1
|
Prajapati AK, Shah G. Exploring in vivo and in vitro models for heart failure with biomarker insights: a review. Egypt Heart J 2024; 76:141. [PMID: 39432214 PMCID: PMC11493927 DOI: 10.1186/s43044-024-00568-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 09/27/2024] [Indexed: 10/22/2024] Open
Abstract
BACKGROUND Heart failure (HF) is a condition characterized by the heart's inability to meet the body's demands, resulting in various complications. Two primary types of HF exist, namely HF with preserved left ventricular ejection fraction (LVEF) and HF reduced with LVEF. The progression of HF involves compensatory mechanisms such as cardiac hypertrophy, fibrosis, and alterations in gene expression. Pressure overload and volume overload are common etiologies of HF, with pressure overload often stemming from conditions like hypertension, leading to left ventricular hypertrophy and fibrosis. In contrast, volume overload can arise from chronic valvular regurgitant disease, also inducing left ventricular hypertrophy. MAIN BODY In vitro cell culture techniques serve as vital tools in studying HF pathophysiology, allowing researchers to investigate cellular responses and potential therapeutic targets. Additionally, biomarkers, measurable biological characteristics, play a crucial role in diagnosing and predicting HF. Some notable biomarkers include adrenomedullin, B-type natriuretic peptide, copeptin, galectin-3, interleukin-6, matrix metalloproteinases (MMPs), midregional pro-atrial natriuretic peptide, myostatin, procollagen type I C-terminal propeptide, procollagen type III N-terminal propeptide and tissue inhibitors of metalloproteinases (TIMPs). These biomarkers aid in HF diagnosis, assessing its severity, and monitoring treatment response, contributing to a deeper understanding of the disease and potentially leading to improved management strategies and outcomes. CONCLUSIONS This review provides comprehensive insights into various in vivo models of HF, commonly utilized cell lines in HF research, and pivotal biomarkers with diagnostic relevance for HF. By synthesizing this information, researchers gain valuable resources to further explore HF pathogenesis, identify novel therapeutic targets, and enhance diagnostic and prognostic approaches.
Collapse
Affiliation(s)
- Anil Kumar Prajapati
- Pharmacology Department, L. M. College of Pharmacy, Ahmedabad, Gujarat, 380009, India
- Research Scholar, Gujarat Technological University, Ahmedabad, Gujarat, 382424, India
| | - Gaurang Shah
- Pharmacology Department, L. M. College of Pharmacy, Ahmedabad, Gujarat, 380009, India.
| |
Collapse
|
2
|
Jeong JW, Lee SY, Lee DY, Kim JH, Yun SH, Lee J, Mariano E, Moon SS, Hur SJ. Analytical Methods and Effects of Bioactive Peptides Derived from Animal Products: A Mini-Review. Food Sci Anim Resour 2024; 44:533-550. [PMID: 38765288 PMCID: PMC11097009 DOI: 10.5851/kosfa.2024.e31] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/04/2024] [Accepted: 04/09/2024] [Indexed: 05/21/2024] Open
Abstract
Peptides with bioactive effects are being researched for various purposes. However, there is a lack of overall research on pork-derived peptides. In this study, we reviewed the process of obtaining bioactive peptides, available analytical methods, and the study of bioactive peptides derived from pork. Pepsin and trypsin, two representative protein digestive enzymes in the body, are hydrolyzed by other cofactors to produce peptides. Bicinchoninic acid assay, sodium dodecyl sulfate-polyacrylamide gel electrophoresis, chromatography, and in vitro digestion simulation systems are utilized to analyze bioactive peptides for protein digestibility and molecular weight distribution. Pork-derived peptides mainly exhibit antioxidant and antihypertensive activities. The antioxidant activity of bioactive peptides increases the accessibility of amino acid residues by disrupting the three-dimensional structure of proteins, affecting free radical scavenging, reactive oxygen species inactivation, and metal ion chelating. In addition, the antihypertensive activity decreases angiotensin II production by inhibiting angiotensin converting enzyme and suppresses blood pressure by blocking the AT1 receptor. Pork-derived bioactive peptides, primarily obtained using papain and pepsin, exhibit significant antioxidant and antihypertensive activities, with most having low molecular weights below 1 kDa. This study may aid in the future development of bioactive peptides and serve as a valuable reference for pork-derived peptides.
Collapse
Affiliation(s)
- Jae Won Jeong
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Korea
| | - Seung Yun Lee
- Division of Animal Science, Division of Applied Life Science (BK21 Four), Institute of Agriculture & Life Science, Gyeongsang National University, Jinju 52828, Korea
| | - Da Young Lee
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Korea
| | - Jae Hyeon Kim
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Korea
| | - Seung Hyeon Yun
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Korea
| | - Juhyun Lee
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Korea
| | - Ermie Mariano
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Korea
| | - Sung Sil Moon
- Sunjin Technology & Research Institute, Icheon 17332, Korea
| | - Sun Jin Hur
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Korea
| |
Collapse
|
3
|
Ávila-Martínez DV, Mixtega-Ruiz WK, Hurtado-Capetillo JM, Lopez-Franco O, Flores-Muñoz M. Counter-regulatory RAS peptides: new therapy targets for inflammation and fibrotic diseases? Front Pharmacol 2024; 15:1377113. [PMID: 38666016 PMCID: PMC11044688 DOI: 10.3389/fphar.2024.1377113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 03/18/2024] [Indexed: 04/28/2024] Open
Abstract
The renin-angiotensin system (RAS) is an important cascade of enzymes and peptides that regulates blood pressure, volume, and electrolytes. Within this complex system of reactions, its counter-regulatory axis has attracted attention, which has been associated with the pathophysiology of inflammatory and fibrotic diseases. This review article analyzes the impact of different components of the counter-regulatory axis of the RAS on different pathologies. Of these peptides, Angiotensin-(1-7), angiotensin-(1-9) and alamandine have been evaluated in a wide variety of in vitro and in vivo studies, where not only they counteract the actions of the classical axis, but also exhibit independent anti-inflammatory and fibrotic actions when binding to specific receptors, mainly in heart, kidney, and lung. Other functional peptides are also addressed, which despite no reports associated with inflammation and fibrosis to date were found, they could represent a potential target of study. Furthermore, the association of agonists of the counter-regulatory axis is analyzed, highlighting their contribution to the modulation of the inflammatory response counteracting the development of fibrotic events. This article shows an overview of the importance of the RAS in the resolution of inflammatory and fibrotic diseases, offering an understanding of the individual components as potential treatments.
Collapse
Affiliation(s)
- Diana V Ávila-Martínez
- Laboratorio de Medicina Traslacional, Instituto de Ciencias de la Salud, Universidad Veracruzana, Xalapa, Mexico
- Doctorado en Ciencias de la Salud, Instituto de Ciencias de la Salud, Universidad Veracruzana, Xalapa, Mexico
| | - Wendy K Mixtega-Ruiz
- Laboratorio de Medicina Traslacional, Instituto de Ciencias de la Salud, Universidad Veracruzana, Xalapa, Mexico
- Doctorado en Ciencias Biológicas, Centro Tlaxcala de Biología de la Conducta, Universidad Autónoma de Tlaxcala, Tlaxcala, Mexico
| | | | - Oscar Lopez-Franco
- Laboratorio de Medicina Traslacional, Instituto de Ciencias de la Salud, Universidad Veracruzana, Xalapa, Mexico
- Doctorado en Ciencias de la Salud, Instituto de Ciencias de la Salud, Universidad Veracruzana, Xalapa, Mexico
| | - Mónica Flores-Muñoz
- Laboratorio de Medicina Traslacional, Instituto de Ciencias de la Salud, Universidad Veracruzana, Xalapa, Mexico
- Doctorado en Ciencias de la Salud, Instituto de Ciencias de la Salud, Universidad Veracruzana, Xalapa, Mexico
| |
Collapse
|
4
|
Wang P, Hao D, Xiong X. Anti-hypertension effect of Wuwei Jiangya decoction via ACE2/Ang1-7/MAS signaling pathway in SHR based on network degree-distribution analysis. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117121. [PMID: 37660954 DOI: 10.1016/j.jep.2023.117121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 05/28/2023] [Accepted: 08/30/2023] [Indexed: 09/05/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Wuwei Jiangya decoction (WJD) is a traditional Chinese medicinal formula (Fangji) composed of Gastrodiae Rhizoma, Chuanxiong Rhizoma, Puerariae Lobatae Radix, Cyathulae Radix, and Achyranthis Bidentatae Radix, all of which have been verified to combat hypertension. However, the integrative "shot-gun" mechanism of WJD and its primary active ingredients are still unclear. AIM OF THE STUDY To investigate the anti-hypertensive effects of WJD and its originating ingredients. METHODS Network-based degree distribution analysis combined with in vivo experiments were performed. RESULTS A total of 144 active ingredients in WJD were identified to regulate 84 hypertension-related targets, which are mainly involved in blood pressure and blood vessel diameter regulation. However, for the anti-hypertension effects, "more does not mean better". The majority (76%) of the hubs in the H-network were regulated by no more than four ingredients. We identified 16 primary ingredients that accounted for the therapeutic action against hypertension. For compatibility, the five herbs consistently focused on blood pressure, vascular diameter, and angiogenesis, with the renin-angiotensin system as a primary target. The characteristics of each herb were involved in processes such as lipid localization and oxidative stress, which interact to constitute the regulatory network targeting hypertension, its risk factors, and organ damage. In vivo, WJD significantly reduced systolic blood pressure (SBP), improved left ventricular mass index, and ameliorated cardiac hypertrophy and vascular injury by moderating the renin-angiotensin system via activating the ACE2/Ang-(1-7)/Mas signaling pathway. CONCLUSION WJD can lower SBP and ameliorate cardiac hypertrophy and vascular injury through the ACE2/Ang-(1-7)/Mas pathway, thus providing new insights into the development of traditional Chinese medicine as a therapeutic agent for hypertension.
Collapse
Affiliation(s)
- Pengqian Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Danli Hao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xingjiang Xiong
- Guang'anmen Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
5
|
Osorio-Llanes E, Castellar-López J, Rosales W, Montoya Y, Bustamante J, Zalaquett R, Bravo-Sagua R, Riquelme JA, Sánchez G, Chiong M, Lavandero S, Mendoza-Torres E. Novel Strategies to Improve the Cardioprotective Effects of Cardioplegia. Curr Cardiol Rev 2024; 20:CCR-EPUB-137763. [PMID: 38275069 PMCID: PMC11071679 DOI: 10.2174/011573403x263956231129064455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 09/17/2023] [Accepted: 10/20/2023] [Indexed: 01/27/2024] Open
Abstract
The use of cardioprotective strategies as adjuvants of cardioplegic solutions has become an ideal alternative for the improvement of post-surgery heart recovery. The choice of the optimal cardioplegia, as well as its distribution mechanism, remains controversial in the field of cardiovascular surgery. There is still a need to search for new and better cardioprotective methods during cardioplegic procedures. New techniques for the management of cardiovascular complications during cardioplegia have evolved with new alternatives and additives, and each new strategy provides a tool to neutralize the damage after ischemia/reperfusion events. Researchers and clinicians have committed themselves to studying the effect of new strategies and adjuvant components with the potential to improve the cardioprotective effect of cardioplegic solutions in preventing myocardial ischemia/reperfusion-induced injury during cardiac surgery. The aim of this review is to explore the different types of cardioplegia, their protection mechanisms, and which strategies have been proposed to enhance the function of these solutions in hearts exposed to cardiovascular pathologies that require surgical alternatives for their corrective progression.
Collapse
Affiliation(s)
- Estefanie Osorio-Llanes
- Faculty of Exact and Natural Sciences, Grupo de Investigación Avanzada en Biomedicina, Universidad Libre Barranquilla, Atlantico, Colombia
| | - Jairo Castellar-López
- Faculty of Exact and Natural Sciences, Grupo de Investigación Avanzada en Biomedicina, Universidad Libre Barranquilla, Atlantico, Colombia
| | - Wendy Rosales
- Faculty of Exact and Natural Sciences, Grupo de Investigación Avanzada en Biomedicina, Universidad Libre Barranquilla, Atlantico, Colombia
| | - Yuliet Montoya
- Grupo de Dinámica Cardiovascular (GDC), Escuela de Ciencias de la Salud, Universidad Pontificia Bolivariana, Medellin, Colombia
| | - John Bustamante
- Grupo de Dinámica Cardiovascular (GDC), Escuela de Ciencias de la Salud, Universidad Pontificia Bolivariana, Medellin, Colombia
| | - Ricardo Zalaquett
- Department of Cardiovascular Diseases, Faculty of Medicine, Universidad Finis Terrae - Clínica Las Condes, Santiago, Chile
| | - Roberto Bravo-Sagua
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences & Faculty of Medicine, Universidad de Chile, Santiago, Chile
- Laboratorio OMEGA, INTA, University of Chile, Santiago, Chile
| | - Jaime A. Riquelme
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences & Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Gina Sánchez
- Physiopathology Program, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, University of Chile, Santiago, Chile
| | - Mario Chiong
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences & Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Sergio Lavandero
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences & Faculty of Medicine, Universidad de Chile, Santiago, Chile
- Department of Internal Medicine (Cardiology Division), University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Evelyn Mendoza-Torres
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences & Faculty of Medicine, Universidad de Chile, Santiago, Chile
- Faculty of Health Sciences, Grupo de Investigación Avanzada en Biomedicina, Universidad Libre Seccional Barranquilla, Barranquilla, Colombia
| |
Collapse
|
6
|
Gamiño-Gutiérrez JA, Terán-Hernández IM, Castellar-Lopez J, Villamizar-Villamizar W, Osorio-Llanes E, Palacios-Cruz M, Rosales W, Chang AY, Díaz-Ariza LA, Ospino MC, Mendoza-Torres E. Novel Insights into the Cardioprotective Effects of the Peptides of the Counter-Regulatory Renin-Angiotensin System. Biomedicines 2024; 12:255. [PMID: 38397857 PMCID: PMC10887066 DOI: 10.3390/biomedicines12020255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 12/26/2023] [Accepted: 12/27/2023] [Indexed: 02/25/2024] Open
Abstract
Currently, cardiovascular diseases are a major contributor to morbidity and mortality worldwide, having a significant negative impact on both the economy and public health. The renin-angiotensin system contributes to a high spectrum of cardiovascular disorders and is essential for maintaining normal cardiovascular homeostasis. Overactivation of the classical renin-angiotensin system is one of the most important pathophysiological mechanisms in the progression of cardiovascular diseases. The counter-regulatory renin-angiotensin system is an alternate pathway which favors the synthesis of different peptides, including Angiotensin-(1-7), Angiotensin-(1-9), and Alamandine. These peptides, via the angiotensin type 2 receptor (AT2R), MasR, and MrgD, initiate multiple downstream signaling pathways that culminate in the activation of various cardioprotective mechanisms, such as decreased cardiac fibrosis, decreased myocardial hypertrophy, vasodilation, decreased blood pressure, natriuresis, and nitric oxide synthesis. These cardioprotective effects position them as therapeutic alternatives for reducing the progression of cardiovascular diseases. This review aims to show the latest findings on the cardioprotective effects of the main peptides of the counter-regulatory renin-angiotensin system.
Collapse
Affiliation(s)
| | - Ivana María Terán-Hernández
- Grupo de Investigación Avanzada en Biomedicina, Faculty of Health Sciences, Universidad Libre Seccional Barranquilla, Barranquilla 081001, Colombia; (I.M.T.-H.); (W.V.-V.); (L.A.D.-A.); (M.C.O.)
| | - Jairo Castellar-Lopez
- Grupo de Investigación Avanzada en Biomedicina, Faculty of Exact and Natural Sciences, Universidad Libre Seccional Barranquilla, Barranquilla 081001, Colombia; (J.C.-L.); (E.O.-L.); (W.R.)
| | - Wendy Villamizar-Villamizar
- Grupo de Investigación Avanzada en Biomedicina, Faculty of Health Sciences, Universidad Libre Seccional Barranquilla, Barranquilla 081001, Colombia; (I.M.T.-H.); (W.V.-V.); (L.A.D.-A.); (M.C.O.)
| | - Estefanie Osorio-Llanes
- Grupo de Investigación Avanzada en Biomedicina, Faculty of Exact and Natural Sciences, Universidad Libre Seccional Barranquilla, Barranquilla 081001, Colombia; (J.C.-L.); (E.O.-L.); (W.R.)
| | | | - Wendy Rosales
- Grupo de Investigación Avanzada en Biomedicina, Faculty of Exact and Natural Sciences, Universidad Libre Seccional Barranquilla, Barranquilla 081001, Colombia; (J.C.-L.); (E.O.-L.); (W.R.)
| | - Aileen Y. Chang
- School of Medicine and Health Sciences, The George Washington University, Washington, DC 20052, USA;
| | - Luis Antonio Díaz-Ariza
- Grupo de Investigación Avanzada en Biomedicina, Faculty of Health Sciences, Universidad Libre Seccional Barranquilla, Barranquilla 081001, Colombia; (I.M.T.-H.); (W.V.-V.); (L.A.D.-A.); (M.C.O.)
| | - María Clara Ospino
- Grupo de Investigación Avanzada en Biomedicina, Faculty of Health Sciences, Universidad Libre Seccional Barranquilla, Barranquilla 081001, Colombia; (I.M.T.-H.); (W.V.-V.); (L.A.D.-A.); (M.C.O.)
| | - Evelyn Mendoza-Torres
- Grupo de Investigación Avanzada en Biomedicina, Faculty of Health Sciences, Universidad Libre Seccional Barranquilla, Barranquilla 081001, Colombia; (I.M.T.-H.); (W.V.-V.); (L.A.D.-A.); (M.C.O.)
| |
Collapse
|
7
|
Ma H, Mao C, Hu Y, Wang L, Guo X, Li L, Wang F, Guan R. Angiotensin-(1-9) attenuates adriamycin-induced cardiomyopathy in rats via the angiotensin type 2 receptor. Mol Cell Biochem 2024; 479:73-83. [PMID: 36995547 DOI: 10.1007/s11010-023-04718-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 03/19/2023] [Indexed: 03/31/2023]
Abstract
Adriamycin (ADR) causes irreversible damage to the heart, leading to ADR-induced cardiomyopathy (ACM). Angiotensin-(1-9) [Ang-(1-9)] is a peptide from the counter-regulatory renin-angiotensin system, but the effects on ACM is unclear. Our study was aimed to explore the effects and underlying molecular mechanisms of Ang-(1-9) against ACM in Wistar rats. Rats were injected intraperitoneally with ADR via six equal doses (each containing 2.5 mg/kg) within a period of 2 weeks to induce ACM. After 2 weeks of ADR treatment, the rats were treated with Ang-(1-9) (200 ng/kg/min) or angiotensin type 2 receptor (AT2R) antagonist PD123319 (100 ng/kg/min) for 4 weeks. Although Ang-(1-9) treatment did not influence blood pressure, it significantly improved left ventricular function and remodeling in ADR-treated rats, by inhibiting collagen deposition, the expression of TGF-β1, inflammatory response, cardiomyocyte apoptosis and oxidative stress. Moreover, Ang-(1-9) reduced ERK1/2 and P38 MAPK phosphorylation. The therapeutic effects of Ang-(1-9) were blocked by the AT2R antagonist PD123319, which also offset the down-regulation protein expression of pERK1/2 and pP38 MAPK induced by Ang-(1-9). These data suggest that Ang-(1-9) improved left ventricular function and remodeling in ADR-treated rats by an AT2R/ ERK1/2 and P38 MAPK-dependent mechanism. Thus, the Ang-(1-9)/AT2R axis may provide a novel and promising target to the prevention and treatment of ACM.
Collapse
Affiliation(s)
- Hui Ma
- Department of Pediatrics, Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Chenggang Mao
- Department of Pediatrics, Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Yang Hu
- Department of Pediatrics, Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Liqin Wang
- Department of Anesthesiology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xingqing Guo
- Department of Pediatrics, Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Lei Li
- Department of Pediatrics, Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Fang Wang
- Department of Pediatrics, Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Renzheng Guan
- Department of Pediatrics, Affiliated Hospital of Qingdao University, Qingdao, 266000, China.
| |
Collapse
|
8
|
Pizzo TRF, Valverde AP, Orzari LE, Terciotti LG, de Lima RD, Costa do Bomfim FR, Esquisatto MAM, de Andrade TAM, Corezola do Amaral ME, de Oliveira CA, Felonato M. Caloric restriction improves inflammation in different tissues of the Wistar rats with obesity and 2K1C renovascular hypertension. Can J Physiol Pharmacol 2023; 101:661-671. [PMID: 37746936 DOI: 10.1139/cjpp-2022-0452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Renovascular hypertension (RHV) is the cause of high blood pressure due to left renal ischemia, and obesity and hypertension cause an inflammatory response. This work analyzed the inflammatory and tissue repair profile in renal, hepatic, and cardiac tissues in an animal model of RVH associated with a high-fat diet and caloric restriction. The expressions of RORγ-t, IL-17, T-bet, and TNF-α decreased and IFN-γ increased in the right kidney. In relation to the left kidney, caloric restriction decreased the expression of IFN-γ. In the liver, caloric restriction decreased RORγ-t, IL-17, and T-bet. Hypertension associated with obesity decreased the expression of IFN-γ, while caloric restriction increased. In the right kidney, hypertension and obesity, associated or not with caloric restriction, increased the area of collagen fibers. In the heart and liver, caloric restriction reduced the area of collagen fibers. Caloric restriction increased vascular endothelial growth factor, reduced levels of growth transformation factor-β1 (TGF-β), and increased collagen I in the left kidney. Hypertension/obesity, submitted or not having caloric restriction, increased TGF-β in liver. The results suggest that caloric restriction has beneficial effects in lowering blood pressure and regulating tissue proinflammatory cytokines. However, there was no change in the structure and composition of tissue repair markers.
Collapse
Affiliation(s)
- Thayane Rafaela Feola Pizzo
- Graduate Program of Biomedical Sciences, University Center of Herminio Ometto Foundation-FHO, Av. Dr. Maximiliano Baruto, 500-Jd. Universitário, 13607-339, Araras, São Paulo, Brasil
| | - Ana Paula Valverde
- Graduate Program of Biomedical Sciences, University Center of Herminio Ometto Foundation-FHO, Av. Dr. Maximiliano Baruto, 500-Jd. Universitário, 13607-339, Araras, São Paulo, Brasil
| | - Lucas Eduardo Orzari
- Graduate Program of Biomedical Sciences, University Center of Herminio Ometto Foundation-FHO, Av. Dr. Maximiliano Baruto, 500-Jd. Universitário, 13607-339, Araras, São Paulo, Brasil
| | - Luiz Gustavo Terciotti
- Graduate Program of Biomedical Sciences, University Center of Herminio Ometto Foundation-FHO, Av. Dr. Maximiliano Baruto, 500-Jd. Universitário, 13607-339, Araras, São Paulo, Brasil
| | - Robson Damasceno de Lima
- Graduate Program of Biomedical Sciences, University Center of Herminio Ometto Foundation-FHO, Av. Dr. Maximiliano Baruto, 500-Jd. Universitário, 13607-339, Araras, São Paulo, Brasil
| | - Fernando Russo Costa do Bomfim
- Graduate Program of Biomedical Sciences, University Center of Herminio Ometto Foundation-FHO, Av. Dr. Maximiliano Baruto, 500-Jd. Universitário, 13607-339, Araras, São Paulo, Brasil
| | - Marcelo Augusto Marreto Esquisatto
- Graduate Program of Biomedical Sciences, University Center of Herminio Ometto Foundation-FHO, Av. Dr. Maximiliano Baruto, 500-Jd. Universitário, 13607-339, Araras, São Paulo, Brasil
| | - Thiago Antônio Moretti de Andrade
- Graduate Program of Biomedical Sciences, University Center of Herminio Ometto Foundation-FHO, Av. Dr. Maximiliano Baruto, 500-Jd. Universitário, 13607-339, Araras, São Paulo, Brasil
| | - Maria Esméria Corezola do Amaral
- Graduate Program of Biomedical Sciences, University Center of Herminio Ometto Foundation-FHO, Av. Dr. Maximiliano Baruto, 500-Jd. Universitário, 13607-339, Araras, São Paulo, Brasil
| | - Camila Andrea de Oliveira
- Graduate Program of Biomedical Sciences, University Center of Herminio Ometto Foundation-FHO, Av. Dr. Maximiliano Baruto, 500-Jd. Universitário, 13607-339, Araras, São Paulo, Brasil
| | - Maíra Felonato
- Graduate Program of Biomedical Sciences, University Center of Herminio Ometto Foundation-FHO, Av. Dr. Maximiliano Baruto, 500-Jd. Universitário, 13607-339, Araras, São Paulo, Brasil
| |
Collapse
|
9
|
Jasińska-Stroschein M. Searching for Effective Treatments in HFpEF: Implications for Modeling the Disease in Rodents. Pharmaceuticals (Basel) 2023; 16:1449. [PMID: 37895920 PMCID: PMC10610318 DOI: 10.3390/ph16101449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 10/04/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
BACKGROUND While the prevalence of heart failure with preserved ejection fraction (HFpEF) has increased over the last two decades, there still remains a lack of effective treatment. A key therapeutic challenge is posed by the absence of animal models that accurately replicate the complexities of HFpEF. The present review summarizes the effects of a wide spectrum of therapeutic agents on HF. METHODS Two online databases were searched for studies; in total, 194 experimental protocols were analyzed following the PRISMA protocol. RESULTS A diverse range of models has been proposed for studying therapeutic interventions for HFpEF, with most being based on pressure overload and systemic hypertension. They have been used to evaluate more than 150 different substances including ARNIs, ARBs, HMGR inhibitors, SGLT-2 inhibitors and incretins. Existing preclinical studies have primarily focused on LV diastolic performance, and this has been significantly improved by a wide spectrum of candidate therapeutic agents. Few experiments have investigated the normalization of pulmonary congestion, exercise capacity, animal mortality, or certain molecular hallmarks of heart disease. CONCLUSIONS The development of comprehensive preclinical HFpEF models, with multi-organ system phenotyping and physiologic stress-based functional testing, is needed for more successful translation of preclinical research to clinical trials.
Collapse
|
10
|
Kanugula AK, Kaur J, Batra J, Ankireddypalli AR, Velagapudi R. Renin-Angiotensin System: Updated Understanding and Role in Physiological and Pathophysiological States. Cureus 2023; 15:e40725. [PMID: 37350982 PMCID: PMC10283427 DOI: 10.7759/cureus.40725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/20/2023] [Indexed: 06/24/2023] Open
Abstract
The classical view of the renin-angiotensin system (RAS) is that of the circulating hormone pathway involved in salt and water homeostasis and blood pressure regulation. It is also involved in the pathogenesis of cardiac and renal disorders. This led to the creation of drugs blocking the actions of this classical pathway, which improved cardiac and renal outcomes. Our understanding of the RAS has significantly expanded with the discovery of new peptides involved in this complex pathway. Over the last two decades, a counter-regulatory or protective pathway has been discovered that opposes the effects of the classical pathway. Components of RAS are also implicated in the pathogenesis of obesity and its metabolic diseases. The continued discovery of newer molecules also provides novel therapeutic targets to improve disease outcomes. This article aims to provide an overview of an updated understanding of the RAS, its role in physiological and pathological processes, and potential novel therapeutic options from RAS for managing cardiorenal disorders, obesity, and related metabolic disorders.
Collapse
Affiliation(s)
- Ashok Kumar Kanugula
- Department of Internal Medicine, Wellstar Health System - Spalding Regional Hospital, Griffin, USA
| | - Jasleen Kaur
- Department of Endocrinology, Diabetes, and Metabolism, HealthPartners, Minneapolis, USA
| | - Jaskaran Batra
- Department of Internal Medicine, Univerity of Pittsburg Medical Center (UPMC) McKeesport, McKeesport, USA
| | | | - Ravikanth Velagapudi
- Department of Pulmonary and Critical Care Medicine, Spectrum Health/Michigan State University, Grand Rapids, USA
| |
Collapse
|
11
|
Chen H, Peng J, Wang T, Wen J, Chen S, Huang Y, Zhang Y. Counter-regulatory renin-angiotensin system in hypertension: Review and update in the era of COVID-19 pandemic. Biochem Pharmacol 2023; 208:115370. [PMID: 36481346 PMCID: PMC9721294 DOI: 10.1016/j.bcp.2022.115370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/26/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022]
Abstract
Cardiovascular disease is the major cause of mortality and disability, with hypertension being the most prevalent risk factor. Excessive activation of the renin-angiotensin system (RAS) under pathological conditions, leading to vascular remodeling and inflammation, is closely related to cardiovascular dysfunction. The counter-regulatory axis of the RAS consists of angiotensin-converting enzyme 2 (ACE2), angiotensin (1-7), angiotensin (1-9), alamandine, proto-oncogene Mas receptor, angiotensin II type-2 receptor and Mas-related G protein-coupled receptor member D. Each of these components has been shown to counteract the effects of the overactivated RAS. In this review, we summarize the latest insights into the complexity and interplay of the counter-regulatory RAS axis in hypertension, highlight the pathophysiological functions of ACE2, a multifunctional molecule linking hypertension and COVID-19, and discuss the function and therapeutic potential of targeting this counter-regulatory RAS axis to prevent and treat hypertension in the context of the current COVID-19 pandemic.
Collapse
Affiliation(s)
- Hongyin Chen
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518000, Guangdong, China
| | - Jiangyun Peng
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, Guangdong, China,Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-sen Memorial Hospital, Foshan 528200, Guangdong, China
| | - Tengyao Wang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, Guangdong, China,Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-sen Memorial Hospital, Foshan 528200, Guangdong, China
| | - Jielu Wen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, Guangdong, China,Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-sen Memorial Hospital, Foshan 528200, Guangdong, China
| | - Sifan Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, Guangdong, China,Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-sen Memorial Hospital, Foshan 528200, Guangdong, China
| | - Yu Huang
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China,Corresponding authors
| | - Yang Zhang
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518000, Guangdong, China,Corresponding authors
| |
Collapse
|
12
|
Current advances on the therapeutic potential of pinocembrin: An updated review. Biomed Pharmacother 2023; 157:114032. [PMID: 36481404 DOI: 10.1016/j.biopha.2022.114032] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/16/2022] [Accepted: 11/19/2022] [Indexed: 12/12/2022] Open
Abstract
Pinocembrin (5,7-dihydroxyflavone) is a major flavonoid found in many plants, fungi and hive products, mainly honey and propolis. Several in vitro and preclinical studies revealed numerous pharmacological activities of pinocembrin including antioxidant, anti-inflammatory, antimicrobial, neuroprotective, cardioprotective and anticancer activities. Here, we comprehensively review and critically analyze the studies carried out on pinocembrin. We also discuss its potential mechanisms of action, bioavailability, toxicity, and clinical investigations. The wide therapeutic window of pinocembrin makes it a promising drug candidate for many clinical applications. We recommend some future perspectives to improve its pharmacokinetic and pharmacodynamic properties for better delivery that may also lead to new therapeutic advances.
Collapse
|
13
|
Guo CL, Liu HM, Li B, Lu ZY. Angiotensin-(1–9) prevents angiotensin II-induced endothelial apoptosis through CNPY2/PERK pathway. Apoptosis 2022; 28:379-396. [PMID: 36422742 DOI: 10.1007/s10495-022-01793-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/05/2022] [Indexed: 11/25/2022]
Abstract
Endothelial apoptosis caused by activation of renin-angiotensin system (RAS) plays a vital part in the occurrence and progress of hypertension. Angiotensin-(1-9) (Ang-(1-9)) is a peptide of the counter-regulatory non-classical RAS with anti-hypertensive effects in vascular endothelial cells (ECs). However, the mechanism of action remains unclear. Considering that the endothelial apoptosis was closely related to endoplasmic reticulum stress (ERS) and mitochondrial function. Herein, we aimed to elucidate the effects of Ang-(1-9) on endothelial apoptosis and the underlying molecular mechanism in angiotensin II (Ang II) induced hypertension. In human umbilical vascular endothelial cells (HUVECs), we observed Ang-(1-9) inhibited Ang II-induced ERS associated endothelial apoptosis. Mechanically, Ang-(1-9) inhibited endothelial apoptosis by blocking CNPY2/PERK mediated CaMKII/Drp1-dependent mitochondrial fission and eIF2α/CHOP signal. Consistent with above effects in HUVECs, in Ang II-induced hypertensive mice, we found administration of exogenous Ang-(1-9) attenuated endothelial apoptosis and arterial blood pressure, which were mediated by CNPY2/PERK signaling pathway. Our study indicated Ang-(1-9) inhibited Ang II-induced hypertension through CNPY2/PERK pathway. These findings may provide new insights for prevention and treatment of hypertension in future.
Collapse
|
14
|
Endothelial and Vascular Smooth Muscle Dysfunction in Hypertension. Biochem Pharmacol 2022; 205:115263. [PMID: 36174768 DOI: 10.1016/j.bcp.2022.115263] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/19/2022] [Accepted: 09/20/2022] [Indexed: 12/11/2022]
Abstract
The development of essential hypertension involves several factors. Vascular dysfunction, characterized by endothelial dysfunction, low-grade inflammation and structural remodeling, plays an important role in the initiation and maintenance of essential hypertension. Although the mechanistic pathways by which essential hypertension develops are poorly understood, several pharmacological classes available on the clinical settings improve blood pressure by interfering in the cardiac output and/or vascular function. This review is divided in two major sections. The first section depicts the major molecular pathways as renin angiotensin aldosterone system (RAAS), endothelin, nitric oxide signalling pathway and oxidative stress in the development of vascular dysfunction. The second section describes the role of some pharmacological classes such as i) RAAS inhibitors, ii) dual angiotensin receptor-neprilysin inhibitors, iii) endothelin-1 receptor antagonists, iv) soluble guanylate cyclase modulators, v) phosphodiesterase type 5 inhibitors and vi) sodium-glucose cotransporter 2 inhibitors in the context of hypertension. Some classes are already approved in the treatment of hypertension, but others are not yet approved. However, due to their potential benefits these classes were included.
Collapse
|
15
|
Norambuena-Soto I, Lopez-Crisosto C, Martinez-Bilbao J, Hernandez-Fuentes C, Parra V, Lavandero S, Chiong M. Angiotensin-(1-9) in hypertension. Biochem Pharmacol 2022; 203:115183. [PMID: 35870482 DOI: 10.1016/j.bcp.2022.115183] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/13/2022] [Accepted: 07/14/2022] [Indexed: 11/02/2022]
Abstract
Angiotensin-(1-9) [Ang-(1-9)] is a peptide of the non-canonical renin-angiotensin system (RAS) synthesized from angiotensin I by the monopeptidase angiotensin-converting enzyme type 2 (ACE2). Using osmotic minipumps, infusion of Ang-(1-9) consistently reduces blood pressure in several rat hypertension models. In these animals, hypertension-induced end-organ damage is also decreased. Several pieces of evidence suggest that Ang-(1-9) is the endogenous ligand that binds and activates the type-2 angiotensin II receptor (AT2R). Activation of AT2R triggers different tissue-specific signaling pathways. This phenomenon could be explained by the ability of AT2R to form different heterodimers with other G protein-coupled receptors. Because of the antihypertensive and protective effects of AT2R activation by Ang-(1-9), associated with a short half-life of RAS peptides, several synthetic AT2R agonists have been synthesized and assayed. Some of them, particularly CGP42112, C21 and novokinin, have demonstrated antihypertensive properties. Only two synthetic AT2R agonists, C21 and LP2-3, have been tested in clinical trials, but none of them like an antihypertensive. Therefore, Ang-(1-9) is a promising antihypertensive drug that reduces hypertension-induced end-organ damage. However, further research is required to translate this finding successfully to the clinic.
Collapse
Affiliation(s)
- Ignacio Norambuena-Soto
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical & Pharmaceutical Sciences and Faculty of Medicine, University of Chile, Santiago, Chile
| | - Camila Lopez-Crisosto
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical & Pharmaceutical Sciences and Faculty of Medicine, University of Chile, Santiago, Chile
| | - Javiera Martinez-Bilbao
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical & Pharmaceutical Sciences and Faculty of Medicine, University of Chile, Santiago, Chile
| | - Carolina Hernandez-Fuentes
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical & Pharmaceutical Sciences and Faculty of Medicine, University of Chile, Santiago, Chile
| | - Valentina Parra
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical & Pharmaceutical Sciences and Faculty of Medicine, University of Chile, Santiago, Chile; Network for the Study of High-lethality Cardiopulmonary Diseases (REECPAL), Universidad de Chile, Santiago, Chile
| | - Sergio Lavandero
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical & Pharmaceutical Sciences and Faculty of Medicine, University of Chile, Santiago, Chile; Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Mario Chiong
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical & Pharmaceutical Sciences and Faculty of Medicine, University of Chile, Santiago, Chile.
| |
Collapse
|
16
|
Crosstalk between the renin-angiotensin, complement and kallikrein-kinin systems in inflammation. Nat Rev Immunol 2021; 22:411-428. [PMID: 34759348 PMCID: PMC8579187 DOI: 10.1038/s41577-021-00634-8] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/24/2021] [Indexed: 12/28/2022]
Abstract
During severe inflammatory and infectious diseases, various mediators modulate the equilibrium of vascular tone, inflammation, coagulation and thrombosis. This Review describes the interactive roles of the renin–angiotensin system, the complement system, and the closely linked kallikrein–kinin and contact systems in cell biological functions such as vascular tone and leakage, inflammation, chemotaxis, thrombosis and cell proliferation. Specific attention is given to the role of these systems in systemic inflammation in the vasculature and tissues during hereditary angioedema, cardiovascular and renal glomerular disease, vasculitides and COVID-19. Moreover, we discuss the therapeutic implications of these complex interactions, given that modulation of one system may affect the other systems, with beneficial or deleterious consequences. The renin–angiotensin, complement and kallikrein–kinin systems comprise a multitude of mediators that modulate physiological responses during inflammatory and infectious diseases. This Review investigates the complex interactions between these systems and how these are dysregulated in various conditions, including cardiovascular diseases and COVID-19, as well as their therapeutic implications.
Collapse
|
17
|
Almutlaq M, Alamro AA, Alroqi F, Barhoumi T. Classical and Counter-Regulatory Renin-Angiotensin System: Potential Key Roles in COVID-19 Pathophysiology. CJC Open 2021; 3:1060-1074. [PMID: 33875979 PMCID: PMC8046706 DOI: 10.1016/j.cjco.2021.04.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 04/08/2021] [Indexed: 02/08/2023] Open
Abstract
In the current COVID-19 pandemic, severe acute respiratory syndrome coronavirus 2 uses angiotensin-converting enzyme-2 (ACE-2) receptors for cell entry, leading to ACE-2 dysfunction and downregulation, which disturb the balance between the classical and counter-regulatory renin-angiotensin system (RAS) in favor of the classical RAS. RAS dysregulation is one of the major characteristics of several cardiovascular diseases; thus, adjustment of this system is the main therapeutic target. RAS inhibitors-particularly angiotensin-converting enzyme inhibitors (ACEIs) and angiotensin II type 1 receptor blockers (ARBs)-are commonly used for treatment of hypertension and cardiovascular disease. Patients with cardiovascular diseases are the group most commonly seen among those with COVID-19 comorbidity. At the beginning of this pandemic, a dilemma occurred regarding the use of ACEIs and ARBs, potentially aggravating cardiovascular and pulmonary dysfunction in COVID-19 patients. Urgent clinical trials from different countries and hospitals reported that there is no association between RAS inhibitor treatment and COVID-19 infection or comorbidity complication. Nevertheless, the disturbance of the RAS that is associated with COVID-19 infection and the potential treatment targeting this area have yet to be resolved. In this review, the link between the dysregulation of classical RAS and counter-regulatory RAS activities in COVID-19 patients with cardiovascular metabolic diseases is investigated. In addition, the latest findings based on ACEI and ARB administration and ACE-2 availability in relation to COVID-19, which may provide a better understanding of the RAS contribution to COVID-19 pathology, are discussed, as they are of the utmost importance amid the current pandemic.
Collapse
Affiliation(s)
- Moudhi Almutlaq
- King Abdullah International Medical Research Centre, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
- Moudhi Almutlaq, King Abdullah International Medical Research Centre, Ministry of National Guard Health Affairs, Riyadh 11461, Saudi Arabia. Tel.: +1-966-543-159145.
| | - Abir Abdullah Alamro
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Fayhan Alroqi
- King Abdullah International Medical Research Centre, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
- Department of Pediatrics, King Abdulaziz Medical City, King Abdullah Specialized Children's Hospital, Riyadh, Saudi Arabia
- King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Tlili Barhoumi
- King Abdullah International Medical Research Centre, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
- King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
- Corresponding authors: Dr Tlili Barhoumi, King Abdullah International Medical Research Centre, Ministry of National Guard Health Affairs, Riyadh 11461, Saudi Arabia. Tel.: +1-966-543-159145.
| |
Collapse
|
18
|
Cooper SL, Boyle E, Jefferson SR, Heslop CRA, Mohan P, Mohanraj GGJ, Sidow HA, Tan RCP, Hill SJ, Woolard J. Role of the Renin-Angiotensin-Aldosterone and Kinin-Kallikrein Systems in the Cardiovascular Complications of COVID-19 and Long COVID. Int J Mol Sci 2021; 22:8255. [PMID: 34361021 PMCID: PMC8347967 DOI: 10.3390/ijms22158255] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 07/29/2021] [Accepted: 07/29/2021] [Indexed: 01/08/2023] Open
Abstract
Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is the virus responsible for the COVID-19 pandemic. Patients may present as asymptomatic or demonstrate mild to severe and life-threatening symptoms. Although COVID-19 has a respiratory focus, there are major cardiovascular complications (CVCs) associated with infection. The reported CVCs include myocarditis, heart failure, arrhythmias, thromboembolism and blood pressure abnormalities. These occur, in part, because of dysregulation of the Renin-Angiotensin-Aldosterone System (RAAS) and Kinin-Kallikrein System (KKS). A major route by which SARS-CoV-2 gains cellular entry is via the docking of the viral spike (S) protein to the membrane-bound angiotensin converting enzyme 2 (ACE2). The roles of ACE2 within the cardiovascular and immune systems are vital to ensure homeostasis. The key routes for the development of CVCs and the recently described long COVID have been hypothesised as the direct consequences of the viral S protein/ACE2 axis, downregulation of ACE2 and the resulting damage inflicted by the immune response. Here, we review the impact of COVID-19 on the cardiovascular system, the mechanisms by which dysregulation of the RAAS and KKS can occur following virus infection and the future implications for pharmacological therapies.
Collapse
Affiliation(s)
- Samantha L. Cooper
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK;
- Centre of Membrane Proteins and Receptors (COMPARE), School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK
| | - Eleanor Boyle
- School of Medicine, Queen’s Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK; (E.B.); (S.R.J.); (C.R.A.H.); (P.M.); (G.G.J.M.); (H.A.S.); (R.C.P.T.)
| | - Sophie R. Jefferson
- School of Medicine, Queen’s Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK; (E.B.); (S.R.J.); (C.R.A.H.); (P.M.); (G.G.J.M.); (H.A.S.); (R.C.P.T.)
| | - Calum R. A. Heslop
- School of Medicine, Queen’s Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK; (E.B.); (S.R.J.); (C.R.A.H.); (P.M.); (G.G.J.M.); (H.A.S.); (R.C.P.T.)
| | - Pirathini Mohan
- School of Medicine, Queen’s Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK; (E.B.); (S.R.J.); (C.R.A.H.); (P.M.); (G.G.J.M.); (H.A.S.); (R.C.P.T.)
| | - Gearry G. J. Mohanraj
- School of Medicine, Queen’s Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK; (E.B.); (S.R.J.); (C.R.A.H.); (P.M.); (G.G.J.M.); (H.A.S.); (R.C.P.T.)
| | - Hamza A. Sidow
- School of Medicine, Queen’s Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK; (E.B.); (S.R.J.); (C.R.A.H.); (P.M.); (G.G.J.M.); (H.A.S.); (R.C.P.T.)
| | - Rory C. P. Tan
- School of Medicine, Queen’s Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK; (E.B.); (S.R.J.); (C.R.A.H.); (P.M.); (G.G.J.M.); (H.A.S.); (R.C.P.T.)
| | - Stephen J. Hill
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK;
- Centre of Membrane Proteins and Receptors (COMPARE), School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK
| | - Jeanette Woolard
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK;
- Centre of Membrane Proteins and Receptors (COMPARE), School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK
| |
Collapse
|
19
|
Wang Y, Wang M, Samuel CS, Widdop RE. Preclinical rodent models of cardiac fibrosis. Br J Pharmacol 2021; 179:882-899. [PMID: 33973236 DOI: 10.1111/bph.15450] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 03/02/2021] [Accepted: 03/03/2021] [Indexed: 11/30/2022] Open
Abstract
Cardiac fibrosis (scarring), characterised by an increased deposition of extracellular matrix (ECM) proteins, is a hallmark of most types of cardiovascular disease and plays an essential role in heart failure progression. Inhibition of cardiac fibrosis could improve outcomes in patients with cardiovascular diseases and particularly heart failure. However, pharmacological treatment of the ECM build-up is still lacking. In this context, preclinical models of heart disease are important tools for understanding the complex pathogenesis involved in the development of cardiac fibrosis which in turn could identify new therapeutic targets and the facilitation of antifibrotic drug discovery. Many preclinical models have been used to study cardiac fibrosis and each model provides mechanistic insights into the many factors that contribute to cardiac fibrosis. This review discusses the most frequently used rodent models of cardiac fibrosis and also provides context for the use of particular models of heart failure.
Collapse
Affiliation(s)
- Yan Wang
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute and Department of Pharmacology, Monash University, Clayton, Victoria, Australia
| | - Miao Wang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chrishan S Samuel
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute and Department of Pharmacology, Monash University, Clayton, Victoria, Australia
| | - Robert E Widdop
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute and Department of Pharmacology, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
20
|
Mehrabadi ME, Hemmati R, Tashakor A, Homaei A, Yousefzadeh M, Hemati K, Hosseinkhani S. Induced dysregulation of ACE2 by SARS-CoV-2 plays a key role in COVID-19 severity. Biomed Pharmacother 2021; 137:111363. [PMID: 33582450 PMCID: PMC7862910 DOI: 10.1016/j.biopha.2021.111363] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 01/29/2021] [Accepted: 02/02/2021] [Indexed: 12/24/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), the cause of COVID-19, is reported to increase the rate of mortality worldwide. COVID-19 is associated with acute respiratory symptoms as well as blood coagulation in the vessels (thrombosis), heart attack and stroke. Given the requirement of angiotensin converting enzyme 2 (ACE2) receptor for SARS-CoV-2 entry into host cells, here we discuss how the downregulation of ACE2 in the COVID-19 patients and virus-induced shift in ACE2 catalytic equilibrium, change the concentrations of substrates such as angiotensin II, apelin-13, dynorphin-13, and products such as angiotensin (1-7), angiotensin (1-9), apelin-12, dynorphin-12 in the human body. Substrates accumulation ultimately induces inflammation, angiogenesis, thrombosis, neuronal and tissue damage while diminished products lead to the loss of the anti-inflammatory, anti-thrombotic and anti-angiogenic responses. In this review, we focus on the viral-induced imbalance between ACE2 substrates and products which exacerbates the severity of COVID-19. Considering the roadmap, we propose multiple therapeutic strategies aiming to rebalance the products of ACE2 and to ameliorate the symptoms of the disease.
Collapse
Affiliation(s)
| | - Roohullah Hemmati
- Department of Biology, Faculty of Basic Sciences, Shahrekord University, Sharekord, Iran; Biotechnology Research Institute, Shahrekord University, Shahrekord, Iran; COVID-19 research group, Faculty of Basic Sciences, Shahrekord Univesity, Shahrekord, Iran.
| | - Amin Tashakor
- Irish Centre for Vascular Biology, Royal College of Surgeons in Ireland, Dublin, Ireland; School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Ahmad Homaei
- Department of Marine Biology, Faculty of Marine Science and Technology, University of Hormozgan, Bandar Abbas, Iran
| | | | - Karim Hemati
- Department of Anesthesiology and Pain, Iran University of Medical Sciences, Tehran, Iran
| | - Saman Hosseinkhani
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
21
|
The Role of the Renal Dopaminergic System and Oxidative Stress in the Pathogenesis of Hypertension. Biomedicines 2021; 9:biomedicines9020139. [PMID: 33535566 PMCID: PMC7912729 DOI: 10.3390/biomedicines9020139] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/26/2021] [Accepted: 01/28/2021] [Indexed: 01/11/2023] Open
Abstract
The kidney is critical in the long-term regulation of blood pressure. Oxidative stress is one of the many factors that is accountable for the development of hypertension. The five dopamine receptor subtypes (D1R–D5R) have important roles in the regulation of blood pressure through several mechanisms, such as inhibition of oxidative stress. Dopamine receptors, including those expressed in the kidney, reduce oxidative stress by inhibiting the expression or action of receptors that increase oxidative stress. In addition, dopamine receptors stimulate the expression or action of receptors that decrease oxidative stress. This article examines the importance and relationship between the renal dopaminergic system and oxidative stress in the regulation of renal sodium handling and blood pressure. It discusses the current information on renal dopamine receptor-mediated antioxidative network, which includes the production of reactive oxygen species and abnormalities of renal dopamine receptors. Recognizing the mechanisms by which renal dopamine receptors regulate oxidative stress and their degree of influence on the pathogenesis of hypertension would further advance the understanding of the pathophysiology of hypertension.
Collapse
|
22
|
Miao H, Wu XQ, Zhang DD, Wang YN, Guo Y, Li P, Xiong Q, Zhao YY. Deciphering the cellular mechanisms underlying fibrosis-associated diseases and therapeutic avenues. Pharmacol Res 2021; 163:105316. [PMID: 33248198 DOI: 10.1016/j.phrs.2020.105316] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 11/16/2020] [Accepted: 11/18/2020] [Indexed: 02/07/2023]
Abstract
Fibrosis is the excessive deposition of extracellular matrix components, which results in disruption of tissue architecture and loss of organ function. Fibrosis leads to high morbidity and mortality worldwide, mainly due to the lack of effective therapeutic strategies against fibrosis. It is generally accepted that fibrosis occurs during an aberrant wound healing process and shares a common pathogenesis across different organs such as the heart, liver, kidney, and lung. A better understanding of the fibrosis-related cellular and molecular mechanisms will be helpful for development of targeted drug therapies. Extensive studies revealed that numerous mediators contributed to fibrogenesis, suggesting that targeting these mediators may be an effective therapeutic strategy for antifibrosis. In this review, we describe a number of mediators involved in tissue fibrosis, including aryl hydrocarbon receptor, Yes-associated protein, cannabinoid receptors, angiopoietin-like protein 2, high mobility group box 1, angiotensin-converting enzyme 2, sphingosine 1-phosphate receptor-1, SH2 domain-containing phosphatase-2, and long non-coding RNAs, with the goal that drugs targeting these important mediators might exhibit a beneficial effect on antifibrosis. In addition, these mediators show profibrotic effects on multiple tissues, suggesting that targeting these mediators will exert antifibrotic effects on different organs. Furthermore, we present a variety of compounds that exhibit therapeutic effects against fibrosis. This review suggests therapeutic avenues for targeting organ fibrosis and concurrently identifies challenges and opportunities for designing new therapeutic strategies against fibrosis.
Collapse
Affiliation(s)
- Hua Miao
- Faculty of Life Science & Medicine, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi, 710069, China
| | - Xia-Qing Wu
- Faculty of Life Science & Medicine, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi, 710069, China
| | - Dan-Dan Zhang
- Faculty of Life Science & Medicine, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi, 710069, China
| | - Yan-Ni Wang
- Faculty of Life Science & Medicine, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi, 710069, China
| | - Yan Guo
- Department of Internal Medicine, University of New Mexico, 1700 Lomas Blvd NE, Albuquerque, 87131, USA
| | - Ping Li
- Beijing Key Lab for Immune-Mediated Inflammatory Diseases, Institute of Clinical Medical Science, Department of Nephrology, China-Japan Friendship Hospital, Beijing, 100029, China.
| | - Qingping Xiong
- Jiangsu Key Laboratory of Regional Resource Exploitation and Medicinal Research, Huaiyin Institute of Technology, Huai'an, 223003, Jiangsu, China.
| | - Ying-Yong Zhao
- Faculty of Life Science & Medicine, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi, 710069, China.
| |
Collapse
|
23
|
Guerrero-Beltrán CE, Mijares-Rojas IA, Salgado-Garza G, Garay-Gutiérrez NF, Carrión-Chavarría B. Peptidic vaccines: The new cure for heart diseases? Pharmacol Res 2020; 164:105372. [PMID: 33316382 DOI: 10.1016/j.phrs.2020.105372] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 11/12/2020] [Accepted: 12/09/2020] [Indexed: 12/18/2022]
Abstract
Cardiovascular disease continues to be the most common cause of death worldwide. The global burden is so high that numerous organizations are providing counseling recommendations and annual revisions of current pharmacological and non-pharmacological treatments as well as risk prediction for disease prevention and further progression. Although primary preventive interventions targeting risk factors such as obesity, hypertension, smoking, and sedentarism have led to a global decline in hospitalization rates, the aging population has overwhelmed these efforts on a global scale. This review focuses on peptidic vaccines, with the known and not well-known autoantigens in atheroma formation or acquired cardiac diseases, as novel potential immunotherapy approaches to counteract harmful heart disease continuance. We summarize how cancer immunomodulatory strategies started novel approaches to modulate the innate and adaptive immune responses, and how they can be targeted for therapeutic purposes in the cardiovascular system. Brief descriptions focused on the processes that start as either immunologic or non-immunologic, and the ultimate loss of cardiac muscle cell contractility as the outcome, are discussed. We conclude debating how novel strategies with nanoparticles and nanovaccines open a promising therapeutic option to reduce or prevent cardiovascular diseases.
Collapse
Affiliation(s)
- Carlos Enrique Guerrero-Beltrán
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Medicina Cardiovascular y Metabolómica, Monterrey, N.L., Mexico; Tecnologico de Monterrey, Hospital Zambrano Hellion, TecSalud, Centro de Investigación Biomédica, San Pedro Garza García, N.L., Mexico.
| | - Iván Alfredo Mijares-Rojas
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Medicina Cardiovascular y Metabolómica, Monterrey, N.L., Mexico
| | - Gustavo Salgado-Garza
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Medicina Cardiovascular y Metabolómica, Monterrey, N.L., Mexico
| | - Noé Francisco Garay-Gutiérrez
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Medicina Cardiovascular y Metabolómica, Monterrey, N.L., Mexico
| | - Belinda Carrión-Chavarría
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Medicina Cardiovascular y Metabolómica, Monterrey, N.L., Mexico
| |
Collapse
|
24
|
Light-induced release of the cardioprotective peptide angiotensin-(1–9) from thermosensitive liposomes with gold nanoclusters. J Control Release 2020; 328:859-872. [DOI: 10.1016/j.jconrel.2020.11.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 10/11/2020] [Accepted: 11/01/2020] [Indexed: 11/24/2022]
|
25
|
Correcting the imbalanced protective RAS in COVID-19 with angiotensin AT2-receptor agonists. Clin Sci (Lond) 2020; 134:2987-3006. [PMID: 33210709 DOI: 10.1042/cs20200922] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 10/22/2020] [Accepted: 11/02/2020] [Indexed: 12/13/2022]
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that is responsible for the global corona virus disease 2019 (COVID-19) pandemic enters host cells via a mechanism that includes binding to angiotensin converting enzyme (ACE) 2 (ACE2). Membrane-bound ACE2 is depleted as a result of this entry mechanism. The consequence is that the protective renin-angiotensin system (RAS), of which ACE2 is an essential component, is compromised through lack of production of the protective peptides angiotensin-(1-7) and angiotensin-(1-9), and therefore decreased stimulation of Mas (receptor Mas) and angiotensin AT2-receptors (AT2Rs), while angiotensin AT1-receptors (AT1Rs) are overstimulated due to less degradation of angiotensin II (Ang II) by ACE2. The protective RAS has numerous beneficial actions, including anti-inflammatory, anti-coagulative, anti-fibrotic effects along with endothelial and neural protection; opposite to the deleterious effects caused by heightened stimulation of angiotensin AT1R. Given that patients with severe COVID-19 exhibit an excessive immune response, endothelial dysfunction, increased clotting, thromboses and stroke, enhancing the activity of the protective RAS is likely beneficial. In this article, we discuss the evidence for a dysfunctional protective RAS in COVID and develop a rationale that the protective RAS imbalance in COVID-19 may be corrected by using AT2R agonists. We further review preclinical studies with AT2R agonists which suggest that AT2R stimulation may be therapeutically effective to treat COVID-19-induced disorders of various organ systems such as lung, vasculature, or the brain. Finally, we provide information on the design of a clinical trial in which patients with COVID-19 were treated with the AT2R agonist Compound 21 (C21). This trial has been completed, but results have not yet been reported.
Collapse
|
26
|
Hrenak J, Simko F. Renin-Angiotensin System: An Important Player in the Pathogenesis of Acute Respiratory Distress Syndrome. Int J Mol Sci 2020; 21:ijms21218038. [PMID: 33126657 PMCID: PMC7663767 DOI: 10.3390/ijms21218038] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 10/24/2020] [Accepted: 10/26/2020] [Indexed: 02/08/2023] Open
Abstract
Acute respiratory distress syndrome (ARDS) is characterized by massive inflammation, increased vascular permeability and pulmonary edema. Mortality due to ARDS remains very high and even in the case of survival, acute lung injury can lead to pulmonary fibrosis. The renin-angiotensin system (RAS) plays a significant role in these processes. The activities of RAS molecules are subject to dynamic changes in response to an injury. Initially, increased levels of angiotensin (Ang) II and des-Arg9-bradykinin (DABK), are necessary for an effective defense. Later, augmented angiotensin converting enzyme (ACE) 2 activity supposedly helps to attenuate inflammation. Appropriate ACE2 activity might be decisive in preventing immune-induced damage and ensuring tissue repair. ACE2 has been identified as a common target for different pathogens. Some Coronaviruses, including SARS-CoV-2, also use ACE2 to infiltrate the cells. A number of questions remain unresolved. The importance of ACE2 shedding, associated with the release of soluble ACE2 and ADAM17-mediated activation of tumor necrosis factor-α (TNF-α)-signaling is unclear. The roles of other non-classical RAS-associated molecules, e.g., alamandine, Ang A or Ang 1-9, also deserve attention. In addition, the impact of established RAS-inhibiting drugs on the pulmonary RAS is to be elucidated. The unfavorable prognosis of ARDS and the lack of effective treatment urge the search for novel therapeutic strategies. In the context of the ongoing SARS-CoV-2 pandemic and considering the involvement of humoral disbalance in the pathogenesis of ARDS, targeting the renin-angiotensin system and reducing the pathogen's cell entry could be a promising therapeutic strategy in the struggle against COVID-19.
Collapse
Affiliation(s)
- Jaroslav Hrenak
- Department of Cardiovascular Surgery, Inselspital – University Hospital of Bern, Freiburgstrasse 18, 3010 Bern, Switzerland;
- Institute of Pathophysiology, Faculty of Medicine, Comenius University, Sasinkova 4, 811 08 Bratislava, Slovak
| | - Fedor Simko
- Institute of Pathophysiology, Faculty of Medicine, Comenius University, Sasinkova 4, 811 08 Bratislava, Slovak
- 3rd Department of Internal Medicine, Faculty of Medicine, Comenius University, Limbova 5, 833 05 Bratislava, Slovak
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Dúbravská cesta 9, 845 05 Bratislava, Slovak
- Correspondence:
| |
Collapse
|
27
|
Mihalopoulos M, Dogra N, Mohamed N, Badani K, Kyprianou N. COVID-19 and Kidney Disease: Molecular Determinants and Clinical Implications in Renal Cancer. Eur Urol Focus 2020; 6:1086-1096. [PMID: 32540268 PMCID: PMC7280142 DOI: 10.1016/j.euf.2020.06.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 06/03/2020] [Indexed: 02/06/2023]
Abstract
CONTEXT The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic that erupted in December 2019 has affected more than a million people from over 200 countries, claiming over 70 000 lives (by April 7, 2020). As the viral infection is driven by increased angiotensin-converting enzyme-2 (ACE2) expression, with the kidney exhibiting the highest expression, it is crucial to gain insights into the mechanisms underlying renal cell carcinoma (RCC) and coronavirus disease 2019 (COVID-19). OBJECTIVE This study considers up-to-date information on the biological determinants shared by COVID-19 and renal disease, and aims to provide evidence-based recommendations for the clinical management of RCC patients with COVID-19. EVIDENCE ACQUISITION A literature search was performed using all sources (MEDLINE, EMBASE, ScienceDirect, Cochrane Libraries, and Web of Science). As of March 31, 2020, the Center for Disease Control reported that of the adults hospitalized for COVID-19 with underlying conditions in the USA, 74.8% had chronic renal disease. EVIDENCE SYNTHESIS Evidence is discussed from epidemiological studies on SARS-CoV-2 pandemic and molecular studies on the role of kidney in facilitating routes for SARS-CoV-2 entry, leading to increased virulence of SARS-CoV-2 and clinical manifestation of symptoms in RCC. CONCLUSIONS This analysis will advance our understanding of (1) the molecular signatures shared by RCC and COVID-19 and (2) the clinical implications of overlapping signaling pathways in the therapeutic management of RCC and COVID-19 patients. PATIENT SUMMARY Amid the coronavirus disease 2019 (COVID-19) pandemic, patients diagnosed with renal cell carcinoma and infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) may receive complimentary treatment modalities to enhance therapeutic response.
Collapse
MESH Headings
- Acute Kidney Injury/epidemiology
- Acute Kidney Injury/metabolism
- Acute Kidney Injury/therapy
- Angiotensin-Converting Enzyme 2
- Angiotensin-Converting Enzyme Inhibitors/therapeutic use
- Antibodies, Neutralizing/therapeutic use
- Antineoplastic Agents, Immunological/therapeutic use
- Antiviral Agents/therapeutic use
- Betacoronavirus/metabolism
- COVID-19
- Carcinoma, Renal Cell/epidemiology
- Carcinoma, Renal Cell/metabolism
- Comorbidity
- Coronavirus Infections/drug therapy
- Coronavirus Infections/epidemiology
- Coronavirus Infections/metabolism
- Coronavirus Infections/physiopathology
- Endothelin Receptor Antagonists/therapeutic use
- Hospitalization
- Humans
- Ipilimumab/therapeutic use
- Kidney Neoplasms/drug therapy
- Kidney Neoplasms/epidemiology
- Kidney Neoplasms/metabolism
- Liquid Biopsy
- Nivolumab/therapeutic use
- Pandemics
- Peptidyl-Dipeptidase A/metabolism
- Pneumonia, Viral/drug therapy
- Pneumonia, Viral/epidemiology
- Pneumonia, Viral/metabolism
- Pneumonia, Viral/physiopathology
- Protein Kinase Inhibitors/therapeutic use
- Renal Dialysis
- Renal Insufficiency, Chronic/epidemiology
- Renal Insufficiency, Chronic/metabolism
- Renal Insufficiency, Chronic/therapy
- SARS-CoV-2
- Serine Endopeptidases/metabolism
- Severity of Illness Index
- Spike Glycoprotein, Coronavirus/metabolism
- Sunitinib/therapeutic use
- COVID-19 Drug Treatment
Collapse
Affiliation(s)
- Meredith Mihalopoulos
- Department of Urology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Navneet Dogra
- Department of Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Nihal Mohamed
- Department of Urology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ketan Badani
- Department of Urology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Natasha Kyprianou
- Department of Urology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
28
|
Norambuena-Soto I, Ocaranza MP, Cancino-Arenas N, Sanhueza-Olivares F, Villar-Fincheira P, Leiva-Navarrete S, Mancilla-Medina C, Moya J, Novoa U, Jalil JE, Castro PF, Lavandero S, Chiong M. Angiotensin-(1-9) prevents vascular remodeling by decreasing vascular smooth muscle cell dedifferentiation through a FoxO1-dependent mechanism. Biochem Pharmacol 2020; 180:114190. [PMID: 32768401 DOI: 10.1016/j.bcp.2020.114190] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 07/29/2020] [Accepted: 08/03/2020] [Indexed: 12/30/2022]
Abstract
The renin-angiotensin system, one of the main regulators of vascular function, controls vasoconstriction, inflammation and vascular remodeling. Antagonistic actions of the counter-regulatory renin-angiotensin system, which include vasodilation, anti-proliferative, anti-inflammatory and anti-remodeling effects, have also been described. However, little is known about the direct effects of angiotensin-(1-9), a peptide of the counter-regulatory renin-angiotensin system, on vascular smooth muscle cells. Here, we studied the anti-vascular remodeling effects of angiotensin-(1-9), with special focus on the control of vascular smooth muscle cell phenotype. Angiotensin-(1-9) decreased blood pressure and aorta media thickness in spontaneously hypertensive rats. Reduction of media thickness was associated with decreased vascular smooth muscle cell proliferation. In the A7r5 VSMC cell line and in primary cultures of rat aorta smooth muscle cells, angiotensin-(1-9) did not modify basal proliferation. However, angiotensin-(1-9) inhibited proliferation, migration and contractile protein decrease induced by platelet derived growth factor-BB. Moreover, angiotensin-(1-9) reduced Akt and FoxO1 phosphorylation at 30 min, followed by an increase of total FoxO1 protein content. Angiotensin-(1-9) effects were blocked by the AT2R antagonist PD123319, Akt-Myr overexpression and FoxO1 siRNA. These data suggest that angiotensin-(1-9) inhibits vascular smooth muscle cell dedifferentiation by an AT2R/Akt/FoxO1-dependent mechanism.
Collapse
Affiliation(s)
- Ignacio Norambuena-Soto
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences & Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Maria Paz Ocaranza
- Division de Enfermedades Cardiovasculares, Escuela de Medicina, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile; Center of New Drugs for Hypertension (CENDHY), Universidad de Chile & Pontificia Universidad Católica de Chile, Santiago, Chile; Advanced Center for Chronic Diseases (ACCDiS), Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Nicole Cancino-Arenas
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences & Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Fernanda Sanhueza-Olivares
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences & Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Paulina Villar-Fincheira
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences & Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Sebastian Leiva-Navarrete
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences & Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Cristian Mancilla-Medina
- Division de Enfermedades Cardiovasculares, Escuela de Medicina, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile; Center of New Drugs for Hypertension (CENDHY), Universidad de Chile & Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Jacqueline Moya
- Division de Enfermedades Cardiovasculares, Escuela de Medicina, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile; Center of New Drugs for Hypertension (CENDHY), Universidad de Chile & Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Ulises Novoa
- Departamento de Ciencias Básicas Biomédicas, Facultad de Ciencias de la Salud, Universidad de Talca, Chile
| | - Jorge E Jalil
- Division de Enfermedades Cardiovasculares, Escuela de Medicina, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile; Center of New Drugs for Hypertension (CENDHY), Universidad de Chile & Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Pablo F Castro
- Division de Enfermedades Cardiovasculares, Escuela de Medicina, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile; Advanced Center for Chronic Diseases (ACCDiS), Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Sergio Lavandero
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences & Faculty of Medicine, Universidad de Chile, Santiago, Chile; Corporacion Centro de Estudios Científicos de las Enfermedades Crónicas (CECEC), Santiago, Chile; Department of Internal Medicine (Cardiology Division), University of Texas Southwestern Medical Center, Dallas, USA
| | - Mario Chiong
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences & Faculty of Medicine, Universidad de Chile, Santiago, Chile.
| |
Collapse
|
29
|
Mihalopoulos M, Levine AC, Marayati NF, Chubak BM, Archer M, Badani KK, Tewari AK, Mohamed N, Ferrer F, Kyprianou N. The Resilient Child: Sex-Steroid Hormones and COVID-19 Incidence in Pediatric Patients. J Endocr Soc 2020; 4:bvaa106. [PMID: 32864545 PMCID: PMC7448286 DOI: 10.1210/jendso/bvaa106] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 07/21/2020] [Indexed: 02/06/2023] Open
Abstract
Coronavirus disease–2019 (COVID-19), a disease caused by Severe Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection, has become an unprecedented global health emergency, with fatal outcomes among adults of all ages in the United States, and the highest incidence and mortality in adult men. As the pandemic evolves there is limited understanding of a potential association between symptomatic viral infection and age. To date, there is no knowledge of the role children (prepubescent, ages 9-13 years) play as “silent” vectors of the virus, with themselves being asymptomatic. Throughout different time frames and geographic locations, the current evidence on COVID-19 suggests that children are becoming infected at a significantly lower rate than other age groups—as low as 1%. Androgens upregulate the protease TMPRSS2 (type II transmembrane serine protease-2), which facilitates efficient virus-host cell fusion with the epithelium of the lungs, thus increasing susceptibility to SARS-CoV-2 infection and development of severe COVID-19. Owing to low levels of steroid hormones, prepubertal children may have low expression of TMPRSS2, thereby limiting the viral entry into host cells. As the world anticipates a vaccine against SARS-CoV-2, the role of prepubescent children as vectors transmitting the virus must be interrogated to prepare for a potential resurgence of COVID-19. This review discusses the current evidence on the low incidence of COVID-19 in children and the effect of sex-steroid hormones on SARS-CoV-2 viral infection and clinical outcomes of pediatric patients. On reopening society at large, schools will need to implement heightened health protocols with the knowledge that children as the “silent” viral transmitters can significantly affect the adult populations.
Collapse
Affiliation(s)
- Meredith Mihalopoulos
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, New York.,The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Alice C Levine
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York.,Department of Medicine, Division of Endocrinology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Naoum Fares Marayati
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Barbara M Chubak
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Maddison Archer
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, New York.,The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Ketan K Badani
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, New York.,The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Ashutosh K Tewari
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, New York.,The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Nihal Mohamed
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, New York.,The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Fernando Ferrer
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Natasha Kyprianou
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, New York.,The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York.,Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York.,Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
30
|
Sobczuk P, Czerwińska M, Kleibert M, Cudnoch-Jędrzejewska A. Anthracycline-induced cardiotoxicity and renin-angiotensin-aldosterone system-from molecular mechanisms to therapeutic applications. Heart Fail Rev 2020; 27:295-319. [PMID: 32472524 PMCID: PMC8739307 DOI: 10.1007/s10741-020-09977-1] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Few millions of new cancer cases are diagnosed worldwide every year. Due to significant progress in understanding cancer biology and developing new therapies, the mortality rates are decreasing with many of patients that can be completely cured. However, vast majority of them require chemotherapy which comes with high medical costs in terms of adverse events, of which cardiotoxicity is one of the most serious and challenging. Anthracyclines (doxorubicin, epirubicin) are a class of cytotoxic agents used in treatment of breast cancer, sarcomas, or hematological malignancies that are associated with high risk of cardiotoxicity that is observed in even up to 30% of patients and can be diagnosed years after the therapy. The mechanism, in which anthracyclines cause cardiotoxicity are not well known, but it is proposed that dysregulation of renin-angiotensin-aldosterone system (RAAS), one of main humoral regulators of cardiovascular system, may play a significant role. There is increasing evidence that drugs targeting this system can be effective in the prevention and treatment of anthracycline-induced cardiotoxicity what has recently found reflection in the recommendation of some scientific societies. In this review, we comprehensively describe possible mechanisms how anthracyclines affect RAAS and lead to cardiotoxicity. Moreover, we critically review available preclinical and clinical data on use of RAAS inhibitors in the primary and secondary prevention and treatment of cardiac adverse events associated with anthracycline-based chemotherapy.
Collapse
Affiliation(s)
- Paweł Sobczuk
- Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland.,Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Magdalena Czerwińska
- Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
| | - Marcin Kleibert
- Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
| | - Agnieszka Cudnoch-Jędrzejewska
- Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland.
| |
Collapse
|
31
|
Yang T, Chen YY, Liu JR, Zhao H, Vaziri ND, Guo Y, Zhao YY. Natural products against renin-angiotensin system for antifibrosis therapy. Eur J Med Chem 2019; 179:623-633. [PMID: 31279295 DOI: 10.1016/j.ejmech.2019.06.091] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 06/19/2019] [Accepted: 06/28/2019] [Indexed: 02/07/2023]
Abstract
Fibrosis is a final pathological feature of many chronic diseases, but few interventions are available that specifically target the pathogenesis of fibrosis. The highlights of common cellular and molecular mechanisms of fibrosis facilitate the discovery of effective antifibrotic drugs. The renin-angiotensin system (RAS) plays a central physiological role in the control of blood pressure and fluid homeostasis. Emerging evidence has revealed that activation of RAS was consistently found in fibrotic tissue. At the same time, as more components of the RAS are described, other pot Potential therapeutic targets emerge, so it seems sensible to revisit the contribution of RAS in anti-fibrotic therapy. So far, angiotensin converting enzyme inhibitors (ACEI) and angiotensin II type 1 receptor blockers (ARB) are the main commercial available drugs for intervening RAS. However, RAS inhibitors had lots of limitations in long-term application owing to occurring AngII and aldosterone escape. Over the past decades, natural products have aroused growing attention as potential RAS inhibitors due to their high efficacy and low risk of side effects. In this review, we revisit the contribution of RAS and its new members to anti-fibrotic therapy. Ultimately, we summarize and evaluate the use of natural products including isolated compounds, crude extracts and traditional Chinese herbal formulas to regulate RAS. These natural products can retard tissue fibrosis by targeting different RAS components, which provide us new therapeutic strategies to discover anti-fibrotic drugs.
Collapse
Affiliation(s)
- Tian Yang
- Faculty of Life Science & Medicine, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi, 710069, China
| | - Yuan-Yuan Chen
- Faculty of Life Science & Medicine, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi, 710069, China
| | - Jing-Ru Liu
- Faculty of Life Science & Medicine, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi, 710069, China
| | - Hui Zhao
- Faculty of Life Science & Medicine, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi, 710069, China
| | - Nosratola D Vaziri
- Division of Nephrology and Hypertension, School of Medicine, University of California Irvine, Irvine, CA, 92897, USA
| | - Yan Guo
- Faculty of Life Science & Medicine, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi, 710069, China; Department of Internal Medicine, University of New Mexico, Albuquerque, 87131, USA
| | - Ying-Yong Zhao
- Faculty of Life Science & Medicine, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi, 710069, China.
| |
Collapse
|
32
|
Abstract
The renin-angiotensin system is an important component of the cardiovascular system. Mounting evidence suggests that the metabolic products of angiotensin I and II - initially thought to be biologically inactive - have key roles in cardiovascular physiology and pathophysiology. This non-canonical axis of the renin-angiotensin system consists of angiotensin 1-7, angiotensin 1-9, angiotensin-converting enzyme 2, the type 2 angiotensin II receptor (AT2R), the proto-oncogene Mas receptor and the Mas-related G protein-coupled receptor member D. Each of these components has been shown to counteract the effects of the classical renin-angiotensin system. This counter-regulatory renin-angiotensin system has a central role in the pathogenesis and development of various cardiovascular diseases and, therefore, represents a potential therapeutic target. In this Review, we provide the latest insights into the complexity and interplay of the components of the non-canonical renin-angiotensin system, and discuss the function and therapeutic potential of targeting this system to treat cardiovascular disease.
Collapse
|
33
|
Sharma N, Anders HJ, Gaikwad AB. Fiend and friend in the renin angiotensin system: An insight on acute kidney injury. Biomed Pharmacother 2018; 110:764-774. [PMID: 30554115 DOI: 10.1016/j.biopha.2018.12.018] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 12/05/2018] [Accepted: 12/05/2018] [Indexed: 02/06/2023] Open
Abstract
Besides assisting the maintenance of blood pressure and sodium homeostasis, the renin-angiotensin system (RAS) plays a pivotal role in pathogenesis of acute kidney injury (AKI). The RAS is equipped with two arms i) the pressor arm composed of Angiotensin II (Ang II)/Angiotensin converting enzyme (ACE)/Angiotensin II type 1 receptor (AT1R) also called conventional RAS, and ii) the depressor arm consisting of Angiotensin (1-7) (Ang 1-7)/Angiotensin converting enzyme 2 (ACE2)/MasR known as non-conventional RAS. Activation of conventional RAS triggers oxidative stress, inflammatory, hypertrophic, apoptotic, and pro-fibrotic signaling cascades which promote AKI. The preclinical and clinical studies have reported beneficial as well as deleterious effects of RAS blockage either by angiotensin receptor blocker or ACE inhibitor in AKI. On the contrary, the depressor arm opposes the conventional RAS, has beneficial effects on the kidney but has been less explored in pathogenesis of AKI. This review focuses on significance of RAS in pathogenesis of AKI and provides better understanding of novel and possible therapeutic approaches to combat AKI.
Collapse
Affiliation(s)
- Nisha Sharma
- Laboratory of Molecular Pharmacology, Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Pilani Campus, Rajasthan 333 031, India
| | - Hans-Joachim Anders
- Division of Nephrology, Department of Internal Medicine IV, University Hospital of the Ludwig Maximilians University Munich, 80336 Munich, Germany
| | - Anil Bhanudas Gaikwad
- Laboratory of Molecular Pharmacology, Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Pilani Campus, Rajasthan 333 031, India.
| |
Collapse
|