1
|
Jalil AT, Al-Kazzaz HH, Hassan FA, Mohammed SH, Merza MS, Aslandook T, Elewadi A, Fadhil A, Alsalamy A. Metabolic Reprogramming of Anti-cancer T Cells: Targeting AMPK and PPAR to Optimize Cancer Immunotherapy. Indian J Clin Biochem 2025; 40:165-175. [PMID: 40123631 PMCID: PMC11928344 DOI: 10.1007/s12291-023-01166-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 11/17/2023] [Indexed: 03/25/2025]
Abstract
Cancer treatment era has been revolutionized by the novel therapeutic methods such as immunotherapy in recent years. Immunotherapy-based approaches are considered effective and reliable methods that has brought hope to eradicate certain cancers. Nonetheless, there are some issues, considered as critical obstacles in successful cancer immunotherapy. Such issues are attributed to the ability of the tumor cells in providing a tolerant microenvironment that impairs the immune responses, and help the cancer cells evade the immunogenic cell death. It has been suggested that the re-activation and maintenance of effector immune cells may become possible by metabolic reprogramming. Several signaling pathways have been noticed with the possibility of metabolic reprogramming of tumor-specific T cells, to overcome the metabolic restrictions in the tumor microenvironment; and among them, AMP-activated protein kinase (AMPK) and peroxisome proliferator-activated receptors (PPAR) have been investigated the most as the main energy sensors and regulators of mitochondrial biogenesis. The synergic effects of AMPK activators and/or PPAR agonists in cancer immunotherapy have been reported. In this review, we compare the roles of AMPK activators and PPAR agonists, and the efficacy of their combination in metabolic reprogramming of cytotoxic T cells in favoring cancer immunotherapy.
Collapse
Affiliation(s)
| | - Hassan Hadi Al-Kazzaz
- College of Medical and Health Technology, Al-Zahraa University for Women, Karbala, Iraq
| | - Firas A. Hassan
- Department of Chemistry, College of Science, Al-Nahrain University, Baghdad, Iraq
| | | | - Muna S. Merza
- Department of Prosthetic Dental Techniques, Al-Mustaqbal University College, Hillah, Iraq
| | - Tahani Aslandook
- Department of Dentistry, Al-Turath University College, Baghdad, Iraq
| | - Ahmed Elewadi
- College of Technical Engineering, The Islamic University, Najaf, Iraq
| | - Ali Fadhil
- College of Medical Techniques, Al-Farahidi University, Baghdad, Iraq
| | - Ali Alsalamy
- College of Technical Engineering, Imam Ja’afar Al-Sadiq University, Al-Muthanna, 66002 Iraq
| |
Collapse
|
2
|
Hu C, Shi X, Guo B, Yang Z, Zhou J, Wang F. Toehold-Based CRISPR-dCas9 Transcriptional Activation Platform for Spatiotemporally Controllable Gene Therapy in Tumor and Diabetic Mouse Models. ACS NANO 2025; 19:12277-12287. [PMID: 40123515 DOI: 10.1021/acsnano.5c01078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/25/2025]
Abstract
The CRISPR-Cas system has been extensively employed as a genome editing tool with the dCas9-based transcriptional activation system emerging as a particularly promising approach for gene editing in the treatment of diseases at the gene level. Nevertheless, the challenge of achieving effective spatiotemporal control of the transcriptional activation system of dCas9 has thus far restricted its broader application. In this study, we present an miRNA-responsive CRISPR-dCas9 transcriptional activation (mCTA) system. This system is capable of responding specifically to exogenous and endogenous miRNAs in mammalian cells and enables the specific imaging of miRNAs during neural development or in the deep tissues of mice. Furthermore, the replacement of downstream functional genes with DTA has been demonstrated to result in the effective apoptosis of tumor cells and inhibition of xenografted tumor growth in mice. Finally, in a diabetic mouse model, the m122CTA system was shown to reduce the blood glucose in diabetic mice via the activation of PDX-1 gene. Our work provides an effective platform for miRNA imaging and gene therapy via spatiotemporal control of gene regulation.
Collapse
Affiliation(s)
- Chong Hu
- Department of Urology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
- Engineering Research Center of Molecular and Neuroimaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an 710071, China
| | - Xiaorui Shi
- Engineering Research Center of Molecular and Neuroimaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an 710071, China
- Guangzhou Institute of Technology, Xidian University, Guangzhou 510555, China
| | - Bin Guo
- Institute of Medical Engineering, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an 710061, China
| | - Zeping Yang
- Engineering Research Center of Molecular and Neuroimaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an 710071, China
| | - Jie Zhou
- Engineering Research Center of Molecular and Neuroimaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an 710071, China
| | - Fu Wang
- Department of Urology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
- Institute of Medical Engineering, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an 710061, China
| |
Collapse
|
3
|
Che Z, Yan W, Zhao Q. Extracellular Vesicles in the Mesenchymal Stem Cell/Macrophage Axis: Potential Targets for Inflammatory Treatment. Int J Mol Sci 2025; 26:2827. [PMID: 40141469 PMCID: PMC11943156 DOI: 10.3390/ijms26062827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 03/18/2025] [Accepted: 03/19/2025] [Indexed: 03/28/2025] Open
Abstract
Mesenchymal stem cells (MSCs) have been widely used for the treatment of autoimmune and inflammatory diseases due to their pluripotent differentiation potential and immunomodulatory function. Macrophage (Mφ) polarization also acts an essential and central role in regulating inflammation, basically the dynamic balance of pro-inflammatory M1-like (M1φ) and anti-inflammatory M2-like macrophages (M2φ), affecting the occurrence and progression of inflammatory diseases. Since a pivotal molecular crosstalk between MSCs and Mφ has been elucidated using in vitro and in vivo preclinical studies, we presume that the mesenchymal stem cell/macrophages axis (MSC/Mφ axis) acts an important role in pathophysiological mechanisms of inflammatory diseases and should be the potential therapeutic target. However, the crucial effects of EVs as intercellular communicators and therapeutic agents in the MSC/Mφ axis remains explorable. Therefore, this review elaborated on the mechanisms of EVs mediating the MSC/Mφ axis regulating inflammation in-depth, hoping to provide more references for related research in the future.
Collapse
Affiliation(s)
- Zhen Che
- Experimental Orthopedics and Trauma Surgery, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074 Aachen, Germany;
| | - Wenbin Yan
- Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University (SYSU), Guangzhou 510120, China
| | - Qun Zhao
- Experimental Orthopedics and Trauma Surgery, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074 Aachen, Germany;
| |
Collapse
|
4
|
Pingping Z, Nan C, Yong T. Phytochemicals and their Nanoformulations for Overcoming Drug Resistance in Head and Neck Squamous Cell Carcinoma. Pharm Res 2025; 42:429-449. [PMID: 40032776 DOI: 10.1007/s11095-025-03836-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Accepted: 02/06/2025] [Indexed: 03/05/2025]
Abstract
BACKGROUND Drug resistance remains a significant challenge in the treatment of head and neck squamous cell carcinoma (HNSCC), leading to therapeutic failure and poor patient prognosis. Numerous mechanisms, including drug efflux pumps, altered tumor microenvironment (TME), and dysregulated cell death pathways, contribute to the development of resistance against conventional chemotherapeutic agents, immunotherapy, and targeted therapies. As resistance to traditional treatments continues to emerge, there is an urgent need for innovative therapeutic strategies to overcome these challenges. Phytochemicals are naturally occurring bioactive compounds and have demonstrated remarkable potential in targeting multiple resistance mechanisms simultaneously. METHOD This review comprehensively overviews the current understanding of drug resistance mechanisms in HNSCC and explores innovative strategies utilizing phytochemicals and their nanoformulations to overcome these resistance mechanisms, with a particular focus on recent developments and future perspectives in this field. RESULTS AND DISCUSSION Phytochemicals with anticancer properties include a wide range of herbal-derived molecules such as flavonoids, stilbenes, curcuminoids, alkaloids, traditional Chinese medicine, and others. These compounds can modulate ATP-binding cassette transporters, reverse epithelial-to-mesenchymal transition (EMT), target cancer stem cells (CSCs), and regulate various signaling pathways involved in drug resistance. The integration of phytochemicals into advanced nanoformulation systems has also shown a remarkable improvement in enhancing their bioavailability, stability, and targeted delivery to the TME, potentially improving their therapeutic efficacy. Furthermore, the combination of phytochemicals with conventional chemotherapeutic agents, targeted molecular therapy, and immune checkpoint inhibitors (ICIs) has exhibited synergistic effects, offering a promising approach to restoring drug sensitivity in resistant HNSCC cells. CONCLUSION Phytochemicals and their nanoformulations may improve response of HNSCC to therapy by alleviating drug resistance.
Collapse
Affiliation(s)
- Zhai Pingping
- Heilongjiang Academy of Chinese Medicine Sciences, Harbin, 150000, China
| | - Chen Nan
- Heilongjiang University of Chinese Medicine, Harbin, 150000, China
| | - Tang Yong
- Heilongjiang Academy of Chinese Medicine Sciences, Harbin, 150000, China.
| |
Collapse
|
5
|
Geng X, Azarbarzin S, Yang Z, Lapidus RG, Fan X, Teng Y, Mehra R, Cullen KJ, Dan H. Evaluation of co‑inhibition of ErbB family kinases and PI3K for HPV‑negative head and neck squamous cell carcinoma. Oncol Rep 2025; 53:38. [PMID: 39886949 PMCID: PMC11800064 DOI: 10.3892/or.2025.8871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 10/29/2024] [Indexed: 02/01/2025] Open
Abstract
The ErbB/HER family of protein‑tyrosine kinases and PI3K represent crucial targets in the treatment of head and neck squamous cell carcinoma (HNSCC). A combination therapy of afatinib (ErbB inhibitor) and copanlisib (PI3K inhibitor), both Food and Drug Administration‑approved kinase inhibitors, can suppress the growth of human papillomavirus (HPV)‑positive HNSCC. The current study further evaluated the efficacy and clinical potential of this combination therapy for the treatment of HPV‑negative HNSCC in vitro and in vivo. Sulforhodamine B cell viability assay and Annexin V/propidium iodide staining demonstrated that this combination treatment markedly enhanced inhibition of cell viability and reduced cell survival when compared with treatment with either inhibitor alone in two HPV‑negative HNSCC cell lines. Notably, this combination also led to significant inhibition of xenograft tumor growth in mice, without any apparent effects on body weight. Western blot analysis found that copanlisib alone effectively blocked PI3K/Akt signaling but caused upregulation of HER2 and HER3 phosphorylation, as reported in other types of cancer. However, the combination of copanlisib and afatinib completely blocked phosphorylation of the ErbB family (including HER3) and Akt, while also increasing apoptosis. In conclusion, these results suggested that co‑targeting the ErbB family kinases and PI3K using a combination treatment of afatinib and copanlisib may have clinical potential for patients with HPV‑negative HNSCC.
Collapse
Affiliation(s)
- Xinyan Geng
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Shirin Azarbarzin
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Zejia Yang
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Rena G. Lapidus
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Xiaoxuan Fan
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Yong Teng
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30332, USA
| | - Ranee Mehra
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Kevin J. Cullen
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Hancai Dan
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
6
|
Qiu L, Gao Q, Liao Y, Li X, Li C. Targeted inhibition of the PTEN/PI3K/AKT pathway by YSV induces cell cycle arrest and apoptosis in oral squamous cell carcinoma. J Transl Med 2025; 23:145. [PMID: 39901205 PMCID: PMC11792215 DOI: 10.1186/s12967-025-06169-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Accepted: 01/23/2025] [Indexed: 02/05/2025] Open
Abstract
BACKGROUND Tyroservatide (YSV), a bioactive tripeptide, holds potential as an anti-tumor agent. However, its specific effects on oral squamous cell carcinoma (OSCC) have not been elucidated. This study aims to investigate the inhibitory effects of YSV on OSCC and explore the underlying molecular mechanisms. METHODS A series of in vitro experiments were conducted to assess the impact of YSV on OSCC cell viability, colony formation, cell cycle, and apoptosis. RNA sequencing (RNA-seq), molecular docking, and western blotting were employed to investigate the molecular mechanisms. Additionally, a subcutaneous tumor model was established to validate the in vitro findings. Furthermore, PI3K inhibitors LY294002 and PI3K-IN-1, were used to confirm the role of the PTEN/PI3K/AKT pathway in YSV-mediated OSCC inhibition. Cell cycle and apoptosis were analyzed to assess the combined effect of YSV and LY294002. RESULTS YSV significantly inhibited OSCC proliferation by inducing cell cycle arrest and apoptosis. RNA-seq and molecular docking revealed that YSV regulated the PTEN/PI3K/AKT signaling pathway. Western blotting confirmed the modulation of this pathway both in vitro and in vivo. The use of PI3K inhibitors, LY294002 and PI3K-IN-1, further validated the involvement of the PTEN/PI3K/AKT pathway in YSV-induced anti-tumor effects. Notably, the combination of YSV and LY294002 synergistically enhanced cell cycle arrest and apoptosis, demonstrating effective anti-tumor activity. In vivo experiments also supported these findings. CONCLUSION YSV inhibited the progression of OSCC by promoting cell cycle arrest and apoptosis through the regulation of the PTEN/PI3K/AKT signaling pathway. The combination of YSV and PI3K inhibitors, such as LY294002, exhibited enhanced anti-tumor activity, suggesting potential therapeutic strategies for OSCC treatment.
Collapse
Affiliation(s)
- Lin Qiu
- Central Laboratory, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, 100081, China
| | - Qian Gao
- Central Laboratory, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, 100081, China
| | - Yiheng Liao
- Central Laboratory, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, 100081, China
| | - Xinxin Li
- National Key Laboratory of Efficacy and Mechanism on Chinese Medicine for Metabolic Diseases, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, China.
| | - Cuiying Li
- Central Laboratory, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, 100081, China.
| |
Collapse
|
7
|
Wang Y, Han J, Zhu Y, Huang N, Qu N. New advances in the therapeutic strategy of head and neck squamous cell carcinoma: A review of latest therapies and cutting-edge research. Biochim Biophys Acta Rev Cancer 2025; 1880:189230. [PMID: 39608621 DOI: 10.1016/j.bbcan.2024.189230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/22/2024] [Accepted: 11/24/2024] [Indexed: 11/30/2024]
Abstract
Head and neck squamous cell carcinoma (HNSCC) is a common and aggressive malignancy with a poor prognosis, particularly when diagnosed at advanced stages. Despite progress in surgical, chemotherapeutic, and radiotherapeutic interventions, the five-year survival rate remains low due to high rates of recurrence and therapeutic resistance. This review explores recent advances in therapeutic strategies for HNSCC, focusing on targeted therapies, immunotherapy, and innovative drug delivery systems. Targeted therapies, such as EGFR inhibitors and PI3K/AKT/mTOR pathway inhibitors, offer promising options for overcoming HNSCC, though resistance challenges persist. Emerging treatments, including dual-target inhibitors and personalized therapeutic approaches, show potential in addressing these limitations. Immunotherapy, particularly PD-1/PD-L1 blockade, has achieved positive outcomes in a subset of patients, though overall response rates remain modest. Strategies aimed at enhancing immune responses, such as combination therapies and nanotechnology-based drug delivery systems, are actively being investigated to improve efficacy. This review also underscores the critical role of the tumor microenvironment and epithelial-mesenchymal transition (EMT) in HNSCC progression and therapeutic resistance. Novel approaches, including smart drug delivery systems utilizing nanotechnology and immune modulation, are opening new avenues for more personalized and effective treatments. Ongoing interdisciplinary research into molecular targets and advanced drug delivery techniques holds great promise for significantly improving patient outcomes in HNSCC.
Collapse
Affiliation(s)
- Yuting Wang
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jing Han
- Department of Oral and Maxillofacial Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Rd., Huangpu District, Shanghai 200011, China
| | - Yongxue Zhu
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Naisi Huang
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ning Qu
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
8
|
Verhees F, Demers I, Legemaate D, Jacobs R, Hoeben A, Kremer B, Speel EJ. Exploring the antiproliferative effect of PI3K/Akt/mTOR pathway and CDK4/6 inhibitors in human papillomavirus‑positive and ‑negative head and neck squamous cell carcinoma cell lines. Int J Oncol 2025; 66:13. [PMID: 39791215 PMCID: PMC11753768 DOI: 10.3892/ijo.2025.5719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 09/30/2024] [Indexed: 01/12/2025] Open
Abstract
Human papillomavirus (HPV)‑positive and -negative head and neck squamous cell carcinoma (HNSCC) are often associated with activation of the phosphatidylinositol 3‑kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) pathway due to mutations or amplifications in PI3KCA, loss of PTEN or activation of receptor tyrosine kinases. In HPV‑negative tumors, CDKN2A (encoding p16 protein) inactivation or CCND1 (encoding Cyclin D1 protein) amplification frequently results in sustained cyclin‑dependent kinase (CDK) 4/6 activation. The present study aimed to investigate the efficacy of the CDK4/6 inhibitors (CDKi) palbociclib and ribociclib, and the PI3K/Akt/mTOR pathway inhibitors (PI3Ki) gedatolisib, buparlisib and alpelisib, in suppressing cell viability of HPV‑positive and ‑negative HNSCC cell lines. Inhibitor efficacy was assessed in vitro using MTT assay and western blotting analysis. Cell cycle analysis was performed using flow cytometry and apoptosis was assessed using annexin V staining. Metabolic changes in terms of glycolysis and oxidative metabolism were measured by Seahorse XF96 extracellular Flux analysis. The results of the present study showed that both HPV‑positive and ‑negative HNSCC cell lines were sensitive to PI3Ki. In general, PI3Ki decreased PI3K/Akt/mTOR pathway activity, resulting in apoptosis, and decreased oxidative and glycolytic metabolism. The CDKi were particularly effective in blocking HPV‑negative cell line viability, showing decreased retinoblastoma expression and G1‑phase cell cycle arrest, whereas apoptosis was not induced. Thus, PI3Ki and CDKi efficiently inhibited their respective pathways and HNSCC cell viability in vitro, with the latter occurring only in HPV‑negative cell lines. Whereas PI3Ki induced apoptosis and attenuated cellular metabolism, CDKi led to cell cycle arrest. Further research should be performed to elucidate whether (a combination of) these inhibitors may be effective therapeutic agents for patients with HNSCC.
Collapse
Affiliation(s)
- Femke Verhees
- Department of Otorhinolaryngology, Head and Neck Surgery, GROW Research Institute for Oncology and Reproduction, Maastricht University Medical Center, 6229HX Maastricht, The Netherlands
| | - Imke Demers
- Department of Pathology, GROW Research Institute for Oncology and Reproduction, Maastricht University Medical Center, 6229HX Maastricht, The Netherlands
| | - Dion Legemaate
- Department of Pathology, GROW Research Institute for Oncology and Reproduction, Maastricht University Medical Center, 6229HX Maastricht, The Netherlands
| | - Robin Jacobs
- Department of Pathology, GROW Research Institute for Oncology and Reproduction, Maastricht University Medical Center, 6229HX Maastricht, The Netherlands
| | - Ann Hoeben
- Department of Medical Oncology, GROW Research Institute for Oncology and Reproduction, Maastricht University Medical Center, 6229HX Maastricht, The Netherlands
| | - Bernd Kremer
- Department of Otorhinolaryngology, Head and Neck Surgery, GROW Research Institute for Oncology and Reproduction, Maastricht University Medical Center, 6229HX Maastricht, The Netherlands
| | - Ernst-Jan Speel
- Department of Pathology, GROW Research Institute for Oncology and Reproduction, Maastricht University Medical Center, 6229HX Maastricht, The Netherlands
| |
Collapse
|
9
|
Al-Noshokaty TM, El-Sayyad GS, Abdelhamid R, Mansour A, Abdellatif N, Alaaeldien A, Reda T, Gendi D, Abdelmaksoud NM, Elshaer SS, Doghish AS, Mohammed OA, Abulsoud AI. Long non-coding RNAs and their role in breast cancer pathogenesis and drug resistance: Navigating the non-coding landscape review. Exp Cell Res 2025; 444:114365. [PMID: 39626864 DOI: 10.1016/j.yexcr.2024.114365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/27/2024] [Accepted: 11/29/2024] [Indexed: 12/06/2024]
Abstract
Despite the progress made in the development of targeted therapies, breast cancer (BC) continues to pose a significant threat to the health of women. Transcriptomics has emerged due to the advancements in high-throughput sequencing technology. This provides crucial information about the role of non-coding RNAs (ncRNAs) in human cells, particularly long ncRNAs (lncRNAs), in disease development and function. When the control of these ncRNAs is disrupted, various illnesses emerge, including cancer. Numerous studies have produced empirical data on the function of lncRNAs in tumorigenesis and disease development. However, the roles and mechanisms of numerous lncRNAs remain unidentified at the molecular level because their regulatory role and the functional implications of abnormalities in cancer biology have yet to be thoroughly defined. The review gives an itemized summary of the most current developments in the role of lncRNA in BC, focusing on three main pathways, PI3K, MAPK, NF-kB, and hypoxia, and their resistance mechanisms.
Collapse
Affiliation(s)
- Tohada M Al-Noshokaty
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo, 11785, Egypt
| | - Gharieb S El-Sayyad
- Department of Medical Laboratory Technology, Faculty of Applied Health Sciences Technology, Badr University in Cairo (BUC), Badr, Cairo, 11829, Egypt; Microbiology and Immunology Department, Faculty of Pharmacy, Galala University, New Galala City, Suez, Egypt; Microbiology and Immunology Department, Faculty of Pharmacy, Ahram Canadian University (ACU), 6th October City, Giza, Egypt.
| | - Rehab Abdelhamid
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo, 11785, Egypt
| | - Abdallah Mansour
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo, 11785, Egypt
| | - Nourhan Abdellatif
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo, 11785, Egypt
| | - Ayat Alaaeldien
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo, 11785, Egypt
| | - Tasnim Reda
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo, 11785, Egypt
| | - David Gendi
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo, 11785, Egypt
| | - Nourhan M Abdelmaksoud
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo, 11785, Egypt
| | - Shereen Saeid Elshaer
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo, 11785, Egypt; Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Girls), Al-Azhar University, Nasr City, Cairo, 11823, Egypt
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr, Cairo, 11829, Egypt; Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo, 11231, Egypt.
| | - Osama A Mohammed
- Department of Pharmacology, College of Medicine, University of Bisha, Bisha, 61922, Saudi Arabia
| | - Ahmed I Abulsoud
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo, 11785, Egypt; Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo, 11231, Egypt
| |
Collapse
|
10
|
Ma L, Kim MO. Advances in Preventive and Therapeutic Strategies for Oral Cancer: A Short Review. J Cancer Prev 2024; 29:113-119. [PMID: 39790224 PMCID: PMC11706729 DOI: 10.15430/jcp.24.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 12/16/2024] [Accepted: 12/18/2024] [Indexed: 01/12/2025] Open
Abstract
Oral cancer is a major global health concern, with high incidence and mortality rates, especially in high-risk populations. Early diagnosis remains a challenge, and current treatments, such as surgery, radiation, and chemotherapy, have limited effectiveness, particularly in advanced stages. Recent advances in targeted therapies and immunotherapy offer promising alternatives, providing more precise and personalized treatment options. Targeted therapies, such as epidermal growth factor receptor inhibitors, aim to disrupt specific molecular pathways in tumor growth, while immunotherapies, including immune checkpoint inhibitors and chimeric antigen receptor-T cell therapy, enhance the body's immune response to fight cancer. Combination therapies, integrating both targeted and immune strategies, are being explored to overcome the limitations of single-agent treatments. This review highlights the current strategies in the prevention and treatment of oral cancer, discusses emerging therapies, explores future research directions, focusing on optimizing existing treatments, identifying new biomarkers, and developing innovative therapeutic approaches. The potential of personalized medicine and combination therapies offers new hope for improving survival rates and quality of life for oral cancer patients.
Collapse
Affiliation(s)
- Lei Ma
- Department of Animal Science and Biotechnology, Research Institute for Innovative Animal Science, Kyungpook National University, Sangju, Korea
| | - Myoung Ok Kim
- Department of Animal Science and Biotechnology, Research Institute for Innovative Animal Science, Kyungpook National University, Sangju, Korea
| |
Collapse
|
11
|
Li B, Cai Z, Zhang Y, Chen R, Tang S, Kong F, Li W, Ding L, Chen L, Xu H. Biomarkers associated with papillary thyroid carcinoma and Hashimoto's thyroiditis: Bioinformatic analysis and experimental validation. Int Immunopharmacol 2024; 143:113532. [PMID: 39510033 DOI: 10.1016/j.intimp.2024.113532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 10/12/2024] [Accepted: 10/27/2024] [Indexed: 11/15/2024]
Abstract
PURPOSE Hashimoto's thyroiditis (HT) is widely recognized as a risk factor for papillary thyroid carcinoma (PTC). This study aimed to identify key targets involved in the progression of HT to PTC. METHODS Microarray datasets (GSE138198) for PTC, HT, and PTC with HT in the background (PTC-W) were obtained from the Gene Expression Omnibus (GEO) database. Differentially expressed genes (DEGs) were identified and analyzed between normal and diseased groups. Functional enrichment analysis was performed using Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG). Protein-protein interaction (PPI) network analysis was conducted to identify hub genes, which were validated through qPCR and immunohistochemical (IHC) analysis. ROC analysis was then carried out based on the expression levels of hub genes in clinical plasma samples. RESULTS A total of 78 shared DEGs were identified from the GEO dataset. GO and KEGG analyses highlighted pathways such as epithelial-to-mesenchymal transition (EMT) and PI3K-Akt signaling. The analysis of immune cell subtypes showed that the hub genes were commonly associated with various immune cells, particularly dendritic cells (DC) and macrophages. Ten hub genes-LYZ, FCER1G, CCL18, CXCL9, ALOX5, TYROBP, C1QB, CTSS, MET, and FAM20A-were identified from the PPI network. qPCR and IHC confirmed the overexpression of MET and FAM20A in PTC-W. The area under the curve (AUC) of the ROC analysis was 0.889 for MET and 0.825 for FAM20A. CONCLUSION This study identified two hub genes, MET and FAM20A, with potential diagnostic value in HT and PTC.
Collapse
Affiliation(s)
- Bingxin Li
- Department of Endocrinology and Metabolism, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Zhaogen Cai
- Department of Pathology, Bengbu Medical University, Bengbu, Anhui 233030, China
| | - Yihan Zhang
- Department of Endocrinology and Metabolism, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Ruihua Chen
- Department of Endocrinology and Metabolism, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Shanshan Tang
- Department of Endocrinology and Metabolism, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Feijuan Kong
- Department of Endocrinology and Metabolism, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Wen Li
- Department of Endocrinology and Metabolism, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Li Ding
- Department of Pathology, Bengbu Medical University, Bengbu, Anhui 233030, China
| | - Lei Chen
- Department of Pathology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China.
| | - Huanbai Xu
- Department of Endocrinology and Metabolism, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China.
| |
Collapse
|
12
|
Patel HV, Shah FD. Mapping the intricacies of GLI1 in hedgehog signaling: A combined bioinformatics and clinical analysis in Head & Neck cancer in Western India. Curr Probl Cancer 2024; 53:101146. [PMID: 39265246 DOI: 10.1016/j.currproblcancer.2024.101146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 08/09/2024] [Accepted: 09/05/2024] [Indexed: 09/14/2024]
Abstract
BACKGROUND Activation of various cancer stem cell pathways are thought to be responsible for treatment failure and loco-regional recurrence in Head and Neck cancer. Hedgehog signaling, a major cancer stem signaling pathway plays a major role in relapse of disease. GLI1, a transcription activator, plays an important role in canonical/non-canonical activation of Hedgehog signaling. METHODS Data for H&N cancer patients were collected from The Cancer Genome Atlas- H&N Cancer (TCGA-HNSC). GLI1 co-expressed genes in TCGA-HNSC were then identified using cBioPortal and subjected to KEGG pathway analysis by DAVID tool. Network Analyzer and GeneMania plugins from CytoScape were used to identify hub genes and predict a probable pathway from the identified hub genes respectively. To confirm the hypothesis, real-time gene expression was carried out in 75 patients of head and neck cancer. RESULTS Significantly higher GLI1 expression was observed in tumor tissues of H&N cancer and it also showed worst overall survival. Using cBioPortal tool, 2345 genes were identified that were significantly co-expressed with GLI1. From which, 15 hub genes were identified through the Network Analyzer plugin in CytoScape. A probable pathway prediction based on hub genes showed the interconnected molecular mechanism and its role in non-canonical activation of Hedgehog pathway by altering the GLI1 activity. The expressions of SHH, GLI1 and AKT1 were significant with each other and were found to be significantly associated with Age, Lymph-Node status and Keratin. CONCLUSION The study emphasizes the critical role of the Hh pathway's activation modes in H&N cancer, particularly highlighting the non-canonical activation through GLI1 and AKT1. The identification of SHH, GLI1 and AKT1 as potential diagnostic biomarkers and their association with clinic-pathological parameters underscores their relevance in prognostication and treatment planning. Hh pathway activation through GLI1 and its cross-talk with various pathways opens up the possibility of newer treatment strategies and developing a panel of therapeutic targets in H&N cancer patients.
Collapse
Affiliation(s)
- Hitarth V Patel
- Junior Research Fellow, Molecular Diagnostic and Research Lab-3, Department of Cancer Biology, The Gujarat Cancer and Research Institute, Ahmedabad, Gujarat, India
| | - Franky D Shah
- Junior Research Fellow, Molecular Diagnostic and Research Lab-3, Department of Cancer Biology, The Gujarat Cancer and Research Institute, Ahmedabad, Gujarat, India.
| |
Collapse
|
13
|
Zhang Y, Xu X, Yang K, Wang S, Zhang T, Hui F, Zheng F, Geng H, Xu C, Xun F, Xu Z, Wang C, Hou S, Song A, Ren T, Zhao Q. The efficacy and safety of PI3K and AKT inhibitors for patients with cancer: A systematic review and network meta-analysis. Eur J Pharmacol 2024; 983:176952. [PMID: 39216745 DOI: 10.1016/j.ejphar.2024.176952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/15/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Inhibiting PI3K/AKT pathway activation may hinder the occurrence and progression of cancer. The aim of this study was to evaluate the efficacy and safety of the PI3K/AKT inhibitors and determine the most appropriate inhibitor for different cancer types. METHODS Electronic databases up to June 2024 were used to examine the efficacy and safety of PI3K inhibitors (alpelisib, copanlisib, duvelisib, and idelalisib) and AKT inhibitors (capivasertib, ipatasertib and MK-2206) for the treatment of cancer. Data was assessed with a random-effect pairwise and network meta-analysis. Randomized controlled trials and retrospective studies were eligible if they compared PI3K or AKT inhibitors with non-PI3K/AKT controls with no restriction. RESULTS The results were based on 34 studies from 34 published articles and 6 online registration trials (6710 patients). According to pairwise meta-analysis, PI3K/AKT inhibitors showed to be highly effective, especially for treating mutant cancers, but had poor safety profiles. According to our network meta-analysis, PI3K/AKT inhibitors, especially the AKT inhibitor capivasertib, are effective for treating solid cancers such as breast cancer (BC). Moreover, PI3K inhibitors, especially idelalisib, were effective for treating hematologic cancers such as chronic lymphocytic leukemia (CLL). CONCLUSIONS The PI3K/AKT inhibitors are effective in patients with genetic mutations. For solid cancers such as BC, capivasertib was efficacy and safety. For hematological cancers represented by CLL, idelalisib was efficacy and safety. The above studies can be used when recommending appropriate targeted therapies for patients with different cancer types.
Collapse
Affiliation(s)
- Yingshi Zhang
- Teaching hospital of Shenyang Pharmaceutical University, General Hospital of Northern Theater Command, 100016, Shenyang city, Liaoning province, PR China; Department of Clinical Pharmacy, Shenyang Pharmaceutical University, Shenyang city, Liaoning province, PR China.
| | - Xiangbo Xu
- Teaching hospital of Shenyang Pharmaceutical University, General Hospital of Northern Theater Command, 100016, Shenyang city, Liaoning province, PR China; Department of Clinical Pharmacy, Shenyang Pharmaceutical University, Shenyang city, Liaoning province, PR China.
| | - Kaisi Yang
- Teaching hospital of Shenyang Pharmaceutical University, General Hospital of Northern Theater Command, 100016, Shenyang city, Liaoning province, PR China; Department of Clinical Pharmacy, Shenyang Pharmaceutical University, Shenyang city, Liaoning province, PR China.
| | - Shuai Wang
- Teaching hospital of Shenyang Pharmaceutical University, General Hospital of Northern Theater Command, 100016, Shenyang city, Liaoning province, PR China; Department of Clinical Pharmacy, Shenyang Pharmaceutical University, Shenyang city, Liaoning province, PR China.
| | - Tianqi Zhang
- Teaching hospital of Shenyang Pharmaceutical University, General Hospital of Northern Theater Command, 100016, Shenyang city, Liaoning province, PR China; Department of Clinical Pharmacy, Shenyang Pharmaceutical University, Shenyang city, Liaoning province, PR China.
| | - Fuhai Hui
- Department of Clinical Pharmacy, Shenyang Pharmaceutical University, Shenyang city, Liaoning province, PR China.
| | - Fangyuan Zheng
- Teaching hospital of Shenyang Pharmaceutical University, General Hospital of Northern Theater Command, 100016, Shenyang city, Liaoning province, PR China; Department of Clinical Pharmacy, Shenyang Pharmaceutical University, Shenyang city, Liaoning province, PR China.
| | - Hefeng Geng
- Teaching hospital of Shenyang Pharmaceutical University, General Hospital of Northern Theater Command, 100016, Shenyang city, Liaoning province, PR China; Department of Clinical Pharmacy, Shenyang Pharmaceutical University, Shenyang city, Liaoning province, PR China.
| | - Chang Xu
- Teaching hospital of Shenyang Pharmaceutical University, General Hospital of Northern Theater Command, 100016, Shenyang city, Liaoning province, PR China; Department of Clinical Pharmacy, Shenyang Pharmaceutical University, Shenyang city, Liaoning province, PR China.
| | - Fanghua Xun
- Teaching hospital of Shenyang Pharmaceutical University, General Hospital of Northern Theater Command, 100016, Shenyang city, Liaoning province, PR China; General Hospital of Northern Theater Command, China Medical University, Shenyang city, Liaoning province, PR China.
| | - Ziang Xu
- Teaching hospital of Shenyang Pharmaceutical University, General Hospital of Northern Theater Command, 100016, Shenyang city, Liaoning province, PR China; Department of Clinical Pharmacy, Shenyang Pharmaceutical University, Shenyang city, Liaoning province, PR China.
| | - Chengkang Wang
- Teaching hospital of Shenyang Pharmaceutical University, General Hospital of Northern Theater Command, 100016, Shenyang city, Liaoning province, PR China; Department of Clinical Pharmacy, Shenyang Pharmaceutical University, Shenyang city, Liaoning province, PR China.
| | - Shanbo Hou
- Luoxin Pharmaceuticals Group Stock Co., Ltd., Linyi, PR China.
| | - Aigang Song
- Luoxin Pharmaceuticals Group Stock Co., Ltd., Linyi, PR China.
| | - Tianshu Ren
- Teaching hospital of Shenyang Pharmaceutical University, General Hospital of Northern Theater Command, 100016, Shenyang city, Liaoning province, PR China; Department of Clinical Pharmacy, Shenyang Pharmaceutical University, Shenyang city, Liaoning province, PR China.
| | - Qingchun Zhao
- Teaching hospital of Shenyang Pharmaceutical University, General Hospital of Northern Theater Command, 100016, Shenyang city, Liaoning province, PR China; Department of Clinical Pharmacy, Shenyang Pharmaceutical University, Shenyang city, Liaoning province, PR China.
| |
Collapse
|
14
|
Veselá K, Kejík Z, Masařík M, Babula P, Dytrych P, Martásek P, Jakubek M. Curcumin: A Potential Weapon in the Prevention and Treatment of Head and Neck Cancer. ACS Pharmacol Transl Sci 2024; 7:3394-3418. [PMID: 39539276 PMCID: PMC11555516 DOI: 10.1021/acsptsci.4c00518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 09/27/2024] [Accepted: 10/03/2024] [Indexed: 11/16/2024]
Abstract
Head and neck cancers (HNC) are aggressive, difficult-to-treat tumors that can be caused by genetic factors but mainly by lifestyle or infection caused by the human papillomavirus. As the sixth most common malignancy, it presents a formidable therapeutic challenge with limited therapeutic modalities. Curcumin, a natural polyphenol, is appearing as a promising multitarget anticancer and antimetastatic agent. Numerous studies have shown that curcumin and its derivatives have the potential to affect signaling pathways (NF-κB, JAK/STAT, and EGFR) and molecular mechanisms that are crucial for the growth and migration of head and neck tumors. Furthermore, its ability to interact with the tumor microenvironment and trigger the immune system may significantly influence the organism's immune response to the tumor. Combining curcumin with conventional therapies such as chemotherapy or radiotherapy may improve the efficacy of treatment and reduce the side effects of treatment, thereby increasing its therapeutic potential. This review is a comprehensive overview that discusses both the benefits and limitations of curcumin and its therapeutic effects in the context of tumor biology, with an emphasis on molecular mechanisms in the context of HNC. This review also includes possibilities to improve the limiting properties of curcumin both in terms of the development of new derivatives, formulations, or combinations with conventional therapies that have potential as a new type of therapy for the treatment of HNC and subsequent use in clinical practice.
Collapse
Affiliation(s)
- Kateřina Veselá
- BIOCEV,
First Faculty of Medicine, Charles University, 252 50 Vestec, Czech Republic
- Department
of Paediatrics and Inherited Metabolic Disorders, First Faculty of
Medicine, Charles University and General
University Hospital in Prague, Ke Karlovu 455/2, 128 08 Prague 2, Czech Republic
| | - Zdeněk Kejík
- BIOCEV,
First Faculty of Medicine, Charles University, 252 50 Vestec, Czech Republic
- Department
of Paediatrics and Inherited Metabolic Disorders, First Faculty of
Medicine, Charles University and General
University Hospital in Prague, Ke Karlovu 455/2, 128 08 Prague 2, Czech Republic
| | - Michal Masařík
- BIOCEV,
First Faculty of Medicine, Charles University, 252 50 Vestec, Czech Republic
- Department
of Paediatrics and Inherited Metabolic Disorders, First Faculty of
Medicine, Charles University and General
University Hospital in Prague, Ke Karlovu 455/2, 128 08 Prague 2, Czech Republic
- Department
of Physiology, Faculty of Medicine, Masaryk
University, Kamenice 5, 625 00 Brno, Czech Republic
- Department
of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Petr Babula
- Department
of Physiology, Faculty of Medicine, Masaryk
University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Petr Dytrych
- First
Department of Surgery-Department of Abdominal, Thoracic Surgery and
Traumatology, First Faculty of Medicine, Charles University and General University Hospital, U Nemocnice 2, 121
08 Prague, Czech
Republic
| | - Pavel Martásek
- Department
of Paediatrics and Inherited Metabolic Disorders, First Faculty of
Medicine, Charles University and General
University Hospital in Prague, Ke Karlovu 455/2, 128 08 Prague 2, Czech Republic
| | - Milan Jakubek
- BIOCEV,
First Faculty of Medicine, Charles University, 252 50 Vestec, Czech Republic
- Department
of Paediatrics and Inherited Metabolic Disorders, First Faculty of
Medicine, Charles University and General
University Hospital in Prague, Ke Karlovu 455/2, 128 08 Prague 2, Czech Republic
| |
Collapse
|
15
|
Raudenská M, Bugajová M, Kalfeřt D, Plzák J, Šubrt A, Tesařová P, Masařík M. The interplay between microbiome and host factors in pathogenesis and therapy of head and neck cancer. Biochim Biophys Acta Rev Cancer 2024; 1879:189216. [PMID: 39542383 DOI: 10.1016/j.bbcan.2024.189216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 11/06/2024] [Accepted: 11/06/2024] [Indexed: 11/17/2024]
Abstract
Heterogeneous cancers that lack strong driver mutations with high penetrance, such as head and neck squamous cell carcinoma (HNSCC), present unique challenges to understanding their aetiology due to the complex interactions between genetics and environmental factors. The interplay between lifestyle factors (such as poor oral hygiene, smoking, or alcohol consumption), the oral and gut microbiome, and host genetics appears particularly important in the context of HNSCC. The complex interplay between the gut microbiota and cancer treatment outcomes has also received increasing attention in recent years. This review article describes the bidirectional communication between the host and the oral/gut microbiome, focusing on microbiome-derived metabolites and their impact on systemic immune responses and the modulation of the tumour microenvironment. In addition, we review the role of host lifestyle factors in shaping the composition of the oral/gut microbiota and its impact on cancer progression and therapy. Overall, this review highlights the rationality of considering the oral/gut microbiota as a critical determinant of cancer therapy outcomes and points to therapeutic opportunities offered by targeting the oral/gut microbiota in the management of HNSCC.
Collapse
Affiliation(s)
- Martina Raudenská
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University/Kamenice 5, CZ-625 00 Brno, Czech Republic; Department of Physiology, Faculty of Medicine, Masaryk University/Kamenice 5, 62500 Brno, Czech Republic
| | - Maria Bugajová
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University/Kamenice 5, CZ-625 00 Brno, Czech Republic
| | - David Kalfeřt
- Department of Otorhinolaryngology and Head and Neck Surgery, University Hospital Motol, First Faculty of Medicine, Charles University, V Uvalu 84, 15006 Prague, Czech Republic
| | - Jan Plzák
- Department of Otorhinolaryngology and Head and Neck Surgery, University Hospital Motol, First Faculty of Medicine, Charles University, V Uvalu 84, 15006 Prague, Czech Republic
| | - Adam Šubrt
- Department of Oncology, Institute of Radiation Oncology, First Faculty of Medicine, Charles University and Bulovka University Hospital, Prague, Czech Republic
| | - Petra Tesařová
- Department of Oncology, Institute of Radiation Oncology, First Faculty of Medicine, Charles University and Bulovka University Hospital, Prague, Czech Republic
| | - Michal Masařík
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University/Kamenice 5, CZ-625 00 Brno, Czech Republic; Department of Physiology, Faculty of Medicine, Masaryk University/Kamenice 5, 62500 Brno, Czech Republic; International Clinical Research Center, St. Anne's University Hospital, Brno 60200, Czech Republic; Institute of Pathophysiology, First Faculty of Medicine, Charles University, U Nemocnice 5, CZ-128 53 Prague, Czech Republic.
| |
Collapse
|
16
|
Nguyen JP, Woerner LC, Johnson DE, Grandis JR. Future investigative directions for novel therapeutic targets in head and neck cancer. Expert Rev Anticancer Ther 2024; 24:1067-1084. [PMID: 39412140 PMCID: PMC11514385 DOI: 10.1080/14737140.2024.2417038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 10/11/2024] [Indexed: 10/25/2024]
Abstract
AREAS COVERED Here we describe novel agents, their mechanism(s) of action, preclinical results, and ongoing clinical trials in HNSCC. EXPERT OPINION Established therapeutic targets in HNSCC include EGFR (cetuximab) and PD-1 (pembrolizumab and nivolumab). Despite the detection of many other possible targets in HNSCC cell lines and patient tumors, no other therapies have successfully advanced to date. Identification of predictive biomarkers may guide the use of targeted agents and combination therapies. Clinical trials supported by strong preclinical data in relevant models are more likely to advance treatment options.
Collapse
Affiliation(s)
- Jacqueline P. Nguyen
- Department of Otolaryngology - Head and Neck Surgery, University of California, San Francisco, USA
| | - Liam C. Woerner
- Department of Otolaryngology - Head and Neck Surgery, University of California, San Francisco, USA
| | - Daniel E. Johnson
- Department of Otolaryngology - Head and Neck Surgery, University of California, San Francisco, USA
| | - Jennifer R. Grandis
- Department of Otolaryngology - Head and Neck Surgery, University of California, San Francisco, USA
| |
Collapse
|
17
|
Fang S, Wang J, Liu T, Jiang Y, Hua Q. SAR1A Induces Cell Growth and Epithelial-Mesenchymal Transition Through the PI3K/AKT/mTOR Pathway in Head and Neck Squamous Cell Carcinoma: An In Vitro and In Vivo Study. Biomedicines 2024; 12:2477. [PMID: 39595043 PMCID: PMC11591717 DOI: 10.3390/biomedicines12112477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 10/15/2024] [Accepted: 10/23/2024] [Indexed: 11/28/2024] Open
Abstract
OBJECTIVES Head and neck squamous cell carcinoma (HNSCC) ranks sixth globally, with a 50% five-year survival rate. SAR1A exhibits high expression levels in various tumor types, yet its specific role in HNSCC remains to be clarified. METHODS In vitro assays, such as CCK8, EdU, colony formation, wound-healing, transwell, and Western blotting analyses, as well as in vivo assays, such as tumor xenografts and lung metastasis models, were conducted to evaluate the impacts of SAR1A on HNSCC proliferation, migration, and invasion. Transcriptome sequencing and KEGG enrichment pathway analysis revealed evident alterations in the PI3K/AKT/mTOR(PAM) pathways. LY294002 (a PI3K/AKT inhibitor) was used to investigate the role of the PAM pathway in proliferation, migration, and invasion in HNSCC. RESULTS Univariate and multivariate Cox regression were conducted to screen SAR1A as a gene prognostic biomarker in HNSCC, and it was validated in the Cancer Genome Atlas (TCGA) database. Functional assays demonstrated that the depletion of SAR1A leads to suppressed proliferation, migration, and invasion of HNSCC cells. This is accompanied by a decrease in the expression of epithelial-mesenchymal transition (EMT)-related markers in HNSCC cell lines. In addition, the diminished capacities of proliferation, migration, and invasion observed in SAR1A knockdown cells were reversed upon the overexpression of SAR1A. Furthermore, RNA-seq and KEGG enrichment analysis demonstrated a significant alteration in the PAM pathway following SAR1A knockdown. LY294002 effectively mitigated the increased proliferation, migration, and invasion induced by SAR1A overexpression. CONCLUSIONS SAR1A facilitates HNSCC proliferation and EMT via the PI3K/AKT/mTOR pathway.
Collapse
Affiliation(s)
- Shizhen Fang
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, 238 Jie-Fang Road, Wuhan 430060, China; (S.F.); (J.W.); (T.L.)
- Central Laboratory, Renmin Hospital of Wuhan University, 238 Jie-Fang Road, Wuhan 430060, China
| | - Jie Wang
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, 238 Jie-Fang Road, Wuhan 430060, China; (S.F.); (J.W.); (T.L.)
- Central Laboratory, Renmin Hospital of Wuhan University, 238 Jie-Fang Road, Wuhan 430060, China
| | - Tianyi Liu
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, 238 Jie-Fang Road, Wuhan 430060, China; (S.F.); (J.W.); (T.L.)
| | - Yang Jiang
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, 238 Jie-Fang Road, Wuhan 430060, China; (S.F.); (J.W.); (T.L.)
| | - Qingquan Hua
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, 238 Jie-Fang Road, Wuhan 430060, China; (S.F.); (J.W.); (T.L.)
| |
Collapse
|
18
|
Li C, Fang Y, Xu S, Zhao J, Dong D, Li S. Nanomedicine in HNSCC therapy-a challenge to conventional therapy. Front Pharmacol 2024; 15:1434994. [PMID: 39469621 PMCID: PMC11513379 DOI: 10.3389/fphar.2024.1434994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 10/01/2024] [Indexed: 10/30/2024] Open
Abstract
Squamous cell carcinoma of the head and neck (HNSCC) is a difficult-to-treat cancer and treatment is challenging due to recurrence or metastasis. Therefore, there is an urgent need to explore more effective targeted therapies to improve the clinical outcomes and survival of HNSCC patients. The nanomedicine is emerging as a promising strategy to achieve maximal anti-tumor effect in cancer therapy. In this review, we summarize some important signaling pathways and present the current and potential roles of various nanomaterial drug-delivery formulations in HNSCC treatment, aiming to understand the pathogenesis of HNSCC and further improve the therapeutic efficacy of nanomaterial HNSCC. This article seeks to highlight the exciting potential of novel nanomaterials for targeted cancer therapy in HNSCC and thus provide motivation for further research in this field.
Collapse
Affiliation(s)
- Chenyu Li
- Department of Pharmacy, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- School of Pharmacy, Dalian Medical University, Dalian, China
| | - Yuan Fang
- Department of Pharmacy, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Sanchun Xu
- School of Pharmacy, Dalian Medical University, Dalian, China
| | - Jingyuan Zhao
- Clinical Laboratory Center, Central Hospital of Dalian University of Technology, Dalian, China
| | - Deshi Dong
- Department of Pharmacy, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Shuai Li
- Department of Pharmacy, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
19
|
Suleiman R, McGarrah P, Baral B, Owen D, Vera Aguilera J, Halfdanarson TR, Price KA, Fuentes Bayne HE. Alpelisib and Immunotherapy: A Promising Combination for Recurrent and Metastatic Squamous Cell Carcinoma of the Head and Neck. Cancer Rep (Hoboken) 2024; 7:e70023. [PMID: 39376013 PMCID: PMC11458888 DOI: 10.1002/cnr2.70023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 07/22/2024] [Accepted: 09/10/2024] [Indexed: 10/09/2024] Open
Abstract
BACKGROUND Recurrent squamous cell carcinoma (SCC) of the head and neck (SCCHN) remains a formidable clinical challenge despite available treatments. The phosphatidylinositol 3-kinase (PI3K) pathway has been identified as a potential therapeutic target, and alpelisib, a selective PI3Kα inhibitor, has demonstrated efficacy in certain malignancies. Combining this targeted therapy with immunotherapy has been suggested in previous studies as a promising strategy to bolster the immune response against cancer. CASES A 69-year-old woman with locoregional recurrence of PIK3CA-mutated SCC of the left maxilla and cervical nodal metastases. Several chemotherapeutic regimens, including cisplatin, docetaxel, 5FU, chemoradiotherapy, and mono-immunotherapy, resulted in disease progression. Alpelisib combined with pembrolizumab led to a sustained response for 9 months. A 58-year-old man with recurrent metastatic PIK3CA-mutated SCC of the oropharynx, involving the left lung, hilar, and mediastinal lymph nodes. Despite prior palliative radiation and platinum-based chemotherapy with pembrolizumab and cetuximab, treatment with alpelisib and nivolumab resulted in a partial response. Severe hyperglycemia and rash led to treatment discontinuation. CONCLUSION Our findings highlight the potential of this innovative therapeutic combination, suggesting a need for further investigations in this setting.
Collapse
Affiliation(s)
- Riham Suleiman
- Division of Medical OncologyMayo ClinicRochesterMinnesotaUSA
| | | | - Binav Baral
- Division of Medical OncologyMayo ClinicRochesterMinnesotaUSA
| | - Dawn Owen
- Division of Radiation OncologyMayo ClinicRochesterMinnesotaUSA
| | | | | | | | | |
Collapse
|
20
|
Kijowska J, Grzegorczyk J, Gliwa K, Jędras A, Sitarz M. Epidemiology, Diagnostics, and Therapy of Oral Cancer-Update Review. Cancers (Basel) 2024; 16:3156. [PMID: 39335128 PMCID: PMC11430737 DOI: 10.3390/cancers16183156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/05/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024] Open
Abstract
Oral cavity and lip cancers are the 16th most common cancer in the world. It is widely known that a lack of public knowledge about precancerous lesions, oral cancer symptoms, and risk factors leads to diagnostic delay and therefore a lower survival rate. Risk factors, which include drinking alcohol, smoking, HPV infection, a pro-inflammatory factor-rich diet, and poor oral hygiene, must be known and avoided by the general population. Regular clinical oral examinations should be enriched in an oral cancer search protocol for the most common symptoms, which are summarized in this review. Moreover, new diagnostic methods, some of which are already available (vital tissue staining, optical imaging, oral cytology, salivary biomarkers, artificial intelligence, colposcopy, and spectroscopy), and newly researched techniques increase the likelihood of stopping the pathological process at a precancerous stage. Well-established oral cancer treatments (surgery, radiotherapy, chemotherapy, and immunotherapy) are continuously being developed using novel technologies, increasing their success rate. Additionally, new techniques are being researched. This review presents a novel glance at oral cancer-its current classification and epidemiology-and will provide new insights into the development of new diagnostic methods and therapies.
Collapse
Affiliation(s)
- Julia Kijowska
- Department of Conservative Dentistry with Endodontics, Medical University of Lublin, ul. Chodźki 6, 20-093 Lublin, Poland
| | - Julia Grzegorczyk
- Department of Conservative Dentistry with Endodontics, Medical University of Lublin, ul. Chodźki 6, 20-093 Lublin, Poland
| | - Katarzyna Gliwa
- Department of Conservative Dentistry with Endodontics, Medical University of Lublin, ul. Chodźki 6, 20-093 Lublin, Poland
| | - Aleksandra Jędras
- Department of Conservative Dentistry with Endodontics, Medical University of Lublin, ul. Chodźki 6, 20-093 Lublin, Poland
| | - Monika Sitarz
- Department of Conservative Dentistry with Endodontics, Medical University of Lublin, ul. Chodźki 6, 20-093 Lublin, Poland
| |
Collapse
|
21
|
Calheiros-Lobo M, Silva JPN, Pinto B, Monteiro L, Silva PMA, Bousbaa H. Exploring the Therapeutic Implications of Co-Targeting the EGFR and Spindle Assembly Checkpoint Pathways in Oral Cancer. Pharmaceutics 2024; 16:1196. [PMID: 39339232 PMCID: PMC11435222 DOI: 10.3390/pharmaceutics16091196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/06/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
Head and neck cancer (HNC), the sixth most common cancer worldwide, is increasing in incidence, with oral squamous cell carcinoma (OSCC) as the predominant subtype. OSCC mainly affects middle-aged to elderly males, often occurring on the posterior lateral border of the tongue, leading to significant disfigurement and functional impairments, such as swallowing and speech difficulties. Despite advancements in understanding OSCC's genetic and epigenetic variations, survival rates for advanced stages remain low, highlighting the need for new treatment options. Primary treatment includes surgery, often combined with radiotherapy (RT) and chemotherapy (CT). Cetuximab-based chemotherapy, targeting the overexpressed epidermal growth factor receptor (EGFR) in 80-90% of HNCs, is commonly used but correlates with poor prognosis. Additionally, monopolar spindle 1 (MPS1), a spindle assembly checkpoint (SAC) component, is a significant target due to its role in genomic fidelity during mitosis and its overexpression in several cancers. This review explores EGFR and MPS1 as therapeutic targets in HNC, analyzing their molecular mechanisms and the effects of their inhibition on cancer cells. It also highlights the promise of combinatorial approaches, such as microtubule-targeting agents (MTAs) and antimitotic agents, in improving HNC therapies, patient outcomes, and survival rates.
Collapse
Affiliation(s)
- Mafalda Calheiros-Lobo
- UNIPRO—Oral Pathology and Rehabilitation Research Unit, University Institute of Health Sciences (IUCS), Cooperativa de Ensino Superior Politécnico e Universitário (CESPU), Rua Central de Gandra, 1317, 4585-116 Gandra, Portugal; (M.C.-L.); (J.P.N.S.); (B.P.); (L.M.)
| | - João P. N. Silva
- UNIPRO—Oral Pathology and Rehabilitation Research Unit, University Institute of Health Sciences (IUCS), Cooperativa de Ensino Superior Politécnico e Universitário (CESPU), Rua Central de Gandra, 1317, 4585-116 Gandra, Portugal; (M.C.-L.); (J.P.N.S.); (B.P.); (L.M.)
| | - Bárbara Pinto
- UNIPRO—Oral Pathology and Rehabilitation Research Unit, University Institute of Health Sciences (IUCS), Cooperativa de Ensino Superior Politécnico e Universitário (CESPU), Rua Central de Gandra, 1317, 4585-116 Gandra, Portugal; (M.C.-L.); (J.P.N.S.); (B.P.); (L.M.)
| | - Luís Monteiro
- UNIPRO—Oral Pathology and Rehabilitation Research Unit, University Institute of Health Sciences (IUCS), Cooperativa de Ensino Superior Politécnico e Universitário (CESPU), Rua Central de Gandra, 1317, 4585-116 Gandra, Portugal; (M.C.-L.); (J.P.N.S.); (B.P.); (L.M.)
- Medicine and Oral Surgery Department, University Institute of Health Sciences—CESPU (IUCS-CESPU), 4585-116 Gandra, Portugal
| | - Patrícia M. A. Silva
- UNIPRO—Oral Pathology and Rehabilitation Research Unit, University Institute of Health Sciences (IUCS), Cooperativa de Ensino Superior Politécnico e Universitário (CESPU), Rua Central de Gandra, 1317, 4585-116 Gandra, Portugal; (M.C.-L.); (J.P.N.S.); (B.P.); (L.M.)
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, University Institute of Health Sciences—CESPU, 4585-116 Gandra, Portugal
- UCIBIO—Applied Molecular Biosciences Unit, Translational Toxicology Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), 4585-116 Gandra, Portugal
| | - Hassan Bousbaa
- UNIPRO—Oral Pathology and Rehabilitation Research Unit, University Institute of Health Sciences (IUCS), Cooperativa de Ensino Superior Politécnico e Universitário (CESPU), Rua Central de Gandra, 1317, 4585-116 Gandra, Portugal; (M.C.-L.); (J.P.N.S.); (B.P.); (L.M.)
| |
Collapse
|
22
|
Liu Y, Zhang N, Wen Y, Wen J. Head and neck cancer: pathogenesis and targeted therapy. MedComm (Beijing) 2024; 5:e702. [PMID: 39170944 PMCID: PMC11338281 DOI: 10.1002/mco2.702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 08/02/2024] [Accepted: 08/05/2024] [Indexed: 08/23/2024] Open
Abstract
Head and neck cancer (HNC) is a highly aggressive type of tumor characterized by delayed diagnosis, recurrence, metastasis, relapse, and drug resistance. The occurrence of HNC were associated with smoking, alcohol abuse (or both), human papillomavirus infection, and complex genetic and epigenetic predisposition. Currently, surgery and radiotherapy are the standard treatments for most patients with early-stage HNC. For recurrent or metastatic (R/M) HNC, the first-line treatment is platinum-based chemotherapy combined with the antiepidermal growth factor receptor drug cetuximab, when resurgery and radiation therapy are not an option. However, curing HNC remains challenging, especially in cases with metastasis. In this review, we summarize the pathogenesis of HNC, including genetic and epigenetic changes, abnormal signaling pathways, and immune regulation mechanisms, along with all potential therapeutic strategies such as molecular targeted therapy, immunotherapy, gene therapy, epigenetic modifications, and combination therapies. Recent preclinical and clinical studies that may offer therapeutic strategies for future research on HNC are also discussed. Additionally, new targets and treatment methods, including antibody-drug conjugates, photodynamic therapy, radionuclide therapy, and mRNA vaccines, have shown promising results in clinical trials, offering new prospects for the treatment of HNC.
Collapse
Affiliation(s)
- Yan Liu
- Frontiers Medical CenterTianfu Jincheng LaboratoryChengduChina
- National Facility for Translational Medicine (Sichuan)West China Hospital of Sichuan UniversityChengduChina
| | - Nannan Zhang
- National Center for Birth Defect MonitoringKey Laboratory of Birth Defects and Related Diseases of Women and ChildrenMinistry of EducationWest China Second University HospitalSichuan UniversityChengduChina
| | - Yi Wen
- State Key Laboratory of BiotherapyWest China Hospital of Sichuan UniversityChengduChina
| | - Jiaolin Wen
- Frontiers Medical CenterTianfu Jincheng LaboratoryChengduChina
| |
Collapse
|
23
|
Wang ZZ, Wang HL, Xiong W, Du J, Liu R. Traditional Chinese Medicine Erhuang Suppository for Treatment of Persistent High-risk Human Papillomavirus Infection and Its Impact on Transcriptome of Uterine Cervix. Curr Med Sci 2024; 44:841-853. [PMID: 39039373 DOI: 10.1007/s11596-024-2898-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 05/17/2024] [Indexed: 07/24/2024]
Abstract
OBJECTIVE High-risk human papillomavirus (HR-HPV) infection is the chief cause of cervical intraepithelial neoplasia (CIN) and cervical carcinoma. The Erhuang suppository (EHS) is a traditional Chinese medicine (TCM) prepared from realgar (As2S2), Coptidis rhizoma, alumen, and borneolum syntheticum and has been used for antiviral and antitumor purposes. However, whether EHS can efficiently alleviate HR-HPV infection remains unclear. This study was conducted to evaluate the efficacy of EHS for the treatment of persistent HR-HPV infection in the uterine cervix. METHODS In this study, we evaluated the therapeutic efficacy of EHS in a randomized controlled clinical trial with a 3-month follow-up. Totally, 70 patients with persistent HR-HPV infection were randomly assigned to receive intravaginal administration of EHS or placebo. HPV DNA, ThinPrep cytologic test (TCT), colposcopy, and safety evaluation were carried out after treatment. Microarray analysis was performed to compare transcriptome profiles before and after EHS treatment. A K14-HPV16 mouse model was generated to confirm the efficiency of EHS. RESULTS After 3 months, 74.3% (26/35) of the patients in the treatment group were HPV negative, compared to 6.9% (2/29) in the placebo group. High-throughput microarrays revealed distinct transcriptome profiles after treatment. The differentially expressed genes were significantly enriched in complement activation, immune response, and apoptotic processes. The K14-HPV16 mouse model also validated the remarkable efficacy of EHS. CONCLUSION This study demonstrated that EHS is effective against HR-HPV infection and cervical lesions. Additionally, no obvious systemic toxicity was observed in patients during the trial. The superior efficacy and safety of EHS demonstrated its considerable value as a potential cost-effective drug for the treatment of HPV infection and HPV-related cervical diseases.
Collapse
Affiliation(s)
- Zi-Zhuo Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Hui-Li Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Wei Xiong
- Department of Pharmacology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Juan Du
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Rong Liu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
24
|
Pomella S, Melaiu O, Dri M, Martelli M, Gargari M, Barillari G. Effects of Angiogenic Factors on the Epithelial-to-Mesenchymal Transition and Their Impact on the Onset and Progression of Oral Squamous Cell Carcinoma: An Overview. Cells 2024; 13:1294. [PMID: 39120324 PMCID: PMC11311310 DOI: 10.3390/cells13151294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 07/26/2024] [Accepted: 07/29/2024] [Indexed: 08/10/2024] Open
Abstract
High levels of vascular endothelial growth factor (VEGF), fibroblast growth factor (FGF)-2 and angiopoietin (ANG)-2 are found in tissues from oral squamous cell carcinoma (OSCC) and oral potentially malignant disorders (OPMDs). As might be expected, VEGF, FGF-2, and ANG-2 overexpression parallels the development of new blood and lymphatic vessels that nourish the growing OPMDs or OSCCs and provide the latter with metastatic routes. Notably, VEGF, FGF-2, and ANG-2 are also linked to the epithelial-to-mesenchymal transition (EMT), a trans-differentiation process that respectively promotes or exasperates the invasiveness of normal and neoplastic oral epithelial cells. Here, we have summarized published work regarding the impact that the interplay among VEGF, FGF-2, ANG-2, vessel generation, and EMT has on oral carcinogenesis. Results from the reviewed studies indicate that VEGF, FGF-2, and ANG-2 spark either protein kinase B (AKT) or mitogen-activated protein kinases (MAPK), two signaling pathways that can promote both EMT and new vessels' formation in OPMDs and OSCCs. Since EMT and vessel generation are key to the onset and progression of OSCC, as well as to its radio- and chemo-resistance, these data encourage including AKT or MAPK inhibitors and/or antiangiogenic drugs in the treatment of this malignancy.
Collapse
Affiliation(s)
- Silvia Pomella
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Via Montpellier, 00133 Rome, Italy; (S.P.); (O.M.); (M.M.); (M.G.)
| | - Ombretta Melaiu
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Via Montpellier, 00133 Rome, Italy; (S.P.); (O.M.); (M.M.); (M.G.)
| | - Maria Dri
- Department of Surgical Sciences, University of Rome Tor Vergata, 00133 Rome, Italy;
| | - Mirko Martelli
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Via Montpellier, 00133 Rome, Italy; (S.P.); (O.M.); (M.M.); (M.G.)
| | - Marco Gargari
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Via Montpellier, 00133 Rome, Italy; (S.P.); (O.M.); (M.M.); (M.G.)
| | - Giovanni Barillari
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Via Montpellier, 00133 Rome, Italy; (S.P.); (O.M.); (M.M.); (M.G.)
| |
Collapse
|
25
|
Jiang Q, Xiao J, Hsieh YC, Kumar NL, Han L, Zou Y, Li H. The Role of the PI3K/Akt/mTOR Axis in Head and Neck Squamous Cell Carcinoma. Biomedicines 2024; 12:1610. [PMID: 39062182 PMCID: PMC11274428 DOI: 10.3390/biomedicines12071610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/15/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is one of the most common malignancies globally, representing a significant public health problem with a poor prognosis. The development of efficient therapeutic strategies for HNSCC prevention and treatment is urgently needed. The PI3K/AKT/mTOR (PAM) signaling pathway is a highly conserved transduction network in eukaryotic cells that promotes cell survival, growth, and cycle progression. Dysfunction in components of this pathway, such as hyperactivity of PI3K, loss of PTEN function, and gain-of-function mutations in AKT, are well-known drivers of treatment resistance and disease progression in cancer. In this review, we discuss the major mutations and dysregulations in the PAM signaling pathway in HNSCC. We highlight the results of clinical trials involving inhibitors targeting the PAM signaling pathway as a strategy for treating HNSCC. Additionally, we examine the primary mechanisms of resistance to drugs targeting the PAM pathway and potential therapeutic strategies.
Collapse
Affiliation(s)
- Qian Jiang
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing 210093, China; (Q.J.)
- International Dentist Pathway, University of California, San Francisco, CA 94158, USA
| | - Jingyi Xiao
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing 210093, China; (Q.J.)
| | - Yao-Ching Hsieh
- International Dentist Pathway, University of California, San Francisco, CA 94158, USA
| | - Neha Love Kumar
- International Dentist Pathway, University of California, San Francisco, CA 94158, USA
| | - Lei Han
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing 210093, China; (Q.J.)
| | - Yuntao Zou
- Division of Hospital Medicine, University of California, San Francisco, CA 94158, USA
| | - Huang Li
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing 210093, China; (Q.J.)
| |
Collapse
|
26
|
Singla P, Jain A. Deciphering the complex landscape of post-translational modifications on PKM2: Implications in head and neck cancer pathogenesis. Life Sci 2024; 349:122719. [PMID: 38759866 DOI: 10.1016/j.lfs.2024.122719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/03/2024] [Accepted: 05/13/2024] [Indexed: 05/19/2024]
Abstract
In the vast landscape of human health, head and neck cancer (HNC) poses a significant health burden globally, necessitating the exploration of novel diagnostics and therapeutics. Metabolic alterations occurring within tumor microenvironment are crucial to understand the foundational cause of HNC. Post-translational modifications (PTMs) have recently emerged as a silent foe exerting a significantly heightened influence on various aspects of the biological processes associated with the onset and advancement of cancer, particularly in the context of HNC. There are numerous targets involved in HNC but recently, the enzyme pyruvate kinase M2 (PKM2) has come out as a hot target due to its involvement in glycolysis resulting in metabolic reprogramming of cancer cells. Various PTMs have been reported to affect the structure and function of PKM2 by modulating its activity. This review aims to investigate the impact of PTMs on the interaction between PKM2 and several signaling pathways and transcription factors in the context of HNC. These interactions possess significant ramification for cellular proliferation, apoptosis, angiogenesis and metastasis. This review primarily explores the role of PTMs influencing PKM2 and its involvement in tumor development. While acknowledging the significance of PKM2 interactions with other tumor regulators, the emphasis lies on dissecting PTM-related mechanisms rather than solely scrutinizing individual regulators. It lays the framework for the development of more sophisticated diagnostic tools and uncovers exciting possibilities for precision medicine essential for effectively addressing the complexity of this malignancy in a precise and focused manner.
Collapse
Affiliation(s)
- Palak Singla
- Department of Bioengineering and Biotechnology, Birla Institute of Technology Mesra, Ranchi 835215, Jharkhand, India
| | - Alok Jain
- Department of Bioengineering and Biotechnology, Birla Institute of Technology Mesra, Ranchi 835215, Jharkhand, India.
| |
Collapse
|
27
|
Krsek A, Baticic L, Sotosek V, Braut T. The Role of Biomarkers in HPV-Positive Head and Neck Squamous Cell Carcinoma: Towards Precision Medicine. Diagnostics (Basel) 2024; 14:1448. [PMID: 39001338 PMCID: PMC11241541 DOI: 10.3390/diagnostics14131448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/03/2024] [Accepted: 07/04/2024] [Indexed: 07/16/2024] Open
Abstract
Head and neck cancer (HNC) represents a significant global health challenge, with squamous cell carcinomas (SCCs) accounting for approximately 90% of all HNC cases. These malignancies, collectively referred to as head and neck squamous cell carcinoma (HNSCC), originate from the mucosal epithelium lining the larynx, pharynx, and oral cavity. The primary risk factors associated with HNSCC in economically disadvantaged nations have been chronic alcohol consumption and tobacco use. However, in more affluent countries, the landscape of HNSCC has shifted with the identification of human papillomavirus (HPV) infection, particularly HPV-16, as a major risk factor, especially among nonsmokers. Understanding the evolving risk factors and the distinct biological behaviors of HPV-positive and HPV-negative HNSCC is critical for developing targeted treatment strategies and improving patient outcomes in this complex and diverse group of cancers. Accurate diagnosis of HPV-positive HNSCC is essential for developing a comprehensive model that integrates the molecular characteristics, immune microenvironment, and clinical outcomes. The aim of this comprehensive review was to summarize the current knowledge and advances in the identification of DNA, RNA, and protein biomarkers in bodily fluids and tissues that have introduced new possibilities for minimally or non-invasive cancer diagnosis, monitoring, and assessment of therapeutic responses.
Collapse
Affiliation(s)
- Antea Krsek
- Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia;
| | - Lara Baticic
- Department of Medical Chemistry, Biochemistry and Clinical Chemistry, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia
| | - Vlatka Sotosek
- Department of Clinical Medical Sciences I, Faculty of Health Studies, University of Rijeka, 51000 Rijeka, Croatia;
- Department of Anesthesiology, Reanimatology, Emergency and Intensive Care Medicine, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia
| | - Tamara Braut
- Department of Otorhinolaryngology and Head and Neck Surgery, Clinical Hospital Centre Rijeka, 51000 Rijeka, Croatia;
| |
Collapse
|
28
|
Liu M, Zhao X, Wen J, Sun L, Huang R, Zhang H, Liu Y, Ren X. A multidimensional strategy for uncovering comprehensive quality markers of Scutellariae Radix based on UPLC-Q-TOF-MS analysis, artificial neural network, network pharmacology analysis, and molecular simulation. FRONTIERS IN PLANT SCIENCE 2024; 15:1423678. [PMID: 39022612 PMCID: PMC11251886 DOI: 10.3389/fpls.2024.1423678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 06/14/2024] [Indexed: 07/20/2024]
Abstract
Introduction Scutellariae Radix (SR), derived from the root of Scutellaria baicalensis Georgi, is a traditional Chinese medicine (TCM) for clearing heat and cooling blood. It has been used as a traditional herbal medicine and is popular as a functional food in Asian countries today. Methods In this study, UPLC-Q-TOF-MS was first employed to identify the chemical components in the ethanol extract of SR. Then, the extraction process was optimized using star point design-response surface methodology. Fingerprints of different batches and processed products were established, and chemical markers were screened through a combination of various artificial neural network models. Finally, network pharmacology and molecular simulation techniques were utilized for verification to determine the quality markers. Results A total of 35 chemical components in SR were identified, and the optimal extraction process was determined as follows: ultrasonic extraction with 80% methanol at a ratio of 120:1 for 70 minutes, with a soaking time of 30 minutes. Through discriminant analysis using various artificial neural network models, the samples of SR could be classified into two categories based on their growth years: Kuqin (dried roots of older plants) and Ziqin (roots of younger plants). Moreover, the samples within each category could be further clustered according to their origins. The four different processed products of SR could also be distinguished separately. Finally, through the integration of network pharmacology and molecular simulation techniques, it was determined that baicalin, baicalein, wogonin, norwogonin, norwogonin-8-O-glucuronide, skullcapflavone II, hispidulin, 8, 8"-bibaicalein, and oroxylin A-7-O-beta-D-glucuronide could serve as quality markers for SR. Discussion The primary factors affecting the quality of SR were its growth years. The geographic origin of SR was identified as a secondary factor affecting its quality. Processing also had a significant impact on its quality. The selected quality markers have laid the foundation for the quality control of SR, and this research strategy also provides a research paradigm for improving the quality of TCM.
Collapse
Affiliation(s)
- Meiqi Liu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiaoran Zhao
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jinli Wen
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Lili Sun
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Rui Huang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Huijie Zhang
- Department of Pharmacy, Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin, China
- Chinese Medicine Research Institute, Tianjin Academy of Traditional Chinese Medicine, Tianjin, China
| | - Yi Liu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiaoliang Ren
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
29
|
Liu Y, Cao P, Xiao L, Tang N, Fei W, Li X. Hypomethylation-associated Sox11 upregulation promotes oncogenesis via the PI3K/AKT pathway in OLP-associated OSCC. J Cell Mol Med 2024; 28:e18556. [PMID: 39039706 PMCID: PMC11263134 DOI: 10.1111/jcmm.18556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 06/14/2024] [Accepted: 07/12/2024] [Indexed: 07/24/2024] Open
Abstract
Oral lichen planus (OLP) is a particularly prevalent oral disorder with the potential to progress to oral squamous cell carcinoma (OSCC). SRY-box transcription factor 11 (Sox11) has been reported to serve as a prognostic marker for various cancers. However, the role and mechanism of Sox11 in OLP-related OSCC are unknown. Our results indicated that Sox11 was highly expressed, and that Sox11 promoter methylation was significantly reduced in OLP-associated OSCC tissues. High Sox11 expression and Sox11 promoter hypomethylation indicate a poor patient prognosis. According to in vivo and in vitro experiments, the knockdown of Sox11 inhibited proliferation, invasion, and migration while driving its apoptotic death in OSSC cells; Sox11 overexpression exerted the opposite effect as Sox11 knockdown. Mechanistically, knockdown of Sox11 inhibited PI3K/AKT and glycolysis pathway, and overexpression of Sox11 enhanced the PI3K/AKT and glycolysis pathways in OSCC cells. In addition, we demonstrated that Sox11 overexpression accelerated the progression of OSCC, at least in part by promoting PI3K/AKT pathway activation. In conclusion, our data indicated that the DNA hypomethylation-associated upregulation of Sox11 could promote oncogenic transformation via the PI3K/AKT pathway in OLP-associated OSCC. Therefore, Sox11 might be a reliable biomarker for predicting the progression of precancerous oral tissues.
Collapse
Affiliation(s)
- Yi Liu
- Department of Stomatology, Sichuan Provincial People's HospitalUniversity of Electronic Science and Technology of ChinaChengduSichuanChina
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Department of Laboratory Medicine, Sichuan Provincial People's Hospital, School of MedicineUniversity of Electronic Science and Technology of ChinaChengduSichuanChina
| | - Peilin Cao
- Department of Stomatology, Sichuan Provincial People's HospitalUniversity of Electronic Science and Technology of ChinaChengduSichuanChina
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Department of Laboratory Medicine, Sichuan Provincial People's Hospital, School of MedicineUniversity of Electronic Science and Technology of ChinaChengduSichuanChina
| | - Li Xiao
- Department of Stomatology, Sichuan Provincial People's HospitalUniversity of Electronic Science and Technology of ChinaChengduSichuanChina
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Department of Laboratory Medicine, Sichuan Provincial People's Hospital, School of MedicineUniversity of Electronic Science and Technology of ChinaChengduSichuanChina
| | - Na Tang
- Department of Stomatology, Sichuan Provincial People's HospitalUniversity of Electronic Science and Technology of ChinaChengduSichuanChina
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Department of Laboratory Medicine, Sichuan Provincial People's Hospital, School of MedicineUniversity of Electronic Science and Technology of ChinaChengduSichuanChina
| | - Wei Fei
- Department of Stomatology, Sichuan Provincial People's HospitalUniversity of Electronic Science and Technology of ChinaChengduSichuanChina
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Department of Laboratory Medicine, Sichuan Provincial People's Hospital, School of MedicineUniversity of Electronic Science and Technology of ChinaChengduSichuanChina
- Department of StomatologySichuan Provincial People's Hospital Wenjiang HospitalChengduChina
| | - Xue Li
- Department of Stomatology, Sichuan Provincial People's HospitalUniversity of Electronic Science and Technology of ChinaChengduSichuanChina
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Department of Laboratory Medicine, Sichuan Provincial People's Hospital, School of MedicineUniversity of Electronic Science and Technology of ChinaChengduSichuanChina
| |
Collapse
|
30
|
Zhang C, Zhang J, Guo K. Paeonol upregulates expression of tumor suppressors TNNC1 and SCARA5, exerting anti-tumor activity in non-small cell lung cancer cells. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:5241-5251. [PMID: 38265681 DOI: 10.1007/s00210-024-02963-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 01/15/2024] [Indexed: 01/25/2024]
Abstract
Paeonol, a naturally bioactive phenolic ingredient predominantly isolated from Paeonia suffruticosa, has recently garnered significant interest as an anti-tumor agent against diverse carcinomas including non-small cell lung cancer (NSCLC). However, the anti-tumor mechanism of paeonol in NSCLC remains unclear. Cell viability, caspase-3 activity, and apoptosis were evaluated using CCK-8 assay, Caspase-3 Colorimetric Assay Kit, and flow cytometry analysis, respectively. GSE186218 was downloaded from NCBI Gene Expression Omnibus (GEO). The common genes were screened using GEO2R and Draw Venn Diagram software. Expression of troponin C type 1 (TNNC1), scavenger receptor class A member 5 (SCARA5), phosphorylated protein kinase B (AKT) (p-AKT) and AKT was examined using GEPIA database, qRT-PCR and western blot analysis. Paeonol treatment concentration-dependently inhibited cell viability and increased caspase-3 activity and apoptotic rate in NSCLC cells. Only 5 overlapping genes including TNNC1 and SCARA5 were obtained among 232 upregulated genes in GSE186218, 200 underexpressed genes in TCGA-LUAD, and 200 underexpressed genes in TCGA-LUSC according to the Venn diagram software. TNNC1 and SCARA5, two known tumor suppressors, were significantly downregulated in LUAD and LUSC tissues and NSCLC cells. Paeonol dose-dependently upregulated TNNC1 and SCARA5 expression in NSCLC cells. Paeonol suppressed the AKT pathway by upregulating TNNC1 and SCARA5 expression. AKT inhibitor attenuated the effects of TNNC1 or SCARA5 knockdown on the anti-tumor activity of paeonol. In conclusion, paeonol exhibited anti-cancer activity in NSCLC cells through inactivating the AKT pathway by upregulating TNNC1 or SCARA5.
Collapse
Affiliation(s)
- Chongnan Zhang
- Department of Thoracic Surgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121001, China
| | - Jing Zhang
- Department of Gynecology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121001, China
| | - Kai Guo
- Department of Thoracic Surgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121001, China.
| |
Collapse
|
31
|
Thi Thanh Nguyen N, Yoon Lee S. Celecoxib and sulindac sulfide elicit anticancer effects on PIK3CA-mutated head and neck cancer cells through endoplasmic reticulum stress, reactive oxygen species, and mitochondrial dysfunction. Biochem Pharmacol 2024; 224:116221. [PMID: 38641308 DOI: 10.1016/j.bcp.2024.116221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 04/01/2024] [Accepted: 04/16/2024] [Indexed: 04/21/2024]
Abstract
Gain-of-function mutation in the phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K) catalytic subunit alpha gene (PIK3CA) is a significant factor in head and neck cancer (HNC). Patients with HNC harboring PIK3CA mutations receive therapeutic benefits from the use of non-steroidal anti-inflammatory drugs (NSAIDs). However, the molecular mechanisms underlying these effects remain unknown. Here, we examined the Detroit562 and FaDu cell lines as HNC models with and without a hyperactive PIK3CA mutation (H1047R), respectively, regarding their possible distinct responses to the NSAIDs celecoxib and sulindac sulfide (SUS). Detroit562 cells exhibited relatively high PI3K/Akt pathway-dependent cyclooxygenase-2 (COX-2) expression, associated with cell proliferation. Celecoxib treatment restricted cell proliferation and upregulated endoplasmic reticulum (ER) stress-related markers, including GRP78, C/EBP-homologous protein, activating transcription factor 4, death receptor 5, and reactive oxygen species (ROS). These effects were much stronger in Detroit562 cells than in FaDu cells and were largely COX-2-independent. SUS treatment yielded similar results. Salubrinal (an ER stress inhibitor) and N-acetyl-L-cysteine (a ROS scavenger) prevented NSAID-induced ROS generation and ER stress, respectively, indicating crosstalk between ER and oxidative stress. In addition, celecoxib and/or SUS elevated cleaved caspase-3 levels, Bcl-2-associated X protein/Bcl-2-interacting mediator of cell death expression, and mitochondrial damage, which was more pronounced in Detroit562 than in FaDu cells. Salubrinal and N-acetyl-L-cysteine attenuated celecoxib-induced mitochondrial dysfunction. Collectively, our results suggest that celecoxib and SUS efficiently suppress activating PIK3CA mutation-harboring HNC progression by inducing ER and oxidative stress and mitochondrial dysfunction, leading to apoptotic cell death, further supporting NSAID treatment as a useful strategy for oncogenic PIK3CA-mutated HNC therapy.
Collapse
Affiliation(s)
- Nga Thi Thanh Nguyen
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, Gyeonggi, Republic of Korea
| | - Sang Yoon Lee
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, Gyeonggi, Republic of Korea; Institute of Medical Science, Ajou University School of Medicine, Suwon, Gyeonggi, Republic of Korea.
| |
Collapse
|
32
|
Vageli DP, Doukas PG, Townsend JP, Pickering C, Judson BL. Novel non-invasive molecular signatures for oral cavity cancer, by whole transcriptome and small non-coding RNA sequencing analyses: Predicted association with PI3K/AKT/mTOR pathway. Cancer Med 2024; 13:e7309. [PMID: 38819439 PMCID: PMC11141334 DOI: 10.1002/cam4.7309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/02/2024] [Accepted: 05/06/2024] [Indexed: 06/01/2024] Open
Abstract
INTRODUCTION Identification of molecular biomarkers in the saliva and serum of oral cavity cancer patients represents a first step in the development of essential and efficient clinical tools for early detection and post-treatment monitoring. We hypothesized that molecular analyses of paired saliva and serum samples from an individual would likely yield better results than analyses of either serum or saliva alone. MATERIALS AND METHODS We performed whole-transcriptome and small non-coding RNA sequencing analyses on 32 samples of saliva and serum collected from the same patients with oral squamous cell carcinoma (OSCC) and healthy controls (HC). RESULTS We identified 12 novel saliva and serum miRNAs and a panel of unique miRNA and mRNA signatures, significantly differentially expressed in OSCC patients relative to HC (log2 fold change: 2.6-26.8; DE: 0.02-0.000001). We utilized a combined panel of the 10 top-deregulated miRNAs and mRNAs and evaluated their putative diagnostic potential (>87% sensitivity; 100% specificity), recommending seven of them for further validation. We also identified unique saliva and serum miRNAs associated with OSCC and smoking history (OSCC smokers vs. never-smokers or HC: log2 fold change: 22-23; DE: 0.00003-0.000000001). Functional and pathway analyses indicated interactions between the discovered OSCC-related non-invasive miRNAs and mRNAs and their targets, through PI3K/AKT/mTOR signaling. CONCLUSION Our data support our hypothesis that using paired saliva and serum from the same individuals and deep sequencing analyses can provide unique combined mRNA and miRNA signatures associated with canonical pathways that may have a diagnostic advantage relative to saliva or serum alone and may be useful for clinical testing. We believe this data will contribute to effective preventive care by post-treatment monitoring of patients, as well as suggesting potential targets for therapeutic approaches.
Collapse
MESH Headings
- Humans
- Mouth Neoplasms/genetics
- Mouth Neoplasms/blood
- Mouth Neoplasms/metabolism
- TOR Serine-Threonine Kinases/metabolism
- TOR Serine-Threonine Kinases/genetics
- Proto-Oncogene Proteins c-akt/metabolism
- Proto-Oncogene Proteins c-akt/genetics
- Female
- Male
- Biomarkers, Tumor/genetics
- Saliva/metabolism
- Saliva/chemistry
- Phosphatidylinositol 3-Kinases/metabolism
- Phosphatidylinositol 3-Kinases/genetics
- Middle Aged
- MicroRNAs/genetics
- MicroRNAs/blood
- Signal Transduction
- Transcriptome
- Gene Expression Regulation, Neoplastic
- Gene Expression Profiling
- Aged
- RNA, Small Untranslated/genetics
- RNA, Small Untranslated/blood
- Adult
- Case-Control Studies
- Sequence Analysis, RNA
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Carcinoma, Squamous Cell/genetics
- Carcinoma, Squamous Cell/blood
- Carcinoma, Squamous Cell/metabolism
Collapse
Affiliation(s)
- Dimitra P. Vageli
- Yale Larynx Lab, Surgery OtolaryngologyYale School of MedicineNew HavenConnecticutUSA
| | - Panagiotis G. Doukas
- Yale Larynx Lab, Surgery OtolaryngologyYale School of MedicineNew HavenConnecticutUSA
- Department of MedicineSaint Peter's University Hospital/Rutgers‐ RWJ Medical SchoolNew BrunswickNew JerseyUSA
| | - Jeffrey P. Townsend
- Department of BiostatisticsYale School of Public HealthNew HavenConnecticutUSA
| | - Curtis Pickering
- Department of Surgery, Division of OtolaryngologyYale Medical SchoolNew HavenConnecticutUSA
| | - Benjamin L. Judson
- Yale Larynx Lab, Surgery OtolaryngologyYale School of MedicineNew HavenConnecticutUSA
| |
Collapse
|
33
|
Wang Y, Liu X, Wang X, Lu J, Tian Y, Liu Q, Xue J. Matricellular proteins: Potential biomarkers in head and neck cancer. J Cell Commun Signal 2024; 18:e12027. [PMID: 38946720 PMCID: PMC11208127 DOI: 10.1002/ccs3.12027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 03/19/2024] [Accepted: 03/22/2024] [Indexed: 07/02/2024] Open
Abstract
The extracellular matrix (ECM) is a complex network of diverse multidomain macromolecules, including collagen, proteoglycans, and fibronectin, that significantly contribute to the mechanical properties of tissues. Matricellular proteins (MCPs), as a family of non-structural proteins, play a crucial role in regulating various ECM functions. They exert their biological effects by interacting with matrix proteins, cell surface receptors, cytokines, and proteases. These interactions govern essential cellular processes such as differentiation, proliferation, adhesion, migration as well as multiple signal transduction pathways. Consequently, MCPs are pivotal in maintaining tissue homeostasis while orchestrating intricate molecular mechanisms within the ECM framework. The expression level of MCPs in adult steady-state tissues is significantly low; however, under pathological conditions such as inflammation and cancer, there is a substantial increase in their expression. In recent years, an increasing number of studies have focused on elucidating the role and significance of MCPs in the development and progression of head and neck cancer (HNC). During HNC progression, there is a remarkable upregulation in MCP expression. Through their distinctive structure and function, they actively promote tumor growth, invasion, epithelial-mesenchymal transition, and lymphatic metastasis of HNC cells. Moreover, by binding to integrins and modulating various signaling pathways, they effectively execute their biological functions. Furthermore, MCPs also hold potential as prognostic indicators. Although the star proteins of various MCPs have been extensively investigated, there remains a plethora of MCP family members that necessitate further scrutiny. This article comprehensively examines the functionalities of each MCP and highlights the research advancements in the context of HNC, with an aim to identify novel biomarkers for HNC and propose promising avenues for future investigations.
Collapse
Affiliation(s)
- Yunsheng Wang
- Department of Head and Neck SurgeryGansu Provincial Cancer HospitalLanzhouChina
| | - Xudong Liu
- Department of Head and Neck SurgeryGansu Provincial Cancer HospitalLanzhouChina
| | - Xingyue Wang
- Department of Head and Neck SurgeryGansu Provincial Cancer HospitalLanzhouChina
| | - Jiyong Lu
- Department of Head and Neck SurgeryGansu Provincial Cancer HospitalLanzhouChina
| | - Youxin Tian
- Department of Head and Neck SurgeryGansu Provincial Cancer HospitalLanzhouChina
| | - Qinjiang Liu
- Department of Head and Neck SurgeryGansu Provincial Cancer HospitalLanzhouChina
| | - Jincai Xue
- Department of Head and Neck SurgeryGansu Provincial Cancer HospitalLanzhouChina
| |
Collapse
|
34
|
Wu YL, Liu W, Zhao T, Jin J. P4HA2 contributes to head and neck squamous cell carcinoma progression and EMT through PI3K/AKT signaling pathway. Med Oncol 2024; 41:163. [PMID: 38777998 PMCID: PMC11111551 DOI: 10.1007/s12032-024-02358-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 03/14/2024] [Indexed: 05/25/2024]
Abstract
Head and neck squamous cell carcinoma (HNSCC) can be defined as a deadly illness with a dismal prognosis in advanced stages. Therefore, we seek to examine P4HA2 expression and effect in HNSCC, along with the underlying mechanisms. This study utilized integrated bioinformatics analyses to evaluate the P4HA2 expression pattern, prognostic implication, and probable function in HNSCC. The study conducted various in vitro experiments, including colony formation, CCK-8, flow cytometry, wound healing, and transwell assays, on the human HNSCC cell line CAL-27 to examine the involvement of P4HA2 in HNSCC progression. Moreover, western blotting was used to investigate epithelial-mesenchymal transition (EMT) markers and PI3K/AKT pathway markers to elucidate the underlying mechanisms. P4HA2 expression was significantly enhanced in HNSCC, and its overexpression was correlated to tumor aggressiveness and a poor prognosis in patients. Based on in vitro experiments, the overexpressed P4HA2 enhanced cell proliferation, migration, invasion, as well as EMT while reducing apoptosis, whereas P4HA2 silencing exhibited the reverse effect. P4HA2 overexpression enhanced PI3K/AKT phosphorylation in HNSCC cells. Moreover, LY294002 was observed to counteract the effects of upregulated P4HA2 on proliferation, migration, invasion, and EMT in HNSCC. Collectively, we indicated that P4HA2 promoted HNSCC progression and EMT via PI3K/AKT signaling pathway.
Collapse
Affiliation(s)
- Yan-Ling Wu
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital and Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, 518116, Guangdong, China
| | - Wan Liu
- Department of Head and Neck Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, 518116, Guangdong, China
| | - Tingting Zhao
- Department of Head and Neck Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, 518116, Guangdong, China
| | - Jing Jin
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital and Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, 518116, Guangdong, China.
| |
Collapse
|
35
|
Chen H, Deng J, Hou TW, Shan YQ. Villosol reverses 5-FU resistance in colorectal cancer by inhibiting the CDKN2A gene regulated TP53-PI3K/Akt signaling axis. JOURNAL OF ETHNOPHARMACOLOGY 2024; 325:117907. [PMID: 38342156 DOI: 10.1016/j.jep.2024.117907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 02/07/2024] [Accepted: 02/09/2024] [Indexed: 02/13/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Patrinia villosa (Juss.) (PV) is the drug of choice in traditional Chinese medicine for the treatment of colorectal cancer (CRC) and has achieved reliable efficacy in clinic. Villosol is the active ingredient in PV. However, the molecular mechanism by which Villosol reverses chemoresistance in CRC remains unclear. AIM OF THE STUDY Analysis of the molecular mechanism by which Villosol, the active ingredient of PV, reverses CRC/5-FU resistance through modulation of the CDKN2A gene was validated by network pharmacology techniques and experiments. MATERIALS AND METHODS We identified CDKN2A as a gene associated with 5-FU resistance through gene chip analysis. Next, we conducted a series of functional analyses in cell lines, animal samples, and xenograft models to investigate the role, clinical significance, and abnormal regulatory mechanisms of CDKN2A in 5-FU resistance in CRC. In addition, we screened and obtained a raw ingredient called Villosol, which targets CDKN2A, and investigated its pharmacological effects. RESULTS Analysis of CRC cells and animal samples showed that the upregulation of CDKN2A expression was strongly associated with 5-FU resistance. CRC cells overexpressing CDKN2A showed reduced sensitivity to 5-FU and enhanced tumor biology in vitro. Inhibition of aberrant activation of CDKN2A enhances the expression of TP53. Mechanistically, overexpression of CDKN2A activates the PI3K/Akt pathway and induces resistance to 5-FU. Villosol inhibited CDKN2A, and CRC/5-FU cells regained sensitivity to 5-FU. Villosol effectively reverses 5-FU resistance through the CDKN2A-TP53-PI3K/Akt axis. CONCLUSION Changes in CDKN2A gene expression can be used to predict the response of CRC patients to 5-FU therapy. Additionally, inhibiting CDKN2A activation with Villosol may present a new approach to overcoming 5-FU resistance in clinical settings.
Collapse
Affiliation(s)
- Han Chen
- Department of Pharmacy, General Hospital of Northern Theater Command, No. 83 Wenhua Road, Shenhe District, Shenyang City, 110016, Liaoning Province, China.
| | - Jiao Deng
- Department of Pharmacy, General Hospital of Northern Theater Command, No. 83 Wenhua Road, Shenhe District, Shenyang City, 110016, Liaoning Province, China.
| | - Tie-Wei Hou
- Department of General Surgery, General Hospital of Northern Theater Command, No. 83 Wenhua Road, Shenhe District, Shenyang City, 110016, Liaoning Province, China.
| | - Yong-Qi Shan
- Department of General Surgery, General Hospital of Northern Theater Command, No. 83 Wenhua Road, Shenhe District, Shenyang City, 110016, Liaoning Province, China.
| |
Collapse
|
36
|
Ciani L, Libonati A, Dri M, Pomella S, Campanella V, Barillari G. About a Possible Impact of Endodontic Infections by Fusobacterium nucleatum or Porphyromonas gingivalis on Oral Carcinogenesis: A Literature Overview. Int J Mol Sci 2024; 25:5083. [PMID: 38791123 PMCID: PMC11121237 DOI: 10.3390/ijms25105083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/02/2024] [Accepted: 05/04/2024] [Indexed: 05/26/2024] Open
Abstract
Periodontitis is linked to the onset and progression of oral squamous cell carcinoma (OSCC), an epidemiologically frequent and clinically aggressive malignancy. In this context, Fusobacterium (F.) nucleatum and Porphyromonas (P.) gingivalis, two bacteria that cause periodontitis, are found in OSCC tissues as well as in oral premalignant lesions, where they exert pro-tumorigenic activities. Since the two bacteria are present also in endodontic diseases, playing a role in their pathogenesis, here we analyze the literature searching for information on the impact that endodontic infection by P. gingivalis or F. nucleatum could have on cellular and molecular events involved in oral carcinogenesis. Results from the reviewed papers indicate that infection by P. gingivalis and/or F. nucleatum triggers the production of inflammatory cytokines and growth factors in dental pulp cells or periodontal cells, affecting the survival, proliferation, invasion, and differentiation of OSCC cells. In addition, the two bacteria and the cytokines they induce halt the differentiation and stimulate the proliferation and invasion of stem cells populating the dental pulp or the periodontium. Although most of the literature confutes the possibility that bacteria-induced endodontic inflammatory diseases could impact on oral carcinogenesis, the papers we have analyzed and discussed herein recommend further investigations on this topic.
Collapse
Affiliation(s)
- Luca Ciani
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (L.C.); (S.P.); (V.C.)
| | - Antonio Libonati
- Department of Surgical Sciences, Catholic University of Our Lady of Good Counsel of Tirane, 1001 Tirana, Albania;
| | - Maria Dri
- Department of Surgical Sciences, University of Rome Tor Vergata, 00133 Rome, Italy;
| | - Silvia Pomella
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (L.C.); (S.P.); (V.C.)
| | - Vincenzo Campanella
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (L.C.); (S.P.); (V.C.)
| | - Giovanni Barillari
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (L.C.); (S.P.); (V.C.)
| |
Collapse
|
37
|
Etemad-Moghadam S, Mohammadpour H, Emami Razavi A, Alaeddini M. Pleckstrin Homology Domain Leucine-rich Repeat Protein Phosphatase Acts as a Tumor Suppressor in Oral Squamous Cell Carcinoma. Appl Immunohistochem Mol Morphol 2024; 32:249-253. [PMID: 38602289 DOI: 10.1097/pai.0000000000001195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 03/07/2024] [Indexed: 04/12/2024]
Abstract
The pleckstrin homology domain leucine-rich repeat protein phosphatase (PHLPP) family has been found to have both tumor-suppressor and oncogenic properties across various types and locations of cancer. Given that PHLPP has not been previously studied in oral squamous cell carcinoma (SCC), we conducted an assessment of the expression of both its isoforms in oral SCC tissues and cell lines and compared these findings to their corresponding normal counterparts. In addition, we assessed the relationship between PHLPP and clinicopathological factors and patient survival. Quantitative real-time polymerase chain reaction was used to detect the mRNA levels of PHLPP1 and PHLPP2 in cancerous and normal cell lines in addition to 124 oral SCC and noncancerous adjacent epithelia (N = 62, each). Correlations between their expression rate and clinicopathological parameters were further evaluated in 57 patients. Data were statistically analyzed with t test and paired t test, analysis of variance, Mann-Whitney U , and Cox Regression tests ( P < 0.05). We found significantly lower levels of both PHLPP isoforms in oral SCC tissues compared with noncancerous epithelia ( P < 0.001, for both). However, in the cell lines, this difference was significant only for PHLPP1 ( P = 0.027). The correlation between the two isoforms was significant only in cancerous tissues ( P < 0.001). None of the clinicopathologic factors showed significant associations with either of the isoforms and there was no correlation with survival. We showed for the first time that PHLPP1 and PHLPP2 act as tumor suppressors in oral SCC at the mRNA level. The regulation of their mRNA appears to be different between normal and cancerous tissues.
Collapse
Affiliation(s)
- Shahroo Etemad-Moghadam
- Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Hadiseh Mohammadpour
- Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Amirnader Emami Razavi
- Iran National Tumor Bank, Cancer Institute of Iran, Tehran University of Medical Sciences, Tehran, Iran
| | - Mojgan Alaeddini
- Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
38
|
Liu H, Zheng Y, Kan S, Hao M, Jiang H, Li S, Li R, Wang Y, Wang D, Liu W. Melatonin inhibits tongue squamous cell carcinoma: Interplay of ER stress-induced apoptosis and autophagy with cell migration. Heliyon 2024; 10:e29291. [PMID: 38644851 PMCID: PMC11033109 DOI: 10.1016/j.heliyon.2024.e29291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 04/01/2024] [Accepted: 04/04/2024] [Indexed: 04/23/2024] Open
Abstract
Tongue squamous cell carcinoma (TSCC) occupies a high proportion of oral squamous cell carcinoma. TSCC features high lymph node metastasis rates and chemotherapy resistance with a poor prognosis. Therefore, an effective therapy strategy is needed to improve patient prognosis. Melatonin (MT) is a natural indole compound shown to have anti-tumor effects in several cancers. This study focused on the role and mechanism of MT in TSCC cells. The results of the study suggest that MT could inhibit cell proliferation in CRL-1623 cells. Western blot analysis showed the down-regulate of cyclin B1 and the up-regulate P21 protein by MT. MT was also shown to down-regulate the expression of Zeb1, Wnt5A/B, and β-catenin protein and up-regulate E-cadherin to inhibit the migration of CRL-1623 cells. MT also promoted the expression of ATF4, ATF6, Bip, BAP31 and CHOP in CRL-1623 cells leading to endoplasmic reticulum stress, and induced autophagy and apoptosis in CRL-1623 cells. Western blots showed that MT could promote the expression of Bax, LC3, and Beclin1 proteins and inhibit the expression of p62. We screened differentially expressed long non-coding RNAs (lncRNAs) in MT-treated cells and found that the expression of MALAT1 and H19 decreased. Moreover, MT inhibited tumor growth in nude mice inoculated with CRL-1623 cells. These results suggest that MT could induce autophagy, promote apoptosis, and provide a potential natural compound for the treatment of TSCC.
Collapse
Affiliation(s)
- Huimin Liu
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun, 130021, China
- Department of Stomatology, Shunyi District Hospital, NO.3 Guangming South Street, Shunyi District, Beijing 101300, China
| | - Ye Zheng
- Department of Anesthesiology, Hospital of Stomatology, Jilin University, Changchun, 130021, China
| | - Shaoning Kan
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun, 130021, China
| | - Ming Hao
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun, 130021, China
| | - Huan Jiang
- Department of Orthodontics, Hospital of Stomatology, Jilin University, Changchun, 130021, China
| | - Shuangji Li
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun, 130021, China
| | - Rong Li
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Yinyu Wang
- Stomatology Hospital, Baicheng Medical College, Baicheng, 130300, China
| | - Dongxu Wang
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Weiwei Liu
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun, 130021, China
| |
Collapse
|
39
|
Muniz IDAF, Araujo M, Bouassaly J, Farshadi F, Atique M, Esfahani K, Bonan PRF, Hier M, Mascarella M, Mlynarek A, Alaoui-Jamali M, da Silva SD. Therapeutic Advances and Challenges for the Management of HPV-Associated Oropharyngeal Cancer. Int J Mol Sci 2024; 25:4009. [PMID: 38612819 PMCID: PMC11012756 DOI: 10.3390/ijms25074009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/25/2024] [Accepted: 03/28/2024] [Indexed: 04/14/2024] Open
Abstract
The use of conventional chemotherapy in conjunction with targeted and immunotherapy drugs has emerged as an option to limit the severity of side effects in patients diagnosed with head and neck cancer (HNC), particularly oropharyngeal cancer (OPC). OPC prevalence has increased exponentially in the past 30 years due to the prevalence of human papillomavirus (HPV) infection. This study reports a comprehensive review of clinical trials registered in public databases and reported in the literature (PubMed/Medline, Scopus, and ISI web of science databases). Of the 55 clinical trials identified, the majority (83.3%) were conducted after 2015, of which 77.7% were performed in the United States alone. Eight drugs have been approved by the FDA for HNC, including both generic and commercial forms: bleomycin sulfate, cetuximab (Erbitux), docetaxel (Taxotere), hydroxyurea (Hydrea), pembrolizumab (Keytruda), loqtorzi (Toripalimab-tpzi), methotrexate sodium (Trexall), and nivolumab (Opdivo). The most common drugs to treat HPV-associated OPC under these clinical trials and implemented as well for HPV-negative HNC include cisplatin, nivolumab, cetuximab, paclitaxel, pembrolizumab, 5-fluorouracil, and docetaxel. Few studies have highlighted the necessity for new drugs specifically tailored to patients with HPV-associated OPC, where molecular mechanisms and clinical prognosis are distinct from HPV-negative tumors. In this context, we identified most mutated genes found in HPV-associated OPC that can represent potential targets for drug development. These include TP53, PIK3CA, PTEN, NOTCH1, RB1, FAT1, FBXW7, HRAS, KRAS, and CDKN2A.
Collapse
Affiliation(s)
- Isis de Araújo Ferreira Muniz
- Department of Otolaryngology and Head and Neck Surgery, McGill University, Montreal, QC HC3 1E2, Canada; (I.d.A.F.M.); (F.F.); (M.A.); (P.R.F.B.); (M.H.); (M.M.); (A.M.); (M.A.-J.)
- Graduate Program in Dentistry, Federal University of Paraíba, João Pessoa 58051-900, PB, Brazil
| | - Megan Araujo
- Division of Experimental Medicine and Oncology, Department of Medicine and Health Sciences, McGill University, Montreal, QC HC3 1E2, Canada; (M.A.); (J.B.)
| | - Jenna Bouassaly
- Division of Experimental Medicine and Oncology, Department of Medicine and Health Sciences, McGill University, Montreal, QC HC3 1E2, Canada; (M.A.); (J.B.)
| | - Fatemeh Farshadi
- Department of Otolaryngology and Head and Neck Surgery, McGill University, Montreal, QC HC3 1E2, Canada; (I.d.A.F.M.); (F.F.); (M.A.); (P.R.F.B.); (M.H.); (M.M.); (A.M.); (M.A.-J.)
- Division of Experimental Medicine and Oncology, Department of Medicine and Health Sciences, McGill University, Montreal, QC HC3 1E2, Canada; (M.A.); (J.B.)
| | - Mai Atique
- Department of Otolaryngology and Head and Neck Surgery, McGill University, Montreal, QC HC3 1E2, Canada; (I.d.A.F.M.); (F.F.); (M.A.); (P.R.F.B.); (M.H.); (M.M.); (A.M.); (M.A.-J.)
| | - Khashayar Esfahani
- Department of Oncology, McGill University, Montreal, QC HC3 1E2, Canada;
| | - Paulo Rogerio Ferreti Bonan
- Department of Otolaryngology and Head and Neck Surgery, McGill University, Montreal, QC HC3 1E2, Canada; (I.d.A.F.M.); (F.F.); (M.A.); (P.R.F.B.); (M.H.); (M.M.); (A.M.); (M.A.-J.)
- Graduate Program in Dentistry, Federal University of Paraíba, João Pessoa 58051-900, PB, Brazil
| | - Michael Hier
- Department of Otolaryngology and Head and Neck Surgery, McGill University, Montreal, QC HC3 1E2, Canada; (I.d.A.F.M.); (F.F.); (M.A.); (P.R.F.B.); (M.H.); (M.M.); (A.M.); (M.A.-J.)
| | - Marco Mascarella
- Department of Otolaryngology and Head and Neck Surgery, McGill University, Montreal, QC HC3 1E2, Canada; (I.d.A.F.M.); (F.F.); (M.A.); (P.R.F.B.); (M.H.); (M.M.); (A.M.); (M.A.-J.)
| | - Alex Mlynarek
- Department of Otolaryngology and Head and Neck Surgery, McGill University, Montreal, QC HC3 1E2, Canada; (I.d.A.F.M.); (F.F.); (M.A.); (P.R.F.B.); (M.H.); (M.M.); (A.M.); (M.A.-J.)
| | - Moulay Alaoui-Jamali
- Department of Otolaryngology and Head and Neck Surgery, McGill University, Montreal, QC HC3 1E2, Canada; (I.d.A.F.M.); (F.F.); (M.A.); (P.R.F.B.); (M.H.); (M.M.); (A.M.); (M.A.-J.)
| | - Sabrina Daniela da Silva
- Department of Otolaryngology and Head and Neck Surgery, McGill University, Montreal, QC HC3 1E2, Canada; (I.d.A.F.M.); (F.F.); (M.A.); (P.R.F.B.); (M.H.); (M.M.); (A.M.); (M.A.-J.)
- Division of Experimental Medicine and Oncology, Department of Medicine and Health Sciences, McGill University, Montreal, QC HC3 1E2, Canada; (M.A.); (J.B.)
| |
Collapse
|
40
|
Montoro-Jiménez I, Granda-Díaz R, Menéndez ST, Prieto-Fernández L, Otero-Rosales M, Álvarez-González M, García-de-la-Fuente V, Rodríguez A, Rodrigo JP, Álvarez-Teijeiro S, García-Pedrero JM, Hermida-Prado F. Combined PIK3CA and SOX2 Gene Amplification Predicts Laryngeal Cancer Risk beyond Histopathological Grading. Int J Mol Sci 2024; 25:2695. [PMID: 38473941 DOI: 10.3390/ijms25052695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/05/2024] [Accepted: 02/24/2024] [Indexed: 03/14/2024] Open
Abstract
The PIK3CA and SOX2 genes map at 3q26, a chromosomal region frequently amplified in head and neck cancers, which is associated with poor prognosis. This study explores the clinical significance of PIK3CA and SOX2 gene amplification in early tumorigenesis. Gene copy number was analyzed by real-time PCR in 62 laryngeal precancerous lesions and correlated with histopathological grading and laryngeal cancer risk. Amplification of the SOX2 and PIK3CA genes was frequently detected in 19 (31%) and 32 (52%) laryngeal dysplasias, respectively, and co-amplification in 18 (29%) cases. The PIK3CA and SOX2 amplifications were predominant in high-grade dysplasias and significantly associated with laryngeal cancer risk beyond histological criteria. Multivariable Cox analysis further revealed PIK3CA gene amplification as an independent predictor of laryngeal cancer development. Interestingly, combined PIK3CA and SOX2 amplification allowed us to distinguish three cancer risk subgroups, and PIK3CA and SOX2 co-amplification was found the strongest predictor by ROC analysis. Our data demonstrate the clinical relevance of PIK3CA and SOX2 amplification in early laryngeal tumorigenesis. Remarkably, PIK3CA amplification was found to be an independent cancer predictor. Furthermore, combined PIK3CA and SOX2 amplification is emerging as a valuable and easy-to-implement tool for cancer risk assessment in patients with laryngeal precancerous lesions beyond current WHO histological grading.
Collapse
Affiliation(s)
- Irene Montoro-Jiménez
- Department of Otolaryngology, Hospital Universitario Central de Asturias and Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Instituto Universitario de Oncología del Principado de Asturias (IUOPA), University of Oviedo, 33011 Oviedo, Spain
- CIBERONC, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Rocío Granda-Díaz
- Department of Otolaryngology, Hospital Universitario Central de Asturias and Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Instituto Universitario de Oncología del Principado de Asturias (IUOPA), University of Oviedo, 33011 Oviedo, Spain
- CIBERONC, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Sofía T Menéndez
- Department of Otolaryngology, Hospital Universitario Central de Asturias and Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Instituto Universitario de Oncología del Principado de Asturias (IUOPA), University of Oviedo, 33011 Oviedo, Spain
- CIBERONC, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Llara Prieto-Fernández
- Department of Otolaryngology, Hospital Universitario Central de Asturias and Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Instituto Universitario de Oncología del Principado de Asturias (IUOPA), University of Oviedo, 33011 Oviedo, Spain
- CIBERONC, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - María Otero-Rosales
- Department of Otolaryngology, Hospital Universitario Central de Asturias and Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Instituto Universitario de Oncología del Principado de Asturias (IUOPA), University of Oviedo, 33011 Oviedo, Spain
- CIBERONC, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Miguel Álvarez-González
- Department of Otolaryngology, Hospital Universitario Central de Asturias and Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Instituto Universitario de Oncología del Principado de Asturias (IUOPA), University of Oviedo, 33011 Oviedo, Spain
| | - Vanessa García-de-la-Fuente
- Department of Otolaryngology, Hospital Universitario Central de Asturias and Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Instituto Universitario de Oncología del Principado de Asturias (IUOPA), University of Oviedo, 33011 Oviedo, Spain
| | - Aida Rodríguez
- Department of Otolaryngology, Hospital Universitario Central de Asturias and Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Instituto Universitario de Oncología del Principado de Asturias (IUOPA), University of Oviedo, 33011 Oviedo, Spain
| | - Juan P Rodrigo
- Department of Otolaryngology, Hospital Universitario Central de Asturias and Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Instituto Universitario de Oncología del Principado de Asturias (IUOPA), University of Oviedo, 33011 Oviedo, Spain
- CIBERONC, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Saúl Álvarez-Teijeiro
- Department of Otolaryngology, Hospital Universitario Central de Asturias and Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Instituto Universitario de Oncología del Principado de Asturias (IUOPA), University of Oviedo, 33011 Oviedo, Spain
- CIBERONC, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Juana M García-Pedrero
- Department of Otolaryngology, Hospital Universitario Central de Asturias and Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Instituto Universitario de Oncología del Principado de Asturias (IUOPA), University of Oviedo, 33011 Oviedo, Spain
- CIBERONC, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Francisco Hermida-Prado
- Department of Otolaryngology, Hospital Universitario Central de Asturias and Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Instituto Universitario de Oncología del Principado de Asturias (IUOPA), University of Oviedo, 33011 Oviedo, Spain
- CIBERONC, Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
41
|
Topchu I, Bychkov I, Gursel D, Makhov P, Boumber Y. NSD1 supports cell growth and regulates autophagy in HPV-negative head and neck squamous cell carcinoma. Cell Death Discov 2024; 10:75. [PMID: 38346948 PMCID: PMC10861597 DOI: 10.1038/s41420-024-01842-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/27/2024] [Accepted: 01/31/2024] [Indexed: 02/15/2024] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is the sixth most common cancer worldwide. Despite advances in therapeutic management and immunotherapy, the 5-year survival rate for head and neck cancer remains at ~66% of all diagnosed cases. A better definition of drivers of HPV-negative HNSCC that are targetable points of tumor vulnerability could lead to significant clinical advances. NSD1 is a histone methyltransferase that catalyzes histone H3 lysine 36 di-methylation (H3K36me2); mutations inactivating NSD1 have been linked to improved outcomes in HNSCC. In this study, we show that NSD1 induces H3K36me2 levels in HNSCC and that the depletion of NSD1 reduces HNSCC of cell growth in vitro and in vivo. We also find that NSD1 strongly promotes activation of the Akt/mTORC1 signaling pathway. NSD1 depletion in HNSCC induces an autophagic gene program activation, causes accumulation of the p62 and LC3B-II proteins, and decreases the autophagic signaling protein ULK1 at both protein and mRNA levels. Reflecting these signaling defects, the knockdown of NSD1 disrupts autophagic flux in HNSCC cells. Taken together, these data identify positive regulation of Akt/mTORC1 signaling and autophagy as novel NSD1 functions in HNSCC, suggesting that NSD1 may be of value as a therapeutic target in this cancer.
Collapse
Affiliation(s)
- Iuliia Topchu
- Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Division of Hematology/Oncology, Northwestern University, Chicago, IL, 60611, USA
| | - Igor Bychkov
- Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Division of Hematology/Oncology, Northwestern University, Chicago, IL, 60611, USA
- Cancer Signaling and Microenvironment Program, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA
| | - Demirkan Gursel
- Pathology Core Facility, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Petr Makhov
- Cancer Signaling and Microenvironment Program, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA
| | - Yanis Boumber
- Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Division of Hematology/Oncology, Northwestern University, Chicago, IL, 60611, USA.
- Division of Hematology/Oncology, Sections of Thoracic / Head and Neck Medical Oncology, O'Neal Comprehensive Cancer Center, Heersink School of Medicine, University of Alabama in Birmingham, Birmingham, AL, 35233, USA.
| |
Collapse
|
42
|
Lu L, Ma D, Xi Z. Coexpression of TP53, BIM, and PTEN Enhances the Therapeutic Efficacy of Non-Small-Cell Lung Cancer. Biomacromolecules 2024; 25:792-808. [PMID: 38237562 DOI: 10.1021/acs.biomac.3c00988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2024]
Abstract
For non-small-cell lung cancer (NSCLC), the ubiquitous occurrence of concurrent multiple genomic alterations poses challenges to single-gene therapy. To increase therapeutic efficacy, we used the branch-PCR method to develop a multigene nanovector, NP-TP53-BIM-PTEN, that carried three therapeutic gene expression cassettes for coexpression. NP-TP53-BIM-PTEN exhibited a uniform size of 104.8 ± 24.2 nm and high serum stability. In cell transfection tests, NP-TP53-BIM-PTEN could coexpress TP53, BIM, and PTEN in NCI-H1299 cells and induce cell apoptosis with a ratio of up to 94.9%. Furthermore, NP-TP53-BIM-PTEN also inhibited cell proliferation with a ratio of up to 42%. In a mouse model bearing an NCI-H1299 xenograft tumor, NP-TP53-BIM-PTEN exhibited a stronger inhibitory effect on the NCI-H1299 xenograft tumor than the other test vectors without any detectable side effects. These results exhibited the potential of NP-TP53-BIM-PTEN as an effective and safe multigene nanovector to enhance NSCLC therapy efficacy, which will provide a framework for genome therapy with multigene combinations.
Collapse
Affiliation(s)
- Liqing Lu
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology, National Engineering Research Center of Pesticide (Tianjin), College of Chemistry, Nankai University, Tianjin 300071, China
| | - Dejun Ma
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology, National Engineering Research Center of Pesticide (Tianjin), College of Chemistry, Nankai University, Tianjin 300071, China
| | - Zhen Xi
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology, National Engineering Research Center of Pesticide (Tianjin), College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
43
|
Korovina I, Elser M, Borodins O, Seifert M, Willers H, Cordes N. β1 integrin mediates unresponsiveness to PI3Kα inhibition for radiochemosensitization of 3D HNSCC models. Biomed Pharmacother 2024; 171:116217. [PMID: 38286037 PMCID: PMC11627550 DOI: 10.1016/j.biopha.2024.116217] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 01/10/2024] [Accepted: 01/22/2024] [Indexed: 01/31/2024] Open
Abstract
Phosphoinositide 3-kinase (PI3K)-α represents a key intracellular signal transducer involved in the regulation of key cell functions such as cell survival and proliferation. Excessive activation of PI3Kα is considered one of the major determinants of cancer therapy resistance. Despite preclinical and clinical evaluation of PI3Kα inhibitors in various tumor entities, including head and neck squamous cell carcinoma (HNSCC), it remains elusive how conventional radiochemotherapy can be enhanced by concurrent PI3K inhibitors and how PI3K deactivation mechanistically exerts its effects. Here, we investigated the radiochemosensitizing potential and adaptation mechanisms of four PI3K inhibitors, Alpelisib, Copanlisib, AZD8186, and Idelalisib in eight HNSCC models grown under physiological, three-dimensional matrix conditions. We demonstrate that Alpelisib, Copanlisib and AZD8186 but not Idelalisib enhance radio- and radiochemosensitivity in the majority of HNSCC cell models (= responders) in a manner independent of PIK3CA mutation status. However, Alpelisib promotes MAPK signaling in non-responders compared to responders without profound impact on Akt, NFκB, TGFβ, JAK/STAT signaling and DNA repair. Bioinformatic analyses identified unique gene mutations associated with extracellular matrix to be more frequent in non-responder cell models than in responders. Finally, we demonstrate that targeting of the cell adhesion molecule β1 integrin on top of Alpelisib sensitizes non-responders to radiochemotherapy. Taken together, our study demonstrates the sensitizing potential of Alpelisib and other PI3K inhibitors in HNSCC models and uncovers a novel β1 integrin-dependent mechanism that may prove useful in overcoming resistance to PI3K inhibitors.
Collapse
Affiliation(s)
- Irina Korovina
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiooncology - OncoRay, Dresden, Germany
| | - Marc Elser
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Olegs Borodins
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiooncology - OncoRay, Dresden, Germany
| | - Michael Seifert
- Institute for Medical Informatics and Biometry (IMB), Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; National Center for Tumor Diseases (NCT), Partner Site Dresden, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Henning Willers
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Nils Cordes
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiooncology - OncoRay, Dresden, Germany; National Center for Tumor Diseases (NCT), Partner Site Dresden, German Cancer Research Center (DKFZ), Heidelberg, Germany; German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Radiotherapy and Radiation Oncology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.
| |
Collapse
|
44
|
Liu W, Kang S, Chen H, Bahetjan Y, Zhang J, Lu R, Zheng N, Yang G, Yang X. A composition of ursolic acid derivatives from Ludwigia hyssopifolia induces apoptosis in throat cancer cells via the Akt/mTOR and mitochondrial signaling pathways and by modulating endoplasmic reticulum stress. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117351. [PMID: 37884218 DOI: 10.1016/j.jep.2023.117351] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 10/02/2023] [Accepted: 10/23/2023] [Indexed: 10/28/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ludwigia hyssopifolia (LH), an ethnopharmacological herb used in Guangxi Zhuang medicine, is known for its extensive therapeutic use in treating throat disorders. The anti-laryngeal-cancer benefits of the ethyl acetate and petroleum ether fractions of the ethanolic extracts of LH have been shown in our prior cell-based research. Nevertheless, the specific impacts and underlying processes by which LH combats throat cancer effects have not been fully understood. AIM OF THE STUDY This study involved the extraction of a composition containing two derivatives of ursolic acid from LH (LH-CUAD). The present study aimed to assess the anti-throat-cancer effects of these derivatives and the underlying mechanisms through in vitro and in vivo experiments. MATERIALS AND METHODS Solvent extraction, fractionation, chromatography, and semipreparative high-performance liquid chromatography were used for the extraction, purification, and analysis of LH-CUAD. The in vitro and in vivo anti-throat-cancer effects of LH-CUAD were investigated using the throat cancer cell lines Hep-2 and FaDu as well as Hep-2 tumor-bearing nude mice. RESULTS LH-CUAD significantly inhibited the proliferation and migration of throat cancer cells without any prominent toxicity. The Hoechst 33258 staining, Annexin V-FITC/PI double-staining assays, and flow cytometry confirmed that LH-CUAD could induce throat cancer cell death from early to late apoptosis in vitro. LH-CUAD exhibited significant antitumor activity and low toxicity in a xenograft model, and induced throat cancer cells apoptosis in vivo. The apoptotic effects of LH-CUAD therapy were validated using Western blotting, which demonstrated the activation of a caspase cascade response triggered by an imbalance between the endoplasmic reticulum and mitochondria. In addition, it was observed that LH-CUAD exhibited inhibitory effects on Akt and mTOR phosphorylation, hence promoting apoptosis. CONCLUSIONS LH-CUAD induces apoptosis in both in vivo and in vitro models of throat cancer. This effect is achieved by activating the mitochondrial pathway, inhibiting the Akt/mTOR pathway and initiating endoplasmic reticulum stress. The findings of this study suggest that LH-CUAD has the potential to offer a novel approach to the clinical management of throat cancer.
Collapse
Affiliation(s)
- Wenqi Liu
- International Cooperation Base for Active Substances in Traditional Chinese Medicine in Hubei Province, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, China
| | - Shiwen Kang
- International Cooperation Base for Active Substances in Traditional Chinese Medicine in Hubei Province, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, China
| | - Huijian Chen
- International Cooperation Base for Active Substances in Traditional Chinese Medicine in Hubei Province, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, China
| | - Yerlan Bahetjan
- International Cooperation Base for Active Substances in Traditional Chinese Medicine in Hubei Province, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, China
| | - Jinyan Zhang
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530200, China
| | - Rumei Lu
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530200, China
| | - Ni Zheng
- International Cooperation Base for Active Substances in Traditional Chinese Medicine in Hubei Province, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, China
| | - Guangzhong Yang
- International Cooperation Base for Active Substances in Traditional Chinese Medicine in Hubei Province, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, China.
| | - Xinzhou Yang
- International Cooperation Base for Active Substances in Traditional Chinese Medicine in Hubei Province, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, China.
| |
Collapse
|
45
|
Chen Y, Chen S, Chen K, Ji L, Cui S. Magnolol and 5-fluorouracil synergy inhibition of metastasis of cervical cancer cells by targeting PI3K/AKT/mTOR and EMT pathways. CHINESE HERBAL MEDICINES 2024; 16:94-105. [PMID: 38375055 PMCID: PMC10874772 DOI: 10.1016/j.chmed.2023.01.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/29/2022] [Accepted: 01/16/2023] [Indexed: 02/21/2024] Open
Abstract
Objective This study is designed to investigate the mode of action of the synergistic effect of 5-fluorouracil (5-FU) and magnolol against cervical cancer. Methods Network pharmacological approach was applied to predict the molecular mechanism of 5-FU combined with magnolol against cervical cancer. CCK-8 assay, colony formation assay, immunofluorescence staining, adhesion assay, wound healing mobility assay, cell migration and invasion assay and Western blot analysis were conducted to validate the results of in silico study. Results Phosphatidylinositol 3 kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR) signaling pathway was identified as the key pathway in silico study. The experimental results showed that 5-FU combined with magnolol strongly inhibited cervical cancer cell proliferation, induced the morphological change of HeLa cells by down-regulating the expression of α-actinin, tensin-2 and vinculin. Moreover, magnolol enhanced inhibitory effect of 5-FU on the cell adhesion, migration and invasion. The phosphorylation of AKT and PI3K and the expression of mTOR were strongly inhibited by the combination of 5-FU and magnolol. Moreover, the expression of E-cadherin and β-catenin was upregulated and the expression of Snail, Slug and vimentin was down-regulated by the 5-FU together with magnolol. Conclusion Taken together, this study suggests that 5-FU combined with magnolol exerts a synergistic anti-cervical cancer effect by regulating the PI3K/AKT/mTOR and epithelial-mesenchymal transition (EMT) signaling pathways.
Collapse
Affiliation(s)
- Yuanyuan Chen
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Medical College of Yangzhou University, Yangzhou 225009, China
| | - Shanshan Chen
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Medical College of Yangzhou University, Yangzhou 225009, China
| | - Kaiting Chen
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Medical College of Yangzhou University, Yangzhou 225009, China
| | - Lanfang Ji
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Medical College of Yangzhou University, Yangzhou 225009, China
| | - Shuna Cui
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Medical College of Yangzhou University, Yangzhou 225009, China
- Department of Gynecology and Obstetrics, Affiliated Hospital of Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
46
|
Du B, Zhang J, Kong L, Shi H, Zhang D, Wang X, Yang C, Li P, Yao R, Liang C, Wu L, Huang Z. Ovarian Tumor Domain-Containing 7B Attenuates Pathological Cardiac Hypertrophy by Inhibiting Ubiquitination and Degradation of Krüppel-Like Factor 4. J Am Heart Assoc 2023; 12:e029745. [PMID: 38084712 PMCID: PMC10863784 DOI: 10.1161/jaha.123.029745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 08/15/2023] [Indexed: 12/20/2023]
Abstract
BACKGROUND Cardiac hypertrophy (CH) is a well-established risk factor for many cardiovascular diseases and a primary cause of mortality and morbidity among older adults. Currently, no pharmacological interventions have been specifically tailored to treat CH. OTUD7B (ovarian tumor domain-containing 7B) is a member of the ovarian tumor-related protease (OTU) family that regulates many important cell signaling pathways. However, the role of OTUD7B in the development of CH is unclear. Therefore, we investigated the role of OTUD7B in CH. METHODS AND RESULTS OTUD7B knockout mice were used to assay the role of OTUD7B in CH after transverse aortic coarctation surgery. We further assayed the specific functions of OTUD7B in isolated neonatal rat cardiomyocytes. We found that OTUD7B expression decreased in hypertrophic mice hearts and phenylephrine-stimulated neonatal rat cardiomyocytes. Furthermore, OTUD7B deficiency exacerbated transverse aortic coarctation surgery-induced myocardial hypertrophy, abnormal cardiac function, and fibrosis. In cardiac myocytes, OTUD7B knockdown promoted phenylephrine stimulation-induced myocardial hypertrophy, whereas OTUD7B overexpression had the opposite effect. An immunoprecipitation-mass spectrometry analysis showed that OTUD7B directly binds to KLF4 (Krüppel-like factor 4). Additional molecular experiments showed that OTUD7B impedes KLF4 degradation by inhibiting lysine residue at 48 site-linked ubiquitination and suppressing myocardial hypertrophy by activating the serine/threonine kinase pathway. CONCLUSIONS These results demonstrate that the OTUD7B-KLF4 axis is a novel molecular target for CH treatment.
Collapse
Affiliation(s)
- Bin‐Bin Du
- Cardiovascular Hospital, The First Affiliated Hospital of Zhengzhou University, Zhengzhou UniversityZhengzhouChina
| | - Jie‐Lei Zhang
- Department of EndocrinologyThe First Affiliated Hospital of Zhengzhou University, Zhengzhou UniversityZhengzhouChina
| | - Ling‐Yao Kong
- Cardiovascular Hospital, The First Affiliated Hospital of Zhengzhou University, Zhengzhou UniversityZhengzhouChina
| | - Hui‐Ting Shi
- Cardiovascular Hospital, The First Affiliated Hospital of Zhengzhou University, Zhengzhou UniversityZhengzhouChina
| | - Dian‐Hong Zhang
- Cardiovascular Hospital, The First Affiliated Hospital of Zhengzhou University, Zhengzhou UniversityZhengzhouChina
| | - Xing Wang
- Cardiovascular Hospital, The First Affiliated Hospital of Zhengzhou University, Zhengzhou UniversityZhengzhouChina
| | - Chun‐Lei Yang
- Cardiovascular Hospital, The First Affiliated Hospital of Zhengzhou University, Zhengzhou UniversityZhengzhouChina
| | - Peng‐Cheng Li
- Cardiovascular Hospital, The First Affiliated Hospital of Zhengzhou University, Zhengzhou UniversityZhengzhouChina
| | - Rui Yao
- Cardiovascular Hospital, The First Affiliated Hospital of Zhengzhou University, Zhengzhou UniversityZhengzhouChina
| | - Cui Liang
- Cardiovascular Hospital, The First Affiliated Hospital of Zhengzhou University, Zhengzhou UniversityZhengzhouChina
| | - Lei‐Ming Wu
- Cardiovascular Hospital, The First Affiliated Hospital of Zhengzhou University, Zhengzhou UniversityZhengzhouChina
| | - Zhen Huang
- Cardiovascular Hospital, The First Affiliated Hospital of Zhengzhou University, Zhengzhou UniversityZhengzhouChina
| |
Collapse
|
47
|
Vukovic Đerfi K, Vasiljevic T, Matijevic Glavan T. Recent Advances in the Targeting of Head and Neck Cancer Stem Cells. APPLIED SCIENCES 2023; 13:13293. [DOI: 10.3390/app132413293] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Head and neck squamous cell carcinoma (HNSCC) is a very heterogeneous cancer with a poor overall response to therapy. One of the reasons for this therapy resistance could be cancer stem cells (CSCs), a small population of cancer cells with self-renewal and tumor-initiating abilities. Tumor cell heterogeneity represents hurdles for therapeutic elimination of CSCs. Different signaling pathway activations, such as Wnt, Notch, and Sonic-Hedgehog (SHh) pathways, lead to the expression of several cancer stem factors that enable the maintenance of CSC features. Identification and isolation of CSCs are based either on markers (CD133, CD44, and aldehyde dehydrogenase (ALDH)), side populations, or their sphere-forming ability. A key challenge in cancer therapy targeting CSCs is overcoming chemotherapy and radiotherapy resistance. However, in novel therapies, various approaches are being employed to address this hurdle such as targeting cell surface markers, other stem cell markers, and different signaling or metabolic pathways, but also, introducing checkpoint inhibitors and natural compounds into the therapy can be beneficial.
Collapse
Affiliation(s)
- Kristina Vukovic Đerfi
- Laboratory for Personalized Medicine, Division of Molecular Medicine, Ruđer Boskovic Institute, Bijenicka 54, 10000 Zagreb, Croatia
| | - Tea Vasiljevic
- Laboratory for Personalized Medicine, Division of Molecular Medicine, Ruđer Boskovic Institute, Bijenicka 54, 10000 Zagreb, Croatia
| | - Tanja Matijevic Glavan
- Laboratory for Personalized Medicine, Division of Molecular Medicine, Ruđer Boskovic Institute, Bijenicka 54, 10000 Zagreb, Croatia
| |
Collapse
|
48
|
Zhang Z, Peng Y, Peng X, Xiao D, Shi Y, Tao Y. Effects of radiation therapy on tumor microenvironment: an updated review. Chin Med J (Engl) 2023; 136:2802-2811. [PMID: 37442768 PMCID: PMC10686612 DOI: 10.1097/cm9.0000000000002535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Indexed: 07/15/2023] Open
Abstract
ABSTRACT Cancer is a major threat to human health and causes death worldwide. Research on the role of radiotherapy (RT) in the treatment of cancer is progressing; however, RT not only causes fatal DNA damage to tumor cells, but also affects the interactions between tumor cells and different components of the tumor microenvironment (TME), including immune cells, fibroblasts, macrophages, extracellular matrix, and some soluble products. Some cancer cells can survive radiation and have shown strong resistance to radiation through interaction with the TME. Currently, the complex relationships between the tumor cells and cellular components that play major roles in various TMEs are poorly understood. This review explores the relationship between RT and cell-cell communication in the TME from the perspective of immunity and hypoxia and aims to identify new RT biomarkers and treatment methods in lung cancer to improve the current status of unstable RT effect and provide a theoretical basis for further lung cancer RT sensitization research in the future.
Collapse
Affiliation(s)
- Zewen Zhang
- NHC Key Laboratory of Carcinogenesis, Cancer Research Institute, Central South University, Changsha, Hunan 410078, China
| | - Yuanhao Peng
- Department of Pathology, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, School of Basic Medicine, Central South University, Changsha, Hunan 410078, China
| | - Xin Peng
- Department of Pathology, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, School of Basic Medicine, Central South University, Changsha, Hunan 410078, China
| | - Desheng Xiao
- Department of Pathology, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, School of Basic Medicine, Central South University, Changsha, Hunan 410078, China
| | - Ying Shi
- NHC Key Laboratory of Carcinogenesis, Cancer Research Institute, Central South University, Changsha, Hunan 410078, China
| | - Yongguang Tao
- NHC Key Laboratory of Carcinogenesis, Cancer Research Institute, Central South University, Changsha, Hunan 410078, China
- Department of Pathology, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, School of Basic Medicine, Central South University, Changsha, Hunan 410078, China
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410078, China
- Department of Thoracic Surgery, Hunan Key Laboratory of Early Diagnosis and Precision Therapy in Lung Cancer, Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| |
Collapse
|
49
|
Fayez AG, Esmaiel NN, Ashaat EA, Refeat MM, Lotfy RS, Raouf HA, El Ruby MO. New drug-like small molecule antagonizes phosphatidylinositol (3,4,5)-trisphosphate (PIP3) in patients with conotruncal heart defects. J Taibah Univ Med Sci 2023; 18:1244-1253. [PMID: 37250809 PMCID: PMC10213100 DOI: 10.1016/j.jtumed.2023.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 02/02/2023] [Accepted: 04/20/2023] [Indexed: 05/31/2023] Open
Abstract
Objectives Conotruncal heart defects (CTDs) are highly heritable, and approximately one-third of all congenital heart defects are due to CTDs. Through post-analysis of GWAS data relevant to CTDs, a new putative signal transduction pathway, called Vars2-Pic3ca-Akt, associated with CTD has been hypothesized. Here, we aimed to validate the Vars2-Pic3ca-Akt pathway experimentally by measuring Vars2 and PIP3 in patients with CTDs and controls, and to construct a PIP3 inhibitor, as one of harmful-relevant CTD pathogenesis, through an Akt-based drug design strategy. Methods rs2517582 genotype and relative Vars2 expression in 207 individuals were determined by DNA sequencing and qPCR respectively, and free plasma PIP3 in 190 individuals was quantified through ELISA. An Akt-pharmacophore feature model was used to discover PIP3 antagonists with multiple computational and drug-like estimation tools. Results CTD pathogenesis due to Vars2-Pic3ca-Akt overstimulation was confirmed by elevated Vars2 and PIP3 in patients with CTDs. We identified a new small molecule, 322PESB, that antagonizes PIP3 binding. This molecule was prioritized via virtual screening of 21 hypothetical small molecules and it showed minimal RMSD change, high binding affinity andlower dissociation constant than PIP3-Akt complex by 1.99 Kcal/Mol, thus resulting in an equilibrium shift toward 322PESB-Akt complex formation. Moreover, 322PESB exhibited acceptable pharmacokinetics and drug likeness features according to ADME and Lipinski's rule of five classifiers. This compound is the first potential drug-like molecule reported for patients with CTDs with elevated PIP3. Conclusion PIP3 is a useful diagnostic biomarker for patients with CTDs. The Akt-pharmacophore feature model is a feasible approach for discovery of PIP3 signalling antagonists. Further 322PESB development and testing are recommended.
Collapse
Affiliation(s)
- Alaaeldin G. Fayez
- Molecular Genetics and Enzymology Department, Human Genetics and Genome Research Institute, National Research Centre, Giza, Egypt
| | - Nora N. Esmaiel
- Molecular Genetics and Enzymology Department, Human Genetics and Genome Research Institute, National Research Centre, Giza, Egypt
| | - Engy A. Ashaat
- Clinical Genetics Department, Human Genetics and Genome Research Institute, National Research Centre, Giza, Egypt
| | - Miral M. Refeat
- Medical Molecular Genetics Department, Human Genetics and Genome Research Institute, National Research Centre, Giza, Egypt
| | - Randa S. Lotfy
- Molecular Genetics and Enzymology Department, Human Genetics and Genome Research Institute, National Research Centre, Giza, Egypt
| | - Haiam Abdel Raouf
- Immunogenetics Department, Human Genetics and Genome Research Institute, National Research Centre, Giza, Egypt
| | - Mona O. El Ruby
- Clinical Genetics Department, Human Genetics and Genome Research Institute, National Research Centre, Giza, Egypt
| |
Collapse
|
50
|
Skelin J, Luk HY, Butorac D, Boon SS, Tomaić V. The effects of HPV oncoproteins on host communication networks: Therapeutic connotations. J Med Virol 2023; 95:e29315. [PMID: 38115222 DOI: 10.1002/jmv.29315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/13/2023] [Accepted: 11/29/2023] [Indexed: 12/21/2023]
Abstract
Human papillomavirus (HPV) infections are a leading cause of viral-induced malignancies worldwide, with a prominent association with cervical and head and neck cancers. The pivotal role of HPV oncoproteins, E5, E6, and E7, in manipulating cellular events, which contribute to viral pathogenesis in various ways, has been extensively documented. This article reviews the influence of HPV oncoproteins on cellular signaling pathways within the host cell, shedding light on the underlying molecular mechanisms. A comprehensive understanding of these molecular alterations is essential for the development of targeted therapies and strategies to combat HPV-induced premalignancies and prevent their progress to cancer. Furthermore, this review underscores the intricate interplay between HPV oncoproteins and some of the most important cellular signaling pathways: Notch, Wnt/β-catenin, MAPK, JAK/STAT, and PI3K AKT/mTOR. The treatment efficacies of the currently available inhibitors on these pathways in an HPV-positive context are also discussed. This review also highlights the importance of continued research to advance our knowledge and enhance therapeutic interventions for HPV-associated diseases.
Collapse
Affiliation(s)
- Josipa Skelin
- Division of Molecular Medicine, Ruđer Bošković Institute, Zagreb, Croatia
| | - Ho Yin Luk
- Department of Microbiology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR
| | - Dražan Butorac
- Department of Gynecology and Obstetrics, Sestre Milosrdnice University Hospital Center, Zagreb, Croatia
| | - Siaw Shi Boon
- Department of Microbiology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR
| | - Vjekoslav Tomaić
- Division of Molecular Medicine, Ruđer Bošković Institute, Zagreb, Croatia
| |
Collapse
|