1
|
Ahmad I, Patel HM. Orthoallosteric EGFR-TKIs: A New Paradigm in NSCLC Treatment Strategy Targeting the C797S Mutation. Drug Dev Res 2025; 86:e70036. [PMID: 39722446 DOI: 10.1002/ddr.70036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/09/2024] [Accepted: 12/07/2024] [Indexed: 12/28/2024]
Abstract
The remarkable clinical success of third-generation epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKIs) has significantly advanced the treatment landscape for non-small-cell lung cancer (NSCLC). However, the emergence of the tertiary point mutation C797S poses a substantial obstacle to their clinical efficacy, leading to a dearth of FDA-approved targeted therapies for patients harboring this mutation. Addressing this pressing clinical challenge necessitates the development of novel therapeutic agents targeting the clinically challenging EGFR mutation. This review delves into the design strategies, antitumor activity, and crucial protein-drug interactions of recently introduced Orthoallosteric fourth-generation EGFR-TKIs. These inhibitors are distinguished by their ability to simultaneously engage both the canonical orthosteric (ATP) binding site and the allosteric site. By shedding light on these key aspects, the review serves as a valuable resource for medicinal chemists, empowering them to propel the advancement of fourth-generation EGFR inhibitors.
Collapse
Affiliation(s)
- Iqrar Ahmad
- Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, India
| | - Harun M Patel
- Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, India
| |
Collapse
|
2
|
Li L, Liu C, Wang R, Yang X, Wei X, Chu C, Zhang G, Liu C, Cui W, Xu H, Wang K, An L, Li X. A novel role for WZ3146 in the inhibition of cell proliferation via ERK and AKT pathway in the rare EGFR G719X mutant cells. Sci Rep 2024; 14:22895. [PMID: 39358400 PMCID: PMC11447065 DOI: 10.1038/s41598-024-73293-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 09/16/2024] [Indexed: 10/04/2024] Open
Abstract
Mutations in the epidermal growth factor receptor (EGFR) gene are common driver oncogenes in non-small cell lung cancer (NSCLC). Studies have shown that afatinib is beneficial for NSCLC patients with rare EGFR mutations. However, the effectiveness of tyrosine kinase inhibitors (TKIs) against the G719X (G719A, G719C and G719S) mutation has not been fully established. Herein, using the CRISPR method, the EGFR G719X mutant cell lines were constructed to assess the sensitivity of the rare mutation G719X in NSCLC. WZ3146, a novel mutation-selective EGFR inhibitor, was conducted transcriptome sequencing and in vitro experiments. The results showed that WZ3146 induced cytotoxic effects, inhibited growth vitality and proliferation via ERK and AKT pathway in the EGFR G719X mutant cells. Our findings suggest that WZ3146 may be a promising treatment option for NSCLC patients with the EGFR exon 18 substitution mutation G719X.
Collapse
Affiliation(s)
- Lanxin Li
- No.115, Ximen Avenue, Translational Medicine Center, Huaihe Hospital of Henan University, Henan University, Kaifeng, 475000, China
- Institute of Metabolism and Health, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, Henan, China
| | - Chenyang Liu
- No.115, Ximen Avenue, Translational Medicine Center, Huaihe Hospital of Henan University, Henan University, Kaifeng, 475000, China
| | - Rui Wang
- No.115, Ximen Avenue, Translational Medicine Center, Huaihe Hospital of Henan University, Henan University, Kaifeng, 475000, China
| | - Xiaolin Yang
- No.115, Ximen Avenue, Translational Medicine Center, Huaihe Hospital of Henan University, Henan University, Kaifeng, 475000, China
| | - Xiangkai Wei
- No.115, Ximen Avenue, Translational Medicine Center, Huaihe Hospital of Henan University, Henan University, Kaifeng, 475000, China
| | - Chunhong Chu
- Institutes of Traditional Chinese Medicine, School of Pharmacy, Henan University, Kaifeng, 475000, Henan, China
| | - Guoliang Zhang
- Institutes of Traditional Chinese Medicine, School of Pharmacy, Henan University, Kaifeng, 475000, Henan, China
| | - Chenxue Liu
- No.115, Ximen Avenue, Translational Medicine Center, Huaihe Hospital of Henan University, Henan University, Kaifeng, 475000, China
| | - Wenrui Cui
- No.115, Ximen Avenue, Translational Medicine Center, Huaihe Hospital of Henan University, Henan University, Kaifeng, 475000, China
| | - Huixia Xu
- No.115, Ximen Avenue, Translational Medicine Center, Huaihe Hospital of Henan University, Henan University, Kaifeng, 475000, China
| | - Ke Wang
- No.115, Ximen Avenue, Translational Medicine Center, Huaihe Hospital of Henan University, Henan University, Kaifeng, 475000, China
| | - Lei An
- No.115, Ximen Avenue, Translational Medicine Center, Huaihe Hospital of Henan University, Henan University, Kaifeng, 475000, China.
- Institutes of Traditional Chinese Medicine, School of Pharmacy, Henan University, Kaifeng, 475000, Henan, China.
| | - Xiaodong Li
- No.115, Ximen Avenue, Translational Medicine Center, Huaihe Hospital of Henan University, Henan University, Kaifeng, 475000, China.
| |
Collapse
|
3
|
Zhang Y, Tong L, Yan F, Huang P, Zhu CL, Pan C. Design, synthesis, and antitumor activity evaluation of potent fourth-generation EGFR inhibitors for treatment of Osimertinib resistant non-small cell lung cancer (NSCLC). Bioorg Chem 2024; 147:107394. [PMID: 38691906 DOI: 10.1016/j.bioorg.2024.107394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/18/2024] [Accepted: 04/23/2024] [Indexed: 05/03/2024]
Abstract
Epidermal growth factor receptor (EGFR) is one of the most studied drug targets for treating non-small-cell lung cancer (NSCLC). However, there are no approved inhibitors for the C797S resistance mutation caused by the third-generation EGFR inhibitor (Osimertinib). Therefore, the development of fourth-generation EGFR inhibitors is urgent. In this study, we clarified the structure-activity relationship of several synthesized compounds as fourth-generation inhibitors against human triple (Del19/T790M/C797S) mutation. Representative compound 52 showed potent inhibitory activity against EGFRL858R/T790M/C797S with an IC50 of 0.55 nM and significantly inhibited the proliferation of the Ba/F3 cell line harboring EGFRL858R/T790M/C797S with an IC50 of 43.28 nM. Moreover, 52 demonstrated good pharmacokinetic properties and excellent in vivo efficacy. Overall, the compound 52 can be considered a promising candidate for overcoming EGFR C797S-mediated mutations.
Collapse
Affiliation(s)
- Yuchen Zhang
- Institute of Pharmacology & Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China; Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou 310018, PR China
| | - Lexian Tong
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou 310018, PR China
| | - Fangjie Yan
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou 310018, PR China
| | - Ping Huang
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, PR China; Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, PR China; Zhejiang Provincial Clinical Research Center for Malignant Tumor, 310014 Hangzhou, Zhejiang, PR China.
| | - Cheng-Liang Zhu
- Institute of Pharmacology & Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China; Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou 310018, PR China.
| | - Chenghao Pan
- Institute of Pharmacology & Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China; Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou 310018, PR China.
| |
Collapse
|
4
|
Nie XW, Nasim AA, Yao XJ, Fan XX. ZYZ384 suppresses the growth of EGFR-mutant non-small cell lung cancer by activating JNK/MAPK signaling pathway. Chem Biol Drug Des 2024; 103:e14408. [PMID: 38009559 DOI: 10.1111/cbdd.14408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 10/23/2023] [Accepted: 11/13/2023] [Indexed: 11/29/2023]
Abstract
The emergency of tyrosine kinase inhibitors has remarkably enhanced the clinical outcomes of cancer therapy, especially the use of EGFR inhibitors for non-small cell lung cancer (NSCLC). However, acquired resistance is inevitable after 8-12 months treatment. New agents or treatments are urgently required to resolve this problem. In this study, we identified that compound ZYZ384 can selectively inhibit the growth of gefitinib-resistant (G-R) lung cancer cells, without affecting that of normal lung epithelial cells. ZYZ384 induced G2 arrest in G-R NSCLC cells, decreasing the expression of Cyclin B1 and increasing the expression of P21. Meanwhile, ZYZ384 also induced apoptosis in NSCLC cells and correspondingly increased the expression of cleaved Caspase 3, 8, and 9 proteins. The expression of p-JNK, p-P38, and p-ERK were also increased in H1975 NSCLC cells treated with ZYZ384. Finally, we observed that the JNK inhibitor effectively reversed the pro-apoptotic effect of ZYZ384. In conclusion, ZYZ384 is a potential therapeutic agent to inhibit the growth of NSCLCs with EGFR mutations through activating JNK, which will help the development of related anticancer drugs.
Collapse
Affiliation(s)
- Xiao-Wen Nie
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Ali Adnan Nasim
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Xiao-Jun Yao
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Xing-Xing Fan
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| |
Collapse
|
5
|
Sang J, Ye X. Potential biomarkers for predicting immune response and outcomes in lung cancer patients undergoing thermal ablation. Front Immunol 2023; 14:1268331. [PMID: 38022658 PMCID: PMC10646301 DOI: 10.3389/fimmu.2023.1268331] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 10/18/2023] [Indexed: 12/01/2023] Open
Abstract
Thermal ablation is a promising alternative treatment for lung cancer. It disintegrates cancer cells and releases antigens, followed by the remodeling of local tumor immune microenvironment and the activation of anti-tumor immune responses, enhancing the overall effectiveness of the treatment. Biomarkers can offer insights into the patient's immune response and outcomes, such as local tumor control, recurrence, overall survival, and progression-free survival. Identifying and validating such biomarkers can significantly impact clinical decision-making, leading to personalized treatment strategies and improved patient outcomes. This review provides a comprehensive overview of the current state of research on potential biomarkers for predicting immune response and outcomes in lung cancer patients undergoing thermal ablation, including their potential role in lung cancer management, and the challenges and future directions.
Collapse
Affiliation(s)
| | - Xin Ye
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Lung Cancer Institute, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Jinan, China
| |
Collapse
|
6
|
Șandor A, Ionuț I, Marc G, Oniga I, Eniu D, Oniga O. Structure-Activity Relationship Studies Based on Quinazoline Derivatives as EGFR Kinase Inhibitors (2017-Present). Pharmaceuticals (Basel) 2023; 16:534. [PMID: 37111291 PMCID: PMC10141396 DOI: 10.3390/ph16040534] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 03/28/2023] [Accepted: 03/31/2023] [Indexed: 04/07/2023] Open
Abstract
The epidermal growth factor receptor (EGFR) plays a critical role in the tumorigenesis of various forms of cancer. Targeting the mutant forms of EGFR has been identified as an attractive therapeutic approach and led to the approval of three generations of inhibitors. The quinazoline core has emerged as a favorable scaffold for the development of novel EGFR inhibitors due to increased affinity for the active site of EGFR kinase. Currently, there are five first-generation (gefitinib, erlotinib, lapatinib, vandetanib, and icotinib) and two second-generation (afatinib and dacomitinib) quinazoline-based EGFR inhibitors approved for the treatment of various types of cancers. The aim of this review is to outline the structural modulations favorable for the inhibitory activity toward both common mutant (del19 and L858R) and resistance-conferring mutant (T790M and C797S) EGFR forms, and provide an overview of the newly synthesized quinazoline derivatives as potentially competitive, covalent or allosteric inhibitors of EGFR.
Collapse
Affiliation(s)
- Alexandru Șandor
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 41 Victor Babeș Street, 400010 Cluj-Napoca, Romania; (A.Ș.); (G.M.); (O.O.)
| | - Ioana Ionuț
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 41 Victor Babeș Street, 400010 Cluj-Napoca, Romania; (A.Ș.); (G.M.); (O.O.)
| | - Gabriel Marc
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 41 Victor Babeș Street, 400010 Cluj-Napoca, Romania; (A.Ș.); (G.M.); (O.O.)
| | - Ilioara Oniga
- Department of Pharmacognosy, “Iuliu Hatieganu” University of Medicine and Pharmacy, 12 Ion Creangă Street, 400010 Cluj-Napoca, Romania;
| | - Dan Eniu
- Department of Surgical Oncology, “Iuliu Hațieganu” University of Medicine and Pharmacy, 34-36 Republicii Street, 40015 Cluj-Napoca, Romania;
| | - Ovidiu Oniga
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 41 Victor Babeș Street, 400010 Cluj-Napoca, Romania; (A.Ș.); (G.M.); (O.O.)
| |
Collapse
|
7
|
Sun Y, Wang Y, Guan L. A systematic analysis in efficacy and safety of nimotuzumab combined with chemoradiotherapy in treatment of advanced nasopharyngeal carcinoma. Eur Arch Otorhinolaryngol 2023; 280:1183-1190. [PMID: 36053358 DOI: 10.1007/s00405-022-07609-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 08/11/2022] [Indexed: 02/07/2023]
Abstract
OBJECTIVE To analyze the clinical effect of nitorzumab injection combined with chemoradiotherapy in the treatment of advanced nasopharyngeal carcinoma. METHODS The databases, such as CNKI, Wanfang, VIP, China Biology Medicine (CBM), PubMed, Cochrane Library, Wiley Online Library, and Google Academic were searched. The randomized controlled trials (RCT) of nimotuzumab combined with concurrent chemoradiotherapy (experimental group) and concurrent chemoradiotherapy (control group) were searched. The between-group differences of objective remission rate (ORR), disease control rate (DCR), and drug-related adverse reactions were analyzed by RevMan5.3 software. RESULTS Totally, 11 studies were included in meta-analysis, including 655 patients. All 11 articles mentioned random grouping and no blind method was used. The objective remission rate, disease control rate, and adverse drug reactions are given in 11 articles. In this study, 11 literatures were analyzed by fixed effect model after heterogeneity and sensitivity analysis. The meta analysis showed that in 10 literatures, the objective remission rate and disease control rate of patients in the experimental group were significantly higher than those in the control group (RR = 1.32, 95% CI: 1.2-1.45, Z = 5.72, P < 0.00001); (RR = 1.07, 95% CI: 1.02-1.11, Z = 3.04, P = 0.002 < 0.01. There was no significant difference in adverse reactions between the two groups (RR = 0.95, 95% CI: 0.79-1.15, Z = 0.52, P = 0.6 > 0.05). CONCLUSION The efficacy and safety of nituozumab injection combined with concurrent chemoradiotherapy are reliable and definite.
Collapse
Affiliation(s)
- Yunqin Sun
- Sanquan College of Xinxiang Medical University, XinXiang, 453003, Henan Province, China
| | - Yaofeng Wang
- Sanquan College of Xinxiang Medical University, XinXiang, 453003, Henan Province, China
| | - Liping Guan
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453000, Henan Province, China.
| |
Collapse
|
8
|
Zhong J, Bai H, Wang Z, Duan J, Zhuang W, Wang D, Wan R, Xu J, Fei K, Ma Z, Zhang X, Wang J. Treatment of advanced non-small cell lung cancer with driver mutations: current applications and future directions. Front Med 2023; 17:18-42. [PMID: 36848029 DOI: 10.1007/s11684-022-0976-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 12/05/2022] [Indexed: 03/01/2023]
Abstract
With the improved understanding of driver mutations in non-small cell lung cancer (NSCLC), expanding the targeted therapeutic options improved the survival and safety. However, responses to these agents are commonly temporary and incomplete. Moreover, even patients with the same oncogenic driver gene can respond diversely to the same agent. Furthermore, the therapeutic role of immune-checkpoint inhibitors (ICIs) in oncogene-driven NSCLC remains unclear. Therefore, this review aimed to classify the management of NSCLC with driver mutations based on the gene subtype, concomitant mutation, and dynamic alternation. Then, we provide an overview of the resistant mechanism of target therapy occurring in targeted alternations ("target-dependent resistance") and in the parallel and downstream pathways ("target-independent resistance"). Thirdly, we discuss the effectiveness of ICIs for NSCLC with driver mutations and the combined therapeutic approaches that might reverse the immunosuppressive tumor immune microenvironment. Finally, we listed the emerging treatment strategies for the new oncogenic alternations, and proposed the perspective of NSCLC with driver mutations. This review will guide clinicians to design tailored treatments for NSCLC with driver mutations.
Collapse
Affiliation(s)
- Jia Zhong
- State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Hua Bai
- State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Zhijie Wang
- State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Jianchun Duan
- State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Wei Zhuang
- State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Di Wang
- State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Rui Wan
- State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Jiachen Xu
- State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Kailun Fei
- State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Zixiao Ma
- State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Xue Zhang
- State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Jie Wang
- State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
9
|
Arafet K, Scalvini L, Galvani F, Martí S, Moliner V, Mor M, Lodola A. Mechanistic Modeling of Lys745 Sulfonylation in EGFR C797S Reveals Chemical Determinants for Inhibitor Activity and Discriminates Reversible from Irreversible Agents. J Chem Inf Model 2023; 63:1301-1312. [PMID: 36762429 PMCID: PMC9976278 DOI: 10.1021/acs.jcim.2c01586] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Targeted covalent inhibitors hold promise for drug discovery, particularly for kinases. Targeting the catalytic lysine of epidermal growth factor receptor (EGFR) has attracted attention as a new strategy to overcome resistance due to the emergence of C797S mutation. Sulfonyl fluoride derivatives able to inhibit EGFRL858R/T790M/C797S by sulfonylation of Lys745 have been reported. However, atomistic details of this process are still poorly understood. Here, we describe the mechanism of inhibition of an innovative class of compounds that covalently engage the catalytic lysine of EGFR, through a sulfur(VI) fluoride exchange (SuFEx) process, with the help of hybrid quantum mechanics/molecular mechanics (QM/MM) and path collective variables (PCVs) approaches. Our simulations identify the chemical determinants accounting for the irreversible activity of agents targeting Lys745 and provide hints for the further optimization of sulfonyl fluoride agents.
Collapse
Affiliation(s)
- Kemel Arafet
- Dipartimento
di Scienze degli Alimenti e del Farmaco, Università degli Studi di Parma, Parco Area delle Scienze 27/A, I- 43124 Parma, Italy,BioComp
Group, Institute of Advanced Materials (INAM), Universitat Jaume I, 12071 Castelló, Spain
| | - Laura Scalvini
- Dipartimento
di Scienze degli Alimenti e del Farmaco, Università degli Studi di Parma, Parco Area delle Scienze 27/A, I- 43124 Parma, Italy
| | - Francesca Galvani
- Dipartimento
di Scienze degli Alimenti e del Farmaco, Università degli Studi di Parma, Parco Area delle Scienze 27/A, I- 43124 Parma, Italy
| | - Sergio Martí
- BioComp
Group, Institute of Advanced Materials (INAM), Universitat Jaume I, 12071 Castelló, Spain
| | - Vicent Moliner
- BioComp
Group, Institute of Advanced Materials (INAM), Universitat Jaume I, 12071 Castelló, Spain
| | - Marco Mor
- Dipartimento
di Scienze degli Alimenti e del Farmaco, Università degli Studi di Parma, Parco Area delle Scienze 27/A, I- 43124 Parma, Italy,Microbiome
Research Hub, University of Parma, Parco Area delle Scienze 11/A, I-43124 Parma, Italy
| | - Alessio Lodola
- Dipartimento
di Scienze degli Alimenti e del Farmaco, Università degli Studi di Parma, Parco Area delle Scienze 27/A, I- 43124 Parma, Italy,. Phone: +39 0521 905062. Fax: +39 0521 905006
| |
Collapse
|
10
|
Recent advances of novel fourth generation EGFR inhibitors in overcoming C797S mutation of lung cancer therapy. Eur J Med Chem 2022; 245:114900. [DOI: 10.1016/j.ejmech.2022.114900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 10/19/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022]
|
11
|
Sun Y, Dong Y, Liu X, Zhang Y, Bai H, Duan J, Tian Z, Yan X, Wang J, Wang Z. Blockade of STAT3/IL-4 overcomes EGFR T790M-cis-L792F-induced resistance to osimertinib via suppressing M2 macrophages polarization. EBioMedicine 2022; 83:104200. [PMID: 35932642 PMCID: PMC9358434 DOI: 10.1016/j.ebiom.2022.104200] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 07/16/2022] [Accepted: 07/18/2022] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND The mechanism of missense alteration at EGFR L792F in patients with non-small cell lung cancer resistant to osimertinib has not been sufficiently clarified. We aimed to explore the critical molecular events and coping strategies in osimertinib resistance due to acquired L792F mutation. METHODS Circulating tumor DNA-based sequencing data of 1153 patients with osimertinib resistance were collected to illustrate the prevalence of EGFR L792F mutation. Sensitivity to osimertinib was tested with constructed EGFR 19Del/T790M-cis-L792F cell lines in vitro and in vivo. The correlation and linked pathways between M2 macrophage polarization and EGFR L792Fcis-induced osimertinib resistance were investigated. Possible interventions to suppress osimertinib resistance by targeting IL-4 or STAT3 were explored. FINDINGS The concomitant EGFR L792F was identified as an independent mutation following the acquisition of T790M after osimertinib resistance, in that 5 of the 946 patients with osimertinib resistance harbored EGFR T790M-cis-L792F mutation. Transfected EGFR 19Del/T790M-cis-L792F in cell lines had decreased sensitivity to osimertinib and enhanced infiltrating macrophage with M2 polarization. Silico analyses confirmed the role of M2 polarization in osimertinib resistance induced by EGFR T790M-cis-L792F mutation. EGFR T790M-cis-L792F mutation upregulated phosphorylation of STAT3 Tyr705 and promoted its specific binding to IL4 promoter, enhancing IL-4 expression and secretion and inducing macrophage M2 polarization. Furthermore, blockade of STAT3/IL-4 (SH-4-54 or dupilumab) suppressed macrophage M2 polarization and regressed tumor sensitivity to osimertinib. INTERPRETATION Our results proved that targeting EGFR T790M-cis-L792F/STAT3 Tyr705/IL-4 pathway could be a potential strategy to suppress osimertinib resistance in NSCLC. FUNDING This work was supported by the National Natural Science Foundation of China (81871889, 82072586, 81902910), Beijing Natural Science Foundation (7212084, 7214249), the China National Natural Science Foundation Key Program (81630071), the National Key Research and Development Project (2019YFC1315704), CAMS Innovation Fund for Medical Sciences (CIFMS 2021-1-I2M-012), Aiyou Foundation (KY201701) and CAMS Key Laboratory of translational research on lung cancer (2018PT31035).
Collapse
Affiliation(s)
- Yiting Sun
- State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College
| | - Yiting Dong
- State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College
| | - Xijuan Liu
- Department of Central Laboratory, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital & Institute
| | - Yundi Zhang
- State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College
| | - Hua Bai
- State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College
| | - Jianchun Duan
- State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College
| | - Zhihua Tian
- Department of Central Laboratory, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital & Institute
| | - Xiang Yan
- Department of Medical Oncology, The Chinese PLA General Hospital
| | - Jie Wang
- State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College.
| | - Zhijie Wang
- State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College.
| |
Collapse
|
12
|
Pan Z, Wang K, Wang X, Jia Z, Yang Y, Duan Y, Huang L, Wu ZX, Zhang JY, Ding X. Cholesterol promotes EGFR-TKIs resistance in NSCLC by inducing EGFR/Src/Erk/SP1 signaling-mediated ERRα re-expression. Mol Cancer 2022; 21:77. [PMID: 35303882 PMCID: PMC8932110 DOI: 10.1186/s12943-022-01547-3] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 02/21/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The use of epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) brings remarkable benefits for the survival of patients with advanced NSCLC harboring EGFR mutations. Unfortunately, acquired resistance seems to be inevitable and limits the application of EGFR-TKIs in clinical practice. This study reported a common molecular mechanism sustaining resistance and potential treatment options to overcome EGFR-TKIs resistance. METHODS EGFR-TKIs resistant NSCLC cells were established and confirmed by MTT assay. Cholesterol content was detected and the promotional function of cholesterol on NSCLC growth was determined in vivo. Then, we identified ERRα expression as the downstream factor of cholesterol-mediated drug resistance. To dissect the regulatory mechanism, we conducted experiments, including immunofluorescence, co-immunoprecipitation, luciferase reporter assay and chromatin immunoprecipitation assay. RESULTS Long-term exposure to EGFR-TKIs generate drug resistance with the characteristic of cholesterol accumulation in lipid rafts, which promotes EGFR and Src to interact and lead EGFR/Src/Erk signaling reactivation-mediated SP1 nuclear translocation and ERRα re-expression. Further investigation identifies ERRα as a target gene of SP1. Functionally, re-expression of ERRα sustains cell proliferation by regulating ROS detoxification process. Lovastatin, a drug used to decrease cholesterol level, and XCT790, an inverse agonist of ERRα, overcome gefitinib and osimertinib resistance both in vitro and in vivo. CONCLUSIONS Our study indicates that cholesterol/EGFR/Src/Erk/SP1 axis-induced ERRα re-expression promotes survival of gefitinib and osimertinib-resistant cancer cells. Besides, we demonstrate the potential of lowing cholesterol and downregulation of ERRα as effective adjuvant treatment of NSCLC.
Collapse
Affiliation(s)
- Zhenzhen Pan
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, Jiangsu, China
| | - Kai Wang
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, Jiangsu, China
| | - Xiniao Wang
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, Jiangsu, China
| | - Zhirong Jia
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, Jiangsu, China
| | - Yuqi Yang
- College of Pharmacy and Health Sciences, St. John's University, New York, NY, 11439, USA
| | - Yalei Duan
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, Jiangsu, China
| | - Lianzhan Huang
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, Jiangsu, China
| | - Zhuo-Xun Wu
- College of Pharmacy and Health Sciences, St. John's University, New York, NY, 11439, USA
| | - Jian-Ye Zhang
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China.
| | - Xuansheng Ding
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, Jiangsu, China.
| |
Collapse
|