is a course in which cellular function decreases over a period of time and is a consequence of altered signaling mechanisms that are triggered in stressed cells leading to cell damage. Aging is among the principal risk factors for many chronic illnesses such as cancer, cardiovascular disorders, and neurodegenerative diseases. Taking this into account, targeting fundamental aging mechanisms therapeutically may effectively impact numerous chronic illnesses. Selecting ideal therapeutic options in order to hinder the process of aging and decelerate the progression of age-related diseases is valuable. Along therapeutic options, life style modifications may well render the process of aging. The process of aging is affected by alteration in many cellular and signaling pathways amid which mTOR, SIRT1, and AMPK pathways are the most emphasized. Herein, we have discussed the mechanisms of aging focusing mainly on the mentioned pathways as well as the role of inflammation and autophagy in aging. Moreover, drugs and natural products with antiaging properties are discussed in detail.
Collapse
|
18
|
Saiyed AN, Vasavada AR, Johar SRK. Recent trends in miRNA therapeutics and the application of plant miRNA for prevention and treatment of human diseases. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2022; 8:24. [PMID: 35382490 PMCID: PMC8972743 DOI: 10.1186/s43094-022-00413-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 03/21/2022] [Indexed: 02/17/2023] Open
Abstract
Background Researchers now have a new avenue to investigate when it comes to miRNA-based therapeutics. miRNAs have the potential to be valuable biomarkers for disease detection. Variations in miRNA levels may be able to predict changes in normal physiological processes. At the epigenetic level, miRNA has been identified as a promising candidate for distinguishing and treating various diseases and defects. Main body In recent pharmacology, plants miRNA-based drugs have demonstrated a potential role in drug therapeutics. The purpose of this review paper is to discuss miRNA-based therapeutics, the role of miRNA in pharmacoepigenetics modulations, plant miRNA inter-kingdom regulation, and the therapeutic value and application of plant miRNA for cross-kingdom approaches. Target prediction and complementarity with host genes, as well as cross-kingdom gene interactions with plant miRNAs, are also revealed by bioinformatics research. We also show how plant miRNA can be transmitted from one species to another by crossing kingdom boundaries in this review. Despite several unidentified barriers to plant miRNA cross-transfer, plant miRNA-based gene regulation in trans-kingdom gene regulation may soon be valued as a possible approach in plant-based drug therapeutics. Conclusion This review summarised the biochemical synthesis of miRNAs, pharmacoepigenetics, drug therapeutics and miRNA transkingdom transfer.
Collapse
Affiliation(s)
- Atiyabanu N. Saiyed
- Department of Cell and Molecular Biology, Iladevi Cataract and IOL Research Centre, Ahmedabad, Gujarat India
- Ph.D. scholar of Manipal Academy of Higher Education, Manipal, Karnataka India
| | - Abhay R. Vasavada
- Department of Cell and Molecular Biology, Iladevi Cataract and IOL Research Centre, Ahmedabad, Gujarat India
| | - S. R. Kaid Johar
- Department of Zoology, BMTC, Human Genetics, USSC, Gujarat University, Ahmedabad, Gujarat India
| |
Collapse
|
19
|
Albasher G, Alkahtani S, Al-Harbi LN. Urolithin A prevents streptozotocin-induced diabetic cardiomyopathy in rats by activating SIRT1. Saudi J Biol Sci 2022; 29:1210-1220. [PMID: 35241966 PMCID: PMC8865018 DOI: 10.1016/j.sjbs.2021.09.045] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 08/18/2021] [Accepted: 09/13/2021] [Indexed: 12/23/2022] Open
Abstract
This study examined the cardiac anti-cardiomyopathy (DC) protective effect of urolithin A in streptozotocin (STZ)-treated rats and investigated if this protection involves activation of SIRT1 signaling. Diabetes was induced first STZ (65 mg/kg, i.p.) before starting the experiments. Adult male rats (n = 8/group) were treated for 8 weeks as control (non-diabetic), control + urolithin A (2.5 mg/kg/i.p.), STZ, STZ + urolithin A, and STZ + urolithin A + Ex-527 (1 mg/kg/i.p.) (a SIRT1 inhibitor). With no effect on fasting glucose and insulin levels, urolithin A improved left ventricular (LV) function and structure and reduced heart weight and serum levels of cardiac markers in STZ-treated rats. Also, it prevented collagen deposition, reduced mRNA levels of Bax, cleaved caspaspe3, collagen 1A1, transforming growth factor-β1 (TGF-β1), and Smad3 but enhanced those of Bcl2 in the LVs of diabetic rats. However, urolithin A suppressed the generation of reactive oxygen species (ROS), activated the nuclear factor erythroid 2–related factor 2 (Nrf2), and increased the levels of manganese superoxide dismutase (MnSOD) and total glutathione (GSH) in the LVs of the non-diabetic and diabetic rats, In parallel, it suppressed the cardiac activity of NF-nuclear factor-kappa beta p65 (κB p65) and reduced levels of tumor necrosis factor-α (TNF-α), and interleukin-6 (IL-6). Coincided with these events, urolithin A promoted higher activity, mRNA, and total/nuclear protein levels of SIRT1 and lowered the levels of acetyl-FOXO1, Nrf2, NF-κB, and p53. All these benefits of urolithin A were prevented by Ex-527. In conclusion, urolithin A protects against DC by activating SIRT signaling.
Collapse
|
20
|
Zheng M, Hu C, Wu M, Chin YE. Emerging role of SIRT2 in non-small cell lung cancer. Oncol Lett 2021; 22:731. [PMID: 34429771 PMCID: PMC8371967 DOI: 10.3892/ol.2021.12992] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 04/16/2021] [Indexed: 11/14/2022] Open
Abstract
Non-small cell lung cancer (NSCLC) is one of the most devastating cancer types, accounting for >80% of lung cancer cases. The median relative survival time of patients with NSCLC is <1 year. Lysine acetylation is a major post-translational modification that is required for various biological processes, and abnormal protein acetylation is associated with various diseases, including NSCLC. Protein deacetylases are currently considered cancer permissive partly due to malignant cells being sensitive to deacetylase inhibition. Sirtuin 2 (SIRT2), a primarily cytosolic nicotinamide adenine dinucleotide-dependent class III protein deacetylase, has been shown to catalyze the removal of acetyl groups from a wide range of proteins, including tubulin, ribonucleotide reductase regulatory subunit M2 and glucose-6-phosphate dehydrogenase. In addition, SIRT2 is also known to possess lysine fatty deacylation activity. Physiologically, SIRT2 serves as a regulator of the cell cycle and of cellular metabolism. It has been shown to play important roles in proliferation, migration and invasion during carcinogenesis. It is notable that both oncogenic and tumor suppressive functions of SIRT2 have been described in NSCLC and other cancer types, suggesting a context-specific role of SIRT2 in cancer progression. In addition, inhibition of SIRT2 exhibits a broad anticancer effect, indicating its potential as a therapeutic for NSCLC tumors with high expression of SIRT2. However, due to the diverse molecular and genetic characteristics of NSCLC, the context-specific function of SIRT2 remains to be determined. The current review investigated the functions of SIRT2 during NSCLC progression with regard to its regulation of metabolism, stem cell-like features and autophagy.
Collapse
Affiliation(s)
- Mengge Zheng
- Institute of Biology and Medical Sciences, Soochow University Medical College, Suzhou, Jiangsu 215123, P.R. China
| | - Changyong Hu
- Institute of Biology and Medical Sciences, Soochow University Medical College, Suzhou, Jiangsu 215123, P.R. China
| | - Meng Wu
- Institute of Biology and Medical Sciences, Soochow University Medical College, Suzhou, Jiangsu 215123, P.R. China
| | - Yue Eugene Chin
- Institute of Biology and Medical Sciences, Soochow University Medical College, Suzhou, Jiangsu 215123, P.R. China
| |
Collapse
|
21
|
Mortezaee K, Najafi M, Farhood B, Ahmadi A, Shabeeb D, Musa AE. Resveratrol as an Adjuvant for Normal Tissues Protection and Tumor Sensitization. Curr Cancer Drug Targets 2021; 20:130-145. [PMID: 31738153 DOI: 10.2174/1568009619666191019143539] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 07/12/2019] [Accepted: 07/22/2019] [Indexed: 12/24/2022]
Abstract
Cancer is one of the most complicated diseases in present-day medical science. Yearly, several studies suggest various strategies for preventing carcinogenesis. Furthermore, experiments for the treatment of cancer with low side effects are ongoing. Chemotherapy, targeted therapy, radiotherapy and immunotherapy are the most common non-invasive strategies for cancer treatment. One of the most challenging issues encountered with these modalities is low effectiveness, as well as normal tissue toxicity for chemo-radiation therapy. The use of some agents as adjuvants has been suggested to improve tumor responses and also alleviate normal tissue toxicity. Resveratrol, a natural flavonoid, has attracted a lot of attention for the management of both tumor and normal tissue responses to various modalities of cancer therapy. As an antioxidant and anti-inflammatory agent, in vitro and in vivo studies show that it is able to mitigate chemo-radiation toxicity in normal tissues. However, clinical studies to confirm the usage of resveratrol as a chemo-radioprotector are lacking. In addition, it can sensitize various types of cancer cells to both chemotherapy drugs and radiation. In recent years, some clinical studies suggested that resveratrol may have an effect on inducing cancer cell killing. Yet, clinical translation of resveratrol has not yielded desirable results for the combination of resveratrol with radiotherapy, targeted therapy or immunotherapy. In this paper, we review the potential role of resveratrol for preserving normal tissues and sensitization of cancer cells in combination with different cancer treatment modalities.
Collapse
Affiliation(s)
- Keywan Mortezaee
- Department of Anatomy, School of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Masoud Najafi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Bagher Farhood
- Department of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Amirhossein Ahmadi
- Pharmaceutical Sciences Research Center, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari 48175-861, Iran
| | - Dheyauldeen Shabeeb
- Department of Physiology, College of Medicine, University of Misan, Misan, Iraq
| | - Ahmed E Musa
- Department of Medical Physics, Tehran University of Medical Sciences (International Campus), Tehran, Iran
| |
Collapse
|
22
|
Liu J, Gong Z, Wu J, Liu S, Wang X, Wang J, Xu J, Li J, Zhao Y. Hypoxic postconditioning-induced neuroprotection increases neuronal autophagy via activation of the SIRT1/FoxO1 signaling pathway in rats with global cerebral ischemia. Exp Ther Med 2021; 22:695. [PMID: 33986859 PMCID: PMC8111876 DOI: 10.3892/etm.2021.10127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Accepted: 09/02/2020] [Indexed: 11/27/2022] Open
Abstract
Hypoxic postconditioning (HPC) has been reported to be a beneficial and promising treatment for global cerebral ischemia (GCI). However, its neuroprotective mechanism remains unclear. The aim of the present study was to determine whether the protective effects of HPC in a rat model of GCI were due to the upregulation of autophagy via the silent information regulator transcript-1 (SIRT1)/Forkhead box protein 1 (FoxO1) pathway. Morris water maze test revealed that HPC attenuated cognitive damage in GCI rats. HPC also significantly increased the levels of the autophagy-related protein LC3-II, SIRT1 and FoxO1 compared with those in the GCI group. However, the HPC-induced LC3-II upregulation was blocked by the SIRT1 inhibitor EX527. These results suggested that the beneficial effects of HPC on GCI rats were due to the upregulation of ischemiainduced autophagy and involved the SIRT1/FoxO1 signaling pathway.
Collapse
Affiliation(s)
- Junjie Liu
- College of Clinical Medicine, North China University of Science and Technology, Tangshan, Hebei 063000, P.R. China.,Department of Neurosurgery, The Affiliated Hospital of North China University of Science and Technology, Tangshan, Hebei 063000, P.R. China
| | - Zehua Gong
- College of Clinical Medicine, North China University of Science and Technology, Tangshan, Hebei 063000, P.R. China.,Department of Neurosurgery, The Affiliated Hospital of North China University of Science and Technology, Tangshan, Hebei 063000, P.R. China
| | - Juan Wu
- College of Nursing and Rehabilitation, North China University of Science and Technology, Tangshan, Hebei 063000, P.R. China
| | - Shaopeng Liu
- College of Clinical Medicine, North China University of Science and Technology, Tangshan, Hebei 063000, P.R. China
| | - Xue Wang
- College of Nursing and Rehabilitation, North China University of Science and Technology, Tangshan, Hebei 063000, P.R. China
| | - Jingyao Wang
- College of Clinical Medicine, North China University of Science and Technology, Tangshan, Hebei 063000, P.R. China
| | - Jiwei Xu
- Department of Neurosurgery, The Affiliated Hospital of North China University of Science and Technology, Tangshan, Hebei 063000, P.R. China
| | - Jianmin Li
- College of Clinical Medicine, North China University of Science and Technology, Tangshan, Hebei 063000, P.R. China.,Department of Neurosurgery, The Affiliated Hospital of North China University of Science and Technology, Tangshan, Hebei 063000, P.R. China
| | - Yaning Zhao
- College of Nursing and Rehabilitation, North China University of Science and Technology, Tangshan, Hebei 063000, P.R. China
| |
Collapse
|
23
|
Almajali B, Al-Jamal HAN, Taib WRW, Ismail I, Johan MF, Doolaanea AA, Ibrahim WN. Thymoquinone, as a Novel Therapeutic Candidate of Cancers. Pharmaceuticals (Basel) 2021; 14:369. [PMID: 33923474 PMCID: PMC8074212 DOI: 10.3390/ph14040369] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/06/2021] [Accepted: 04/13/2021] [Indexed: 12/11/2022] Open
Abstract
To date, natural products are widely used as pharmaceutical agents for many human diseases and cancers. One of the most popular natural products that have been studied for anticancer properties is thymoquinone (TQ). As a bioactive compound of Nigella sativa, TQ has shown anticancer activities through the inhibition of cell proliferation, migration, and invasion. The anticancer efficacy of TQ is being investigated in several human cancers such as pancreatic cancer, breast cancer, colon cancer, hepatic cancer, cervical cancer, and leukemia. Even though TQ induces apoptosis by regulating the expression of pro- apoptotic and anti-apoptotic genes in many cancers, the TQ effect mechanism on such cancers is not yet fully understood. Therefore, the present review has highlighted the TQ effect mechanisms on several signaling pathways and expression of tumor suppressor genes (TSG). Data from relevant published experimental articles on TQ from 2015 to June 2020 were selected by using Google Scholar and PubMed search engines. The present study investigated the effectiveness of TQ alone or in combination with other anticancer therapeutic agents, such as tyrosine kinase inhibitors on cancers, as a future anticancer therapy nominee by using nanotechnology.
Collapse
Affiliation(s)
- Belal Almajali
- School of Biomedicine, Faculty of Health Sciences, Universiti Sultan Zainal Abidin (UniSZA), Terengganu 21300, Malaysia; (B.A.); (W.R.W.T.); (I.I.)
| | - Hamid Ali Nagi Al-Jamal
- School of Biomedicine, Faculty of Health Sciences, Universiti Sultan Zainal Abidin (UniSZA), Terengganu 21300, Malaysia; (B.A.); (W.R.W.T.); (I.I.)
| | - Wan Rohani Wan Taib
- School of Biomedicine, Faculty of Health Sciences, Universiti Sultan Zainal Abidin (UniSZA), Terengganu 21300, Malaysia; (B.A.); (W.R.W.T.); (I.I.)
| | - Imilia Ismail
- School of Biomedicine, Faculty of Health Sciences, Universiti Sultan Zainal Abidin (UniSZA), Terengganu 21300, Malaysia; (B.A.); (W.R.W.T.); (I.I.)
| | - Muhammad Farid Johan
- Department of Haematology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan 16150, Malaysia;
| | - Abd Almonem Doolaanea
- Department of Pharmaceutical Technology, Faculty of Pharmacy, International Islamic University Malaysia, Kuantan 25594, Malaysia;
| | - Wisam Nabeel Ibrahim
- Department of Biomedical Sciences, College of Health sciences, QU Health, Qatar University, Doha 2713, Qatar;
| |
Collapse
|
24
|
IL-38 restrains inflammatory response of collagen-induced arthritis in rats via SIRT1/HIF-1α signaling pathway. Biosci Rep 2021; 40:223089. [PMID: 32347300 PMCID: PMC7256678 DOI: 10.1042/bsr20182431] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 04/26/2020] [Accepted: 04/27/2020] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVE To observe the restraining effect of IL-38 on inflammatory response in collagen-induced arthritis rats (CIA), and to explore the regulatory mechanism of SIRT1/HIF-1α signaling pathway. METHODS 40 SD rats were randomly divided into Control group, CIA group, CLL group and CLH group, with 10 rats in each group; CIA rat model was established. The effects of IL-38 on arthritis index, inflammatory response, osteogenic factor and angiogenic factor were observed by methods including HE staining, ELISA, immunohistochemical and immunofluorescence. Human synoviocytes were cultured in vitro, and SIRT1 inhibitors were added to detect the expression for relating factors of SIRT1/HIF-1α signaling pathway by Western blot. RESULTS IL-38 could alleviate CIA joint damage and restrain inflammatory response, could up-regulate the expression of OPG in CIA rats and could down-regulate the expression of RANKL and RANK. IL-38 could restrain the expression of VEGF, VEGFR1, VEGFR2 and HIF. Moreover, we found that IL-38 could up-regulate the SIRT1 expression and down-regulate the HIF-1α, TLR4 and NF-KB p65 expression in CLL and CLH groups. From the treatment of synoviocytes to simulate the CIA model and the treatment of SIRT1 inhibitors, we demonstrated that the inhibitory effect of IL-38 on inflammatory factors and regulation of SIRT1/HIF-1α signaling pathway-related proteins were inhibited. CONCLUSION IL-38 can restrain the inflammatory response of CIA rats, can promote the expression of osteogenic factors, can inhibit neovascularization, and can alleviate joint damage in rats. The mechanism may be related to the regulation of SIRT1/HIF-1α signaling pathway.
Collapse
|
25
|
Rezk NA, Lashin MB, Sabbah NA. MiRNA 34-a regulate SIRT-1 and Foxo-1 expression in endometriosis. Noncoding RNA Res 2021; 6:35-41. [PMID: 33718673 PMCID: PMC7905260 DOI: 10.1016/j.ncrna.2021.02.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 01/27/2021] [Accepted: 02/07/2021] [Indexed: 01/24/2023] Open
Abstract
PURPOSE The role of the Sirutin 1 (SIRT1) and MicroRNA-34 a (miR-34a) in endometriosis and the extent to which the miR-34a/SIRT1/p53 signaling pathway is involved in its pathogenesis is unclear, so we aimed to investigate the expression of miRNA 34-a, SIRT1, Forkhead boxO (FoxO-1), p53 and other apoptotic markers in endometrial tissue of women with endometriosis in order to better understand their role and the mechanisms of their actions in the pathogenesis of such disease and if it is related to apoptosis or not. METHODS Ectopic and eutopic endometriotic tissues were collected from seventy women with endometriosis while normal endometrial tissues were obtained from 40 fertile women without endometriosis and then gene expression of SIRT-1, miR-34a,p53, Bax, Bcl-2, Bcl-xL and FoxO-1 were measured using RT-PCR. RESULTS We detected that SIRT-1 and Bcl-xL genes expressions was significantly up-regulated while miRNA34-a,p53, Bax, Bcl-2 and FoxO-1 were down-regulated in endometrial tissue of endometriotic patients compared to that of those without endometriosis. There was an inverse relationship between SIRT-1a, Bcl-xL genes expressions and miR-34a, p53, Bax, Bcl-2 expressions as well as FoxO-1 expression. These results imply that miR-34a might regulate p53 through SIRT-1 and subsequently FoxO-1 expression in endometriotic tissue, and so it can contribute to the pathogenesis of endometriosis by decreasing the naturally occurring apoptosis in endometrium. CONCLUSION This study may provide a potential biomarker for endometriosis therapeutics. Identification of target genes downstream of these transcriptional factors would allow better understanding of their respective roles in the pathogenesis of endometriosis.
Collapse
Affiliation(s)
- Noha A. Rezk
- Medical Biochemistry Department, Faculty of Human Medicine, Zagazig University, Zagazig, Egypt
| | - Mohamad Bakry Lashin
- Gynecology & Obstetrics Department, Faculty of Human Medicine, Zagazig University, Zagazig, Egypt
| | - Norhan A. Sabbah
- Medical Biochemistry Department, Faculty of Human Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
26
|
Radogna F, Gérard D, Dicato M, Diederich M. Assessment of Mitochondrial Cell Metabolism by Respiratory Chain Electron Flow Assays. Methods Mol Biol 2021; 2276:129-141. [PMID: 34060037 DOI: 10.1007/978-1-0716-1266-8_9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Cellular energy metabolism is regulated by complex metabolic pathways. Although anaerobic glycolysis was reported as a primary source of energy in cancer leading to a high rate of lactate production, current evidence shows that the main energy source supporting cancer cell metabolism relies on mitochondrial metabolism. Mitochondria are the key organelle maintaining optimal cellular energy levels. MitoPlate™ S-1 provides a highly reproducible bioenergetics tool to analyze the electron flow rate in live cells. Measuring the rates of electron flow into and through the electron transport chain using different NADH and FADH2-producing metabolic substrates enables the assessment of mitochondrial functionality. MitoPlate™ S-1 are 96-well microplates pre-coated with different substrates used as probes to examine the activity of mitochondrial metabolic pathways based on a colorimetric assay. A comparative metabolic analysis between cell lines or primary cells allows to establish a specific metabolic profile and to detect possible alterations of the mitochondrial function of a tumor cell. Moreover, the direct measurements of electron flux triggered by metabolic pathway activation could highlight targets for potential drug candidates.
Collapse
Affiliation(s)
- Flavia Radogna
- Laboratoire de Biologie Moléculaire et Cellulaire du Cancer, Hôpital Kirchberg, Luxembourg, Luxembourg
| | - Déborah Gérard
- Laboratoire de Biologie Moléculaire et Cellulaire du Cancer, Hôpital Kirchberg, Luxembourg, Luxembourg
| | - Mario Dicato
- Laboratoire de Biologie Moléculaire et Cellulaire du Cancer, Hôpital Kirchberg, Luxembourg, Luxembourg
| | - Marc Diederich
- College of Pharmacy, Seoul National University, Seoul, South Korea.
| |
Collapse
|
27
|
Rezaeian L, Kalalian-Moghaddam H, Mohseni F, Khaksari M, Rafaiee R. Effects of berberine hydrochloride on methamphetamine-induced anxiety behaviors and relapse in rats. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2020; 23:1480-1488. [PMID: 33235706 PMCID: PMC7671426 DOI: 10.22038/ijbms.2020.47285.10884] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Objective(s): This research aimed at evaluating the effect of berberine hydrochloride on anxiety-related behaviors induced by methamphetamine (METH) in rats, assessing relapse and neuroprotective effects. Materials and Methods: 27 male Wistar rats were randomly assigned into groups of Control, METH-withdrawal (METH addiction and subsequent withdrawal), and METH addiction with berberine hydrochloride oral treatment (100 mg/kg/per day) during the three weeks of withdrawal. Two groups received inhaled METH self-administration for two weeks (up to 10 mg/kg). The elevated plus maze (EPM) test and open field test (OFT) were carried out one day after the last berberine treatment and relapse was assessed by conditional place preference (CPP) test. TUNEL assay and immunofluorescence staining for NF-κB, TLR4, Sirt1, and α-actin expression in the hippocampus were tested. Results: After 3 weeks withdrawal, berberine hydrochloride decreased locomotor activity and reduced anxiety-related behaviors in comparison with the METH-withdrawal group (P<0.001). The obtained results from CPP showed that berberine significantly reduced relapse (P<0.01). Significantly decrease in activation of TLR4, Sirt1, and α-actin in METH-withdrawal group was found and the percentage of TLR4, Sirt1, and α-actin improved in berberine-treated group (P<0.001). A significant activity rise of NF-κB of cells in the METH-withdrawal group was detected compared to berberine-treated and control groups (P<0.001). Conclusion: Treatment with berberine hydrochloride via modulating neuroinflammation may be considered as a potential new medication for the treatment of METH addiction and relapse. The histological assays supported the neuroprotective effects of berberine in the hippocampus.
Collapse
Affiliation(s)
- Leila Rezaeian
- Department of Addiction Studies, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | | | - Fahimeh Mohseni
- Student Research Committee, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Mehdi Khaksari
- Department of Physiology, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Raheleh Rafaiee
- Department of Neuroscience, School of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
28
|
Mitochondrial Respiratory Chain and Its Regulatory Elements SIRT1 and SIRT3 Play Important Role in the Initial Process of Energy Conversion after Moxibustion at Local Skin. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:2343817. [PMID: 32904439 PMCID: PMC7456489 DOI: 10.1155/2020/2343817] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 06/04/2020] [Accepted: 07/23/2020] [Indexed: 11/17/2022]
Abstract
Objectives To study how thermal energy is converted after moxibustion at local skin from the view of mitochondrial respiratory chain and its key regulatory elements of sirtuins 1 (SIRT1) and sirtuins 3 (SIRT3). Methods Two moxibustion temperatures usually used in clinical practice (38°C and 46°C) were applied to Zusanli (ST36) acupoint for 30 minutes in C57BL/6J mice. Local skin samples were harvested at 30 min and 72 h after moxibustion intervention, respectively. The activity of mitochondrial respiratory chain complexes I–V was detected by spectrophotometry. The expression of SIRT1 and SIRT3 protein was detected by immunofluorescence staining or western blot. Results Moxibustion at 38°C triggered more significant increase of mitochondrial respiratory chain complexes I–V expression. However, the protein expression of SIRT1 and SIRT3 at 46°C showed more obvious enhancement. In addition, the effect of mitochondrial respiratory chain complexes I–V activity on local skin of ST36 acupoint was more obvious at 30 min after moxibustion, while the expression of SIRT1 and SIRT3 protein was more significant at 72 h after moxibustion. Conclusion Mitochondrial respiratory chain and its key regulatory element proteins SIRT1 and SIRT3 play important role in the initial process of thermal energy conversion stimulated by different moxibustion temperatures in local skin.
Collapse
|
29
|
Muraoka H, Hasegawa K, Sakamaki Y, Minakuchi H, Kawaguchi T, Yasuda I, Kanda T, Tokuyama H, Wakino S, Itoh H. Role of Nampt-Sirt6 Axis in Renal Proximal Tubules in Extracellular Matrix Deposition in Diabetic Nephropathy. Cell Rep 2020; 27:199-212.e5. [PMID: 30943401 DOI: 10.1016/j.celrep.2019.03.024] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 02/16/2019] [Accepted: 03/07/2019] [Indexed: 10/27/2022] Open
Abstract
Nicotinamide adenine dinucleotide (NAD+) metabolism plays a critical role in kidneys. We previously reported that decreased secretion of a NAD+ precursor, nicotinamide mononucleotide (NMN), from proximal tubules (PTs) can trigger diabetic albuminuria. In the present study, we investigated the role of NMN-producing enzyme nicotinamide phosphoribosyltransferase (Nampt) in diabetic nephropathy. The expression of Nampt in PTs was downregulated in streptozotocin (STZ)-treated diabetic mice when they exhibited albuminuria. This albuminuria was ameliorated in PT-specific Nampt-overexpressing transgenic (TG) mice. PT-specific Nampt-conditional knockout (Nampt CKO) mice exhibited TBM thickening and collagen deposition, which were associated with the upregulation of the profibrogenic gene TIMP-1. Nampt CKO mice also exhibited the downregulation of sirtuins, particularly in Sirt6. PT-specific Sirt6-knockout mice exhibited enhanced fibrotic phenotype resembling that of Nampt CKO mice with increased Timp1 expression. In conclusion, the Nampt-Sirt6 axis in PTs serves as a key player in fibrogenic extracellular matrix remodeling in diabetic nephropathy.
Collapse
Affiliation(s)
- Hirokazu Muraoka
- Department of Internal Medicine, School of Medicine, Keio University, Tokyo 160-8582, Japan
| | - Kazuhiro Hasegawa
- Department of Internal Medicine, School of Medicine, Keio University, Tokyo 160-8582, Japan
| | - Yusuke Sakamaki
- Department of Internal Medicine, Tokyo Dental College Ichikawa General Hospital, Chiba 272-8583, Japan
| | - Hitoshi Minakuchi
- Department of Internal Medicine, School of Medicine, Keio University, Tokyo 160-8582, Japan
| | - Takahisa Kawaguchi
- Department of Internal Medicine, School of Medicine, Keio University, Tokyo 160-8582, Japan
| | - Itaru Yasuda
- Department of Internal Medicine, School of Medicine, Keio University, Tokyo 160-8582, Japan
| | - Takeshi Kanda
- Department of Internal Medicine, School of Medicine, Keio University, Tokyo 160-8582, Japan
| | - Hirobumi Tokuyama
- Department of Internal Medicine, School of Medicine, Keio University, Tokyo 160-8582, Japan
| | - Shu Wakino
- Department of Internal Medicine, School of Medicine, Keio University, Tokyo 160-8582, Japan.
| | - Hiroshi Itoh
- Department of Internal Medicine, School of Medicine, Keio University, Tokyo 160-8582, Japan
| |
Collapse
|
30
|
Jiang Y, Luo W, Wang B, Wang X, Gong P, Xiong Y. Resveratrol promotes osteogenesis via activating SIRT1/FoxO1 pathway in osteoporosis mice. Life Sci 2020; 246:117422. [DOI: 10.1016/j.lfs.2020.117422] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 01/30/2020] [Accepted: 02/10/2020] [Indexed: 12/27/2022]
|
31
|
Cordyceps cicadae Prevents Renal Tubular Epithelial Cell Apoptosis by Regulating the SIRT1/p53 Pathway in Hypertensive Renal Injury. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:7202519. [PMID: 32419819 PMCID: PMC7201718 DOI: 10.1155/2020/7202519] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 12/06/2019] [Accepted: 12/19/2019] [Indexed: 12/19/2022]
Abstract
Hypertensive renal injury is a primary etiology of end-stage renal disease, and satisfactory therapeutic strategies are urgently required. Cordyceps cicadae, a traditional Chinese herb, has potential renoprotective benefits and is widely used in the treatment of many kidney diseases. To investigate the mechanisms underlying the renoprotective effect of C. cicadae on hypertensive renal injury, we studied the effect of C. cicadae on tubular epithelial cells (TECs) in a spontaneously hypertensive rat (SHR) model and angiotensin II- (AngII-) cultured primary TECs. Our study showed that C. cicadae treatment could decrease 24-hour urine albumin, albumin-to-creatinine ratio (ACR), β2-MG level, and kidney injury molecule-1 (kim-1) level in SHR urine, alleviate interstitial fibrosis, and reduce α-smooth muscle actin (α-SMA) expression in SHR kidney. In primary TECs, medicated serum containing C. cicadae (CSM) might significantly reduce the AngII-induced production of kim-1 and neutrophil gelatinase-associated lipocalin (NGAL). Furthermore, C. cicadae treatment could decrease TEC apoptosis in SHRs as assessed by the terminal transferase-mediated biotin dUTP nick-end labeling (TUNEL) assay. CSM could inhibit caspase-3 activity and enhance cellular viability as measured by methyl thiazolyl tetrazolium in AngII-cultured TECs, suggesting that CSM might reduce the apoptosis level in TECs induced by AngII. We found that the SIRT1 expression level was markedly lowered, while the protein level of acetylated-p53 was elevated in the TECs of patients with hypertensive renal injury and SHRs. C. cicadae presented the effect of regulating the SIRT1/p53 pathway. Further SIRT1 inhibition with EX527 reversed the effect of C. cicadae on AngII-induced apoptosis. Taken together, our results indicate that C. cicadae offers a protective effect on TECs under hypertensive conditions, which may be related to its antiapoptotic effect through regulation of the SIRT1/p53 pathway.
Collapse
|
32
|
Chen T, Wu H, Chen X, Xie R, Wang F, Sun H, Chen L. p53 Mediates GnRH Secretion via Lin28/let-7 System in GT1-7 Cells. Diabetes Metab Syndr Obes 2020; 13:4681-4688. [PMID: 33299335 PMCID: PMC7720897 DOI: 10.2147/dmso.s279901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 11/17/2020] [Indexed: 12/01/2022] Open
Abstract
STUDY OBJECTIVE The well-known tumor suppressor transcriptional factor p53 has been proposed to be one of the central hubs of a functionally related and hierarchically arranged gene network coordinating pubertal timing. Our previous studies revealed that p53 is involved in the metabolic control of puberty. The current study aimed to investigate the underlying signaling pathway, through which p53 mediated the metabolic control of puberty. DESIGN SETTING PARTICIPANTS INTERVENTIONS AND MAIN OUTCOME MEASURES We engineered the expression of p53 and/or Lin28a in GT1-7 cells to investigate the interaction between p53 and Lin28/let-7 system, and their impact on GnRH secretion. RESULTS Overexpression of p53 stimulated, while inhibition of p53 by pifithrin-α significantly suppressed the GnRH secretion and GPR54 expression levels in response to kisspeptin stimulation in GT1-7 cells. Furthermore, overexpressed p53 suppressed Lin28a and c-Myc expression levels and increased let-7 expression levels in GT1-7 cell lines. On the other hand, inhibition of p53 by pifithrin-α upregulated Lin28a and c-Myc levels and downregulated let-7 expression levels. Moreover, Lin28a overexpression counteracted the effect of p53 overexpression in p53 and Lin28a co-overexpression cells, whose GnRH secretion and GPR54 expression levels were not different from controls. Meanwhile, Lin28a suppression counteracted the effect of pifithrin-α, and the GnRH secretion and GPR54 expression levels are not different from controls in p53 and Lin28a co-suppression cells. CONCLUSION These data suggest that p53 is a central mediator of GnRH secretion in hypothalamus, and this effect is at least partly through the Lin28/let-7 pathway.
Collapse
Affiliation(s)
- Ting Chen
- Department of Endocrinology, Genetics and Metabolism, Children’s Hospital of Soochow University, Suzhou215000Jiangsu, People’s Republic of China
- Correspondence: Ting Chen Department of Endocrinology, Genetics, and Metabolism, Children’s Hospital of Soochow University, Suzhou, Jiangsu, People’s Republic of ChinaTel +86-512-8069-8322 Email
| | - Haiying Wu
- Department of Endocrinology, Genetics and Metabolism, Children’s Hospital of Soochow University, Suzhou215000Jiangsu, People’s Republic of China
| | - Xiuli Chen
- Department of Endocrinology, Genetics and Metabolism, Children’s Hospital of Soochow University, Suzhou215000Jiangsu, People’s Republic of China
| | - Rongrong Xie
- Department of Endocrinology, Genetics and Metabolism, Children’s Hospital of Soochow University, Suzhou215000Jiangsu, People’s Republic of China
| | - Fengyun Wang
- Department of Endocrinology, Genetics and Metabolism, Children’s Hospital of Soochow University, Suzhou215000Jiangsu, People’s Republic of China
| | - Hui Sun
- Department of Endocrinology, Genetics and Metabolism, Children’s Hospital of Soochow University, Suzhou215000Jiangsu, People’s Republic of China
| | - Linqi Chen
- Department of Endocrinology, Genetics and Metabolism, Children’s Hospital of Soochow University, Suzhou215000Jiangsu, People’s Republic of China
| |
Collapse
|
33
|
Utani K, Aladjem MI. Extra View: Sirt1 Acts As A Gatekeeper Of Replication Initiation To Preserve Genomic Stability. Nucleus 2019; 9:261-267. [PMID: 29578371 PMCID: PMC5973197 DOI: 10.1080/19491034.2018.1456218] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Since the discovery of a yeast gene silencing modifier (Silent Information Modifier 2, SIR2) and its role in maintaining genomic stability more than two decades ago, SIR2 homologs (sirtuins) were identified in diverse species. Sirtuins are protein deacetylases that play diverse roles in proper cellular metabolism including cell cycle progression and maintenance of genomic stability. In yeast, SIR2 interacts with replication origins and protein complexes that affect both replication origin usage and gene silencing. In metazoans, the largest SIR2 homolog, SIRT1, is implicated in epigenetic modifications, circadian signaling, DNA recombination and DNA repair. Until recently, very few studies investigated the role of mammalian SIRT1 in modulating DNA replication. We discuss a newly characterized interaction between human SIRT1 and the DNA replication machinery, reviewing data from recent studies that have investigated how complex signaling pathways that involve SIRT1 affect cellular growth regulatory circuits.
Collapse
Affiliation(s)
- Koichi Utani
- a Department of Microbiology , Kanazawa Medical University , Uchinada Ishikawa , Japan
| | - Mirit I Aladjem
- b Developmental Therapeutics Branch, Center for Cancer Research , NCI, NIH , Bethesda , MD , USA
| |
Collapse
|
34
|
Ren Z, He H, Zuo Z, Xu Z, Wei Z, Deng J. The role of different SIRT1-mediated signaling pathways in toxic injury. Cell Mol Biol Lett 2019; 24:36. [PMID: 31164908 PMCID: PMC6543624 DOI: 10.1186/s11658-019-0158-9] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 05/09/2019] [Indexed: 01/07/2023] Open
Abstract
Common environmental pollutants and drugs encountered in everyday life can cause toxic damage to the body through oxidative stress, inflammatory stimulation, induction of apoptosis, and inhibition of energy metabolism. Silent information regulator 1 (SIRT1), a nicotinamide adenine dinucleotide-dependent deacetylase, is a member of the evolutionarily highly conserved Sir2 (silent information regulator 2) superprotein family, which is located in the nucleus and cytoplasm. It can deacetylate protein substrates in various signal transduction pathways to regulate gene expression, cell apoptosis and senescence, participate in the process of neuroprotection, energy metabolism, inflammation and the oxidative stress response in living organisms, and plays an important role in toxic damage caused by toxicants and in the process of SIRT1 activator/inhibitor antagonized toxic damage. This review summarizes the role that SIRT1 plays in toxic damage caused by toxicants via its interactions with protein substrates in certain signaling pathways.
Collapse
Affiliation(s)
- Zhihua Ren
- 1Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130 Sichuan Province China
| | - Hongyi He
- 1Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130 Sichuan Province China
| | - Zhicai Zuo
- 1Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130 Sichuan Province China
| | - Zhiwen Xu
- 1Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130 Sichuan Province China
| | - Zhanyong Wei
- 2The College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002 Henan Province China
| | - Junliang Deng
- 1Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130 Sichuan Province China
| |
Collapse
|
35
|
Inhibition of TLR9 attenuates skeletal muscle fibrosis in aged sarcopenic mice via the p53/SIRT1 pathway. Exp Gerontol 2019; 122:25-33. [PMID: 31003004 DOI: 10.1016/j.exger.2019.04.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 04/03/2019] [Accepted: 04/15/2019] [Indexed: 01/08/2023]
Abstract
Sarcopenia is an age-related syndrome characterized by a gradual loss of muscle mass and function, but its pathophysiological mechanism remains unclear. Skeletal muscle extracellular matrix (ECM) remodeling is an important pathological change in sarcopenia, and fibrosis is the most obvious manifestation of this change. We found that the expression of the immunoreceptor Toll-like receptor 9 (TLR9) is significantly increased in skeletal muscle in aged mice and is positively related to muscle fibrosis. Moreover, in previous reports, the longevity gene Sirt1 was reported to attenuate ECM deposition and improve muscle function. In this study, we hypothesized that TLR9 modulated skeletal muscle fibrosis via Sirt1. We used TLR9 knockout (TLR9 KO) mice and C57 mice, and grip strength and body composition were compared at different ages. We found that TLR9 knockout significantly attenuated skeletal muscle fibrosis and improved muscle function in aged mice. Furthermore, silent information regulator 1 (Sirt1) activity in mice was inhibited by Ex527, which is a specific inhibitor of Sirt1. Negative Sirt1 regulation via the activation of TLR9-related signaling pathways participated in skeletal muscle fibrosis in the sarcopenic mice, and this process might mediated by the Sirt1/Smad signaling pathway. Our findings revealed that fibrosis changes in the gastrocnemius muscle in sarcopenic mice are closely related to TLR9 activation, and TLR9 modulation could be a therapeutic strategy for combating sarcopenia during aging.
Collapse
|
36
|
Abstract
SIGNIFICANCE NAD+ and NADP+ are important cosubstrates in redox reactions and participate in regulatory networks operating in adjustment of metabolic pathways. Moreover, NAD+ is a cosubstrate in post-translational modification of proteins and is involved in DNA repair. NADPH is indispensable for reductive syntheses and the redox chemistry involved in attaining and maintaining correct protein conformation. Recent Advances: Within a couple of decades, a wealth of information has been gathered on NAD(H)+/NADP(H) redox imaging, regulatory role of redox potential in assembly of spatial protein structures, and the role of ADP-ribosylation of regulatory proteins affecting both gene expression and metabolism. All these have a bearing also on disease, healthy aging, and longevity. CRITICAL ISSUES Knowledge of the signal propagation pathways of NAD+-dependent post-translational modifications is still fragmentary for explaining the mechanism of cellular stress effects and nutritional state on these actions. Evaluation of the cosubstrate and regulator roles of NAD(H) and NADP(H) still suffers from some controversies in experimental data. FUTURE DIRECTIONS Activating or inhibiting interventions in NAD+-dependent protein modifications for medical purposes has shown promise, but restraining tumor growth by inhibiting DNA repair in tumors by means of interference in sirtuins is still in the early stage. The same is true for the use of this technology in improving health and healthy aging. New genetically encoded specific NAD and NADP probes are expected to modernize the research on redox biology.
Collapse
Affiliation(s)
- Ilmo E Hassinen
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| |
Collapse
|
37
|
Tekin L, Edgunlu T, Celik SK. Lack of association between sirtuin gene variants and endometrial cancer. Meta Gene 2019. [DOI: 10.1016/j.mgene.2018.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
|
38
|
Bódis J, Sulyok E, Kőszegi T, Gödöny K, Prémusz V, Várnagy Á. Serum and follicular fluid levels of sirtuin 1, sirtuin 6, and resveratrol in women undergoing in vitro fertilization: an observational, clinical study. J Int Med Res 2018; 47:772-782. [PMID: 30556451 PMCID: PMC6381453 DOI: 10.1177/0300060518811228] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Objective This observational, clinical study was designed to assess the role of sirtuin 1 (SIRT1), sirtuin 6 (SIRT6), and resveratrol in in vitro fertilization (IVF). Methods Paired serum and follicular fluid (FF) samples were obtained from 30 consecutive patients (age: 36.43 ± 4.17 years, body mass index: 22.90 ± 2.05 kg/m2, duration of infertility: 5.10 ± 2.80 years) who received IVF treatment. SIRT1, SIRT6, and resveratrol levels were measured by enzyme-linked immunosorbent assay. Results Ovarian hyperstimulation resulted in significantly higher serum SIRT1 levels in pregnant women (8 patients) compared with non-pregnant women (22 patients). SIRT6 levels remained unchanged after ovarian hyperstimulation, but were significantly lower in pregnant women compared with non-pregnant women before and after hyperstimulation. Both SIRTs were detected in FF, but they appeared to be independent of their serum levels. After correction for confounders, FF SIRT6 levels were positively related to mature oocytes (F = 6.609), whereas serum SIRT1 and SIRT6 levels were related to clinical pregnancy (F = 10.008, F = 5.268, respectively). Conclusions Our study shows that SIRT1 and SIRT6, but not resveratrol, are involved in human reproduction and they may have a role in oocyte maturation and clinical pregnancy in IVF.
Collapse
Affiliation(s)
- József Bódis
- 1 MTA-PTE Human Reproduction Scientific Research Group, University of Pécs, Pécs, Hungary
| | - Endre Sulyok
- 2 Doctoral School of Health Sciences, Faculty of Health Sciences, University of Pécs, Pécs, Hungary
| | - Tamás Kőszegi
- 3 Department of Laboratory Medicine, Medical School, University of Pécs, Pécs, Hungary
| | - Krisztina Gödöny
- 1 MTA-PTE Human Reproduction Scientific Research Group, University of Pécs, Pécs, Hungary.,4 Department of Obstetrics and Gynaecology, Medical School, University of Pécs, Pécs, Hungary
| | - Viktória Prémusz
- 1 MTA-PTE Human Reproduction Scientific Research Group, University of Pécs, Pécs, Hungary.,2 Doctoral School of Health Sciences, Faculty of Health Sciences, University of Pécs, Pécs, Hungary
| | - Ákos Várnagy
- 4 Department of Obstetrics and Gynaecology, Medical School, University of Pécs, Pécs, Hungary
| |
Collapse
|
39
|
De U, Son JY, Sachan R, Park YJ, Kang D, Yoon K, Lee BM, Kim IS, Moon HR, Kim HS. A New Synthetic Histone Deacetylase Inhibitor, MHY2256, Induces Apoptosis and Autophagy Cell Death in Endometrial Cancer Cells via p53 Acetylation. Int J Mol Sci 2018; 19:2743. [PMID: 30217020 PMCID: PMC6164480 DOI: 10.3390/ijms19092743] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 09/07/2018] [Accepted: 09/10/2018] [Indexed: 12/28/2022] Open
Abstract
We previously discovered a novel sirtuin (SIRT) inhibitor, MHY2256, that exerts anticancer activity through p53 acetylation in MCF-7 human breast cancer cells. We investigated the anticancer activity of MHY2256 against hormone-related cancer, an endometrial cancer with a poor prognosis. The IC50 values of MHY2256 were shown to be much lower than those of salermide, a well-known SIRT inhibitor. Furthermore, MHY2256 significantly reduced the protein expression and activities of SIRT1, 2, and 3, with similar effects to salermide. Particularly, MHY2256 markedly inhibited tumor growth in a tumor xenograft mouse model of Ishikawa cancer cells. During the experimental period, there was no significant change in the body weight of mice treated with MHY2256. A detailed analysis of the sensitization mechanisms of Ishikawa cells revealed that late apoptosis was largely increased by MHY2256. Additionally, MHY2256 increased G1 arrest and reduced the number of cell cyclic-related proteins, suggesting that apoptosis by MHY2256 was achieved by cellular arrest. Particularly, p21 was greatly increased by MHY225656, suggesting that cell cycle arrest by p21 is a major factor in MHY2256 sensitization in Ishikawa cells. We also detected a significant increase in acetylated p53, a target protein of SIRT1, in Ishikawa cells after MHY2256 treatment. In a mouse xenograft model, MHY2256 significantly reduced tumor growth and weight without apparent side effects. These results suggest that MHY2256 exerts its anticancer activity through p53 acetylation in endometrial cancer and can be used for targeting hormone-related cancers.
Collapse
Affiliation(s)
- Umasankar De
- School of Pharmacy, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon 16419, Korea.
| | - Ji Yeon Son
- School of Pharmacy, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon 16419, Korea.
| | - Richa Sachan
- School of Pharmacy, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon 16419, Korea.
| | - Yu Jin Park
- School of Pharmacy, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon 16419, Korea.
| | - Dongwan Kang
- College of Pharmacy, Pusan National University, Busandaehak-ro 63 beon-gil 2, Geumjeong-gu, Busan 46241, Korea.
| | - Kyungsil Yoon
- Comparative Biomedicine Research Branch, Division of Translational Science, National Cancer Center, 323 Ilsandong-gu, Goyang-si 10408, Korea.
| | - Byung Mu Lee
- School of Pharmacy, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon 16419, Korea.
| | - In Su Kim
- School of Pharmacy, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon 16419, Korea.
| | - Hyung Ryong Moon
- College of Pharmacy, Pusan National University, Busandaehak-ro 63 beon-gil 2, Geumjeong-gu, Busan 46241, Korea.
| | - Hyung Sik Kim
- School of Pharmacy, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon 16419, Korea.
| |
Collapse
|
40
|
Ye X, Li M, Hou T, Gao T, Zhu WG, Yang Y. Sirtuins in glucose and lipid metabolism. Oncotarget 2018; 8:1845-1859. [PMID: 27659520 PMCID: PMC5352102 DOI: 10.18632/oncotarget.12157] [Citation(s) in RCA: 139] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 09/13/2016] [Indexed: 01/02/2023] Open
Abstract
Sirtuins are evolutionarily conserved protein, serving as nicotinamide adenine dinucleotide-dependent deacetylases or adenosine diphosphate-ribosyltransferases. The mammalian sirtuins family, including SIRT1~7, is involved in many biological processes such as cell survival, proliferation, senescence, stress response, genome stability and metabolism. Evidence accumulated over the past two decades has indicated that sirtuins not only serve as important energy status sensors but also protect cells against metabolic stresses. In this review, we summarize the background of glucose and lipid metabolism concerning sirtuins and discuss the functions of sirtuins in glucose and lipid metabolism. We also seek to highlight the biological roles of certain sirtuins members in cancer metabolism.
Collapse
Affiliation(s)
- Xin Ye
- Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing, China
| | - Meiting Li
- Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing, China
| | - Tianyun Hou
- Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing, China
| | - Tian Gao
- Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing, China
| | - Wei-Guo Zhu
- Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing, China
| | - Yang Yang
- Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing, China
| |
Collapse
|
41
|
Ruan L, Wang L, Wang X, He M, Yao X. SIRT1 contributes to neuroendocrine differentiation of prostate cancer. Oncotarget 2018; 9:2002-2016. [PMID: 29416748 PMCID: PMC5788616 DOI: 10.18632/oncotarget.23111] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 11/11/2017] [Indexed: 01/04/2023] Open
Abstract
The epigenetic factor SIRT1 can promote prostate cancer progression, but it is unclear whether SIRT1 contributes to neuroendocrine differentiation. In this study, we showed that androgen deprivation can induce reactive oxygen species production and that reactive oxygen species, in turn, activate SIRT1 expression. The increased SIRT1 expression induces neuroendocrine differentiation of prostate cancer cells by activating the Akt pathway. In addition, the interaction between Akt and SIRT1 is independent of N-Myc and can drive the development of neuroendocrine prostate cancer when N-Myc is blocked. Furthermore, SIRT1 facilitates tumor maintenance, and targeting SIRT1 may reduce the tumor burden during androgen deprivation. Our findings suggest that SIRT1 is a potential target for therapeutic intervention.
Collapse
Affiliation(s)
- Lin Ruan
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Hebei University of Chinese Medicine, Shijiazhuang, China
- Department of Nephrology, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Lei Wang
- Department of Urology, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xiaosong Wang
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Hebei University of Chinese Medicine, Shijiazhuang, China
- College of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Ming He
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Hebei University of Chinese Medicine, Shijiazhuang, China
- College of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Xiaoguang Yao
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Hebei University of Chinese Medicine, Shijiazhuang, China
- College of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China
| |
Collapse
|
42
|
Angelini F, Pagano F, Bordin A, Picchio V, De Falco E, Chimenti I. Getting Old through the Blood: Circulating Molecules in Aging and Senescence of Cardiovascular Regenerative Cells. Front Cardiovasc Med 2017; 4:62. [PMID: 29057227 PMCID: PMC5635266 DOI: 10.3389/fcvm.2017.00062] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 09/19/2017] [Indexed: 12/11/2022] Open
Abstract
Global aging is a hallmark of our century. The natural multifactorial process resulting in aging involves structural and functional changes, affecting molecules, cells, and tissues. As the western population is getting older, we are witnessing an increase in the burden of cardiovascular events, some of which are known to be directly linked to cellular senescence and dysfunction. In this review, we will focus on the description of a few circulating molecules, which have been correlated to life span, aging, and cardiovascular homeostasis. We will review the current literature concerning the circulating levels and related signaling pathways of selected proteins (insulin-like growth factor 1, growth and differentiation factor-11, and PAI-1) and microRNAs of interest (miR-34a, miR-146a, miR-21), whose bloodstream levels have been associated to aging in different organisms. In particular, we will also discuss their potential role in the biology and senescence of cardiovascular regenerative cell types, such as endothelial progenitor cells, mesenchymal stromal cells, and cardiac progenitor cells.
Collapse
Affiliation(s)
- Francesco Angelini
- Department of Medical Surgical Sciences and Biotechnologies, "La Sapienza" University of Rome, Latina, Italy
| | - Francesca Pagano
- Department of Medical Surgical Sciences and Biotechnologies, "La Sapienza" University of Rome, Latina, Italy
| | - Antonella Bordin
- Department of Medical Surgical Sciences and Biotechnologies, "La Sapienza" University of Rome, Latina, Italy
| | - Vittorio Picchio
- Department of Medical Surgical Sciences and Biotechnologies, "La Sapienza" University of Rome, Latina, Italy
| | - Elena De Falco
- Department of Medical Surgical Sciences and Biotechnologies, "La Sapienza" University of Rome, Latina, Italy
| | - Isotta Chimenti
- Department of Medical Surgical Sciences and Biotechnologies, "La Sapienza" University of Rome, Latina, Italy
| |
Collapse
|
43
|
Wilking-Busch MJ, Ndiaye MA, Liu X, Ahmad N. RNA interference-mediated knockdown of SIRT1 and/or SIRT2 in melanoma: Identification of downstream targets by large-scale proteomics analysis. J Proteomics 2017; 170:99-109. [PMID: 28882678 DOI: 10.1016/j.jprot.2017.09.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 08/14/2017] [Accepted: 09/03/2017] [Indexed: 02/07/2023]
Abstract
Melanoma is the most notorious and fatal of all skin cancers and the existing treatment options have not been proven to effectively manage this neoplasm, especially the metastatic disease. Sirtuin (SIRT) proteins have been shown to be differentially expressed in melanoma. We have shown that SIRTs 1 and 2 were overexpressed in melanoma and inhibition of SIRT1 imparts anti-proliferative responses in human melanoma cells. To elucidate the impact of SIRT 1 and/or 2 in melanoma, we created stable knockdowns of SIRTs 1, 2, and their combination using shRNA mediated RNA interference in A375 human melanoma cells. We found that SIRT1 and SIRT1&2 combination knockdown caused a decreased cellular proliferation in melanoma cells. Further, the knockdown of SIRT 1 and/or 2 resulted in a decreased colony formation in melanoma cells. To explore the downstream targets of SIRTs 1 and/or 2, we employed a label-free quantitative nano-LC-MS/MS proteomics analysis using the stable lines. We found aberrant levels of proteins involved in many vital cellular processes, including cytoskeletal organization, ribosomal activity, oxidative stress response, and angiogenesis. These findings provide clear evidence of cellular systems undergoing alterations in response to sirtuin inhibition, and have unveiled several excellent candidates for future study. SIGNIFICANCE Melanoma is the deadliest form of skin cancer, due to its aggressive nature, metastatic potential, and a lack of sufficient treatment options for advanced disease. Therefore, detailed investigations into the molecular mechanisms of melanoma growth and progression are needed. In the search for candidate genes to serve as therapeutic targets, the sirtuins show promise as they have been found to be upregulated in melanoma and they regulate a large number of proteins involved in cellular processes known to affect tumor growth, such as DNA damage repair, cell cycle arrest, and apoptosis. In this study, we used a large-scale label-free comparative proteomics system to identify novel protein targets that are affected following knockdown of SIRT1 and/or 2 in A375 metastatic melanoma cell line. Our study offers important insight into the potential downstream targets of SIRTs 1 and/or 2. This may unravel new potential areas of exploration in melanoma research.
Collapse
Affiliation(s)
- Melissa J Wilking-Busch
- Department of Dermatology, University of Wisconsin, 1300 University Avenue, Madison, WI 53706, USA
| | - Mary A Ndiaye
- Department of Dermatology, University of Wisconsin, 1300 University Avenue, Madison, WI 53706, USA
| | - Xiaoqi Liu
- Department of Biochemistry, Purdue University, 175 S. University Street, West Lafayette, IN, USA
| | - Nihal Ahmad
- Department of Dermatology, University of Wisconsin, 1300 University Avenue, Madison, WI 53706, USA; William S. Middleton VA Medical Center, 2500 Overlook Terrace, Madison, WI 53705, USA.
| |
Collapse
|
44
|
Yang J, Nishihara R, Zhang X, Ogino S, Qian ZR. Energy sensing pathways: Bridging type 2 diabetes and colorectal cancer? J Diabetes Complications 2017; 31:1228-1236. [PMID: 28465145 PMCID: PMC5501176 DOI: 10.1016/j.jdiacomp.2017.04.012] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Revised: 04/04/2017] [Accepted: 04/10/2017] [Indexed: 12/14/2022]
Abstract
The recently rapid increase of obesity and type 2 diabetes mellitus has caused great burden to our society. A positive association between type 2 diabetes and risk of colorectal cancer has been reported by increasing epidemiological studies. The molecular mechanism of this connection remains elusive. However, type 2 diabetes may result in abnormal carbohydrate and lipid metabolism, high levels of circulating insulin, insulin growth factor-1, and adipocytokines, as well as chronic inflammation. All these factors could lead to the alteration of energy sensing pathways such as the AMP activated kinase (PRKA), mechanistic (mammalian) target of rapamycin (mTOR), SIRT1, and autophagy signaling pathways. The resulted impaired SIRT1 and autophagy signaling pathway could increase the risk of gene mutation and cancer genesis by decreasing genetic stability and DNA mismatch repair. The dysregulated mTOR and PRKA pathway could remodel cell metabolism during the growth and metastasis of cancer in order for the cancer cell to survive the unfavorable microenvironment such as hypoxia and low blood supply. Moreover, these pathways may be coupling metabolic and epigenetic alterations that are central to oncogenic transformation. Further researches including molecular pathologic epidemiologic studies are warranted to better address the precise links between these two important diseases.
Collapse
Affiliation(s)
- Juhong Yang
- Department of Oncologic Pathology, Dana-Farber Cancer Institute and Harvard Medical School, 450 Brookline Ave., Boston, MA 02215; 211 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Key Laboratory of Hormone and Development (Ministry of Health), Metabolic Disease Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300070, China.
| | - Reiko Nishihara
- Department of Oncologic Pathology, Dana-Farber Cancer Institute and Harvard Medical School, 450 Brookline Ave., Boston, MA 02215; Division of MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital, and Harvard Medical School, 75 Francis Street, Boston, MA 02115; Department of Epidemiology, Harvard School of Public Health, 677 Huntington Ave., Boston, MA 02115
| | - Xuehong Zhang
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, and Harvard Medical School, 75 Francis Street, Boston, MA 02115
| | - Shuji Ogino
- Department of Oncologic Pathology, Dana-Farber Cancer Institute and Harvard Medical School, 450 Brookline Ave., Boston, MA 02215; Division of MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital, and Harvard Medical School, 75 Francis Street, Boston, MA 02115; Department of Epidemiology, Harvard School of Public Health, 677 Huntington Ave., Boston, MA 02115
| | - Zhi Rong Qian
- Department of Oncologic Pathology, Dana-Farber Cancer Institute and Harvard Medical School, 450 Brookline Ave., Boston, MA 02215.
| |
Collapse
|
45
|
Garland J. Unravelling the complexity of signalling networks in cancer: A review of the increasing role for computational modelling. Crit Rev Oncol Hematol 2017; 117:73-113. [PMID: 28807238 DOI: 10.1016/j.critrevonc.2017.06.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 06/01/2017] [Accepted: 06/08/2017] [Indexed: 02/06/2023] Open
Abstract
Cancer induction is a highly complex process involving hundreds of different inducers but whose eventual outcome is the same. Clearly, it is essential to understand how signalling pathways and networks generated by these inducers interact to regulate cell behaviour and create the cancer phenotype. While enormous strides have been made in identifying key networking profiles, the amount of data generated far exceeds our ability to understand how it all "fits together". The number of potential interactions is astronomically large and requires novel approaches and extreme computation methods to dissect them out. However, such methodologies have high intrinsic mathematical and conceptual content which is difficult to follow. This review explains how computation modelling is progressively finding solutions and also revealing unexpected and unpredictable nano-scale molecular behaviours extremely relevant to how signalling and networking are coherently integrated. It is divided into linked sections illustrated by numerous figures from the literature describing different approaches and offering visual portrayals of networking and major conceptual advances in the field. First, the problem of signalling complexity and data collection is illustrated for only a small selection of known oncogenes. Next, new concepts from biophysics, molecular behaviours, kinetics, organisation at the nano level and predictive models are presented. These areas include: visual representations of networking, Energy Landscapes and energy transfer/dissemination (entropy); diffusion, percolation; molecular crowding; protein allostery; quinary structure and fractal distributions; energy management, metabolism and re-examination of the Warburg effect. The importance of unravelling complex network interactions is then illustrated for some widely-used drugs in cancer therapy whose interactions are very extensive. Finally, use of computational modelling to develop micro- and nano- functional models ("bottom-up" research) is highlighted. The review concludes that computational modelling is an essential part of cancer research and is vital to understanding network formation and molecular behaviours that are associated with it. Its role is increasingly essential because it is unravelling the huge complexity of cancer induction otherwise unattainable by any other approach.
Collapse
Affiliation(s)
- John Garland
- Manchester Interdisciplinary Biocentre, Manchester University, Manchester, UK.
| |
Collapse
|
46
|
Calapre L, Gray ES, Kurdykowski S, David A, Descargues P, Ziman M. SIRT1 activation mediates heat-induced survival of UVB damaged Keratinocytes. BMC DERMATOLOGY 2017; 17:8. [PMID: 28601088 PMCID: PMC5466784 DOI: 10.1186/s12895-017-0060-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 06/02/2017] [Indexed: 11/10/2022]
Abstract
Background Exposure to heat stress after UVB irradiation induces a reduction of apoptosis, resulting in survival of DNA damaged human keratinocytes. This heat-mediated evasion of apoptosis appears to be mediated by activation of SIRT1 and inactivation of p53 signalling. In this study, we assessed the role of SIRT1 in the inactivation of p53 signalling and impairment of DNA damage response in UVB plus heat exposed keratinocytes. Results Activation of SIRT1 after multiple UVB plus heat exposures resulted in increased p53 deacetylation at K382, which is known to affect its binding to specific target genes. Accordingly, we noted decreased apoptosis and down regulation of the p53 targeted pro-apoptotic gene BAX and the DNA repair genes ERCC1 and XPC after UVB plus heat treatments. In addition, UVB plus heat induced increased expression of the cell survival gene Survivin and the proliferation marker Ki67. Notably, keratinocytes exposed to UVB plus heat in the presence of the SIRT1 inhibitor, Ex-527, showed a similar phenotype to those exposed to UV alone; i.e. an increase in p53 acetylation, increased apoptosis and low levels of Survivin. Conclusion This study demonstrate that heat-induced SIRT1 activation mediates survival of DNA damaged keratinocytes through deacetylation of p53 after exposure to UVB plus heat Electronic supplementary material The online version of this article (doi:10.1186/s12895-017-0060-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Leslie Calapre
- School of Medical Science, Edith Cowan University, 270 Joondalup Drive, Joondalup, Perth, WA, 6027, Australia
| | - Elin S Gray
- School of Medical Science, Edith Cowan University, 270 Joondalup Drive, Joondalup, Perth, WA, 6027, Australia
| | | | - Anthony David
- GENOSKIN Centre Pierre Potier, Oncopole, Toulouse, France
| | | | - Mel Ziman
- School of Medical Science, Edith Cowan University, 270 Joondalup Drive, Joondalup, Perth, WA, 6027, Australia. .,School of Pathology and Laboratory Medicine, University of Western Australia, Crawley, WA, Australia.
| |
Collapse
|
47
|
Bartosch C, Lopes JM, Jerónimo C. Epigenetics in endometrial carcinogenesis - part 2: histone modifications, chromatin remodeling and noncoding RNAs. Epigenomics 2017; 9:873-892. [PMID: 28523964 DOI: 10.2217/epi-2016-0167] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Carcinogenesis is a multistep multifactorial process that involves the accumulation of genetic and epigenetic alterations. In the past two decades, there has been an exponential growth of knowledge establishing the importance of epigenetic changes in cancer. Our work focused on reviewing the main role of epigenetics in the pathogenesis of endometrial carcinoma, highlighting the reported results concerning each epigenetic mechanistic layer. In a previous review, we assessed DNA methylation alterations. The present review examines the contribution of histone modifications, chromatin remodeling and noncoding RNA alterations for endometrial carcinogenesis.
Collapse
Affiliation(s)
- Carla Bartosch
- Department of Pathology, Portuguese Oncology Institute of Porto (IPO-Porto), Porto, Portugal.,Cancer Biology & Epigenetics Group, Research Center (CI-IPOP), Portuguese Oncology Institute of Porto, Porto, Portugal.,Department of Pathology & Oncology, Medical Faculty, University of Porto, Porto, Portugal.,Porto Comprehensive Cancer Center (P.ccc), Porto, Portugal
| | - José Manuel Lopes
- Department of Pathology & Oncology, Medical Faculty, University of Porto, Porto, Portugal.,Department of Pathology, Centro Hospitalar São João (CHSJ), Porto, Portugal.,IPATIMUP (Institute of Molecular Pathology & Immunology, University of Porto); I3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Carmen Jerónimo
- Cancer Biology & Epigenetics Group, Research Center (CI-IPOP), Portuguese Oncology Institute of Porto, Porto, Portugal.,Porto Comprehensive Cancer Center (P.ccc), Porto, Portugal.,Department of Pathology & Molecular Immunology, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| |
Collapse
|
48
|
Chen J, Sysol JR, Singla S, Zhao S, Yamamura A, Valdez-Jasso D, Abbasi T, Shioura KM, Sahni S, Reddy V, Sridhar A, Gao H, Torres J, Camp SM, Tang H, Ye SQ, Comhair S, Dweik R, Hassoun P, Yuan JXJ, Garcia JGN, Machado RF. Nicotinamide Phosphoribosyltransferase Promotes Pulmonary Vascular Remodeling and Is a Therapeutic Target in Pulmonary Arterial Hypertension. Circulation 2017; 135:1532-1546. [PMID: 28202489 DOI: 10.1161/circulationaha.116.024557] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 02/06/2017] [Indexed: 11/16/2022]
Abstract
BACKGROUND Pulmonary arterial hypertension is a severe and progressive disease, a hallmark of which is pulmonary vascular remodeling. Nicotinamide phosphoribosyltransferase (NAMPT) is a cytozyme that regulates intracellular nicotinamide adenine dinucleotide levels and cellular redox state, regulates histone deacetylases, promotes cell proliferation, and inhibits apoptosis. We hypothesized that NAMPT promotes pulmonary vascular remodeling and that inhibition of NAMPT could attenuate pulmonary hypertension. METHODS Plasma, mRNA, and protein levels of NAMPT were measured in the lungs and isolated pulmonary artery endothelial cells from patients with pulmonary arterial hypertension and in the lungs of rodent models of pulmonary hypertension. Nampt+/- mice were exposed to 10% hypoxia and room air for 4 weeks, and the preventive and therapeutic effects of NAMPT inhibition were tested in the monocrotaline and Sugen hypoxia models of pulmonary hypertension. The effects of NAMPT activity on proliferation, migration, apoptosis, and calcium signaling were tested in human pulmonary artery smooth muscle cells. RESULTS Plasma and mRNA and protein levels of NAMPT were increased in the lungs and isolated pulmonary artery endothelial cells from patients with pulmonary arterial hypertension, as well as in lungs of rodent models of pulmonary hypertension. Nampt+/- mice were protected from hypoxia-mediated pulmonary hypertension. NAMPT activity promoted human pulmonary artery smooth muscle cell proliferation via a paracrine effect. In addition, recombinant NAMPT stimulated human pulmonary artery smooth muscle cell proliferation via enhancement of store-operated calcium entry by enhancing expression of Orai2 and STIM2. Last, inhibition of NAMPT activity attenuated monocrotaline and Sugen hypoxia-induced pulmonary hypertension in rats. CONCLUSIONS Our data provide evidence that NAMPT plays a role in pulmonary vascular remodeling and that its inhibition could be a potential therapeutic target for pulmonary arterial hypertension.
Collapse
Affiliation(s)
- Jiwang Chen
- From Division of Pulmonary, Critical Care Medicine, Sleep and Allergy, Department of Medicine (J.C., J.R.S., S.S., S.Z., A.Y., T.A., K.M.S., S.S., V.R., A.S., H.G., J.T., R.F.M.), Department of Pharmacology (J.R.S., R.F.M.), and Department of Bioengineering (A.V.-J., T.A.), University of Illinois at Chicago; Institute of Precision Medicine, Jining Medical University, China (J.C.); Department of Pharmacy, College of Pharmacy, Kinjo Gakuin University, Nagoya, Japan (A.Y.); Department of Medicine, Mercy Hospital and Medical Center, Chicago, IL (T.A.); Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (H.G.); Department of Medicine, University of Arizona, Tucson (S.M.C., H.T., J.X.-J.Y., J.G.N.G.); Department of Biomedical and Health Informatics and Department of Pediatrics, Children's Mercy Hospital and University of Missouri-Kansas City School of Medicine (S.Q.Y.); Department of Pathobiology, Lerner Research Institute, Pulmonary and Critical Care Medicine, Respiratory Institute, Cleveland Clinic, OH (S.C., R.D.); and Division of Pulmonary and Critical Care Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD (P.H.)
| | - Justin R Sysol
- From Division of Pulmonary, Critical Care Medicine, Sleep and Allergy, Department of Medicine (J.C., J.R.S., S.S., S.Z., A.Y., T.A., K.M.S., S.S., V.R., A.S., H.G., J.T., R.F.M.), Department of Pharmacology (J.R.S., R.F.M.), and Department of Bioengineering (A.V.-J., T.A.), University of Illinois at Chicago; Institute of Precision Medicine, Jining Medical University, China (J.C.); Department of Pharmacy, College of Pharmacy, Kinjo Gakuin University, Nagoya, Japan (A.Y.); Department of Medicine, Mercy Hospital and Medical Center, Chicago, IL (T.A.); Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (H.G.); Department of Medicine, University of Arizona, Tucson (S.M.C., H.T., J.X.-J.Y., J.G.N.G.); Department of Biomedical and Health Informatics and Department of Pediatrics, Children's Mercy Hospital and University of Missouri-Kansas City School of Medicine (S.Q.Y.); Department of Pathobiology, Lerner Research Institute, Pulmonary and Critical Care Medicine, Respiratory Institute, Cleveland Clinic, OH (S.C., R.D.); and Division of Pulmonary and Critical Care Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD (P.H.)
| | - Sunit Singla
- From Division of Pulmonary, Critical Care Medicine, Sleep and Allergy, Department of Medicine (J.C., J.R.S., S.S., S.Z., A.Y., T.A., K.M.S., S.S., V.R., A.S., H.G., J.T., R.F.M.), Department of Pharmacology (J.R.S., R.F.M.), and Department of Bioengineering (A.V.-J., T.A.), University of Illinois at Chicago; Institute of Precision Medicine, Jining Medical University, China (J.C.); Department of Pharmacy, College of Pharmacy, Kinjo Gakuin University, Nagoya, Japan (A.Y.); Department of Medicine, Mercy Hospital and Medical Center, Chicago, IL (T.A.); Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (H.G.); Department of Medicine, University of Arizona, Tucson (S.M.C., H.T., J.X.-J.Y., J.G.N.G.); Department of Biomedical and Health Informatics and Department of Pediatrics, Children's Mercy Hospital and University of Missouri-Kansas City School of Medicine (S.Q.Y.); Department of Pathobiology, Lerner Research Institute, Pulmonary and Critical Care Medicine, Respiratory Institute, Cleveland Clinic, OH (S.C., R.D.); and Division of Pulmonary and Critical Care Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD (P.H.)
| | - Shuangping Zhao
- From Division of Pulmonary, Critical Care Medicine, Sleep and Allergy, Department of Medicine (J.C., J.R.S., S.S., S.Z., A.Y., T.A., K.M.S., S.S., V.R., A.S., H.G., J.T., R.F.M.), Department of Pharmacology (J.R.S., R.F.M.), and Department of Bioengineering (A.V.-J., T.A.), University of Illinois at Chicago; Institute of Precision Medicine, Jining Medical University, China (J.C.); Department of Pharmacy, College of Pharmacy, Kinjo Gakuin University, Nagoya, Japan (A.Y.); Department of Medicine, Mercy Hospital and Medical Center, Chicago, IL (T.A.); Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (H.G.); Department of Medicine, University of Arizona, Tucson (S.M.C., H.T., J.X.-J.Y., J.G.N.G.); Department of Biomedical and Health Informatics and Department of Pediatrics, Children's Mercy Hospital and University of Missouri-Kansas City School of Medicine (S.Q.Y.); Department of Pathobiology, Lerner Research Institute, Pulmonary and Critical Care Medicine, Respiratory Institute, Cleveland Clinic, OH (S.C., R.D.); and Division of Pulmonary and Critical Care Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD (P.H.)
| | - Aya Yamamura
- From Division of Pulmonary, Critical Care Medicine, Sleep and Allergy, Department of Medicine (J.C., J.R.S., S.S., S.Z., A.Y., T.A., K.M.S., S.S., V.R., A.S., H.G., J.T., R.F.M.), Department of Pharmacology (J.R.S., R.F.M.), and Department of Bioengineering (A.V.-J., T.A.), University of Illinois at Chicago; Institute of Precision Medicine, Jining Medical University, China (J.C.); Department of Pharmacy, College of Pharmacy, Kinjo Gakuin University, Nagoya, Japan (A.Y.); Department of Medicine, Mercy Hospital and Medical Center, Chicago, IL (T.A.); Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (H.G.); Department of Medicine, University of Arizona, Tucson (S.M.C., H.T., J.X.-J.Y., J.G.N.G.); Department of Biomedical and Health Informatics and Department of Pediatrics, Children's Mercy Hospital and University of Missouri-Kansas City School of Medicine (S.Q.Y.); Department of Pathobiology, Lerner Research Institute, Pulmonary and Critical Care Medicine, Respiratory Institute, Cleveland Clinic, OH (S.C., R.D.); and Division of Pulmonary and Critical Care Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD (P.H.)
| | - Daniela Valdez-Jasso
- From Division of Pulmonary, Critical Care Medicine, Sleep and Allergy, Department of Medicine (J.C., J.R.S., S.S., S.Z., A.Y., T.A., K.M.S., S.S., V.R., A.S., H.G., J.T., R.F.M.), Department of Pharmacology (J.R.S., R.F.M.), and Department of Bioengineering (A.V.-J., T.A.), University of Illinois at Chicago; Institute of Precision Medicine, Jining Medical University, China (J.C.); Department of Pharmacy, College of Pharmacy, Kinjo Gakuin University, Nagoya, Japan (A.Y.); Department of Medicine, Mercy Hospital and Medical Center, Chicago, IL (T.A.); Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (H.G.); Department of Medicine, University of Arizona, Tucson (S.M.C., H.T., J.X.-J.Y., J.G.N.G.); Department of Biomedical and Health Informatics and Department of Pediatrics, Children's Mercy Hospital and University of Missouri-Kansas City School of Medicine (S.Q.Y.); Department of Pathobiology, Lerner Research Institute, Pulmonary and Critical Care Medicine, Respiratory Institute, Cleveland Clinic, OH (S.C., R.D.); and Division of Pulmonary and Critical Care Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD (P.H.)
| | - Taimur Abbasi
- From Division of Pulmonary, Critical Care Medicine, Sleep and Allergy, Department of Medicine (J.C., J.R.S., S.S., S.Z., A.Y., T.A., K.M.S., S.S., V.R., A.S., H.G., J.T., R.F.M.), Department of Pharmacology (J.R.S., R.F.M.), and Department of Bioengineering (A.V.-J., T.A.), University of Illinois at Chicago; Institute of Precision Medicine, Jining Medical University, China (J.C.); Department of Pharmacy, College of Pharmacy, Kinjo Gakuin University, Nagoya, Japan (A.Y.); Department of Medicine, Mercy Hospital and Medical Center, Chicago, IL (T.A.); Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (H.G.); Department of Medicine, University of Arizona, Tucson (S.M.C., H.T., J.X.-J.Y., J.G.N.G.); Department of Biomedical and Health Informatics and Department of Pediatrics, Children's Mercy Hospital and University of Missouri-Kansas City School of Medicine (S.Q.Y.); Department of Pathobiology, Lerner Research Institute, Pulmonary and Critical Care Medicine, Respiratory Institute, Cleveland Clinic, OH (S.C., R.D.); and Division of Pulmonary and Critical Care Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD (P.H.)
| | - Krystyna M Shioura
- From Division of Pulmonary, Critical Care Medicine, Sleep and Allergy, Department of Medicine (J.C., J.R.S., S.S., S.Z., A.Y., T.A., K.M.S., S.S., V.R., A.S., H.G., J.T., R.F.M.), Department of Pharmacology (J.R.S., R.F.M.), and Department of Bioengineering (A.V.-J., T.A.), University of Illinois at Chicago; Institute of Precision Medicine, Jining Medical University, China (J.C.); Department of Pharmacy, College of Pharmacy, Kinjo Gakuin University, Nagoya, Japan (A.Y.); Department of Medicine, Mercy Hospital and Medical Center, Chicago, IL (T.A.); Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (H.G.); Department of Medicine, University of Arizona, Tucson (S.M.C., H.T., J.X.-J.Y., J.G.N.G.); Department of Biomedical and Health Informatics and Department of Pediatrics, Children's Mercy Hospital and University of Missouri-Kansas City School of Medicine (S.Q.Y.); Department of Pathobiology, Lerner Research Institute, Pulmonary and Critical Care Medicine, Respiratory Institute, Cleveland Clinic, OH (S.C., R.D.); and Division of Pulmonary and Critical Care Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD (P.H.)
| | - Sakshi Sahni
- From Division of Pulmonary, Critical Care Medicine, Sleep and Allergy, Department of Medicine (J.C., J.R.S., S.S., S.Z., A.Y., T.A., K.M.S., S.S., V.R., A.S., H.G., J.T., R.F.M.), Department of Pharmacology (J.R.S., R.F.M.), and Department of Bioengineering (A.V.-J., T.A.), University of Illinois at Chicago; Institute of Precision Medicine, Jining Medical University, China (J.C.); Department of Pharmacy, College of Pharmacy, Kinjo Gakuin University, Nagoya, Japan (A.Y.); Department of Medicine, Mercy Hospital and Medical Center, Chicago, IL (T.A.); Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (H.G.); Department of Medicine, University of Arizona, Tucson (S.M.C., H.T., J.X.-J.Y., J.G.N.G.); Department of Biomedical and Health Informatics and Department of Pediatrics, Children's Mercy Hospital and University of Missouri-Kansas City School of Medicine (S.Q.Y.); Department of Pathobiology, Lerner Research Institute, Pulmonary and Critical Care Medicine, Respiratory Institute, Cleveland Clinic, OH (S.C., R.D.); and Division of Pulmonary and Critical Care Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD (P.H.)
| | - Vamsi Reddy
- From Division of Pulmonary, Critical Care Medicine, Sleep and Allergy, Department of Medicine (J.C., J.R.S., S.S., S.Z., A.Y., T.A., K.M.S., S.S., V.R., A.S., H.G., J.T., R.F.M.), Department of Pharmacology (J.R.S., R.F.M.), and Department of Bioengineering (A.V.-J., T.A.), University of Illinois at Chicago; Institute of Precision Medicine, Jining Medical University, China (J.C.); Department of Pharmacy, College of Pharmacy, Kinjo Gakuin University, Nagoya, Japan (A.Y.); Department of Medicine, Mercy Hospital and Medical Center, Chicago, IL (T.A.); Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (H.G.); Department of Medicine, University of Arizona, Tucson (S.M.C., H.T., J.X.-J.Y., J.G.N.G.); Department of Biomedical and Health Informatics and Department of Pediatrics, Children's Mercy Hospital and University of Missouri-Kansas City School of Medicine (S.Q.Y.); Department of Pathobiology, Lerner Research Institute, Pulmonary and Critical Care Medicine, Respiratory Institute, Cleveland Clinic, OH (S.C., R.D.); and Division of Pulmonary and Critical Care Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD (P.H.)
| | - Arvind Sridhar
- From Division of Pulmonary, Critical Care Medicine, Sleep and Allergy, Department of Medicine (J.C., J.R.S., S.S., S.Z., A.Y., T.A., K.M.S., S.S., V.R., A.S., H.G., J.T., R.F.M.), Department of Pharmacology (J.R.S., R.F.M.), and Department of Bioengineering (A.V.-J., T.A.), University of Illinois at Chicago; Institute of Precision Medicine, Jining Medical University, China (J.C.); Department of Pharmacy, College of Pharmacy, Kinjo Gakuin University, Nagoya, Japan (A.Y.); Department of Medicine, Mercy Hospital and Medical Center, Chicago, IL (T.A.); Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (H.G.); Department of Medicine, University of Arizona, Tucson (S.M.C., H.T., J.X.-J.Y., J.G.N.G.); Department of Biomedical and Health Informatics and Department of Pediatrics, Children's Mercy Hospital and University of Missouri-Kansas City School of Medicine (S.Q.Y.); Department of Pathobiology, Lerner Research Institute, Pulmonary and Critical Care Medicine, Respiratory Institute, Cleveland Clinic, OH (S.C., R.D.); and Division of Pulmonary and Critical Care Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD (P.H.)
| | - Hui Gao
- From Division of Pulmonary, Critical Care Medicine, Sleep and Allergy, Department of Medicine (J.C., J.R.S., S.S., S.Z., A.Y., T.A., K.M.S., S.S., V.R., A.S., H.G., J.T., R.F.M.), Department of Pharmacology (J.R.S., R.F.M.), and Department of Bioengineering (A.V.-J., T.A.), University of Illinois at Chicago; Institute of Precision Medicine, Jining Medical University, China (J.C.); Department of Pharmacy, College of Pharmacy, Kinjo Gakuin University, Nagoya, Japan (A.Y.); Department of Medicine, Mercy Hospital and Medical Center, Chicago, IL (T.A.); Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (H.G.); Department of Medicine, University of Arizona, Tucson (S.M.C., H.T., J.X.-J.Y., J.G.N.G.); Department of Biomedical and Health Informatics and Department of Pediatrics, Children's Mercy Hospital and University of Missouri-Kansas City School of Medicine (S.Q.Y.); Department of Pathobiology, Lerner Research Institute, Pulmonary and Critical Care Medicine, Respiratory Institute, Cleveland Clinic, OH (S.C., R.D.); and Division of Pulmonary and Critical Care Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD (P.H.)
| | - Jaime Torres
- From Division of Pulmonary, Critical Care Medicine, Sleep and Allergy, Department of Medicine (J.C., J.R.S., S.S., S.Z., A.Y., T.A., K.M.S., S.S., V.R., A.S., H.G., J.T., R.F.M.), Department of Pharmacology (J.R.S., R.F.M.), and Department of Bioengineering (A.V.-J., T.A.), University of Illinois at Chicago; Institute of Precision Medicine, Jining Medical University, China (J.C.); Department of Pharmacy, College of Pharmacy, Kinjo Gakuin University, Nagoya, Japan (A.Y.); Department of Medicine, Mercy Hospital and Medical Center, Chicago, IL (T.A.); Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (H.G.); Department of Medicine, University of Arizona, Tucson (S.M.C., H.T., J.X.-J.Y., J.G.N.G.); Department of Biomedical and Health Informatics and Department of Pediatrics, Children's Mercy Hospital and University of Missouri-Kansas City School of Medicine (S.Q.Y.); Department of Pathobiology, Lerner Research Institute, Pulmonary and Critical Care Medicine, Respiratory Institute, Cleveland Clinic, OH (S.C., R.D.); and Division of Pulmonary and Critical Care Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD (P.H.)
| | - Sara M Camp
- From Division of Pulmonary, Critical Care Medicine, Sleep and Allergy, Department of Medicine (J.C., J.R.S., S.S., S.Z., A.Y., T.A., K.M.S., S.S., V.R., A.S., H.G., J.T., R.F.M.), Department of Pharmacology (J.R.S., R.F.M.), and Department of Bioengineering (A.V.-J., T.A.), University of Illinois at Chicago; Institute of Precision Medicine, Jining Medical University, China (J.C.); Department of Pharmacy, College of Pharmacy, Kinjo Gakuin University, Nagoya, Japan (A.Y.); Department of Medicine, Mercy Hospital and Medical Center, Chicago, IL (T.A.); Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (H.G.); Department of Medicine, University of Arizona, Tucson (S.M.C., H.T., J.X.-J.Y., J.G.N.G.); Department of Biomedical and Health Informatics and Department of Pediatrics, Children's Mercy Hospital and University of Missouri-Kansas City School of Medicine (S.Q.Y.); Department of Pathobiology, Lerner Research Institute, Pulmonary and Critical Care Medicine, Respiratory Institute, Cleveland Clinic, OH (S.C., R.D.); and Division of Pulmonary and Critical Care Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD (P.H.)
| | - Haiyang Tang
- From Division of Pulmonary, Critical Care Medicine, Sleep and Allergy, Department of Medicine (J.C., J.R.S., S.S., S.Z., A.Y., T.A., K.M.S., S.S., V.R., A.S., H.G., J.T., R.F.M.), Department of Pharmacology (J.R.S., R.F.M.), and Department of Bioengineering (A.V.-J., T.A.), University of Illinois at Chicago; Institute of Precision Medicine, Jining Medical University, China (J.C.); Department of Pharmacy, College of Pharmacy, Kinjo Gakuin University, Nagoya, Japan (A.Y.); Department of Medicine, Mercy Hospital and Medical Center, Chicago, IL (T.A.); Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (H.G.); Department of Medicine, University of Arizona, Tucson (S.M.C., H.T., J.X.-J.Y., J.G.N.G.); Department of Biomedical and Health Informatics and Department of Pediatrics, Children's Mercy Hospital and University of Missouri-Kansas City School of Medicine (S.Q.Y.); Department of Pathobiology, Lerner Research Institute, Pulmonary and Critical Care Medicine, Respiratory Institute, Cleveland Clinic, OH (S.C., R.D.); and Division of Pulmonary and Critical Care Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD (P.H.)
| | - Shui Q Ye
- From Division of Pulmonary, Critical Care Medicine, Sleep and Allergy, Department of Medicine (J.C., J.R.S., S.S., S.Z., A.Y., T.A., K.M.S., S.S., V.R., A.S., H.G., J.T., R.F.M.), Department of Pharmacology (J.R.S., R.F.M.), and Department of Bioengineering (A.V.-J., T.A.), University of Illinois at Chicago; Institute of Precision Medicine, Jining Medical University, China (J.C.); Department of Pharmacy, College of Pharmacy, Kinjo Gakuin University, Nagoya, Japan (A.Y.); Department of Medicine, Mercy Hospital and Medical Center, Chicago, IL (T.A.); Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (H.G.); Department of Medicine, University of Arizona, Tucson (S.M.C., H.T., J.X.-J.Y., J.G.N.G.); Department of Biomedical and Health Informatics and Department of Pediatrics, Children's Mercy Hospital and University of Missouri-Kansas City School of Medicine (S.Q.Y.); Department of Pathobiology, Lerner Research Institute, Pulmonary and Critical Care Medicine, Respiratory Institute, Cleveland Clinic, OH (S.C., R.D.); and Division of Pulmonary and Critical Care Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD (P.H.)
| | - Suzy Comhair
- From Division of Pulmonary, Critical Care Medicine, Sleep and Allergy, Department of Medicine (J.C., J.R.S., S.S., S.Z., A.Y., T.A., K.M.S., S.S., V.R., A.S., H.G., J.T., R.F.M.), Department of Pharmacology (J.R.S., R.F.M.), and Department of Bioengineering (A.V.-J., T.A.), University of Illinois at Chicago; Institute of Precision Medicine, Jining Medical University, China (J.C.); Department of Pharmacy, College of Pharmacy, Kinjo Gakuin University, Nagoya, Japan (A.Y.); Department of Medicine, Mercy Hospital and Medical Center, Chicago, IL (T.A.); Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (H.G.); Department of Medicine, University of Arizona, Tucson (S.M.C., H.T., J.X.-J.Y., J.G.N.G.); Department of Biomedical and Health Informatics and Department of Pediatrics, Children's Mercy Hospital and University of Missouri-Kansas City School of Medicine (S.Q.Y.); Department of Pathobiology, Lerner Research Institute, Pulmonary and Critical Care Medicine, Respiratory Institute, Cleveland Clinic, OH (S.C., R.D.); and Division of Pulmonary and Critical Care Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD (P.H.)
| | - Raed Dweik
- From Division of Pulmonary, Critical Care Medicine, Sleep and Allergy, Department of Medicine (J.C., J.R.S., S.S., S.Z., A.Y., T.A., K.M.S., S.S., V.R., A.S., H.G., J.T., R.F.M.), Department of Pharmacology (J.R.S., R.F.M.), and Department of Bioengineering (A.V.-J., T.A.), University of Illinois at Chicago; Institute of Precision Medicine, Jining Medical University, China (J.C.); Department of Pharmacy, College of Pharmacy, Kinjo Gakuin University, Nagoya, Japan (A.Y.); Department of Medicine, Mercy Hospital and Medical Center, Chicago, IL (T.A.); Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (H.G.); Department of Medicine, University of Arizona, Tucson (S.M.C., H.T., J.X.-J.Y., J.G.N.G.); Department of Biomedical and Health Informatics and Department of Pediatrics, Children's Mercy Hospital and University of Missouri-Kansas City School of Medicine (S.Q.Y.); Department of Pathobiology, Lerner Research Institute, Pulmonary and Critical Care Medicine, Respiratory Institute, Cleveland Clinic, OH (S.C., R.D.); and Division of Pulmonary and Critical Care Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD (P.H.)
| | - Paul Hassoun
- From Division of Pulmonary, Critical Care Medicine, Sleep and Allergy, Department of Medicine (J.C., J.R.S., S.S., S.Z., A.Y., T.A., K.M.S., S.S., V.R., A.S., H.G., J.T., R.F.M.), Department of Pharmacology (J.R.S., R.F.M.), and Department of Bioengineering (A.V.-J., T.A.), University of Illinois at Chicago; Institute of Precision Medicine, Jining Medical University, China (J.C.); Department of Pharmacy, College of Pharmacy, Kinjo Gakuin University, Nagoya, Japan (A.Y.); Department of Medicine, Mercy Hospital and Medical Center, Chicago, IL (T.A.); Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (H.G.); Department of Medicine, University of Arizona, Tucson (S.M.C., H.T., J.X.-J.Y., J.G.N.G.); Department of Biomedical and Health Informatics and Department of Pediatrics, Children's Mercy Hospital and University of Missouri-Kansas City School of Medicine (S.Q.Y.); Department of Pathobiology, Lerner Research Institute, Pulmonary and Critical Care Medicine, Respiratory Institute, Cleveland Clinic, OH (S.C., R.D.); and Division of Pulmonary and Critical Care Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD (P.H.)
| | - Jason X-J Yuan
- From Division of Pulmonary, Critical Care Medicine, Sleep and Allergy, Department of Medicine (J.C., J.R.S., S.S., S.Z., A.Y., T.A., K.M.S., S.S., V.R., A.S., H.G., J.T., R.F.M.), Department of Pharmacology (J.R.S., R.F.M.), and Department of Bioengineering (A.V.-J., T.A.), University of Illinois at Chicago; Institute of Precision Medicine, Jining Medical University, China (J.C.); Department of Pharmacy, College of Pharmacy, Kinjo Gakuin University, Nagoya, Japan (A.Y.); Department of Medicine, Mercy Hospital and Medical Center, Chicago, IL (T.A.); Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (H.G.); Department of Medicine, University of Arizona, Tucson (S.M.C., H.T., J.X.-J.Y., J.G.N.G.); Department of Biomedical and Health Informatics and Department of Pediatrics, Children's Mercy Hospital and University of Missouri-Kansas City School of Medicine (S.Q.Y.); Department of Pathobiology, Lerner Research Institute, Pulmonary and Critical Care Medicine, Respiratory Institute, Cleveland Clinic, OH (S.C., R.D.); and Division of Pulmonary and Critical Care Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD (P.H.)
| | - Joe G N Garcia
- From Division of Pulmonary, Critical Care Medicine, Sleep and Allergy, Department of Medicine (J.C., J.R.S., S.S., S.Z., A.Y., T.A., K.M.S., S.S., V.R., A.S., H.G., J.T., R.F.M.), Department of Pharmacology (J.R.S., R.F.M.), and Department of Bioengineering (A.V.-J., T.A.), University of Illinois at Chicago; Institute of Precision Medicine, Jining Medical University, China (J.C.); Department of Pharmacy, College of Pharmacy, Kinjo Gakuin University, Nagoya, Japan (A.Y.); Department of Medicine, Mercy Hospital and Medical Center, Chicago, IL (T.A.); Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (H.G.); Department of Medicine, University of Arizona, Tucson (S.M.C., H.T., J.X.-J.Y., J.G.N.G.); Department of Biomedical and Health Informatics and Department of Pediatrics, Children's Mercy Hospital and University of Missouri-Kansas City School of Medicine (S.Q.Y.); Department of Pathobiology, Lerner Research Institute, Pulmonary and Critical Care Medicine, Respiratory Institute, Cleveland Clinic, OH (S.C., R.D.); and Division of Pulmonary and Critical Care Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD (P.H.).
| | - Roberto F Machado
- From Division of Pulmonary, Critical Care Medicine, Sleep and Allergy, Department of Medicine (J.C., J.R.S., S.S., S.Z., A.Y., T.A., K.M.S., S.S., V.R., A.S., H.G., J.T., R.F.M.), Department of Pharmacology (J.R.S., R.F.M.), and Department of Bioengineering (A.V.-J., T.A.), University of Illinois at Chicago; Institute of Precision Medicine, Jining Medical University, China (J.C.); Department of Pharmacy, College of Pharmacy, Kinjo Gakuin University, Nagoya, Japan (A.Y.); Department of Medicine, Mercy Hospital and Medical Center, Chicago, IL (T.A.); Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (H.G.); Department of Medicine, University of Arizona, Tucson (S.M.C., H.T., J.X.-J.Y., J.G.N.G.); Department of Biomedical and Health Informatics and Department of Pediatrics, Children's Mercy Hospital and University of Missouri-Kansas City School of Medicine (S.Q.Y.); Department of Pathobiology, Lerner Research Institute, Pulmonary and Critical Care Medicine, Respiratory Institute, Cleveland Clinic, OH (S.C., R.D.); and Division of Pulmonary and Critical Care Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD (P.H.).
| |
Collapse
|
49
|
Hardeland R. Melatonin and the pathologies of weakened or dysregulated circadian oscillators. J Pineal Res 2017; 62. [PMID: 27763686 DOI: 10.1111/jpi.12377] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 10/18/2016] [Indexed: 12/20/2022]
Abstract
Dynamic aspects of melatonin's actions merit increasing future attention. This concerns particularly entirely different effects in senescent, weakened oscillators and in dysregulated oscillators of cancer cells that may be epigenetically blocked. This is especially obvious in the case of sirtuin 1, which is upregulated by melatonin in aged tissues, but strongly downregulated in several cancer cells. These findings are not at all controversial, but are explained on the basis of divergent changes in weakened and dysregulated oscillators. Similar findings can be expected to occur in other accessory oscillator components that are modulated by melatonin, among them several transcription factors and metabolic sensors. Another cause of opposite effects concerns differences between nocturnally active laboratory rodents and the diurnally active human. This should be more thoroughly considered in the field of metabolic syndrome and related pathologies, especially with regard to type 2 diabetes and other aspects of insulin resistance. Melatonin was reported to impair glucose tolerance in humans, especially in carriers of the risk allele of the MT2 receptor gene, MTNR1B, that contains the SNP rs10830963. These findings contrast with numerous reports on improvements of glucose tolerance in preclinical studies. However, the relationship between melatonin and insulin may be more complex, as indicated by loss-of-function mutants of the MT2 receptor that are also prodiabetic, by the age-dependent time course of risk allele overexpression, by progressive reduction in circadian amplitudes and melatonin secretion, which are aggravated in diabetes. By supporting high-amplitude rhythms, melatonin may be beneficial in preventing or delaying diabetes.
Collapse
Affiliation(s)
- Rüdiger Hardeland
- Johann Friedrich Blumenbach Institute of Zoology and Anthropology, University of Göttingen, Göttingen, Germany
| |
Collapse
|
50
|
Bartosch C, Monteiro-Reis S, Almeida-Rios D, Vieira R, Castro A, Moutinho M, Rodrigues M, Graça I, Lopes JM, Jerónimo C. Assessing sirtuin expression in endometrial carcinoma and non-neoplastic endometrium. Oncotarget 2016; 7:1144-54. [PMID: 26701732 PMCID: PMC4811449 DOI: 10.18632/oncotarget.6691] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2015] [Accepted: 12/08/2015] [Indexed: 12/17/2022] Open
Abstract
Sirtuins participate in hormone imbalance, metabolism and aging, which are important processes for endometrial cancer (EC) development. Sirtuins mRNA expression (SIRT1 to 7) was determined in 76 ECs (63 Type I, 12 Type II and one mixed EC), and 30 non-neoplastic endometria (NNE) by quantitative real-time PCR. SIRT1 and SIRT7 protein expression was evaluated by immunohistochemistry using Allred score. Compared to NNE, ECs showed SIRT7 (p < 0.001) mRNA overexpression, whereas SIRT1 (p < 0.001), SIRT2 (p < 0.001), SIRT4 (p < 0.001) and SIRT5 (p < 0.001) were underexpressed. No significant differences were observed for SIRT3 and SIRT6. Type II ECs displayed lower SIRT1 (p = 0.032) and SIRT3 (p = 0.016) transcript levels than Type I ECs. Concerning protein expression, SIRT1 immunostaining median score was higher in ECs compared to NNE epithelium (EC = 5 vs. NNE = 2, p < 0.001), while SIRT7 was lower in ECs (EC = 6 vs. NNE = 7, p < 0.001). No significant associations were found between SIRT1/7 immunoexpression and histological subtype, grade, lymphovascular invasion or stage. Our data shows that sirtuins are deregulated in EC. The diversity of expression patterns observed suggests that sirtuins may have distinctive roles in endometrial cancer similarly to what has been described in other cancer models.
Collapse
Affiliation(s)
- Carla Bartosch
- Department of Pathology, Portuguese Oncology Institute-Porto (IPO-Porto), Porto, Portugal.,Cancer Epigenetics & Biology Group, Research Center, Portuguese Oncology Institute-Porto, Porto, Portugal.,Department of Pathology and Oncology, Medical Faculty, University of Porto, Porto, Portugal
| | - Sara Monteiro-Reis
- Department of Pathology, Portuguese Oncology Institute-Porto (IPO-Porto), Porto, Portugal.,Cancer Epigenetics & Biology Group, Research Center, Portuguese Oncology Institute-Porto, Porto, Portugal
| | - Diogo Almeida-Rios
- Department of Pathology, Portuguese Oncology Institute-Porto (IPO-Porto), Porto, Portugal.,Cancer Epigenetics & Biology Group, Research Center, Portuguese Oncology Institute-Porto, Porto, Portugal
| | - Renata Vieira
- Department of Pathology, Portuguese Oncology Institute-Porto (IPO-Porto), Porto, Portugal
| | - Armando Castro
- Department of Pathology, Centro Hospitalar São João (CHSJ), Porto, Portugal
| | - Manuel Moutinho
- Department of Pathology, Centro Hospitalar São João (CHSJ), Porto, Portugal
| | - Marta Rodrigues
- Department of Pathology, Centro Hospitalar São João (CHSJ), Porto, Portugal
| | - Inês Graça
- Cancer Epigenetics & Biology Group, Research Center, Portuguese Oncology Institute-Porto, Porto, Portugal
| | - José Manuel Lopes
- Department of Pathology and Oncology, Medical Faculty, University of Porto, Porto, Portugal.,Department of Pathology, Centro Hospitalar São João (CHSJ), Porto, Portugal.,IPATIMUP (Institute of Molecular Pathology and Immunology, University of Porto), Porto, Portugal
| | - Carmen Jerónimo
- Cancer Epigenetics & Biology Group, Research Center, Portuguese Oncology Institute-Porto, Porto, Portugal.,Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| |
Collapse
|