1
|
Chiang M, Back H, Lee JB, Oh S, Guo T, Girgis S, Park C, Haroutounian S, Kagan L. Pharmacokinetic Modeling of the Effect of Tariquidar on Ondansetron Disposition into the Central Nervous System. Pharm Res 2024; 41:1401-1411. [PMID: 38981901 PMCID: PMC11263240 DOI: 10.1007/s11095-024-03739-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 06/25/2024] [Indexed: 07/11/2024]
Abstract
PURPOSE Serotonin (5-HT3) receptor antagonists are promising agents for treatment of neuropathic pain. However, insufficient drug exposure at the central nervous system (CNS) might result in lack of efficacy. The goal of this study was to evaluate the impact of administration of a Pgp inhibitor (tariquidar) on ondansetron exposure in the brain, spinal cord, and cerebrospinal fluid in a wild-type rat model. METHODS Ondansetron (10 mg/kg) and tariquidar (7.5 mg/kg) were administered intravenously, plasma and tissue samples were collected and analyzed by HPLC. A mathematical model with brain, spinal cord, cerebrospinal fluid and two systemic disposition compartments was developed to describe the data. RESULTS The results demonstrate that tariquidar at 7.5 mg/kg resulted in a complete inhibition of Pgp efflux of ondansetron in the brain and spinal cord. The compartmental model successfully captured pharmacokinetics of ondansetron in wild type and Pgp knockout (KO) animals receiving the drug alone or in wild type animals receiving the ondansetron and tariquidar combination. CONCLUSIONS The study provided important quantitative information on enhancement of CNS exposure to ondansetron using co-administration of Pgp Inhibitor in a rat model, which will be further utilized in conducting a clinical study. Tariquidar co-administration resulted in ondansetron CNS exposure comparable to observed in Pgp KO rats. Results also highlighted the effect of tariquidar on plasma disposition of ondansetron, which may not be dependent on Pgp inhibition, and should be evaluated in future studies.
Collapse
Affiliation(s)
- Manting Chiang
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ, 08854, USA
| | - Hyunmoon Back
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ, 08854, USA
| | - Jong Bong Lee
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ, 08854, USA
| | - Sarah Oh
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ, 08854, USA
| | - Tiffany Guo
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ, 08854, USA
| | - Simone Girgis
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ, 08854, USA
| | - Celine Park
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ, 08854, USA
| | - Simon Haroutounian
- Division of Clinical and Translational Research and Washington University Pain Center, Department of Anesthesiology, Washington University School of Medicine, St Louis, MO, USA
| | - Leonid Kagan
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ, 08854, USA.
- Center of Excellence for Pharmaceutical Translational Research and Education, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, USA.
| |
Collapse
|
2
|
Yang G, Liu S, Zhang C, Yu L, Zou Z, Wang C, Gao M, Li S, Ma Y, Xu R, Song Z, Liu R, Wang H. Discovery of Pyxinol Amide Derivatives Bearing Amino Acid Residues as Nonsubstrate Allosteric Inhibitors of P-Glycoprotein-Mediated Multidrug Resistance. J Med Chem 2023. [PMID: 37332162 DOI: 10.1021/acs.jmedchem.3c00283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Nonsubstrate allosteric inhibitors of P-glycoprotein (Pgp), which are considered promising modulators for overcoming multidrug resistance (MDR), are relatively unknown. Herein, we designed and synthesized amino acids bearing amide derivatives of pyxinol, the main ginsenoside metabolite produced by the human liver, and examined their MDR reversal abilities. A potential nonsubstrate inhibitor (7a) was identified to undergo high-affinity binding to the putative allosteric site of Pgp at the nucleotide-binding domains. Subsequent assays confirmed that 7a (25 μM) was able to suppress both basal and verapamil-stimulated Pgp-ATPase activities (inhibition rates of 87 and 60%, respectively) and could not be pumped out by Pgp, indicating that it was a rare nonsubstrate allosteric inhibitor. Moreover, 7a interfered with Pgp-mediated Rhodamine123 efflux while exhibiting high selectivity for Pgp. Notably, 7a also markedly enhanced the therapeutic efficacy of paclitaxel, with a tumor inhibition ratio of 58.1%, when used to treat nude mice bearing KBV xenograft tumors.
Collapse
Affiliation(s)
- Gangqiang Yang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Shuqi Liu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Chen Zhang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Liping Yu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Zongji Zou
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Conghui Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Meng Gao
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Shuang Li
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Yiqi Ma
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Ruoxuan Xu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Zhihua Song
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Rongxia Liu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Hongbo Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| |
Collapse
|
3
|
Kim CH, Lee S, Choi JY, Lyu MJ, Jung HM, Goo YT, Kang MJ, Choi YW. Functionalized Lipid Nanocarriers for Simultaneous Delivery of Docetaxel and Tariquidar to Chemoresistant Cancer Cells. Pharmaceuticals (Basel) 2023; 16:ph16030349. [PMID: 36986449 PMCID: PMC10058271 DOI: 10.3390/ph16030349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 02/20/2023] [Accepted: 02/21/2023] [Indexed: 03/02/2023] Open
Abstract
The simultaneous drug delivery efficiency of a co-loaded single-carrier system of docetaxel (DTX)- and tariquidar (TRQ)-loaded nanostructured lipid carrier (NLC) functionalized with PEG and RIPL peptide (PRN) (D^T-PRN) was compared with that of a physically mixed dual-carrier system of DTX-loaded PRN (D-PRN) and TRQ-loaded PRN (T-PRN) to overcome DTX mono-administration-induced multidrug resistance. NLC samples were prepared using the solvent emulsification evaporation technique and showed homogeneous spherical morphology, with nano-sized dispersion (<220 nm) and zeta potential values of −15 to −7 mV. DTX and/or TRQ was successfully encapsulated in NLC samples (>95% encapsulation efficiency and 73–78 µg/mg drug loading). In vitro cytotoxicity was concentration-dependent; D^T-PRN exhibited the highest MDR reversal efficiency, with the lowest combination index value, and increased the cytotoxicity and apoptosis in MCF7/ADR cells by inducing cell-cycle arrest in the G2/M phase. A competitive cellular uptake assay using fluorescent probes showed that, compared to the dual nanocarrier system, the single nanocarrier system exhibited better intracellular delivery efficiency of multiple probes to target cells. In the MCF7/ADR-xenografted mouse models, simultaneous DTX and TRQ delivery using D^T-PRN significantly suppressed tumor growth as compared to other treatments. A single co-loaded system for PRN-based co-delivery of DTX/TRQ (1:1, w/w) constitutes a promising therapeutic strategy for drug-resistant breast cancer cells.
Collapse
Affiliation(s)
- Chang Hyun Kim
- College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Sangkil Lee
- College of Pharmacy, Keimyung University, 1095 Dalgubeol-daero, Dalseo-gu, Daegu 42601, Republic of Korea
| | - Ji Yeh Choi
- Department of Psychology, York University, 4700 Kneele St., Toronto, ON M3J 1P3, Canada
| | - Min Jeong Lyu
- College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Hyun Min Jung
- College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Yoon Tae Goo
- College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Myung Joo Kang
- College of Pharmacy, Dankook University, 119 Dandae-ro, Dongnam-gu, Cheonan 31116, Republic of Korea
| | - Young Wook Choi
- College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
- Correspondence:
| |
Collapse
|
4
|
Sun W, Wong ILK, Law HKW, Su X, Chan TCF, Sun G, Yang X, Wang X, Chan TH, Wan S, Chow LMC. In Vivo Reversal of P-Glycoprotein-Mediated Drug Resistance in a Breast Cancer Xenograft and in Leukemia Models Using a Novel, Potent, and Nontoxic Epicatechin EC31. Int J Mol Sci 2023; 24:ijms24054377. [PMID: 36901808 PMCID: PMC10002220 DOI: 10.3390/ijms24054377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/10/2023] [Accepted: 02/15/2023] [Indexed: 02/25/2023] Open
Abstract
The modulation of P-glycoprotein (P-gp, ABCB1) can reverse multidrug resistance (MDR) and potentiate the efficacy of anticancer drugs. Tea polyphenols, such as epigallocatechin gallate (EGCG), have low P-gp-modulating activity, with an EC50 over 10 μM. In this study, we optimized a series of tea polyphenol derivatives and demonstrated that epicatechin EC31 was a potent and nontoxic P-gp inhibitor. Its EC50 for reversing paclitaxel, doxorubicin, and vincristine resistance in three P-gp-overexpressing cell lines ranged from 37 to 249 nM. Mechanistic studies revealed that EC31 restored intracellular drug accumulation by inhibiting P-gp-mediated drug efflux. It did not downregulate the plasma membrane P-gp level nor inhibit P-gp ATPase. It was not a transport substrate of P-gp. A pharmacokinetic study revealed that the intraperitoneal administration of 30 mg/kg of EC31 could achieve a plasma concentration above its in vitro EC50 (94 nM) for more than 18 h. It did not affect the pharmacokinetic profile of coadministered paclitaxel. In the xenograft model of the P-gp-overexpressing LCC6MDR cell line, EC31 reversed P-gp-mediated paclitaxel resistance and inhibited tumor growth by 27.4 to 36.1% (p < 0.001). Moreover, it also increased the intratumor paclitaxel level in the LCC6MDR xenograft by 6 fold (p < 0.001). In both murine leukemia P388ADR and human leukemia K562/P-gp mice models, the cotreatment of EC31 and doxorubicin significantly prolonged the survival of the mice (p < 0.001 and p < 0.01) as compared to the doxorubicin alone group, respectively. Our results suggested that EC31 was a promising candidate for further investigation on combination therapy for treating P-gp-overexpressing cancers.
Collapse
Affiliation(s)
- Wenqin Sun
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Iris L. K. Wong
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Helen Ka-Wai Law
- Department of Health Technology and Informatics, Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Xiaochun Su
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Terry C. F. Chan
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Gege Sun
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Xinqing Yang
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Xingkai Wang
- Laboratory for Marine Drugs and Bioproducts of Qingdao, National Laboratory for Marine Science and Technology, Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Tak Hang Chan
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Hong Kong SAR, China
- Department of Chemistry, McGill University, Montreal, QC H3A 2K6, Canada
| | - Shengbiao Wan
- Laboratory for Marine Drugs and Bioproducts of Qingdao, National Laboratory for Marine Science and Technology, Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Correspondence: (S.W.); (L.M.C.C.); Tel.: +86-532-8203-1087 (S.W.); +852-3400-8662 (L.M.C.C.); Fax: +86-532-8203-3054 (S.W.); +852-2364-9932 (L.M.C.C.)
| | - Larry M. C. Chow
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Hong Kong SAR, China
- Correspondence: (S.W.); (L.M.C.C.); Tel.: +86-532-8203-1087 (S.W.); +852-3400-8662 (L.M.C.C.); Fax: +86-532-8203-3054 (S.W.); +852-2364-9932 (L.M.C.C.)
| |
Collapse
|
5
|
ATP-binding cassette efflux transporters and MDR in cancer. Drug Discov Today 2023; 28:103537. [PMID: 36801375 DOI: 10.1016/j.drudis.2023.103537] [Citation(s) in RCA: 66] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 01/27/2023] [Accepted: 02/13/2023] [Indexed: 02/18/2023]
Abstract
Of the many known multidrug resistance (MDR) mechanisms, ATP-binding cassette (ABC) transporters expelling drug molecules out of cells is a major factor limiting the efficacy of present-day anticancer drugs. In this review, we highlights updated information on the structure, function, and regulatory mechanisms of major MDR-related ABC transporters, such as P-glycoprotein (P-gp), multidrug resistance protein 1 (MRP1), and breast cancer resistance protein (BCRP), and the effect of modulators on their functions. We also provide focused information on different modulators of ABC transporters that could be utilized against the emerging MDR crisis in cancer treatment. Finally, we discuss the importance of ABC transporters as therapeutic targets in light of future strategic planning for translating ABC transporter inhibitors into clinical practice.
Collapse
|
6
|
Grigoreva TA, Sagaidak AV, Vorona SV, Novikova DS, Tribulovich VG. ATP Mimetic Attack on the Nucleotide-Binding Domain to Overcome ABC Transporter Mediated Chemoresistance. ACS Med Chem Lett 2022; 13:1848-1855. [DOI: 10.1021/acsmedchemlett.2c00196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 11/10/2022] [Indexed: 11/29/2022] Open
Affiliation(s)
- Tatyana A. Grigoreva
- Laboratory of Molecular Pharmacology, St. Petersburg State Institute of Technology (Technical University), Moskovskii pr., 26, St. Petersburg, 190013 Russia
| | - Aleksandra V. Sagaidak
- Laboratory of Molecular Pharmacology, St. Petersburg State Institute of Technology (Technical University), Moskovskii pr., 26, St. Petersburg, 190013 Russia
| | - Svetlana V. Vorona
- Laboratory of Molecular Pharmacology, St. Petersburg State Institute of Technology (Technical University), Moskovskii pr., 26, St. Petersburg, 190013 Russia
| | - Daria S. Novikova
- Laboratory of Molecular Pharmacology, St. Petersburg State Institute of Technology (Technical University), Moskovskii pr., 26, St. Petersburg, 190013 Russia
| | - Vyacheslav G. Tribulovich
- Laboratory of Molecular Pharmacology, St. Petersburg State Institute of Technology (Technical University), Moskovskii pr., 26, St. Petersburg, 190013 Russia
| |
Collapse
|
7
|
Nanoformulation mediated silencing of P-gp efflux protein for the efficient oral delivery of anti-leishmanial drugs. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
8
|
Zhou J, Cai Y, Liu Y, An H, Deng K, Ashraf MA, Zou L, Wang J. Breaking down the cell wall: Still an attractive antibacterial strategy. Front Microbiol 2022; 13:952633. [PMID: 36212892 PMCID: PMC9544107 DOI: 10.3389/fmicb.2022.952633] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 08/18/2022] [Indexed: 11/17/2022] Open
Abstract
Since the advent of penicillin, humans have known about and explored the phenomenon of bacterial inhibition via antibiotics. However, with changes in the global environment and the abuse of antibiotics, resistance mechanisms have been selected in bacteria, presenting huge threats and challenges to the global medical and health system. Thus, the study and development of new antimicrobials is of unprecedented urgency and difficulty. Bacteria surround themselves with a cell wall to maintain cell rigidity and protect against environmental insults. Humans have taken advantage of antibiotics to target the bacterial cell wall, yielding some of the most widely used antibiotics to date. The cell wall is essential for bacterial growth and virulence but is absent from humans, remaining a high-priority target for antibiotic screening throughout the antibiotic era. Here, we review the extensively studied targets, i.e., MurA, MurB, MurC, MurD, MurE, MurF, Alr, Ddl, MurI, MurG, lipid A, and BamA in the cell wall, starting from the very beginning to the latest developments to elucidate antimicrobial screening. Furthermore, recent advances, including MraY and MsbA in peptidoglycan and lipopolysaccharide, and tagO, LtaS, LspA, Lgt, Lnt, Tol-Pal, MntC, and OspA in teichoic acid and lipoprotein, have also been profoundly discussed. The review further highlights that the application of new methods such as macromolecular labeling, compound libraries construction, and structure-based drug design will inspire researchers to screen ideal antibiotics.
Collapse
Affiliation(s)
- Jingxuan Zhou
- The People’s Hospital of China Three Gorges University, Yichang, Hubei, China
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, College of Basic Medical Sciences, China Three Gorges University, Yichang, Hubei, China
- The Institute of Infection and Inflammation, College of Basic Medical Sciences, China Three Gorges University, Yichang, Hubei, China
| | - Yi Cai
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, College of Basic Medical Sciences, China Three Gorges University, Yichang, Hubei, China
- The Institute of Infection and Inflammation, College of Basic Medical Sciences, China Three Gorges University, Yichang, Hubei, China
| | - Ying Liu
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, College of Basic Medical Sciences, China Three Gorges University, Yichang, Hubei, China
- The Institute of Infection and Inflammation, College of Basic Medical Sciences, China Three Gorges University, Yichang, Hubei, China
| | - Haoyue An
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, College of Basic Medical Sciences, China Three Gorges University, Yichang, Hubei, China
- The Institute of Infection and Inflammation, College of Basic Medical Sciences, China Three Gorges University, Yichang, Hubei, China
| | - Kaihong Deng
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, College of Basic Medical Sciences, China Three Gorges University, Yichang, Hubei, China
- The Institute of Infection and Inflammation, College of Basic Medical Sciences, China Three Gorges University, Yichang, Hubei, China
| | - Muhammad Awais Ashraf
- Department of Microbiology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Lili Zou
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, College of Basic Medical Sciences, China Three Gorges University, Yichang, Hubei, China
- The Institute of Infection and Inflammation, College of Basic Medical Sciences, China Three Gorges University, Yichang, Hubei, China
| | - Jun Wang
- The People’s Hospital of China Three Gorges University, Yichang, Hubei, China
- *Correspondence: Jun Wang,
| |
Collapse
|
9
|
Breuil L, Goutal S, Marie S, Del Vecchio A, Audisio D, Soyer A, Goislard M, Saba W, Tournier N, Caillé F. Comparison of the Blood-Brain Barrier Transport and Vulnerability to P-Glycoprotein-Mediated Drug-Drug Interaction of Domperidone versus Metoclopramide Assessed Using In Vitro Assay and PET Imaging. Pharmaceutics 2022; 14:pharmaceutics14081658. [PMID: 36015284 PMCID: PMC9412994 DOI: 10.3390/pharmaceutics14081658] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/01/2022] [Accepted: 08/05/2022] [Indexed: 11/16/2022] Open
Abstract
Domperidone and metoclopramide are widely prescribed antiemetic drugs with distinct neurological side effects. The impact of P-glycoprotein (P-gp)-mediated efflux at the blood−brain barrier (BBB) on brain exposure and BBB permeation was compared in vitro and in vivo using positron emission tomography (PET) imaging in rats with the radiolabeled analogs [11C]domperidone and [11C]metoclopramide. In P-gp-overexpressing cells, the IC50 of tariquidar, a potent P-gp inhibitor, was drastically different using [11C]domperidone (221 nM [198−248 nM]) or [11C]metoclopramide (4 nM [2−8 nM]) as the substrate. Complete P-gp inhibition led to a 1.8-fold higher increase in the cellular uptake of [11C]domperidone compared with [11C]metoclopramide (p < 0.0001). Brain PET imaging revealed that the baseline brain exposure (AUCbrain) of [11C]metoclopramide was 2.4-fold higher compared with [11C]domperidone (p < 0.001), consistent with a 1.8-fold higher BBB penetration (AUCbrain/AUCplasma). The maximal increase in the brain exposure (2.9-fold, p < 0.0001) and BBB penetration (2.9-fold, p < 0.0001) of [11C]metoclopramide was achieved using 8 mg/kg of tariquidar. In comparison, neither 8 nor 15 mg/kg of tariquidar increased the brain exposure of [11C]domperidone (p > 0.05). Domperidone is an avid P-gp substrate that was in vitro compared with metoclopramide. Domperidone benefits from a lower brain exposure and a limited risk for P-gp-mediated drug−drug interaction involving P-gp inhibition at the BBB.
Collapse
Affiliation(s)
- Louise Breuil
- Laboratoire d’Imagerie Biomédicale Multimodale (BIOMAPS), Université Paris-Saclay, CEA, CNRS, Inserm, Service Hospitalier Frédéric Joliot, 4 place du Général Leclerc, 91401 Orsay, France
- Pharmacy Department, Robert-Debré Hospital, AP-HP, Université Paris Cité, 75019 Paris, France
| | - Sébastien Goutal
- Laboratoire d’Imagerie Biomédicale Multimodale (BIOMAPS), Université Paris-Saclay, CEA, CNRS, Inserm, Service Hospitalier Frédéric Joliot, 4 place du Général Leclerc, 91401 Orsay, France
| | - Solène Marie
- Laboratoire d’Imagerie Biomédicale Multimodale (BIOMAPS), Université Paris-Saclay, CEA, CNRS, Inserm, Service Hospitalier Frédéric Joliot, 4 place du Général Leclerc, 91401 Orsay, France
- Pharmacy Department, Bicêtre Hospital, AP-HP, Université Paris-Saclay, 94270 Le Kremlin-Bicêtre, France
| | - Antonio Del Vecchio
- CEA, Département Médicaments et Technologies pour la Santé, SCBM, Université Paris-Saclay, 91190 Gif-sur-Yvette, France
| | - Davide Audisio
- CEA, Département Médicaments et Technologies pour la Santé, SCBM, Université Paris-Saclay, 91190 Gif-sur-Yvette, France
| | - Amélie Soyer
- Laboratoire d’Imagerie Biomédicale Multimodale (BIOMAPS), Université Paris-Saclay, CEA, CNRS, Inserm, Service Hospitalier Frédéric Joliot, 4 place du Général Leclerc, 91401 Orsay, France
| | - Maud Goislard
- Laboratoire d’Imagerie Biomédicale Multimodale (BIOMAPS), Université Paris-Saclay, CEA, CNRS, Inserm, Service Hospitalier Frédéric Joliot, 4 place du Général Leclerc, 91401 Orsay, France
| | - Wadad Saba
- Laboratoire d’Imagerie Biomédicale Multimodale (BIOMAPS), Université Paris-Saclay, CEA, CNRS, Inserm, Service Hospitalier Frédéric Joliot, 4 place du Général Leclerc, 91401 Orsay, France
| | - Nicolas Tournier
- Laboratoire d’Imagerie Biomédicale Multimodale (BIOMAPS), Université Paris-Saclay, CEA, CNRS, Inserm, Service Hospitalier Frédéric Joliot, 4 place du Général Leclerc, 91401 Orsay, France
- Correspondence:
| | - Fabien Caillé
- Laboratoire d’Imagerie Biomédicale Multimodale (BIOMAPS), Université Paris-Saclay, CEA, CNRS, Inserm, Service Hospitalier Frédéric Joliot, 4 place du Général Leclerc, 91401 Orsay, France
| |
Collapse
|
10
|
Kim CH, Lee TH, Kim BD, Kim HK, Lyu MJ, Jung HM, Goo YT, Kang MJ, Lee S, Choi YW. Co-administration of tariquidar using functionalized nanostructured lipid carriers overcomes resistance to docetaxel in multidrug resistant MCF7/ADR cells. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
11
|
Zhu YX, Jia HR, Duan QY, Wu FG. Nanomedicines for combating multidrug resistance of cancer. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2021; 13:e1715. [PMID: 33860622 DOI: 10.1002/wnan.1715] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/27/2021] [Accepted: 03/01/2021] [Indexed: 12/12/2022]
Abstract
Chemotherapy typically involves the use of specific chemodrugs to inhibit the proliferation of cancer cells, but the frequent emergence of a variety of multidrug-resistant cancer cells poses a tremendous threat to our combat against cancer. The fundamental causes of multidrug resistance (MDR) have been studied for decades, and can be generally classified into two types: one is associated with the activation of diverse drug efflux pumps, which are responsible for translocating intracellular drug molecules out of the cells; the other is linked with some non-efflux pump-related mechanisms, such as antiapoptotic defense, enhanced DNA repair ability, and powerful antioxidant systems. To overcome MDR, intense efforts have been made to develop synergistic therapeutic strategies by introducing MDR inhibitors or combining chemotherapy with other therapeutic modalities, such as phototherapy, gene therapy, and gas therapy, in the hope that the drug-resistant cells can be sensitized toward chemotherapeutics. In particular, nanotechnology-based drug delivery platforms have shown the potential to integrate multiple therapeutic agents into one system. In this review, the focus was on the recent development of nanostrategies aiming to enhance the efficiency of chemotherapy and overcome the MDR of cancer in a synergistic manner. Different combinatorial strategies are introduced in detail and the advantages as well as underlying mechanisms of why these strategies can counteract MDR are discussed. This review is expected to shed new light on the design of advanced nanomedicines from the angle of materials and to deepen our understanding of MDR for the development of more effective anticancer strategies. This article is categorized under: Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
Collapse
Affiliation(s)
- Ya-Xuan Zhu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Hao-Ran Jia
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Qiu-Yi Duan
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Fu-Gen Wu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| |
Collapse
|
12
|
Silva J, Carry E, Xue C, Zhang J, Liang J, Roberge JY, Davies DL. A Novel Dual Drug Approach That Combines Ivermectin and Dihydromyricetin (DHM) to Reduce Alcohol Drinking and Preference in Mice. Molecules 2021; 26:molecules26061791. [PMID: 33810134 PMCID: PMC8004700 DOI: 10.3390/molecules26061791] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/18/2021] [Accepted: 03/19/2021] [Indexed: 12/12/2022] Open
Abstract
Alcohol use disorder (AUD) affects over 18 million people in the US. Unfortunately, pharmacotherapies available for AUD have limited clinical success and are under prescribed. Previously, we established that avermectin compounds (ivermectin [IVM] and moxidectin) reduce alcohol (ethanol/EtOH) consumption in mice, but these effects are limited by P-glycoprotein (Pgp/ABCB1) efflux. The current study tested the hypothesis that dihydromyricetin (DHM), a natural product suggested to inhibit Pgp, will enhance IVM potency as measured by changes in EtOH consumption. Using a within-subjects study design and two-bottle choice study, we tested the combination of DHM (10 mg/kg; i.p.) and IVM (0.5–2.5 mg/kg; i.p.) on EtOH intake and preference in male and female C57BL/6J mice. We also conducted molecular modeling studies of DHM with the nucleotide-binding domain of human Pgp that identified key binding residues associated with Pgp inhibition. We found that DHM increased the potency of IVM in reducing EtOH consumption, resulting in significant effects at the 1.0 mg/kg dose. This combination supports our hypothesis that inhibiting Pgp improves the potency of IVM in reducing EtOH consumption. Collectively, we demonstrate the feasibility of this novel combinatorial approach in reducing EtOH consumption and illustrate the utility of DHM in a novel combinatorial approach.
Collapse
Affiliation(s)
- Joshua Silva
- Titus Family Department of Clinical Pharmacy, University of Southern California School of Pharmacy, Los Angeles, CA 90089, USA; (J.S.); (C.X.); (J.Z.); (J.L.)
| | - Eileen Carry
- Molecular Design and Synthesis Group, Rutgers University Biomedical Research Innovation Core, Piscataway, NJ 08854, USA; (E.C.); (J.Y.R.)
| | - Chen Xue
- Titus Family Department of Clinical Pharmacy, University of Southern California School of Pharmacy, Los Angeles, CA 90089, USA; (J.S.); (C.X.); (J.Z.); (J.L.)
| | - Jifeng Zhang
- Titus Family Department of Clinical Pharmacy, University of Southern California School of Pharmacy, Los Angeles, CA 90089, USA; (J.S.); (C.X.); (J.Z.); (J.L.)
| | - Jing Liang
- Titus Family Department of Clinical Pharmacy, University of Southern California School of Pharmacy, Los Angeles, CA 90089, USA; (J.S.); (C.X.); (J.Z.); (J.L.)
| | - Jacques Y. Roberge
- Molecular Design and Synthesis Group, Rutgers University Biomedical Research Innovation Core, Piscataway, NJ 08854, USA; (E.C.); (J.Y.R.)
| | - Daryl L. Davies
- Titus Family Department of Clinical Pharmacy, University of Southern California School of Pharmacy, Los Angeles, CA 90089, USA; (J.S.); (C.X.); (J.Z.); (J.L.)
- Correspondence: ; Tel.: +13-23-442-1427
| |
Collapse
|
13
|
Xing J, Huang S, Heng Y, Mei H, Pan X. Computational Insights into Allosteric Conformational Modulation of P-Glycoprotein by Substrate and Inhibitor Binding. Molecules 2020; 25:molecules25246006. [PMID: 33353070 PMCID: PMC7766389 DOI: 10.3390/molecules25246006] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 12/14/2020] [Accepted: 12/15/2020] [Indexed: 11/16/2022] Open
Abstract
The ATP-binding cassette (ABC) transporter P-glycoprotein (P-gp) is a physiologically essential membrane protein that protects many tissues against xenobiotic molecules, but limits the access of chemotherapeutics into tumor cells, thus contributing to multidrug resistance. The atomic-level mechanism of how substrates and inhibitors differentially affect the ATP hydrolysis by P-gp remains to be elucidated. In this work, atomistic molecular dynamics simulations in an explicit membrane/water environment were performed to explore the effects of substrate and inhibitor binding on the conformational dynamics of P-gp. Distinct differences in conformational changes that mainly occurred in the nucleotide-binding domains (NBDs) were observed from the substrate- and inhibitor-bound simulations. The binding of rhodamine-123 can increase the probability of the formation of an intermediate conformation, in which the NBDs were closer and better aligned, suggesting that substrate binding may prime the transporter for ATP hydrolysis. By contrast, the inhibitor QZ-Leu stabilized NBDs in a much more separated and misaligned conformation, which may result in the deficiency of ATP hydrolysis. The significant differences in conformational modulation of P-gp by substrate and inhibitor binding provided a molecular explanation of how these small molecules exert opposite effects on the ATPase activity. A further structural analysis suggested that the allosteric communication between transmembrane domains (TMDs) and NBDs was primarily mediated by two intracellular coupling helices. Our computational simulations provide not only valuable insights into the transport mechanism of P-gp substrates, but also for the molecular design of P-gp inhibitors.
Collapse
Affiliation(s)
- Juan Xing
- College of Basic Medical Science and College of Pharmacy, Southwest Medical University, Luzhou 646000, China;
| | - Shuheng Huang
- Key Laboratory of Biorheological Science and Technology (Ministry of Education), College of Bioengineering, Chongqing University, Chongqing 400045, China; (S.H.); (Y.H.); (H.M.)
| | - Yu Heng
- Key Laboratory of Biorheological Science and Technology (Ministry of Education), College of Bioengineering, Chongqing University, Chongqing 400045, China; (S.H.); (Y.H.); (H.M.)
| | - Hu Mei
- Key Laboratory of Biorheological Science and Technology (Ministry of Education), College of Bioengineering, Chongqing University, Chongqing 400045, China; (S.H.); (Y.H.); (H.M.)
| | - Xianchao Pan
- College of Basic Medical Science and College of Pharmacy, Southwest Medical University, Luzhou 646000, China;
- Correspondence: ; Tel.: +86-830-3162291
| |
Collapse
|
14
|
Nicklisch SC, Hamdoun A. Disruption of small molecule transporter systems by Transporter-Interfering Chemicals (TICs). FEBS Lett 2020; 594:4158-4185. [PMID: 33222203 PMCID: PMC8112642 DOI: 10.1002/1873-3468.14005] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 11/17/2020] [Accepted: 11/17/2020] [Indexed: 12/25/2022]
Abstract
Small molecule transporters (SMTs) in the ABC and SLC families are important players in disposition of diverse endo- and xenobiotics. Interactions of environmental chemicals with these transporters were first postulated in the 1990s, and since validated in numerous in vitro and in vivo scenarios. Recent results on the co-crystal structure of ABCB1 with the flame-retardant BDE-100 demonstrate that a diverse range of man-made and natural toxic molecules, hereafter termed transporter-interfering chemicals (TICs), can directly bind to SMTs and interfere with their function. TIC-binding modes mimic those of substrates, inhibitors, modulators, inducers, and possibly stimulants through direct and allosteric mechanisms. Similarly, the effects could directly or indirectly agonize, antagonize or perhaps even prime the SMT system to alter transport function. Importantly, TICs are distinguished from drugs and pharmaceuticals that interact with transporters in that exposure is unintended and inherently variant. Here, we review the molecular mechanisms of environmental chemical interaction with SMTs, the methodological considerations for their evaluation, and the future directions for TIC discovery.
Collapse
Affiliation(s)
- Sascha C.T. Nicklisch
- Department of Environmental Toxicology, University of California, Davis, Davis, CA 95616
| | - Amro Hamdoun
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA 92093-0202
| |
Collapse
|
15
|
Ferreira RJ, Gajdács M, Kincses A, Spengler G, Dos Santos DJVA, Ferreira MJU. Nitrogen-containing naringenin derivatives for reversing multidrug resistance in cancer. Bioorg Med Chem 2020; 28:115798. [PMID: 33038666 DOI: 10.1016/j.bmc.2020.115798] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 09/26/2020] [Accepted: 09/28/2020] [Indexed: 12/15/2022]
Abstract
Naringenin (1), isolated from Euphorbia pedroi, was previously derivatized yielding compounds 2-13. In this study, aiming at expanding the pool of analogues of the flavanone core towards better multidrug resistance (MDR) reversal agents, alkylation reactions and chemical modification of the carbonyl moiety was performed (15-39). Compounds structures were assigned mainly by 1D and 2D NMR experiments. Compounds 1-39 were assessed as MDR reversers, in human ABCB1-transfected mouse T-lymphoma cells, overexpressing P-glycoprotein (P-gp). The results revealed that O-methylation at C-7, together with the introduction of nitrogen atoms and aromatic moieties at C-4 or C-4', significantly improved the activity, being compounds 27 and 37 the strongest P-gp modulators and much more active than verapamil. In combination assays, synergistic interactions of selected compounds with doxorubicin substantiated the results. While molecular docking suggested that flavanone derivatives act as competitive modulators, molecular dynamics showed that dimethylation promotes binding to a modulator-binding site. Moreover, flavanones may also interact with a vicinal ATP-binding site in both nucleotide-binding domains, hypothesizing an allosteric mode of action.
Collapse
Affiliation(s)
- Ricardo J Ferreira
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
| | - Márió Gajdács
- Department of Medical Microbiology and Immunobiology, Faculty of Medicine, University of Szeged, Dóm tér 10, H-6720 Szeged, Hungary
| | - Annamária Kincses
- Department of Medical Microbiology and Immunobiology, Faculty of Medicine, University of Szeged, Dóm tér 10, H-6720 Szeged, Hungary
| | - Gabriella Spengler
- Department of Medical Microbiology and Immunobiology, Faculty of Medicine, University of Szeged, Dóm tér 10, H-6720 Szeged, Hungary
| | - Daniel J V A Dos Santos
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal; LAQV@REQUIMTE/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal.
| | - Maria-José U Ferreira
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal.
| |
Collapse
|
16
|
de Moraes DC, Cardoso KM, Domingos LTS, do Carmo Freire Ribeiro Pinto M, Monteiro RQ, Ferreira-Pereira A. β-Lapachone enhances the antifungal activity of fluconazole against a Pdr5p-mediated resistant Saccharomyces cerevisiae strain. Braz J Microbiol 2020; 51:1051-1060. [PMID: 32157667 PMCID: PMC7455662 DOI: 10.1007/s42770-020-00254-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 02/28/2020] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVES The aim of this study was to evaluate the ability of lapachones in disrupting the fungal multidrug resistance (MDR) phenotype, using a model of study which an azole-resistant Saccharomyces cerevisiae mutant strain that overexpresses the ATP-binding cassette (ABC) transporter Pdr5p. METHODS The evaluation of the antifungal activity of lapachones and their possible synergism with fluconazole against the mutant S. cerevisiae strain was performed through broth microdilution and spot assays. Reactive oxygen species (ROS) and efflux pump activity were assessed by fluorometry. ATPase activity was evaluated by the Fiske and Subbarow method. The effect of β-lapachone on PDR5 mRNA expression was assessed by RT-PCR. The release of hemoglobin was measured to evaluate the hemolytic activity of β-lapachone. RESULTS α-nor-Lapachone and β-lapachone inhibited S. cerevisiae growth at 100 μg/ml. Only β-lapachone enhanced the antifungal activity of fluconazole, and this combined action was inhibited by ascorbic acid. β-Lapachone induced the production of ROS, inhibited Pdr5p-mediated efflux, and impaired Pdr5p ATPase activity. Also, β-lapachone neither affected the expression of PDR5 nor exerted hemolytic activity. CONCLUSIONS Data obtained indicate that β-lapachone is able to inhibit the S. cerevisiae efflux pump Pdr5p. Since this transporter is homologous to fungal ABC transporters, further studies employing clinical isolates that overexpress these proteins will be conducted to evaluate the effect of β-lapachone on pathogenic fungi.
Collapse
Affiliation(s)
- Daniel Clemente de Moraes
- Laboratório de Bioquímica Microbiana, Instituto de Microbiologia Paulo de Góes, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Avenida Carlos Chagas Filho 373, Cidade Universitária, Rio de Janeiro, RJ, CEP: 21941-590, Brazil
| | - Karina Martins Cardoso
- Instituto de Bioquímica Médica Leopoldo de Meis, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Avenida Carlos Chagas Filho 373, Cidade Universitária, Rio de Janeiro, RJ, CEP: 21941-590, Brazil
| | - Levy Tenório Sousa Domingos
- Laboratório de Bioquímica Microbiana, Instituto de Microbiologia Paulo de Góes, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Avenida Carlos Chagas Filho 373, Cidade Universitária, Rio de Janeiro, RJ, CEP: 21941-590, Brazil
| | - Maria do Carmo Freire Ribeiro Pinto
- Laboratório de Química Heterocíclica, Instituto de Pesquisas de Produtos Naturais, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Avenida Carlos Chagas Filho 373, Cidade Universitária, Rio de Janeiro, RJ, CEP: 21941-590, Brazil
| | - Robson Q Monteiro
- Instituto de Bioquímica Médica Leopoldo de Meis, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Avenida Carlos Chagas Filho 373, Cidade Universitária, Rio de Janeiro, RJ, CEP: 21941-590, Brazil
| | - Antônio Ferreira-Pereira
- Laboratório de Bioquímica Microbiana, Instituto de Microbiologia Paulo de Góes, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Avenida Carlos Chagas Filho 373, Cidade Universitária, Rio de Janeiro, RJ, CEP: 21941-590, Brazil.
| |
Collapse
|
17
|
The Multidrug Resistance-Reversing Activity of a Novel Antimicrobial Peptide. Cancers (Basel) 2020; 12:cancers12071963. [PMID: 32707710 PMCID: PMC7409168 DOI: 10.3390/cancers12071963] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/07/2020] [Accepted: 07/17/2020] [Indexed: 11/16/2022] Open
Abstract
The overexpression of ATP-binding cassette (ABC) transporters is a common cause of multidrug resistance (MDR) in cancers. The intracellular drug concentration of cancer cells can be decreased relative to their normal cell counterparts due to increased expression of ABC transporters acting as efflux pumps of anticancer drugs. Over the past decades, antimicrobial peptides have been investigated as a new generation of anticancer drugs and some of them were reported to have interactions with ABC transporters. In this article, we investigated several novel antimicrobial peptides to see if they could sensitize ABCB1-overexpressing cells to the anticancer drugs paclitaxel and doxorubicin, which are transported by ABCB1. It was found that peptide XH-14C increased the intracellular accumulation of ABCB1 substrate paclitaxel, which demonstrated that XH-14C could reverse ABCB1-mediated MDR. Furthermore, XH-14C could stimulate the ATPase activity of ABCB1 and the molecular dynamic simulation revealed a stable binding pose of XH-14C-ABCB1 complex. There was no change on the expression level or the location of ABCB1 transporter with the treatment of XH-14C. Our results suggest that XH-14C in combination with conventional anticancer agents could be used as a novel strategy for cancer treatment.
Collapse
|
18
|
Mapletoft JPJ, St-Onge RJ, Guo B, Butler P, Masilamani TJ, D'costa L, Pritzker LB, Parissenti AM. The RNA disruption assay is superior to conventional drug sensitivity assays in detecting cytotoxic drugs. Sci Rep 2020; 10:8671. [PMID: 32457334 PMCID: PMC7250890 DOI: 10.1038/s41598-020-65579-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Accepted: 04/29/2020] [Indexed: 11/09/2022] Open
Abstract
Conventional drug sensitivity assays used to screen prospective anti-cancer agents for cytotoxicity monitor biological processes associated with active growth and proliferation, used as proxies of cell viability. However, these assays are unable to distinguish between growth-arrested (but otherwise viable) cells and non-viable/dead cells. As a result, compounds selected based on the results of these assays may only be cytostatic, halting or slowing tumour progression temporarily, without tumour eradication. Because agents capable of killing tumour cells (cytotoxic drugs) are likely the most promising in the clinic, there is a need for drug sensitivity assays that reliably identify cytotoxic compounds that induce cell death. We recently developed a drug sensitivity assay, called the RNA disruption assay (RDA), which measures a phenomenon associated with tumour cell death. In this study, we sought to compare our assay's performance to that of current commonly used drug sensitivity assays (i.e, the clonogenic, the cell counting kit-8 and the Trypan blue exclusion assays). We found that RNA disruption occurred almost exclusively when total cell numbers decreased (cytotoxic concentrations), with little to no signal detected until cells had lost viability. In contrast, conventional assays detected a decrease in their respective drug sensitivity parameters despite cells retaining their viability, as assessed using a recovery assay. We also found that the RDA can differentiate between drug-sensitive and -resistant cells, and that it can identify agents capable of circumventing drug resistance. Taken together, our study suggests that the RDA is a superior drug discovery tool, providing a unique assessment of cell death.
Collapse
Affiliation(s)
| | | | - Baoqing Guo
- Health Sciences North Research Institute, Sudbury, ON, Canada
| | - Phillipe Butler
- Graduate Program in Chemical Sciences, Laurentian University, Sudbury, ON, Canada
| | | | | | | | - Amadeo M Parissenti
- Graduate Program in Chemical Sciences, Laurentian University, Sudbury, ON, Canada. .,Rna Diagnostics, Inc., Toronto and Sudbury, ON, Canada. .,Health Sciences North Research Institute, Sudbury, ON, Canada. .,Division of Medical Sciences, Northern Ontario School of Medicine, Sudbury, ON, Canada.
| |
Collapse
|
19
|
Yu J, Hu F, Zhu Q, Li X, Ren H, Fan S, Qian B, Zhai B, Yang D. PD-L1 monoclonal antibody-decorated nanoliposomes loaded with Paclitaxel and P-gp transport inhibitor for the synergistic chemotherapy against multidrug resistant gastric cancers. NANOSCALE RESEARCH LETTERS 2020; 15:59. [PMID: 32166458 PMCID: PMC7067943 DOI: 10.1186/s11671-019-3228-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 12/15/2019] [Indexed: 06/10/2023]
Abstract
Multidrug resistance (MDR) based on ATP-dependent efflux transporters (p-glycoprotein (p-gp)) remains a major obstacle in successful chemotherapy treatment. Herein, we have investigated the potential of PD-L1 mAb-conjugated nanoliposome to serve as a targeted delivery platform for the co-delivery of paclitaxel (PTX) and p-gp specific transport inhibitor (TQD, tariquidar) in drug-resistant gastric cancers. Two drugs, PTX and TQD, were co-loaded in a single vehicle in a precise ratio to enhance the prospect of combination chemotherapeutic effect. Cellular uptake study indicated that PD-PTLP had higher internalization efficiency in PD-L1 receptor overexpressing SGC7901/ADR cells than non-targeted PTLP. Highest synergy was observed at a weight fraction of 1/0.5 (PTX/TQD) and the combination of PTX and TQD resulted in obvious synergistic effect compared to that of individual drugs alone. Our in vitro results showed that TQD was effective in reversing the multidrug resistance in SGC7901/ADR cells. The IC50 value of PD-PTLP was 0.76 μg/ml compared to 6.58 μg/ml and 7.64 μg/ml for PTX and TQD, respectively. PD-TPLP triggered significantly higher levels of reactive oxygen species (ROS) and cell apoptosis compared to that of free PTX or TQD. Furthermore, the in vivo antitumor study showed that the combination chemotherapy of PD-PTLP displayed a significant inhibition of tumor burden of drug-resistant xenograft tumors with significantly higher terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL)-positive cells. Furthermore, free PTX resulted in significant increase in the levels of AST and ALT while PD-PTLP insignificantly different compared to that of control indicating the safety index. Overall, we believe that combination of anticancer drug with a p-gp inhibitor could provide a potential direction toward the treatment of drug-resistant gastric tumors.
Collapse
Affiliation(s)
- Jinling Yu
- Department of General Medicine, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001 China
| | - Fengli Hu
- Department of Gastroenterology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001 China
| | - Qiankun Zhu
- Department of Surgical Oncology and Hepatobiliary Surgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001 China
| | - Xiaodong Li
- Department of Surgical Oncology and Hepatobiliary Surgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001 China
| | - Haiyang Ren
- Department of Surgical Oncology and Hepatobiliary Surgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001 China
| | - Shengjie Fan
- Department of Gastroenterology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001 China
| | - Bo Qian
- Department of Gastroenterology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001 China
| | - Bo Zhai
- Department of Surgical Oncology and Hepatobiliary Surgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001 China
| | - Dongdong Yang
- Department of Surgical Oncology and Hepatobiliary Surgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001 China
| |
Collapse
|
20
|
Robinson K, Tiriveedhi V. Perplexing Role of P-Glycoprotein in Tumor Microenvironment. Front Oncol 2020; 10:265. [PMID: 32195185 PMCID: PMC7066112 DOI: 10.3389/fonc.2020.00265] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 02/17/2020] [Indexed: 12/22/2022] Open
Abstract
Development of multidrug resistance (MDR) still remains a major obstacle to the long-term success of cancer therapy. P-glycoprotein (P-gp) is a well-identified membrane transporter with capability to efflux drug molecules out of the cancer cell leading to reduced efficiency of chemotherapy. Cancer cells upregulate P-gp expression as an adaptive response to evade chemotherapy mediated cell death. While several P-gp inhibitors have been discovered by in silico and pre-clinical studies, very few have successfully passed all phases of the clinical trials. Studies show that application of P-gp inhibitors in cancer therapy regimen following development of MDR achieved limited beneficial outcomes. While, the non-specific substrate binding to P-gp has made the drug-design a challenge, a bigger perplexing challenge comes from its role in tumor immunology. Expression of P-gp was noted immune cell phenotypes with apparently antagonistic functionality. Both pro-tumor MΦ2-macrophages and, anti-tumor NK-cell and Th17/CD4+T cell subsets have shown enhanced expression of P-gp. While drug based inhibition of P-gp in pro-tumor immune cell phenotypes could promote tumor elimination, however, it would not be a rational choice to exert inhibition of P-gp on anti-tumor immune cell phenotypes. This mutually exclusive paradigm of P-gp functionality requires a more comprehensive and detailed understanding of its role in tumor microenvironment with active interplay of cancer and immune cells in the tumor mileu. In this review, we focus on the current understanding of the role of P-gp in cancer cells and immune cells and finally attempt to highlight some caveats in the current understanding of its role in comprehensive tumor microenvironment along with challenges in the development of P-gp inhibitors toward anti-cancer therapy.
Collapse
Affiliation(s)
- Kianna Robinson
- Department of Biological Sciences, Tennessee State University, Nashville, TN, United States
| | - Venkataswarup Tiriveedhi
- Department of Biological Sciences, Tennessee State University, Nashville, TN, United States.,Department of Pharmacology, Vanderbilt University, Nashville, TN, United States
| |
Collapse
|
21
|
Dastvan R, Mishra S, Peskova YB, Nakamoto RK, Mchaourab HS. Mechanism of allosteric modulation of P-glycoprotein by transport substrates and inhibitors. Science 2019; 364:689-692. [PMID: 31097669 DOI: 10.1126/science.aav9406] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 04/17/2019] [Indexed: 01/15/2023]
Abstract
The ATP-binding cassette subfamily B member 1 (ABCB1) multidrug transporter P-glycoprotein plays a central role in clearance of xenobiotics in humans and is implicated in cancer resistance to chemotherapy. We used double electron electron resonance spectroscopy to uncover the basis of stimulation of P-glycoprotein adenosine 5'-triphosphate (ATP) hydrolysis by multiple substrates and illuminate how substrates and inhibitors differentially affect its transport function. Our results reveal that substrate-induced acceleration of ATP hydrolysis correlates with stabilization of a high-energy, post-ATP hydrolysis state characterized by structurally asymmetric nucleotide-binding sites. By contrast, this state is destabilized in the substrate-free cycle and by high-affinity inhibitors in favor of structurally symmetric nucleotide binding sites. Together with previous data, our findings lead to a general model of substrate and inhibitor coupling to P-glycoprotein.
Collapse
Affiliation(s)
- Reza Dastvan
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA
| | - Smriti Mishra
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA
| | - Yelena B Peskova
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22908, USA
| | - Robert K Nakamoto
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22908, USA
| | - Hassane S Mchaourab
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA.
| |
Collapse
|
22
|
Leopoldo M, Nardulli P, Contino M, Leonetti F, Luurtsema G, Colabufo NA. An updated patent review on P-glycoprotein inhibitors (2011-2018). Expert Opin Ther Pat 2019; 29:455-461. [DOI: 10.1080/13543776.2019.1618273] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Marcello Leopoldo
- Department of Pharmacy-Drug Sciences, University of Bari Aldo Moro, Bari, Italy
| | - Patrizia Nardulli
- Hospital Pharmacy Unit, National Cancer Research Centre Istituto Tumori “Giovanni Paolo II”, Bari, Italy
| | | | - Francesco Leonetti
- Department of Pharmacy-Drug Sciences, University of Bari Aldo Moro, Bari, Italy
| | - Gert Luurtsema
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | | |
Collapse
|
23
|
Laiolo J, Tomašič T, Vera DMA, González ML, Lanza PA, Gancedo SN, Hodnik Ž, Peterlin Mašič L, Kikelj D, Carpinella MC. Analogues of the Lignan Pinoresinol as Novel Lead Compounds for P-glycoprotein (P-gp) Inhibitors. ACS Med Chem Lett 2018; 9:1186-1192. [PMID: 30613324 DOI: 10.1021/acsmedchemlett.8b00324] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 11/21/2018] [Indexed: 12/24/2022] Open
Abstract
To find novel P-gp-inhibitors, a library of pregnane X receptor (PXR) ligands and the ZINC DrugsNow library were superimposed on the P-gp inhibitor (+)-pinoresinol (1) used as a query for a three-dimensional similarity search. After determining the TanimotoCombo index of similarity with 1, eight compounds from the PXR library and two ZINC compounds were selected for biological evaluation. The P-gp inhibition study showed that compounds 7, 8, and 9 successfully increased intracellular doxorubicin (DOX) accumulation in the P-gp overexpressed Lucena 1 cells from 25, 12.5, and 6.25 μM, respectively. Among a series of analogues of 9, compounds 26-30 were shown to be active, with 26 and 27 causing a significant increase in DOX accumulation from 1.56 μM and rendering Lucena 1 sensitive to DOX from 1.56 and 0.78 μM, respectively. Molecular modeling studies showed that both compounds bind to the P-gp at transmembrane helices (TMH) 4, 5, and 6, with 27 also showing contacts with TMH 3.
Collapse
Affiliation(s)
- Jerónimo Laiolo
- Research Institute of Natural Resources and Sustainability José Sánchez Labrador S.J. (IRNASUS-CONICET), School of Chemistry, Catholic University of Córdoba, Córdoba, Argentina
| | - Tihomir Tomašič
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Republic of Slovenia
| | - D. Mariano A. Vera
- Department of Chemistry, QUIAMM−INBIOTEC−CONICET, College of Exact and Natural Sciences, National University of Mar del Plata, Mar del Plata, Argentina
| | - María L. González
- Research Institute of Natural Resources and Sustainability José Sánchez Labrador S.J. (IRNASUS-CONICET), School of Chemistry, Catholic University of Córdoba, Córdoba, Argentina
| | - Priscila A. Lanza
- Department of Chemistry, QUIAMM−INBIOTEC−CONICET, College of Exact and Natural Sciences, National University of Mar del Plata, Mar del Plata, Argentina
| | - Samanta N. Gancedo
- Department of Chemistry, QUIAMM−INBIOTEC−CONICET, College of Exact and Natural Sciences, National University of Mar del Plata, Mar del Plata, Argentina
| | - Žiga Hodnik
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Republic of Slovenia
| | | | - Danijel Kikelj
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Republic of Slovenia
| | - María C. Carpinella
- Research Institute of Natural Resources and Sustainability José Sánchez Labrador S.J. (IRNASUS-CONICET), School of Chemistry, Catholic University of Córdoba, Córdoba, Argentina
| |
Collapse
|
24
|
Xia Y, Fang M, Dong J, Xu C, Liao Z, Ning P, Zeng Q. pH sensitive liposomes delivering tariquidar and doxorubicin to overcome multidrug resistance of resistant ovarian cancer cells. Colloids Surf B Biointerfaces 2018; 170:514-520. [PMID: 29960952 DOI: 10.1016/j.colsurfb.2018.06.055] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 05/03/2018] [Accepted: 06/25/2018] [Indexed: 11/16/2022]
Abstract
Multidrug resistance of tumour cells is one of the most important hurdles in tumour chemotherapy. To overcome the multidrug resistance, we constructed a pH-sensitive liposome formulation (pHSL) by loading tariquidar (TQR) and DOX simultaneously in this work. The formulation showed high stability at pH 7.4 and excellent sensitivity at acidic pH, which facilitated the delivery of TQR and DOX into cells. Cellular experiments demonstrated that the pHSL/TQR/DOX 0.05 could almost restore the drug sensitivity of OVCAR8/ADR cells. Therefore, the pH sensitive liposome formulation pHSL/TQR/DOX 0.05 was very promising in treating resistant tumours.
Collapse
Affiliation(s)
- Yuqiong Xia
- School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, China.
| | - Mei Fang
- School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, China
| | - Jingyu Dong
- School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, China
| | - Chunzhong Xu
- School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, China
| | - Zhen Liao
- School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, China
| | - Pengbo Ning
- School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, China
| | - Qi Zeng
- School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, China
| |
Collapse
|
25
|
Cell-based screen for discovering lipopolysaccharide biogenesis inhibitors. Proc Natl Acad Sci U S A 2018; 115:6834-6839. [PMID: 29735709 DOI: 10.1073/pnas.1804670115] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
New drugs are needed to treat gram-negative bacterial infections. These bacteria are protected by an outer membrane which prevents many antibiotics from reaching their cellular targets. The outer leaflet of the outer membrane contains LPS, which is responsible for creating this permeability barrier. Interfering with LPS biogenesis affects bacterial viability. We developed a cell-based screen that identifies inhibitors of LPS biosynthesis and transport by exploiting the nonessentiality of this pathway in Acinetobacter We used this screen to find an inhibitor of MsbA, an ATP-dependent flippase that translocates LPS across the inner membrane. Treatment with the inhibitor caused mislocalization of LPS to the cell interior. The discovery of an MsbA inhibitor, which is universally conserved in all gram-negative bacteria, validates MsbA as an antibacterial target. Because our cell-based screen reports on the function of the entire LPS biogenesis pathway, it could be used to identify compounds that inhibit other targets in the pathway, which can provide insights into vulnerabilities of the gram-negative cell envelope.
Collapse
|
26
|
Gibbs ME, Wilt LA, Ledwitch KV, Roberts AG. A Conformationally Gated Model of Methadone and Loperamide Transport by P-Glycoprotein. J Pharm Sci 2018; 107:1937-1947. [PMID: 29499278 DOI: 10.1016/j.xphs.2018.02.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 02/18/2018] [Accepted: 02/21/2018] [Indexed: 01/16/2023]
Abstract
P-glycoprotein (Pgp) is a multidrug resistance transporter that limits the penetration of a wide range of neurotherapeutics into the brain including opioids. The diphenylpropylamine opioids methadone and loperamide are structurally similar, but loperamide has about a 4-fold higher Pgp-mediated transport rate. In addition to these differences, they showed significant differences in their effects on Pgp-mediated adenosine triphosphate (ATP) hydrolysis. The activation of Pgp-mediated ATP hydrolysis by methadone was monophasic, whereas loperamide activation of ATP hydrolysis was biphasic implying methadone has a single binding site and loperamide has 2 binding sites on Pgp. Quenching of tryptophan fluorescence with these drugs and digoxin showed competition between the opioids and that loperamide does not compete for the digoxin-binding site. Acrylamide quenching of tryptophan fluorescence to probe Pgp conformational changes revealed that methadone- and loperamide-induced conformational changes were distinct. These results were used to develop a model for Pgp-mediated transport of methadone and loperamide where opioid binding and conformational changes are used to explain the differences in the opioid transport rates between methadone and loperamide.
Collapse
Affiliation(s)
- Morgan E Gibbs
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, Georgia 30602
| | - Laura A Wilt
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, Georgia 30602
| | - Kaitlyn V Ledwitch
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235
| | - Arthur G Roberts
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, Georgia 30602.
| |
Collapse
|
27
|
Li L, Fu Q, Xia M, Xin L, Shen H, Li G, Ji G, Meng Q, Xie Y. Inhibition of P-Glycoprotein Mediated Efflux in Caco-2 Cells by Phytic Acid. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:988-998. [PMID: 29282978 DOI: 10.1021/acs.jafc.7b04307] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Phytic acid (IP6) is a natural phosphorylated inositol, which is abundantly present in most cereal grains and seeds. This study investigated the effects of IP6 regulation on P-glycoprotein (P-gp) and its potential mechanisms using in situ and in vitro models. The effective permeability of the typical P-gp substrate rhodamine 123 (R123) in colon was significantly increased from (1.69 ± 0.22) × 10-5 cm/s in the control group to (3.39 ± 0.417) × 10-5 cm/s (p < 0.01) in the 3.5 mM IP6 group. Additionally, IP6 can concentration-dependently decrease the R123 efflux ratio in both Caco-2 and MDCK II-MDR1 cell monolayers and increase intracellular R123 accumulation in Caco-2 cells. Furthermore, IP6 noncompetitively inhibited P-gp by impacting R123 efflux kinetics. The noncompetitive inhibition of P-gp by IP6 was likely due to decreases in P-gp ATPase activity and P-gp molecular conformational changes induced by IP6. In summary, IP6 is a promising P-gp inhibitor candidate.
Collapse
Affiliation(s)
- Lujia Li
- Research Center for Health and Nutrition, Shanghai University of Traditional Chinese Medicine , Shanghai 201203, China
- Pharmacy Department, Shanghai TCM-integrated Hospital, Shanghai University of Traditional Chinese Medicine , Shanghai 200082, China
| | - Qingxue Fu
- Research Center for Health and Nutrition, Shanghai University of Traditional Chinese Medicine , Shanghai 201203, China
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine , Shanghai 201203, China
| | - Mengxin Xia
- Research Center for Health and Nutrition, Shanghai University of Traditional Chinese Medicine , Shanghai 201203, China
| | - Lei Xin
- Research Center for Health and Nutrition, Shanghai University of Traditional Chinese Medicine , Shanghai 201203, China
| | - Hongyi Shen
- Research Center for Health and Nutrition, Shanghai University of Traditional Chinese Medicine , Shanghai 201203, China
| | - Guowen Li
- Pharmacy Department, Shanghai TCM-integrated Hospital, Shanghai University of Traditional Chinese Medicine , Shanghai 200082, China
| | - Guang Ji
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine , Shanghai 200032, China
| | - Qianchao Meng
- Center for Drug Safety Evaluation, Shanghai University of Traditional Chinese Medicine , Shanghai 201203, China
| | - Yan Xie
- Research Center for Health and Nutrition, Shanghai University of Traditional Chinese Medicine , Shanghai 201203, China
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine , Shanghai 200032, China
| |
Collapse
|
28
|
Waghray D, Zhang Q. Inhibit or Evade Multidrug Resistance P-Glycoprotein in Cancer Treatment. J Med Chem 2017; 61:5108-5121. [PMID: 29251920 DOI: 10.1021/acs.jmedchem.7b01457] [Citation(s) in RCA: 275] [Impact Index Per Article: 34.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Multidrug resistance (MDR) is a major cause of failure in cancer chemotherapy. P-glycoprotein (P-gp), a promiscuous drug efflux pump, has been extensively studied for its association with MDR due to overexpression in cancer cells. Several P-gp inhibitors or modulators have been investigated in clinical trials in hope of circumventing MDR, with only limited success. Alternative strategies are actively pursued, such as the modification of existing drugs, development of new drugs, or combination of novel drug delivery agents to evade P-gp-dependent efflux. Despite the importance and numerous studies, these efforts have mostly been undertaken without a priori knowledge of how drugs interact with P-gp at the molecular level. This review highlights and discusses progress toward and challenges impeding drug development for inhibiting or evading P-gp in the context of our improved understanding of the structural basis and mechanism of P-gp-mediated MDR.
Collapse
Affiliation(s)
- Deepali Waghray
- Department of Integrative Structural and Computational Biology , The Scripps Research Institute , La Jolla , California 92037 , United States
| | - Qinghai Zhang
- Department of Integrative Structural and Computational Biology , The Scripps Research Institute , La Jolla , California 92037 , United States
| |
Collapse
|
29
|
Matano LM, Morris HG, Hesser AR, Martin SES, Lee W, Owens TW, Laney E, Nakaminami H, Hooper D, Meredith TC, Walker S. Antibiotic That Inhibits the ATPase Activity of an ATP-Binding Cassette Transporter by Binding to a Remote Extracellular Site. J Am Chem Soc 2017; 139:10597-10600. [PMID: 28727445 DOI: 10.1021/jacs.7b04726] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Antibiotic-resistant strains of Staphylococcus aureus pose a major threat to human health and there is an ongoing need for new antibiotics to treat resistant infections. In a high throughput screen (HTS) of 230 000 small molecules designed to identify bioactive wall teichoic acid (WTA) inhibitors, we identified one hit, which was expanded through chemical synthesis into a small panel of potent compounds. We showed that these compounds target TarG, the transmembrane component of the two-component ATP-binding cassette (ABC) transporter TarGH, which exports WTA precursors to the cell surface for attachment to peptidoglycan. We purified, for the first time, a WTA transporter and have reconstituted ATPase activity in proteoliposomes. We showed that this new compound series inhibits TarH-catalyzed ATP hydrolysis even though the binding site maps to TarG near the opposite side of the membrane. These are the first ABC transporter inhibitors shown to block ATPase activity by binding to the transmembrane domain. The compounds have potential as therapeutic agents to treat S. aureus infections, and purification of the transmembrane transporter will enable further development.
Collapse
Affiliation(s)
- Leigh M Matano
- Department of Microbiology and Immunobiology, Harvard University , 77 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Heidi G Morris
- Department of Microbiology and Immunobiology, Harvard University , 77 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Anthony R Hesser
- Department of Microbiology and Immunobiology, Harvard University , 77 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Sara E S Martin
- Department of Microbiology and Immunobiology, Harvard University , 77 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Wonsik Lee
- Department of Microbiology and Immunobiology, Harvard University , 77 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Tristan W Owens
- Department of Chemistry and Chemical Biology, Harvard University , 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - Emaline Laney
- Department of Microbiology and Immunobiology, Harvard University , 77 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Hidemasa Nakaminami
- Division of Infectious Diseases, Massachusetts General Hospital , 55 Fruit Street, Boston, Massachusetts 02114, United States
| | - David Hooper
- Division of Infectious Diseases, Massachusetts General Hospital , 55 Fruit Street, Boston, Massachusetts 02114, United States
| | - Timothy C Meredith
- Department of Biochemistry and Molecular Biology, Pennsylvania State University , 206 South Frear Laboratory, University Park, Pennsylvania 16802, United States
| | - Suzanne Walker
- Department of Microbiology and Immunobiology, Harvard University , 77 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| |
Collapse
|
30
|
Vauthier V, Housset C, Falguières T. Targeted pharmacotherapies for defective ABC transporters. Biochem Pharmacol 2017; 136:1-11. [DOI: 10.1016/j.bcp.2017.02.020] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 02/23/2017] [Indexed: 02/07/2023]
|
31
|
Loo TW, Clarke DM. Thiol-reactive drug substrates of human P-glycoprotein label the same sites to activate ATPase activity in membranes or dodecyl maltoside detergent micelles. Biochem Biophys Res Commun 2017; 488:573-577. [DOI: 10.1016/j.bbrc.2017.05.106] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 05/19/2017] [Indexed: 12/31/2022]
|
32
|
Spork M, Sohail MI, Schmid D, Ecker GF, Freissmuth M, Chiba P, Stockner T. Folding correction of ABC-transporter ABCB1 by pharmacological chaperones: a mechanistic concept. Pharmacol Res Perspect 2017; 5:e00325. [PMID: 28603639 PMCID: PMC5464349 DOI: 10.1002/prp2.325] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 03/21/2017] [Indexed: 12/20/2022] Open
Abstract
Point mutations of ATP‐binding cassette (ABC) proteins are a common cause of human diseases. Available crystal structures indicate a similarity in the architecture of several members of this protein family. Their molecular architecture makes these proteins vulnerable to mutation, when critical structural elements are affected. The latter preferentially involve the two transmembrane domain (TMD)/nucleotide‐binding domain (NBD) interfaces (transmission interfaces), formation of which requires engagement of coupling helices of intracellular loops with NBDs. Both, formation of the active sites and engagement of the coupling helices, are contingent on correct positioning of ICLs 2 and 4 and thus an important prerequisite for proper folding. Here, we show that active site compounds are capable of rescuing P‐glycoprotein (P‐gp) mutants ∆Y490 and ∆Y1133 in a concentration‐dependent manner. These trafficking deficient mutations are located at the transmission interface in pseudosymmetric position to each other. In addition, the ability of propafenone analogs to correct folding correlates with their ability to inhibit transport of model substrates. This finding indicates that folding correction and transport inhibition by propafenone analogs are brought about by binding to the active sites. Furthermore, this study demonstrates an asymmetry in folding correction with cis‐flupentixol, which reflects the asymmetric binding properties of this modulator to P‐gp. Our results suggest a mechanistic model for corrector action in a model ABC transporter based on insights into the molecular architecture of these transporters.
Collapse
Affiliation(s)
- Matthias Spork
- Institute of Medical Chemistry Center of Pathobiochemistry and Genetics Medical University of Vienna Waehringerstrasse 10 Vienna A-1090 Austria
| | - Muhammad Imran Sohail
- Institute of Medical Chemistry Center of Pathobiochemistry and Genetics Medical University of Vienna Waehringerstrasse 10 Vienna A-1090 Austria.,Department of Zoology Government College University Lahore Katchery Road Lahore 54000 Pakistan
| | - Diethart Schmid
- Institute of Physiology Center of Physiology und Pharmacology Medical University of Vienna Schwarzspanierstrasse 17 Vienna A -1090 Austria
| | - Gerhard F Ecker
- Department of Medicinal Chemistry University of Vienna Emerging Field Pharmacoinformatics Althanstrasse 14 Vienna A-1090 Austria (GFE)
| | - Michael Freissmuth
- Institute of Pharmacology Center of Physiology und Pharmacology Medical University of Vienna Waehringerstrasse 13a Vienna A-1090 Austria
| | - Peter Chiba
- Institute of Medical Chemistry Center of Pathobiochemistry and Genetics Medical University of Vienna Waehringerstrasse 10 Vienna A-1090 Austria
| | - Thomas Stockner
- Institute of Pharmacology Center of Physiology und Pharmacology Medical University of Vienna Waehringerstrasse 13a Vienna A-1090 Austria
| |
Collapse
|
33
|
González ML, Vera DMA, Laiolo J, Joray MB, Maccioni M, Palacios SM, Molina G, Lanza PA, Gancedo S, Rumjanek V, Carpinella MC. Mechanism Underlying the Reversal of Drug Resistance in P-Glycoprotein-Expressing Leukemia Cells by Pinoresinol and the Study of a Derivative. Front Pharmacol 2017; 8:205. [PMID: 28487651 PMCID: PMC5403950 DOI: 10.3389/fphar.2017.00205] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 03/31/2017] [Indexed: 11/17/2022] Open
Abstract
P-glycoprotein (P-gp) is a membrane protein associated with multidrug resistance (MDR) due to its key role in mediating the traffic of chemotherapeutic drugs outside cancer cells, leading to a cellular response that hinders efforts toward successful therapy. With the aim of finding agents that circumvent the MDR phenotype mediated by P-gp, 15 compounds isolated from native and naturalized plants of Argentina were screened. Among these, the non-cytotoxic lignan (±) pinoresinol successfully restored sensitivity to doxorubicin from 7 μM in the P-gp overexpressed human myelogenous leukemia cells, Lucena 1. This resistance-reversing effect was confirmed by competitively increasing the intracellular doxorubicin accumulation and by significantly inhibiting the efflux of doxorubicin and, to a lesser extent, that of rhodamine 123. The activity obtained was similar to that observed with verapamil. No such results were observed in the sensitive parental K562 cell line. To gain deeper insight into the mode of action of pinoresinol, its effect on P-gp function and expression was examined. The docking simulations indicated that the lignan bound to P-gp at the apex of the V-shaped transmembrane cavity, involving transmembrane helices 4, 5, and 6, and partially overlapped the binding region of tariquidar, which was used as a positive control. These results would shed some light on the nature of its interaction with P-gp at molecular level and merit further mechanistic and kinetic studies. In addition, it showed a maximum 29% activation of ATP hydrolysis and antagonized verapamil-stimulated ATPase activity with an IC50 of 20.9 μM. On the other hand, pinoresinol decreased the presence of P-gp in the cell surface. Derivatives of pinoresinol with improved activity were identified by docking studies. The most promising one, the non-cytotoxic 1-acetoxypinoresinol, caused a reversion of doxorubicin resistance from 0.11 μM and thus higher activity than the lead compound. It also caused a significant increase in doxorubicin accumulation. Results were similar to those observed with verapamil. The results obtained positioned these compounds as potential candidates for effective agents to overcome P-gp-mediated MDR, leading to better outcomes for leukemia chemotherapy.
Collapse
Affiliation(s)
- María L González
- Fine Chemical and Natural Products Laboratory, School of Chemistry, Catholic University of CórdobaCórdoba, Argentina
| | - D Mariano A Vera
- Department of Chemistry, QUIAMM-INBIOTEC-CONICET, College of Exact and Natural Sciences, National University of Mar del PlataMar del Plata, Argentina
| | - Jerónimo Laiolo
- Fine Chemical and Natural Products Laboratory, School of Chemistry, Catholic University of CórdobaCórdoba, Argentina
| | - Mariana B Joray
- Fine Chemical and Natural Products Laboratory, School of Chemistry, Catholic University of CórdobaCórdoba, Argentina
| | - Mariana Maccioni
- Immunology, Department of Biochemical Chemistry, CIBICI-CONICET, School of Chemical Sciences, National University of CórdobaCórdoba, Argentina
| | - Sara M Palacios
- Fine Chemical and Natural Products Laboratory, School of Chemistry, Catholic University of CórdobaCórdoba, Argentina
| | - Gabriela Molina
- Fine Chemical and Natural Products Laboratory, School of Chemistry, Catholic University of CórdobaCórdoba, Argentina
| | - Priscila A Lanza
- Department of Chemistry, QUIAMM-INBIOTEC-CONICET, College of Exact and Natural Sciences, National University of Mar del PlataMar del Plata, Argentina
| | - Samanta Gancedo
- Immunology, Department of Biochemical Chemistry, CIBICI-CONICET, School of Chemical Sciences, National University of CórdobaCórdoba, Argentina
| | - Vivian Rumjanek
- Institute of Medical Biochemistry, Federal University of Rio de JaneiroRio de Janeiro, Brazil
| | - María C Carpinella
- Fine Chemical and Natural Products Laboratory, School of Chemistry, Catholic University of CórdobaCórdoba, Argentina
| |
Collapse
|
34
|
Morad SAF, Davis TS, MacDougall MR, Tan SF, Feith DJ, Desai DH, Amin SG, Kester M, Loughran TP, Cabot MC. Role of P-glycoprotein inhibitors in ceramide-based therapeutics for treatment of cancer. Biochem Pharmacol 2017; 130:21-33. [PMID: 28189725 DOI: 10.1016/j.bcp.2017.02.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 02/01/2017] [Indexed: 10/20/2022]
Abstract
The anticancer properties of ceramide, a sphingolipid with potent tumor-suppressor properties, can be dampened via glycosylation, notably in multidrug resistance wherein ceramide glycosylation is characteristically elevated. Earlier works using the ceramide analog, C6-ceramide, demonstrated that the antiestrogen tamoxifen, a first generation P-glycoprotein (P-gp) inhibitor, blocked C6-ceramide glycosylation and magnified apoptotic responses. The present investigation was undertaken with the goal of discovering non-anti-estrogenic alternatives to tamoxifen that could be employed as adjuvants for improving the efficacy of ceramide-centric therapeutics in treatment of cancer. Herein we demonstrate that the tamoxifen metabolites, desmethyltamoxifen and didesmethyltamoxifen, and specific, high-affinity P-gp inhibitors, tariquidar and zosuquidar, synergistically enhanced C6-ceramide cytotoxicity in multidrug resistant HL-60/VCR acute myelogenous leukemia (AML) cells, whereas the selective estrogen receptor antagonist, fulvestrant, was ineffective. Active C6-ceramide-adjuvant combinations elicited mitochondrial ROS production and cytochrome c release, and induced apoptosis. Cytotoxicity was mitigated by introduction of antioxidant. Effective adjuvants markedly inhibited C6-ceramide glycosylation as well as conversion to sphingomyelin. Active regimens were also effective in KG-1a cells, a leukemia stem cell-like line, and in LoVo human colorectal cancer cells, a solid tumor model. In summary, our work details discovery of the link between P-gp inhibitors and the regulation and potentiation of ceramide metabolism in a pro-apoptotic direction in cancer cells. Given the active properties of these adjuvants in synergizing with C6-ceramide, independent of drug resistance status, stemness, or cancer type, our results suggest that the C6-ceramide-containing regimens could provide alternative, promising therapeutic direction, in addition to finding novel, off-label applications for P-gp inhibitors.
Collapse
Affiliation(s)
- Samy A F Morad
- Department of Biochemistry and Molecular Biology, East Carolina University, Brody School of Medicine, East Carolina Diabetes and Obesity Institute, Greenville, NC, United States; Department of Pharmacology, Faculty of Veterinary Medicine, South Valley University, Qena, Egypt
| | - Traci S Davis
- Department of Biochemistry and Molecular Biology, East Carolina University, Brody School of Medicine, East Carolina Diabetes and Obesity Institute, Greenville, NC, United States
| | - Matthew R MacDougall
- Department of Biochemistry and Molecular Biology, East Carolina University, Brody School of Medicine, East Carolina Diabetes and Obesity Institute, Greenville, NC, United States
| | - Su-Fern Tan
- Department of Medicine, Hematology/Oncology, University of Virginia, Charlottesville, VA, United States
| | - David J Feith
- Department of Medicine, Hematology/Oncology, University of Virginia, Charlottesville, VA, United States; University of Virginia Cancer Center, University of Virginia, Charlottesville, VA, United States
| | - Dhimant H Desai
- Penn State University College of Medicine, Department of Pharmacology, University Drive, Hershey, PA, United States
| | - Shantu G Amin
- Penn State University College of Medicine, Department of Pharmacology, University Drive, Hershey, PA, United States
| | - Mark Kester
- University of Virginia Cancer Center, University of Virginia, Charlottesville, VA, United States
| | - Thomas P Loughran
- Department of Medicine, Hematology/Oncology, University of Virginia, Charlottesville, VA, United States; University of Virginia Cancer Center, University of Virginia, Charlottesville, VA, United States
| | - Myles C Cabot
- Department of Biochemistry and Molecular Biology, East Carolina University, Brody School of Medicine, East Carolina Diabetes and Obesity Institute, Greenville, NC, United States.
| |
Collapse
|
35
|
Zhang Y, Sriraman SK, Kenny HA, Luther E, Torchilin V, Lengyel E. Reversal of Chemoresistance in Ovarian Cancer by Co-Delivery of a P-Glycoprotein Inhibitor and Paclitaxel in a Liposomal Platform. Mol Cancer Ther 2016; 15:2282-2293. [PMID: 27466355 DOI: 10.1158/1535-7163.mct-15-0986] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 07/13/2016] [Indexed: 01/23/2023]
Abstract
The overexpression of permeability-glycoprotein (P-gp), an ABC transporter involved in the cellular exclusion of chemotherapeutic drugs, is a major factor in paclitaxel-resistant ovarian cancer. However, in clinical trials, co-administration of P-gp inhibitors and anticancer drugs has not resulted in the efficient reversal of drug resistance. To improve administration, we encapsulated the third-generation P-gp inhibitor tariquidar (XR-9576, XR), alone or in combination with paclitaxel (PCT) in liposomes (LP). After optimization, the liposomes demonstrated favorable physicochemical properties and the ability to reverse chemoresistance in experiments using chemosensitive/chemoresistant ovarian cancer cell line pairs. Analyzing publicly available datasets, we found that overexpression of P-gp in ovarian cancer is associated with a shorter progression-free and overall survival. In vitro, LP(XR) significantly increased the cellular retention of rhodamine 123, a P-gp substrate. LP(XR,PCT) synergistically inhibited cell viability, blocked proliferation, and caused G2-M arrest in paclitaxel-resistant SKOV3-TR and HeyA8-MDR cell lines overexpressing P-gp. Holographic imaging cytometry revealed that LP(XR,PCT) treatment of SKOV3-TR cells induced almost complete mitotic arrest, whereas laser scanning cytometry showed that the treatment induced apoptosis. In proof-of-concept preclinical studies, LP(XR,PCT), when compared with LP(PCT), significantly reduced tumor weight (43.2% vs. 16.9%, P = 0.0007) and number of metastases (44.4% vs. 2.8%, P = 0.012) in mice bearing orthotopic HeyA8-MDR ovarian tumors. In the xenografts, LP(XR,PCT) efficiently induced apoptosis and impaired proliferation. Our findings suggest that co-delivery of a P-gp inhibitor and paclitaxel using a liposomal platform can sensitize paclitaxel-resistant ovarian cancer cells to paclitaxel. LP(XR,PCT) should be considered for clinical testing in patients with P-gp-overexpressing tumors. Mol Cancer Ther; 15(10); 2282-93. ©2016 AACR.
Collapse
Affiliation(s)
- Yilin Zhang
- Department of Obstetrics and Gynecology/Section of Gynecologic Oncology, University of Chicago, Chicago, Illinois
| | - Shravan Kumar Sriraman
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, Massachusetts
| | - Hilary A Kenny
- Department of Obstetrics and Gynecology/Section of Gynecologic Oncology, University of Chicago, Chicago, Illinois
| | - Ed Luther
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, Massachusetts
| | - Vladimir Torchilin
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, Massachusetts
| | - Ernst Lengyel
- Department of Obstetrics and Gynecology/Section of Gynecologic Oncology, University of Chicago, Chicago, Illinois.
| |
Collapse
|
36
|
Multi-drug loaded vitamin E-TPGS nanoparticles for synergistic drug delivery to overcome drug resistance in tumor treatment. Sci Bull (Beijing) 2016. [DOI: 10.1007/s11434-016-1039-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
37
|
Weidner LD, Fung KL, Kannan P, Moen JK, Kumar JS, Mulder J, Innis RB, Gottesman MM, Hall MD. Tariquidar Is an Inhibitor and Not a Substrate of Human and Mouse P-glycoprotein. Drug Metab Dispos 2016; 44:275-82. [PMID: 26658428 PMCID: PMC4746486 DOI: 10.1124/dmd.115.067785] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 12/08/2015] [Indexed: 01/15/2023] Open
Abstract
Since its development, tariquidar (TQR; XR9576; N-[2-[[4-[2-(6,7-Dimethoxy-3,4-dihydro-1H-isoquinolin-2-yl)ethyl]phenyl]carbamoyl]-4,5-dimethoxyphenyl]quinoline-3-carboxamide) has been widely regarded as one of the more potent inhibitors of P-glycoprotein (P-gp), an efflux transporter of the ATP-binding cassette (ABC) transporter family. A third-generation inhibitor, TQR exhibits high affinity for P-gp, although it is also a substrate of another ABC transporter, breast cancer resistance protein (BCRP). Recently, several studies have questioned the mechanism by which TQR interfaces with P-gp, suggesting that TQR is a substrate for P-gp instead of a noncompetitive inhibitor. We investigated TQR and its interaction with human and mouse P-gp to determine if TQR is a substrate of P-gp in vitro. To address these questions, we used multiple in vitro transporter assays, including cytotoxicity, flow cytometry, accumulation, ATPase, and transwell assays. A newly generated BCRP cell line was used as a positive control that demonstrates TQR-mediated transport. Based on our results, we conclude that TQR is a potent inhibitor of both human and mouse P-gp and shows no signs of being a substrate at the concentrations tested. These in vitro data further support our position that the in vivo uptake of [(11)C]TQR into the brain can be explained by its high-affinity binding to P-gp and by it being a substrate of BCRP, followed by amplification of the brain signal by ionic trapping in acidic lysosomes.
Collapse
Affiliation(s)
- Lora D Weidner
- Molecular Imaging Branch, National Institute of Mental Health, Bethesda, Maryland (L.D.W., P.K., R.B.I.); Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland (K.L.F., J.K.M., J.S.K., M.M.G., M.D.H.); and Karolinska Institutet, Department of Neuroscience, Stockholm, Sweden (L.D.W., J.M.)
| | - King Leung Fung
- Molecular Imaging Branch, National Institute of Mental Health, Bethesda, Maryland (L.D.W., P.K., R.B.I.); Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland (K.L.F., J.K.M., J.S.K., M.M.G., M.D.H.); and Karolinska Institutet, Department of Neuroscience, Stockholm, Sweden (L.D.W., J.M.)
| | - Pavitra Kannan
- Molecular Imaging Branch, National Institute of Mental Health, Bethesda, Maryland (L.D.W., P.K., R.B.I.); Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland (K.L.F., J.K.M., J.S.K., M.M.G., M.D.H.); and Karolinska Institutet, Department of Neuroscience, Stockholm, Sweden (L.D.W., J.M.)
| | - Janna K Moen
- Molecular Imaging Branch, National Institute of Mental Health, Bethesda, Maryland (L.D.W., P.K., R.B.I.); Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland (K.L.F., J.K.M., J.S.K., M.M.G., M.D.H.); and Karolinska Institutet, Department of Neuroscience, Stockholm, Sweden (L.D.W., J.M.)
| | - Jeyan S Kumar
- Molecular Imaging Branch, National Institute of Mental Health, Bethesda, Maryland (L.D.W., P.K., R.B.I.); Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland (K.L.F., J.K.M., J.S.K., M.M.G., M.D.H.); and Karolinska Institutet, Department of Neuroscience, Stockholm, Sweden (L.D.W., J.M.)
| | - Jan Mulder
- Molecular Imaging Branch, National Institute of Mental Health, Bethesda, Maryland (L.D.W., P.K., R.B.I.); Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland (K.L.F., J.K.M., J.S.K., M.M.G., M.D.H.); and Karolinska Institutet, Department of Neuroscience, Stockholm, Sweden (L.D.W., J.M.)
| | - Robert B Innis
- Molecular Imaging Branch, National Institute of Mental Health, Bethesda, Maryland (L.D.W., P.K., R.B.I.); Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland (K.L.F., J.K.M., J.S.K., M.M.G., M.D.H.); and Karolinska Institutet, Department of Neuroscience, Stockholm, Sweden (L.D.W., J.M.)
| | - Michael M Gottesman
- Molecular Imaging Branch, National Institute of Mental Health, Bethesda, Maryland (L.D.W., P.K., R.B.I.); Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland (K.L.F., J.K.M., J.S.K., M.M.G., M.D.H.); and Karolinska Institutet, Department of Neuroscience, Stockholm, Sweden (L.D.W., J.M.)
| | - Matthew D Hall
- Molecular Imaging Branch, National Institute of Mental Health, Bethesda, Maryland (L.D.W., P.K., R.B.I.); Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland (K.L.F., J.K.M., J.S.K., M.M.G., M.D.H.); and Karolinska Institutet, Department of Neuroscience, Stockholm, Sweden (L.D.W., J.M.)
| |
Collapse
|
38
|
Loo TW, Clarke DM. Mapping the Binding Site of the Inhibitor Tariquidar That Stabilizes the First Transmembrane Domain of P-glycoprotein. J Biol Chem 2015; 290:29389-401. [PMID: 26507655 PMCID: PMC4705942 DOI: 10.1074/jbc.m115.695171] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Indexed: 11/26/2022] Open
Abstract
ABC (ATP-binding cassette) transporters are clinically important because drug pumps like P-glycoprotein (P-gp, ABCB1) confer multidrug resistance and mutant ABC proteins are responsible for many protein-folding diseases such as cystic fibrosis. Identification of the tariquidar-binding site has been the subject of intensive molecular modeling studies because it is the most potent inhibitor and corrector of P-gp. Tariquidar is a unique P-gp inhibitor because it locks the pump in a conformation that blocks drug efflux but activates ATPase activity. In silico docking studies have identified several potential tariquidar-binding sites. Here, we show through cross-linking studies that tariquidar most likely binds to sites within the transmembrane (TM) segments located in one wing or at the interface between the two wings (12 TM segments form 2 divergent wings). We then introduced arginine residues at all positions in the 12 TM segments (223 mutants) of P-gp. The rationale was that a charged residue in the drug-binding pocket would disrupt hydrophobic interaction with tariquidar and inhibit its ability to rescue processing mutants or stimulate ATPase activity. Arginines introduced at 30 positions significantly inhibited tariquidar rescue of a processing mutant and activation of ATPase activity. The results suggest that tariquidar binds to a site within the drug-binding pocket at the interface between the TM segments of both structural wings. Tariquidar differed from other drug substrates, however, as it stabilized the first TM domain. Stabilization of the first TM domain appears to be a key mechanism for high efficiency rescue of ABC processing mutants that cause disease.
Collapse
Affiliation(s)
- Tip W Loo
- From the Departments of Medicine and Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - David M Clarke
- From the Departments of Medicine and Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| |
Collapse
|
39
|
Follit CA, Brewer FK, Wise JG, Vogel PD. In silico identified targeted inhibitors of P-glycoprotein overcome multidrug resistance in human cancer cells in culture. Pharmacol Res Perspect 2015; 3:e00170. [PMID: 26516582 PMCID: PMC4618641 DOI: 10.1002/prp2.170] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 05/21/2015] [Accepted: 06/23/2015] [Indexed: 11/24/2022] Open
Abstract
Failure of cancer chemotherapies is often linked to the over expression of ABC efflux transporters like the multidrug resistance P-glycoprotein (P-gp). P-gp expression in cells leads to the elimination of a variety of chemically unrelated, mostly cytotoxic compounds. Administration of chemotherapeutics during therapy frequently selects for cells that over express P-gp and are therefore capable of robustly exporting diverse compounds, including chemotherapeutics, from the cells. P-gp thus confers multidrug resistance to a majority of drugs currently available for the treatment of cancers and diseases like HIV/AIDS. The search for P-gp inhibitors for use as co-therapeutics to combat multidrug resistances has had little success to date. In a previous study (Brewer et al., Mol Pharmacol 86: 716–726, 2014), we described how ultrahigh throughput computational searches led to the identification of four drug-like molecules that specifically interfere with the energy harvesting steps of substrate transport and inhibit P-gp catalyzed ATP hydrolysis in vitro. In the present study, we demonstrate that three of these compounds reversed P-gp-mediated multidrug resistance of cultured prostate cancer cells to restore sensitivity comparable to naïve prostate cancer cells to the chemotherapeutic drug, paclitaxel. Potentiation concentrations of the inhibitors were <3 μmol/L. The inhibitors did not exhibit significant toxicity to noncancerous cells at concentrations where they reversed multidrug resistance in cancerous cells. Our results indicate that these compounds with novel mechanisms of P-gp inhibition are excellent leads for the development of co-therapeutics for the treatment of multidrug resistances.
Collapse
Affiliation(s)
- Courtney A Follit
- Department of Biological Sciences, The Center for Drug Discovery, Design and Delivery, Southern Methodist University Dallas, Texas, 75275-0376
| | - Frances K Brewer
- Department of Biological Sciences, The Center for Drug Discovery, Design and Delivery, Southern Methodist University Dallas, Texas, 75275-0376
| | - John G Wise
- Department of Biological Sciences, The Center for Drug Discovery, Design and Delivery, Southern Methodist University Dallas, Texas, 75275-0376
| | - Pia D Vogel
- Department of Biological Sciences, The Center for Drug Discovery, Design and Delivery, Southern Methodist University Dallas, Texas, 75275-0376
| |
Collapse
|
40
|
McCormick JW, Vogel PD, Wise JG. Multiple Drug Transport Pathways through Human P-Glycoprotein. Biochemistry 2015; 54:4374-90. [PMID: 26125482 DOI: 10.1021/acs.biochem.5b00018] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
P-Glycoprotein (P-gp) is a plasma membrane efflux pump that is commonly associated with therapy resistances in cancers and infectious diseases. P-gp can lower the intracellular concentrations of many drugs to subtherapeutic levels by translocating them out of the cell. Because of the broad range of substrates transported by P-gp, overexpression of P-gp causes multidrug resistance. We reported previously on dynamic transitions of P-gp as it moved through conformations based on crystal structures of homologous ABCB1 proteins using in silico targeted molecular dynamics techniques. We expanded these studies here by docking transport substrates to drug binding sites of P-gp in conformations open to the cytoplasm, followed by cycling the pump through conformations that opened to the extracellular space. We observed reproducible transport of two substrates, daunorubicin and verapamil, by an average of 11-12 Å through the plane of the membrane as P-gp progressed through a catalytic cycle. Methylpyrophosphate, a ligand that should not be transported by P-gp, did not show this movement through P-gp. Drug binding to either of two subsites on P-gp appeared to determine the initial pathway used for drug movement through the membrane. The specific side-chain interactions with drugs within each pathway seemed to be, at least in part, stochastic. The docking and transport properties of a P-gp inhibitor, tariquidar, were also studied. A mechanism of inhibition by tariquidar that involves stabilization of an outward open conformation with tariquidar bound in intracellular loops or at the drug binding domain of P-gp is presented.
Collapse
Affiliation(s)
- James W McCormick
- Center for Drug Discovery, Design and Delivery, Center for Scientific Computing, and Department of Biological Sciences, Southern Methodist University, Dallas, Texas 75275-0376, United States
| | - Pia D Vogel
- Center for Drug Discovery, Design and Delivery, Center for Scientific Computing, and Department of Biological Sciences, Southern Methodist University, Dallas, Texas 75275-0376, United States
| | - John G Wise
- Center for Drug Discovery, Design and Delivery, Center for Scientific Computing, and Department of Biological Sciences, Southern Methodist University, Dallas, Texas 75275-0376, United States
| |
Collapse
|
41
|
Loo TW, Clarke DM. The Transmission Interfaces Contribute Asymmetrically to the Assembly and Activity of Human P-glycoprotein. J Biol Chem 2015; 290:16954-63. [PMID: 25987565 PMCID: PMC4505440 DOI: 10.1074/jbc.m115.652602] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Indexed: 11/21/2022] Open
Abstract
P-glycoprotein (P-gp; ABCB1) is an ABC drug pump that protects us from toxic compounds. It is clinically important because it confers multidrug resistance. The homologous halves of P-gp each contain a transmembrane (TM) domain (TMD) with 6 TM segments followed by a nucleotide-binding domain (NBD). The drug- and ATP-binding sites reside at the interface between the TMDs and NBDs, respectively. Each NBD is connected to the TMDs by a transmission interface involving a pair of intracellular loops (ICLs) that form ball-and-socket joints. P-gp is different from CFTR (ABCC7) in that deleting NBD2 causes misprocessing of only P-gp. Therefore, NBD2 might be critical for stabilizing ICLs 2 and 3 that form a tetrahelix bundle at the NBD2 interface. Here we report that the NBD1 and NBD2 transmission interfaces in P-gp are asymmetric. Point mutations to 25 of 60 ICL2/ICL3 residues at the NBD2 transmission interface severely reduced P-gp assembly while changes to the equivalent residues in ICL1/ICL4 at the NBD1 interface had little effect. The hydrophobic nature at the transmission interfaces was also different. Mutation of Phe-1086 or Tyr-1087 to arginine at the NBD2 socket blocked activity or assembly while the equivalent mutations at the NBD1 socket had only modest effects. The results suggest that the NBD transmission interfaces are asymmetric. In contrast to the ICL2/3-NBD2 interface, the ICL1/4-NBD1 transmission interface is more hydrophilic and insensitive to mutations. Therefore the ICL2/3-NBD2 transmission interface forms a precise hydrophobic connection that acts as a linchpin for assembly and trafficking of P-gp.
Collapse
Affiliation(s)
- Tip W Loo
- From the Departments of Medicine and Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - David M Clarke
- From the Departments of Medicine and Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| |
Collapse
|