1
|
Kay JE, Cardona B, Rudel RA, Vandenberg LN, Soto AM, Christiansen S, Birnbaum LS, Fenton SE. Chemical Effects on Breast Development, Function, and Cancer Risk: Existing Knowledge and New Opportunities. Curr Environ Health Rep 2022; 9:535-562. [PMID: 35984634 PMCID: PMC9729163 DOI: 10.1007/s40572-022-00376-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Population studies show worrisome trends towards earlier breast development, difficulty in breastfeeding, and increasing rates of breast cancer in young women. Multiple epidemiological studies have linked these outcomes with chemical exposures, and experimental studies have shown that many of these chemicals generate similar effects in rodents, often by disrupting hormonal regulation. These endocrine-disrupting chemicals (EDCs) can alter the progression of mammary gland (MG) development, impair the ability to nourish offspring via lactation, increase mammary tissue density, and increase the propensity to develop cancer. However, current toxicological approaches to measuring the effects of chemical exposures on the MG are often inadequate to detect these effects, impairing our ability to identify exposures harmful to the breast and limiting opportunities for prevention. This paper describes key adverse outcomes for the MG, including impaired lactation, altered pubertal development, altered morphology (such as increased mammographic density), and cancer. It also summarizes evidence from humans and rodent models for exposures associated with these effects. We also review current toxicological practices for evaluating MG effects, highlight limitations of current methods, summarize debates related to how effects are interpreted in risk assessment, and make recommendations to strengthen assessment approaches. Increasing the rigor of MG assessment would improve our ability to identify chemicals of concern, regulate those chemicals based on their effects, and prevent exposures and associated adverse health effects.
Collapse
Affiliation(s)
| | | | | | - Laura N Vandenberg
- Department of Environmental Health Sciences, School of Public Health & Health Sciences, University of Massachusetts Amherst, Amherst, MA, USA
| | - Ana M Soto
- Tufts University School of Medicine, Boston, MA, USA
| | - Sofie Christiansen
- National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Linda S Birnbaum
- Nicholas School of the Environment, Duke University, Durham, NC, USA
| | - Suzanne E Fenton
- Mechanistic Toxicology Branch, Division of the National Toxicology Program, National Institutes of Environmental Health Sciences, National Institutes of Health, Durham, NC, USA
| |
Collapse
|
2
|
Plante I, Winn LM, Vaillancourt C, Grigorova P, Parent L. Killing two birds with one stone: Pregnancy is a sensitive window for endocrine effects on both the mother and the fetus. ENVIRONMENTAL RESEARCH 2022; 205:112435. [PMID: 34843719 DOI: 10.1016/j.envres.2021.112435] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 06/13/2023]
Abstract
Pregnancy is a complex process requiring tremendous physiological changes in the mother in order to fulfill the needs of the growing fetus, and to give birth, expel the placenta and nurse the newborn. These physiological modifications are accompanied with psychological changes, as well as with variations in habits and behaviors. As a result, this period of life is considered as a sensitive window as impaired functional and physiological changes in the mother can have short- and long-term impacts on her health. In addition, dysregulation of the placenta and of mechanisms governing placentation have been linked to chronic diseases later-on in life for the fetus, in a concept known as the Developmental Origin of Health and Diseases (DOHaD). This concept stipulates that any change in the environment during the pre-conception and perinatal (in utero life and neonatal) period to puberty, can be "imprinted" in the organism, thereby impacting the health and risk of chronic diseases later in life. Pregnancy is a succession of events that is regulated, in large part, by hormones and growth factors. Therefore, small changes in hormonal balance can have important effects on both the mother and the developing fetus. An increasing number of studies demonstrate that exposure to endocrine disrupting compounds (EDCs) affect both the mother and the fetus giving rise to growing concerns surrounding these exposures. This review will give an overview of changes that happen during pregnancy with respect to the mother, the placenta, and the fetus, and of the current literature regarding the effects of EDCs during this specific sensitive window of exposure.
Collapse
Affiliation(s)
- Isabelle Plante
- INRS-Centre Armand-Frappier Santé Biotechnologie, Laval, QC, Canada.
| | - Louise M Winn
- Queen's University, School of Environmental Studies, Department of Biomedical and Molecular Sciences, Kingston, ON, Canada
| | | | - Petya Grigorova
- Département Science et Technologie, Université TELUQ, Montreal, QC, Canada
| | - Lise Parent
- Département Science et Technologie, Université TELUQ, Montreal, QC, Canada
| |
Collapse
|
3
|
Dobrzyński M, Madej JP, Leśków A, Tarnowska M, Majda J, Szopa M, Gamian A, Kuropka P. The Improvement of the Adaptation Process of Tocopherol and Acetylsalicylic Acid in Offspring of Mothers Exposed to TCDD. Animals (Basel) 2021; 11:ani11123430. [PMID: 34944207 PMCID: PMC8698147 DOI: 10.3390/ani11123430] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 11/26/2021] [Accepted: 11/28/2021] [Indexed: 12/27/2022] Open
Abstract
Simple Summary Dioxins are proinflammatory factors that may be transferred to offspring through the placenta during pregnancy. α-tocopherol and acetylsalicylic acid are popular agents that limit the spread of inflammation. A histopathological and biochemical analysis was performed to reveal possible changes in liver and blood plasma in response to dioxins, α-tocopherol, and acetylsalicylic acid. The conducted research demonstrated the presence of negative effects on the liver morphology and blood plasma proteins of offspring, due to dioxins that were derived from the mother. However, the use of both drugs can significantly reduce the negative effects on offspring whose mothers have been treated with dioxins. Abstract Dioxins are chemical compounds that may cause an inflammatory reaction. During dioxin-induced inflammation, generated reactive oxygen species lead to morphological changes in various tissues and in biochemical parameters. The aim of this study was to demonstrate the changes in the livers of rats whose mothers were exposed to dioxins and the protective role of α-tocopherol and acetylsalicylic acid in liver inflammation. The study material consisted of Buffalo rats who were the offspring of females treated with dioxin, dioxin + α-tocopherol, or dioxin + acetylsalicylic acid. Livers and blood samples were taken from the rats’ offspring, and then histopathological and biochemical analyses were performed. The histopathological analysis showed that the changes observed in the livers of neonates were the result of the dioxins derived from their mother. The biochemical analysis showed that the morphological changes in the liver affected its function, which manifested in a higher total protein concentration in the dioxin-treated group, and that the creatinine level in this group was significantly higher than that in the other groups. This effect was reduced by the protective role of α-tocopherol and acetylsalicylic acid. Based on these results, we came to the conclusion that dioxins significantly affect the structure of the liver, which negatively affects its function, mainly in the scope of the metabolism of plasma proteins and hepatic enzymes.
Collapse
Affiliation(s)
- Maciej Dobrzyński
- Department of Pediatric Dentistry and Preclinical Dentistry, Faculty of Dentistry, Wroclaw Medical University, Krakowska 26, 50-425 Wroclaw, Poland
- Correspondence: (M.D.); (A.L.)
| | - Jan P. Madej
- Department of Histology and Embryology, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, Norwida 25, 50-375 Wroclaw, Poland; (J.P.M.); (P.K.)
| | - Anna Leśków
- Department of Basic Sciences, Faculty of Health Sciences, Wroclaw Medical University, Grunwaldzka 2, 50-368 Wroclaw, Poland;
- Correspondence: (M.D.); (A.L.)
| | - Małgorzata Tarnowska
- Department of Basic Sciences, Faculty of Health Sciences, Wroclaw Medical University, Grunwaldzka 2, 50-368 Wroclaw, Poland;
| | - Jacek Majda
- Department of Laboratory Diagnostics, 4th Military Hospital, Weigla 5, 50-981 Wroclaw, Poland;
| | - Monika Szopa
- Military Center for Preventive Medicine, Slezna 158, 50-984 Wroclaw, Poland;
| | - Andrzej Gamian
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigla 12, 53-114 Wroclaw, Poland;
| | - Piotr Kuropka
- Department of Histology and Embryology, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, Norwida 25, 50-375 Wroclaw, Poland; (J.P.M.); (P.K.)
| |
Collapse
|
4
|
Hattori Y, Takeda T, Fujii M, Taura J, Yamada H, Ishii Y. Attenuation of growth hormone production at the fetal stage is critical for dioxin-induced developmental disorder in rat offspring. Biochem Pharmacol 2021; 186:114495. [PMID: 33711284 DOI: 10.1016/j.bcp.2021.114495] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 02/22/2021] [Accepted: 02/24/2021] [Indexed: 02/08/2023]
Abstract
Although dioxins and related chemicals have been suspected to disrupt child development, their toxic mechanism remains poorly understood. Our previous studies in rat fetuses revealed that maternal exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), a highly-toxic dioxin, suppresses fetal synthesis of pituitary growth hormone (GH) that is essential for development. This study examined the hypothesis that attenuating GH expression in fetuses triggers developmental disorders. Treating pregnant rats with 1 μg/kg TCDD reduced the circulating level of GH and its downstream factor, insulin-like growth factor-1 (IGF-1), in the offspring only during the fetal and early neonatal stages. Although maternal TCDD exposure resulted in low body weight and length at babyhood and defects in the learning and memory ability at adulthood, GH supplementation in TCDD-exposed fetuses restored or tended to restore the defects including IGF-1 downregulation. Moreover, maternal TCDD exposure decreased the number of GH-positive cells during the fetal/neonatal stage. A microarray analysis showed that TCDD reduced the expression of death-associated protein-like 1 (DAPL1), a cell cycle-dependent proliferation regulator, in the fetal pituitary gland. In addition, TCDD treatment attenuated proliferating cells and cyclin mRNA expression in the fetal pituitary gland. Aryl hydrocarbon receptor (AHR)-knockout fetuses were insensitive to TCDD treatment, indicating that the TCDD-induced reduction in DAPL1 and GH mRNAs expression was due to AHR activation. Finally, DAPL1 knockdown suppressed GH and cyclin D2 expression in fetal pituitary cells. These results provide a novel evidence that dioxin suppresses GH-producing cell proliferation and GH synthesis due to partly targeting DAPL1, thereby impairing offspring development.
Collapse
Affiliation(s)
- Yukiko Hattori
- Laboratory of Molecular Life Sciences, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Tomoki Takeda
- Laboratory of Molecular Life Sciences, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Misaki Fujii
- Laboratory of Molecular Life Sciences, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Junki Taura
- Laboratory of Molecular Life Sciences, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Hideyuki Yamada
- Laboratory of Molecular Life Sciences, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Yuji Ishii
- Laboratory of Molecular Life Sciences, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan; Division of Pharmaceutical Cell Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan.
| |
Collapse
|
5
|
Furue M, Ishii Y, Tsukimori K, Tsuji G. Aryl Hydrocarbon Receptor and Dioxin-Related Health Hazards-Lessons from Yusho. Int J Mol Sci 2021; 22:ijms22020708. [PMID: 33445793 PMCID: PMC7828254 DOI: 10.3390/ijms22020708] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/08/2021] [Accepted: 01/09/2021] [Indexed: 12/15/2022] Open
Abstract
Poisoning by high concentrations of dioxin and its related compounds manifests variable toxic symptoms such as general malaise, chloracne, hyperpigmentation, sputum and cough, paresthesia or numbness of the extremities, hypertriglyceridemia, perinatal abnormalities, and elevated risks of cancer-related mortality. Such health hazards are observed in patients with Yusho (oil disease in Japanese) who had consumed rice bran oil highly contaminated with 2,3,4,7,8-pentachlorodibenzofuran, polychlorinated biphenyls, and polychlorinated quaterphenyls in 1968. The blood concentrations of these congeners in patients with Yusho remain extremely elevated 50 years after onset. Dioxins exert their toxicity via aryl hydrocarbon receptor (AHR) through the generation of reactive oxygen species (ROS). In this review article, we discuss the pathogenic implication of AHR in dioxin-induced health hazards. We also mention the potential therapeutic use of herbal drugs targeting AHR and ROS in patients with Yusho.
Collapse
Affiliation(s)
- Masutaka Furue
- Research and Clinical Center for Yusho and Dioxin, Kyushu University Hospital, Fukuoka 812-8582, Japan;
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
- Correspondence: ; Tel.: +81-92-642-5581; Fax: +81-92-642-5600
| | - Yuji Ishii
- Division of Pharmaceutical Cell Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan;
| | - Kiyomi Tsukimori
- Department of Obstetrics, Perinatal Center, Fukuoka Children’s Hospital, Fukuoka 813-0017, Japan;
| | - Gaku Tsuji
- Research and Clinical Center for Yusho and Dioxin, Kyushu University Hospital, Fukuoka 812-8582, Japan;
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| |
Collapse
|
6
|
Eve L, Fervers B, Le Romancer M, Etienne-Selloum N. Exposure to Endocrine Disrupting Chemicals and Risk of Breast Cancer. Int J Mol Sci 2020; 21:E9139. [PMID: 33266302 PMCID: PMC7731339 DOI: 10.3390/ijms21239139] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/23/2020] [Accepted: 11/25/2020] [Indexed: 02/07/2023] Open
Abstract
Breast cancer (BC) is the second most common cancer and the fifth deadliest in the world. Exposure to endocrine disrupting pollutants has been suggested to contribute to the increase in disease incidence. Indeed, a growing number of researchershave investigated the effects of widely used environmental chemicals with endocrine disrupting properties on BC development in experimental (in vitro and animal models) and epidemiological studies. The complex effects of endocrine disrupting chemicals (EDCs) on hormonal pathways, involving carcinogenic effects and an increase in mammary gland susceptibility to carcinogenesis-together with the specific characteristics of the mammary gland evolving over the course of life and the multifactorial etiology of BC-make the evaluation of these compounds a complex issue. Among the many EDCs suspected of increasing the risk of BC, strong evidence has only been provided for few EDCs including diethylstilbestrol, dichlorodiphenyltrichloroethane, dioxins and bisphenol A. However, given the ubiquitous nature and massive use of EDCs, it is essential to continue to assess their long-term health effects, particularly on carcinogenesis, to eradicate the worst of them and to sensitize the population to minimize their use.
Collapse
Affiliation(s)
- Louisane Eve
- Faculté de Pharmacie, Université de Strasbourg, F-67000 Strasbourg, France;
- Université Claude Bernard Lyon 1, F-69000 Lyon, France
- Inserm U1052, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France
| | - Béatrice Fervers
- Centre de Lutte Contre le Cancer Léon-Bérard, F-69000 Lyon, France;
- Inserm UA08, Radiations, Défense, Santé, Environnement, Center Léon Bérard, F-69000 Lyon, France
| | - Muriel Le Romancer
- Université Claude Bernard Lyon 1, F-69000 Lyon, France
- Inserm U1052, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France
| | - Nelly Etienne-Selloum
- Faculté de Pharmacie, Université de Strasbourg, F-67000 Strasbourg, France;
- Service de Pharmacie, Institut de Cancérologie Strasbourg Europe, F-67000 Strasbourg, France
- CNRS UMR7021/Unistra, Laboratoire de Bioimagerie et Pathologies, Faculté de Pharmacie, Université de Strasbourg, F-67000 Strasbourg, France
| |
Collapse
|