1
|
Crispim BDA, Bernardi RC, Rodrigues da Luz S, Nascimento HDS, Dantas FGDS, Oliveira KMPD, Schibichewski MS, Cardoso CAL, Barufatti A. Alternative biological models for evaluation of the toxic, genotoxic and mutagenic potential of Ectatomma brunneum Smith venom. Toxicon 2025; 255:108256. [PMID: 39862931 DOI: 10.1016/j.toxicon.2025.108256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 01/09/2025] [Accepted: 01/17/2025] [Indexed: 01/27/2025]
Abstract
The venom of Ectatomma brunneum is considered promising for drugs development. Therefore, it is important to evaluate its toxic potential and genetic instability using biological assays. To this end, toxicity assays were performed with Artemia salina, cytotoxicity and genotoxicity with Allium cepa and mutagenicity with Ames. The results indicated toxicity to A. salina, and no cytotoxic, genotoxic or mutagenic potential at concentrations equal to or lower than 500 μg/mL for the other tests.
Collapse
Affiliation(s)
- Bruno do Amaral Crispim
- Faculty of Biological and Environmental Sciences, Federal University of Grande Dourados (UFGD), Dourados-Itahum Highway, Km 12 - Unit II, University City, 79804-970, Dourados, MS, Brazil; State University of Tocantins (UNITINS), Rua Planalto, 601, Centro - CEP, 77960-000, Augustinópolis, TO, Brazil.
| | - Rafaella Caroline Bernardi
- Center of Studies in Natural Resources, State University of Mato Grosso do Sul (UEMS), Dourados-Itahum Highway, Km 12, 79804-970, Dourados, Mato Grosso do Sul, Brazil
| | - Sabrina Rodrigues da Luz
- Faculty of Biological and Environmental Sciences, Federal University of Grande Dourados (UFGD), Dourados-Itahum Highway, Km 12 - Unit II, University City, 79804-970, Dourados, MS, Brazil
| | - Hélina Dos Santos Nascimento
- Faculty of Exact Sciences and Technology, Federal University of Grande Dourados (UFGD), Dourados-Itahum Highway, Km 12 - Unit II, University City, 79804-970, Dourados, MS, Brazil
| | - Fabiana Gomes da Silva Dantas
- Faculty of Biological and Environmental Sciences, Federal University of Grande Dourados (UFGD), Dourados-Itahum Highway, Km 12 - Unit II, University City, 79804-970, Dourados, MS, Brazil
| | - Kelly Mari Pires de Oliveira
- Faculty of Biological and Environmental Sciences, Federal University of Grande Dourados (UFGD), Dourados-Itahum Highway, Km 12 - Unit II, University City, 79804-970, Dourados, MS, Brazil
| | - Marina Stefanes Schibichewski
- Faculty of Exact Sciences and Technology, Federal University of Grande Dourados (UFGD), Dourados-Itahum Highway, Km 12 - Unit II, University City, 79804-970, Dourados, MS, Brazil
| | - Cláudia Andrea Lima Cardoso
- Center of Studies in Natural Resources, State University of Mato Grosso do Sul (UEMS), Dourados-Itahum Highway, Km 12, 79804-970, Dourados, Mato Grosso do Sul, Brazil
| | - Alexeia Barufatti
- Faculty of Biological and Environmental Sciences, Federal University of Grande Dourados (UFGD), Dourados-Itahum Highway, Km 12 - Unit II, University City, 79804-970, Dourados, MS, Brazil; Faculty of Exact Sciences and Technology, Federal University of Grande Dourados (UFGD), Dourados-Itahum Highway, Km 12 - Unit II, University City, 79804-970, Dourados, MS, Brazil
| |
Collapse
|
2
|
Touchard A, Robinson SD, Lalagüe H, Ascoët S, Billet A, Dejean A, Téné NJ, Petitclerc F, Troispoux V, Treilhou M, Bonnafé E, Vetter I, Vizueta J, Moreau CS, Orivel J, Tysklind N. Adaptive trade-offs between vertebrate defence and insect predation drive Amazonian ant venom evolution. Proc Biol Sci 2024; 291:20242184. [PMID: 39561794 PMCID: PMC11576106 DOI: 10.1098/rspb.2024.2184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 10/16/2024] [Accepted: 10/16/2024] [Indexed: 11/21/2024] Open
Abstract
Stinging ants have diversified into various ecological niches, and selective pressures may have contributed to shape the composition of their venom. To explore the drivers underlying venom variation in ants, we sampled 15 South American rainforest species and recorded a range of traits, including ecology, morphology and venom bioactivities. Principal component analysis of both morphological and venom bioactivity traits reveals that stinging ants display two functional strategies where species have evolved towards either an exclusively offensive venom or a multi-functional venom. Additionally, phylogenetic comparative analysis indicates that venom function (predatory, defensive or both) and mandible morphology correlate with venom bioactivity and volume. Further analysis of the venom biochemistry of the 15 species revealed switches between cytotoxic and neurotoxic venom compositions among species. Our study supports an evolutionary trade-off between the ability of venom to deter vertebrate predators and to paralyse insect prey which are correlated with different venom compositions and life-history strategies among Formicidae.
Collapse
Affiliation(s)
- Axel Touchard
- CNRS, UMR Ecologie des forêts de Guyane – EcoFoG (AgroParisTech, CIRAD, INRAE, Université de Guyane, Université des Antilles), Campus Agronomique, BP 316, Kourou Cedex97379, France
- Department of Entomology, Cornell University, Ithaca, NY, USA
| | - Samuel D. Robinson
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland4072, Australia
| | - Hadrien Lalagüe
- CNRS, UMR Ecologie des forêts de Guyane – EcoFoG (AgroParisTech, CIRAD, INRAE, Université de Guyane, Université des Antilles), Campus Agronomique, BP 316, Kourou Cedex97379, France
| | - Steven Ascoët
- Equipe BTSB-EA 7417, Université de Toulouse, Institut national universitaire Jean-François Champollion, Place de Verdun, Albi81012, France
| | - Arnaud Billet
- Equipe BTSB-EA 7417, Université de Toulouse, Institut national universitaire Jean-François Champollion, Place de Verdun, Albi81012, France
| | - Alain Dejean
- CNRS, UMR Ecologie des forêts de Guyane – EcoFoG (AgroParisTech, CIRAD, INRAE, Université de Guyane, Université des Antilles), Campus Agronomique, BP 316, Kourou Cedex97379, France
- Centre de Recherche sur la Biodiversité et l’Environnement, Université de Toulouse, CNRS, Toulouse INP, Université Toulouse 3 – Paul Sabatier (UPS), Toulouse, France
| | - Nathan J. Téné
- Equipe BTSB-EA 7417, Université de Toulouse, Institut national universitaire Jean-François Champollion, Place de Verdun, Albi81012, France
| | - Frédéric Petitclerc
- CNRS, UMR Ecologie des forêts de Guyane – EcoFoG (AgroParisTech, CIRAD, INRAE, Université de Guyane, Université des Antilles), Campus Agronomique, BP 316, Kourou Cedex97379, France
| | - Valérie Troispoux
- INRAE, UMR Ecologie des forêts de Guyane - EcoFoG (AgroParisTech, CIRAD, CNRS, Université de Guyane, Université des Antilles), Campus Agronomique, BP 316, Kourou Cedex97379, France
| | - Michel Treilhou
- Equipe BTSB-EA 7417, Université de Toulouse, Institut national universitaire Jean-François Champollion, Place de Verdun, Albi81012, France
| | - Elsa Bonnafé
- Equipe BTSB-EA 7417, Université de Toulouse, Institut national universitaire Jean-François Champollion, Place de Verdun, Albi81012, France
| | - Irina Vetter
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland4072, Australia
- School of Pharmacy, The University of Queensland, Woolloongabba, Queensland4102, Australia
| | - Joel Vizueta
- Villum Centre for Biodiversity Genomics, Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | | | - Jérôme Orivel
- CNRS, UMR Ecologie des forêts de Guyane – EcoFoG (AgroParisTech, CIRAD, INRAE, Université de Guyane, Université des Antilles), Campus Agronomique, BP 316, Kourou Cedex97379, France
| | - Niklas Tysklind
- INRAE, UMR Ecologie des forêts de Guyane - EcoFoG (AgroParisTech, CIRAD, CNRS, Université de Guyane, Université des Antilles), Campus Agronomique, BP 316, Kourou Cedex97379, France
| |
Collapse
|
3
|
Wang K, Mwangi J, Cao K, Wang Y, Gao J, Yang M, Michira BB, Lu Q, Li J. Peptide Toxin Diversity and a Novel Antimicrobial Peptide from the Spider Oxyopes forcipiformis. Toxins (Basel) 2024; 16:466. [PMID: 39591221 PMCID: PMC11597926 DOI: 10.3390/toxins16110466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 10/01/2024] [Accepted: 10/27/2024] [Indexed: 11/28/2024] Open
Abstract
Spider venoms are emerging as a rich source of bioactive peptide toxins with therapeutic potential. Lynx spiders of the genus Oxyopes are small, cursorial hunters that employ complex venom to subdue arthropod prey. However, extracting crude venom from these diminutive arachnids poses significant challenges. This study presents a transcriptome analysis of venom glands from an undescribed Oxyopes forcipiformis species, revealing 339 putative protein and peptide toxin sequences categorized into seven functional groups. The venom composition was dominated by membrane-active peptides (40.71%), venom auxiliary proteins (22.71%), neurotoxins (15.63%), channel active peptides (7.08%) and uncharacterized components (13.87%). Additionally, phylogenetic analysis of 65 disulfide-bond-rich peptides yielded six distinct families based on sequence homology and cysteine framework. Finally, a novel antimicrobial peptide, GK37, was identified using in silico and homology analyses. Our data suggested that GK37 presented significant antibacterial activity against Gram-positive bacteria Staphylococcus aureus with a minimum inhibitory concentration (MIC) of 1.552 µM by disrupting bacterial membranes. At 4× MICs, GK37 almost showed no hemolytic activity on blood cells or toxicity against Hek293T cells. Our findings provided a basis for targeted studies of the diversity and pharmacological effects of lynx spider peptide. We elucidated a valuable high-throughput approach for obtaining proteins and peptides from small-group spiders.
Collapse
Affiliation(s)
- Kexin Wang
- Medical College of Tianjin University, Tianjin University, Tianjin 300072, China;
- Engineering Laboratory of Peptides of Chinese Academy of Sciences, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Key Laboratory of Genetic Evolution & Animal Models, Sino-African Joint Research Center, and New Cornerstone Science Laboratory, Kunming Institute of Zoology, The Chinese Academy of Sciences, No.17 Longxin Road, Kunming 650201, China; (J.M.); (K.C.); (J.G.); (M.Y.); (B.B.M.)
| | - James Mwangi
- Engineering Laboratory of Peptides of Chinese Academy of Sciences, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Key Laboratory of Genetic Evolution & Animal Models, Sino-African Joint Research Center, and New Cornerstone Science Laboratory, Kunming Institute of Zoology, The Chinese Academy of Sciences, No.17 Longxin Road, Kunming 650201, China; (J.M.); (K.C.); (J.G.); (M.Y.); (B.B.M.)
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, China
| | - Kaixun Cao
- Engineering Laboratory of Peptides of Chinese Academy of Sciences, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Key Laboratory of Genetic Evolution & Animal Models, Sino-African Joint Research Center, and New Cornerstone Science Laboratory, Kunming Institute of Zoology, The Chinese Academy of Sciences, No.17 Longxin Road, Kunming 650201, China; (J.M.); (K.C.); (J.G.); (M.Y.); (B.B.M.)
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, China
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yi Wang
- Center for Evolution and Conservation Biology, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China;
| | - Jinai Gao
- Engineering Laboratory of Peptides of Chinese Academy of Sciences, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Key Laboratory of Genetic Evolution & Animal Models, Sino-African Joint Research Center, and New Cornerstone Science Laboratory, Kunming Institute of Zoology, The Chinese Academy of Sciences, No.17 Longxin Road, Kunming 650201, China; (J.M.); (K.C.); (J.G.); (M.Y.); (B.B.M.)
- School of Molecular Medicine, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Min Yang
- Engineering Laboratory of Peptides of Chinese Academy of Sciences, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Key Laboratory of Genetic Evolution & Animal Models, Sino-African Joint Research Center, and New Cornerstone Science Laboratory, Kunming Institute of Zoology, The Chinese Academy of Sciences, No.17 Longxin Road, Kunming 650201, China; (J.M.); (K.C.); (J.G.); (M.Y.); (B.B.M.)
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, China
| | - Brenda B. Michira
- Engineering Laboratory of Peptides of Chinese Academy of Sciences, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Key Laboratory of Genetic Evolution & Animal Models, Sino-African Joint Research Center, and New Cornerstone Science Laboratory, Kunming Institute of Zoology, The Chinese Academy of Sciences, No.17 Longxin Road, Kunming 650201, China; (J.M.); (K.C.); (J.G.); (M.Y.); (B.B.M.)
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, China
| | - Qiumin Lu
- Engineering Laboratory of Peptides of Chinese Academy of Sciences, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Key Laboratory of Genetic Evolution & Animal Models, Sino-African Joint Research Center, and New Cornerstone Science Laboratory, Kunming Institute of Zoology, The Chinese Academy of Sciences, No.17 Longxin Road, Kunming 650201, China; (J.M.); (K.C.); (J.G.); (M.Y.); (B.B.M.)
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, China
| | - Juan Li
- Engineering Laboratory of Peptides of Chinese Academy of Sciences, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Key Laboratory of Genetic Evolution & Animal Models, Sino-African Joint Research Center, and New Cornerstone Science Laboratory, Kunming Institute of Zoology, The Chinese Academy of Sciences, No.17 Longxin Road, Kunming 650201, China; (J.M.); (K.C.); (J.G.); (M.Y.); (B.B.M.)
| |
Collapse
|
4
|
Walker AA, Chin YKY, Guo S, Jin J, Wilbrink E, Goudarzi MH, Wirth H, Gordon E, Weirauch C, King GF. Structure and bioactivity of an insecticidal trans-defensin from assassin bug venom. Structure 2024; 32:1348-1357.e4. [PMID: 38889720 DOI: 10.1016/j.str.2024.05.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/30/2024] [Accepted: 05/22/2024] [Indexed: 06/20/2024]
Abstract
Disulfide-rich peptides such as defensins play diverse roles in immunity and ion channel modulation, as well as constituting the bioactive components of many animal venoms. We investigated the structure and bioactivity of U-RDTX-Pp19, a peptide previously discovered in venom of the assassin bug Pristhesancus plagipennis. Recombinant Pp19 (rPp19) was found to possess insecticidal activity when injected into Drosophila melanogaster. A bioinformatic search revealed that domains homologous to Pp19 are produced by assassin bugs and diverse other arthropods. rPp19 co-eluted with native Pp19 isolated from P. plagipennis, which we found is more abundant in hemolymph than venom. We solved the three-dimensional structure of rPp19 using 2D 1H NMR spectroscopy, finding that it adopts a disulfide-stabilized structure highly similar to known trans-defensins, with the same cystine connectivity as human α-defensin (I-VI, II-IV, and III-V). The structure of Pp19 is unique among reported structures of arthropod peptides.
Collapse
Affiliation(s)
- Andrew A Walker
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia; Centre of Excellence for Innovations in Protein and Peptide Science, St Lucia, QLD 4072, Australia.
| | - Yanni K-Y Chin
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia; Centre for Advanced Imaging, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Shaodong Guo
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Jiayi Jin
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Evienne Wilbrink
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia; Fontys University of Applied Sciences, Eindhoven 5612 AR, the Netherlands
| | - Mohaddeseh Hedayati Goudarzi
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia; Centre of Excellence for Innovations in Protein and Peptide Science, St Lucia, QLD 4072, Australia
| | - Hayden Wirth
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia; Centre of Excellence for Innovations in Protein and Peptide Science, St Lucia, QLD 4072, Australia
| | - Eric Gordon
- Department of Entomology, University of California Riverside, Riverside, CA 92521, USA
| | - Christiane Weirauch
- Department of Entomology, University of California Riverside, Riverside, CA 92521, USA
| | - Glenn F King
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia; Centre of Excellence for Innovations in Protein and Peptide Science, St Lucia, QLD 4072, Australia.
| |
Collapse
|
5
|
Zou K, Yin K, Ren S, Zhang R, Zhang L, Zhao Y, Li R. Activity and mechanism of action of antimicrobial peptide ACPs against Candida albicans. Life Sci 2024; 350:122767. [PMID: 38843993 DOI: 10.1016/j.lfs.2024.122767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 06/01/2024] [Accepted: 06/02/2024] [Indexed: 06/10/2024]
Abstract
AIMS Candida albicans is the most prevalent pathogenic fungus, exhibiting escalating multidrug resistance (MDR). Antimicrobial peptides (AMPs) represent promising candidates for addressing this issue. In this research, five antimicrobial peptides, ACP1 to ACP5 which named ACPs were studied as alternative fungicidal molecules. MAIN METHODS CD assay was used to analyze the 2D structures, Absorbance method was used to test the antimicrobial activity, haemolytic activity, time-kill kinetics, biofilm inhibition and reduction activity, resistance induction activity and assessment against fluconazole-resistant C. albicans. SEM, TEM, CLSM, flow cytometer and FM were carried out to provide insight into the mechanisms of anti-Candida action. KEY FINDINGS ACPs possessed an α-helical structure and strong anti-Candida activities, with minimum inhibitory concentrations (MICs) from 3.9 to 15.6 μg/mL. In addition, ACPs did not produce hemolysis at concentrations lower than 10 or 62 × MIC, indicating their low cytotoxicity. Fungicidal kinetics showed that they completely killed C. albicans within 8 h at 2 to 4 × MIC. Notably, ACPs were highly fungicidal against fluconazole-resistant C. albicans and showed low resistance. In addition, they were effective in inhibiting mycelium and biofilm formation. Fluorescence microscopy revealed that while fluconazole had minimal to no inhibitory effect on biofilm-forming cells, ACPs induced apoptosis in all of them. The research on mechanism of action revealed that ACPs disrupted the cell membranes, with ROS increasing and cellular mitochondrial membrane potential decreasing. SIGNIFICANCE ACPs could be promising candidates for combating fluconazole-resistant C. albicans infections.
Collapse
Affiliation(s)
- Kuiming Zou
- Key Laboratory of Functional Molecules for Biomedical Research, Zhengzhou, Henan University of Technology, 450001 Zhengzhou, Henan, PR China; College of Biological Engineering, Henan University of Technology, 450001 Zhengzhou, Henan, PR China
| | - Kedong Yin
- Key Laboratory of Functional Molecules for Biomedical Research, Zhengzhou, Henan University of Technology, 450001 Zhengzhou, Henan, PR China; College of Information Science and Engineering, Henan University of Technology, 450001 Zhengzhou, Henan, PR China
| | - Shiming Ren
- Key Laboratory of Functional Molecules for Biomedical Research, Zhengzhou, Henan University of Technology, 450001 Zhengzhou, Henan, PR China; College of Biological Engineering, Henan University of Technology, 450001 Zhengzhou, Henan, PR China
| | - Ruiling Zhang
- Key Laboratory of Functional Molecules for Biomedical Research, Zhengzhou, Henan University of Technology, 450001 Zhengzhou, Henan, PR China; School of Economics and Trade, Henan University of Technology, 450001 Zhengzhou, Henan, PR China
| | - Lan Zhang
- Key Laboratory of Functional Molecules for Biomedical Research, Zhengzhou, Henan University of Technology, 450001 Zhengzhou, Henan, PR China; College of Biological Engineering, Henan University of Technology, 450001 Zhengzhou, Henan, PR China
| | - Yingyuan Zhao
- Key Laboratory of Functional Molecules for Biomedical Research, Zhengzhou, Henan University of Technology, 450001 Zhengzhou, Henan, PR China; College of Biological Engineering, Henan University of Technology, 450001 Zhengzhou, Henan, PR China
| | - Ruifang Li
- Key Laboratory of Functional Molecules for Biomedical Research, Zhengzhou, Henan University of Technology, 450001 Zhengzhou, Henan, PR China; College of Biological Engineering, Henan University of Technology, 450001 Zhengzhou, Henan, PR China.
| |
Collapse
|
6
|
Peigneur S, Tibery D, Tytgat J. The Helix Ring Peptide U 11 from the Venom of the Ant, Tetramorium bicarinatum, Acts as a Putative Pore-Forming Toxin. MEMBRANES 2024; 14:114. [PMID: 38786948 PMCID: PMC11123039 DOI: 10.3390/membranes14050114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/26/2024] [Accepted: 05/09/2024] [Indexed: 05/25/2024]
Abstract
An insect neuroactive helix ring peptide called U11-MYRTX-Tb1a (abbreviated as U11) from the venom of the ant, Tetramorium bicarinatum. U11 is a 34-amino-acid peptide that is claimed to be one of the most paralytic peptides ever reported from ant venoms acting against blowflies and honeybees. The peptide features a compact triangular ring helix structure stabilized by a single disulfide bond, which is a unique three-dimensional scaffold among animal venoms. Pharmacological assays using Drosophila S2 cells have demonstrated that U11 is not cytotoxic but instead suggest that it may modulate potassium channels via the presence of a functional dyad. In our work described here, we have tested this hypothesis by investigating the action of synthetically made U11 on a wide array of voltage-gated K and Na channels since it is well known that these channels play a crucial role in the phenomenon of paralysis. Using the Xenopus laevis oocyte heterologous expression system and voltage clamp, our results have not shown any modulatory effect of 1 μM U11 on the activity of Kv1.1, Kv1.3, Kv1.4, Kv1.5, Shaker IR, Kv4.2, Kv7.1, Kv10.1, Kv11.1 and KQT1, nor on DmNav and BgNav. Instead, 10 μM U11 caused a quick and irreversible cytolytic effect, identical to the cytotoxic effect caused by Apis mellifera venom, which indicates that U11 can act as a pore-forming peptide. Interestingly, the paralytic dose (PD50) on blowflies and honeybees corresponds with the concentration at which U11 displays clear pore-forming activity. In conclusion, our results indicate that the insecticidal and paralytic effects caused by U11 may be explained by the putative pore formation of the peptide.
Collapse
Affiliation(s)
- Steve Peigneur
- Toxicology and Pharmacology, University of Leuven (KU Leuven), P.O. Box 922, Herestraat 49, 3000 Leuven, Belgium; (S.P.); (D.T.)
| | - Diogo Tibery
- Toxicology and Pharmacology, University of Leuven (KU Leuven), P.O. Box 922, Herestraat 49, 3000 Leuven, Belgium; (S.P.); (D.T.)
- Laboratory of Neuropharmacology, Department of Physiological Sciences, University of Brasília, Distrito Federal, Brasília 70910-900, Brazil
| | - Jan Tytgat
- Toxicology and Pharmacology, University of Leuven (KU Leuven), P.O. Box 922, Herestraat 49, 3000 Leuven, Belgium; (S.P.); (D.T.)
| |
Collapse
|
7
|
Robinson SD, Deuis JR, Niu P, Touchard A, Mueller A, Schendel V, Brinkwirth N, King GF, Vetter I, Schmidt JO. Peptide toxins that target vertebrate voltage-gated sodium channels underly the painful stings of harvester ants. J Biol Chem 2024; 300:105577. [PMID: 38110035 PMCID: PMC10821600 DOI: 10.1016/j.jbc.2023.105577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/29/2023] [Accepted: 12/11/2023] [Indexed: 12/20/2023] Open
Abstract
Harvester ants (genus Pogonomyrmex) are renowned for their stings which cause intense, long-lasting pain, and other neurotoxic symptoms in vertebrates. Here, we show that harvester ant venoms are relatively simple and composed largely of peptide toxins. One class of peptides is primarily responsible for the long-lasting local pain of envenomation via activation of peripheral sensory neurons. These hydrophobic, cysteine-free peptides potently modulate mammalian voltage-gated sodium (NaV) channels, reducing the voltage threshold for activation and inhibiting channel inactivation. These toxins appear to have evolved specifically to deter vertebrates.
Collapse
Affiliation(s)
- Samuel D Robinson
- Institute for Molecular Bioscience, The University of Queensland, Queensland, Australia.
| | - Jennifer R Deuis
- Institute for Molecular Bioscience, The University of Queensland, Queensland, Australia
| | - Pancong Niu
- Institute for Molecular Bioscience, The University of Queensland, Queensland, Australia
| | - Axel Touchard
- CNRS, UMR Ecologie des forêts de Guyane - EcoFoG (AgroParisTech, CIRAD, INRAE, Université de Guyane, Université des Antilles), Kourou, France
| | - Alexander Mueller
- Institute for Molecular Bioscience, The University of Queensland, Queensland, Australia; Centro de Investigación Biomédica CENBIO, Universidad UTE, Quito, Ecuador
| | - Vanessa Schendel
- Institute for Molecular Bioscience, The University of Queensland, Queensland, Australia
| | | | - Glenn F King
- Institute for Molecular Bioscience, The University of Queensland, Queensland, Australia; Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Queensland, Australia
| | - Irina Vetter
- Institute for Molecular Bioscience, The University of Queensland, Queensland, Australia; School of Pharmacy, The University of Queensland, Brisbane, Queensland, Australia
| | | |
Collapse
|
8
|
Barassé V, Jouvensal L, Boy G, Billet A, Ascoët S, Lefranc B, Leprince J, Dejean A, Lacotte V, Rahioui I, Sivignon C, Gaget K, Ribeiro Lopes M, Calevro F, Da Silva P, Loth K, Paquet F, Treilhou M, Bonnafé E, Touchard A. Discovery of an Insect Neuroactive Helix Ring Peptide from Ant Venom. Toxins (Basel) 2023; 15:600. [PMID: 37888631 PMCID: PMC10610885 DOI: 10.3390/toxins15100600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 09/30/2023] [Accepted: 10/02/2023] [Indexed: 10/28/2023] Open
Abstract
Ants are among the most abundant terrestrial invertebrate predators on Earth. To overwhelm their prey, they employ several remarkable behavioral, physiological, and biochemical innovations, including an effective paralytic venom. Ant venoms are thus cocktails of toxins finely tuned to disrupt the physiological systems of insect prey. They have received little attention yet hold great promise for the discovery of novel insecticidal molecules. To identify insect-neurotoxins from ant venoms, we screened the paralytic activity on blowflies of nine synthetic peptides previously characterized in the venom of Tetramorium bicarinatum. We selected peptide U11, a 34-amino acid peptide, for further insecticidal, structural, and pharmacological experiments. Insecticidal assays revealed that U11 is one of the most paralytic peptides ever reported from ant venoms against blowflies and is also capable of paralyzing honeybees. An NMR spectroscopy of U11 uncovered a unique scaffold, featuring a compact triangular ring helix structure stabilized by a single disulfide bond. Pharmacological assays using Drosophila S2 cells demonstrated that U11 is not cytotoxic, but suggest that it may modulate potassium conductance, which structural data seem to corroborate and will be confirmed in a future extended pharmacological investigation. The results described in this paper demonstrate that ant venom is a promising reservoir for the discovery of neuroactive insecticidal peptides.
Collapse
Affiliation(s)
- Valentine Barassé
- EA-7417, Institut National Universitaire Champollion, Place de Verdun, 81012 Albi, France
| | - Laurence Jouvensal
- Centre de Biophysique Moléculaire, Centre National de la Recherche Scientifique (CNRS), Unité Propre de Recherche (UPR) 4301, 45071 Orléans, France
- Unité de Formation et de Recherche (UFR) Sciences et Techniques, Université d’Orléans, 45071 Orléans, France
| | - Guillaume Boy
- EA-7417, Institut National Universitaire Champollion, Place de Verdun, 81012 Albi, France
| | - Arnaud Billet
- EA-7417, Institut National Universitaire Champollion, Place de Verdun, 81012 Albi, France
| | - Steven Ascoët
- EA-7417, Institut National Universitaire Champollion, Place de Verdun, 81012 Albi, France
| | - Benjamin Lefranc
- Inserm, Univ Rouen Normandie, NorDiC Unité Mixte de Recherche (UMR) 1239, 76000 Rouen, France
| | - Jérôme Leprince
- Inserm, Univ Rouen Normandie, NorDiC Unité Mixte de Recherche (UMR) 1239, 76000 Rouen, France
| | - Alain Dejean
- Laboratoire Écologie Fonctionnelle et Environnement, Université de Toulouse, CNRS, Toulouse INP, Université Toulouse 3-Paul Sabatier (UPS), 31062 Toulouse, France
- Unité Mixte de Recherche (UMR) Écologie des Forêts de Guyane (EcoFoG), AgroParisTech, Centre de Cooperation Internationale en Recherche Agronomique pour le Développement (CIRAD), Centre National de la Recherche Scientifique (CNRS), Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Université des Antilles, Université de Guyane, 97379 Kourou, France
| | - Virginie Lacotte
- Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Institut National des Sciences Appliquées (INSA) de Lyon, Biologie Fonctionnelle, Insectes et Interactions (BF2i), Unité Mixte de Recherche (UMR) 203, Université de Lyon, 69621 Villeurbanne, France
| | - Isabelle Rahioui
- Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Institut National des Sciences Appliquées (INSA) de Lyon, Biologie Fonctionnelle, Insectes et Interactions (BF2i), Unité Mixte de Recherche (UMR) 203, Université de Lyon, 69621 Villeurbanne, France
| | - Catherine Sivignon
- Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Institut National des Sciences Appliquées (INSA) de Lyon, Biologie Fonctionnelle, Insectes et Interactions (BF2i), Unité Mixte de Recherche (UMR) 203, Université de Lyon, 69621 Villeurbanne, France
| | - Karen Gaget
- Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Institut National des Sciences Appliquées (INSA) de Lyon, Biologie Fonctionnelle, Insectes et Interactions (BF2i), Unité Mixte de Recherche (UMR) 203, Université de Lyon, 69621 Villeurbanne, France
| | - Mélanie Ribeiro Lopes
- Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Institut National des Sciences Appliquées (INSA) de Lyon, Biologie Fonctionnelle, Insectes et Interactions (BF2i), Unité Mixte de Recherche (UMR) 203, Université de Lyon, 69621 Villeurbanne, France
| | - Federica Calevro
- Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Institut National des Sciences Appliquées (INSA) de Lyon, Biologie Fonctionnelle, Insectes et Interactions (BF2i), Unité Mixte de Recherche (UMR) 203, Université de Lyon, 69621 Villeurbanne, France
| | - Pedro Da Silva
- Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Institut National des Sciences Appliquées (INSA) de Lyon, Biologie Fonctionnelle, Insectes et Interactions (BF2i), Unité Mixte de Recherche (UMR) 203, Université de Lyon, 69621 Villeurbanne, France
| | - Karine Loth
- Centre de Biophysique Moléculaire, Centre National de la Recherche Scientifique (CNRS), Unité Propre de Recherche (UPR) 4301, 45071 Orléans, France
- Unité de Formation et de Recherche (UFR) Sciences et Techniques, Université d’Orléans, 45071 Orléans, France
| | - Françoise Paquet
- Centre de Biophysique Moléculaire, Centre National de la Recherche Scientifique (CNRS), Unité Propre de Recherche (UPR) 4301, 45071 Orléans, France
| | - Michel Treilhou
- EA-7417, Institut National Universitaire Champollion, Place de Verdun, 81012 Albi, France
| | - Elsa Bonnafé
- EA-7417, Institut National Universitaire Champollion, Place de Verdun, 81012 Albi, France
| | - Axel Touchard
- EA-7417, Institut National Universitaire Champollion, Place de Verdun, 81012 Albi, France
| |
Collapse
|
9
|
Fitzpatrick LLJ, Ligabue-Braun R, Nekaris KAI. Slowly Making Sense: A Review of the Two-Step Venom System within Slow ( Nycticebus spp.) and Pygmy Lorises ( Xanthonycticebus spp.). Toxins (Basel) 2023; 15:514. [PMID: 37755940 PMCID: PMC10536643 DOI: 10.3390/toxins15090514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/16/2023] [Accepted: 08/18/2023] [Indexed: 09/28/2023] Open
Abstract
Since the early 2000s, studies of the evolution of venom within animals have rapidly expanded, offering new revelations on the origins and development of venom within various species. The venomous mammals represent excellent opportunities to study venom evolution due to the varying functional usages, the unusual distribution of venom across unrelated mammals and the diverse variety of delivery systems. A group of mammals that excellently represents a combination of these traits are the slow (Nycticebus spp.) and pygmy lorises (Xanthonycticebus spp.) of south-east Asia, which possess the only confirmed two-step venom system. These taxa also present one of the most intriguing mixes of toxic symptoms (cytotoxicity and immunotoxicity) and functional usages (intraspecific competition and ectoparasitic defence) seen in extant animals. We still lack many pieces of the puzzle in understanding how this venom system works, why it evolved what is involved in the venom system and what triggers the toxic components to work. Here, we review available data building upon a decade of research on this topic, focusing especially on why and how this venom system may have evolved. We discuss that research now suggests that venom in slow lorises has a sophisticated set of multiple uses in both intraspecific competition and the potential to disrupt the immune system of targets; we suggest that an exudate diet reveals several toxic plants consumed by slow and pygmy lorises that could be sequestered into their venom and which may help heal venomous bite wounds; we provide the most up-to-date visual model of the brachial gland exudate secretion protein (BGEsp); and we discuss research on a complement component 1r (C1R) protein in saliva that may solve the mystery of what activates the toxicity of slow and pygmy loris venom. We conclude that the slow and pygmy lorises possess amongst the most complex venom system in extant animals, and while we have still a lot more to understand about their venom system, we are close to a breakthrough, particularly with current technological advances.
Collapse
Affiliation(s)
- Leah Lucy Joscelyne Fitzpatrick
- Nocturnal Primate Research Group, Department of Social Sciences, Oxford Brookes University, Oxford OX3 0BP, UK
- Centre for Functional Genomics, Department of Health and Life Sciences, Oxford Brookes University, Oxford OX3 0BP, UK
| | - Rodrigo Ligabue-Braun
- Department of Pharmacosciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), Avenida Sarmento Leite 245, Porto Alegre 90050-170, Brazil
| | - K Anne-Isola Nekaris
- Nocturnal Primate Research Group, Department of Social Sciences, Oxford Brookes University, Oxford OX3 0BP, UK
- Centre for Functional Genomics, Department of Health and Life Sciences, Oxford Brookes University, Oxford OX3 0BP, UK
| |
Collapse
|
10
|
Siddiqui SA, Li C, Aidoo OF, Fernando I, Haddad MA, Pereira JA, Blinov A, Golik A, Câmara JS. Unravelling the potential of insects for medicinal purposes - A comprehensive review. Heliyon 2023; 9:e15938. [PMID: 37206028 PMCID: PMC10189416 DOI: 10.1016/j.heliyon.2023.e15938] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/20/2023] [Accepted: 04/27/2023] [Indexed: 05/21/2023] Open
Abstract
Entomotherapy, the use of insects for medicinal purposes, has been practised for centuries in many countries around the world. More than 2100 edible insect species are eaten by humans, but little is known about the possibility of using these insects as a promising alternative to traditional pharmaceuticals for treating diseases. This review offers a fundamental understanding of the therapeutic applications of insects and how they might be used in medicine. In this review, 235 insect species from 15 orders are reported to be used as medicine. Hymenoptera contains the largest medicinal insect species, followed by Coleoptera, Orthoptera, Lepidoptera, and Blattodea. Scientists have examined and validated the potential uses of insects along with their products and by-products in treating various diseases, and records show that they are primarily used to treat digestive and skin disorders. Insects are known to be rich sources of bioactive compounds, explaining their therapeutic features such as anti-inflammatory, antimicrobial, antiviral, and so on. Challenges associated with the consumption of insects (entomophagy) and their therapeutic uses include regulation barriers and consumer acceptance. Moreover, the overexploitation of medicinal insects in their natural habitat has led to a population crisis, thus necessitating the investigation and development of their mass-rearing procedure. Lastly, this review suggests potential directions for developing insects used in medicine and offers advice for scientists interested in entomotherapy. In future, entomotherapy may become a sustainable and cost-effective solution for treating various ailments and has the potential to revolutionize modern medicine.
Collapse
Affiliation(s)
- Shahida Anusha Siddiqui
- Technical University of Munich Campus Straubing for Biotechnology and Sustainability, Essigberg 3, 94315 Straubing, Germany
- German Institute of Food Technologies (DIL e.V.), Prof.-von-Klitzing Str. 7, 49610 D-Quakenbrück, Germany
- Corresponding author. Technical University of Munich Campus Straubing for Biotechnology and Sustainability, Essigberg 3, 94315 Straubing, Germany.
| | - Chujun Li
- Guangzhou Unique Biotechnology Co., Ltd, 510663, Guangzhou, China
- State Key Laboratory of Biocontrol, School of Life Science, Sun Yat-sen University, Guangzhou, 510006, China
| | - Owusu Fordjour Aidoo
- Department of Biological, Physical and Mathematical Sciences, University of Environment and Sustainable Development, 00233, Somanya, Ghana
| | - Ito Fernando
- Department of Plant Pest and Diseases, Faculty of Agriculture, Universitas Brawijaya, Malang, 65145, East Java, Indonesia
| | - Moawiya A. Haddad
- Department of Nutrition and Food Processing, Faculty of Agricultural Technology, Al-Balqa Applied University, 19117, Al-Salt, Jordan
| | - Jorge A.M. Pereira
- CQM – Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal
| | - Andrey Blinov
- North Caucasus Federal University, Pushkina Street 1, 355009, Stavropol, Russia
| | - Andrey Golik
- North Caucasus Federal University, Pushkina Street 1, 355009, Stavropol, Russia
| | - José S. Câmara
- CQM – Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal
- Departamento de Química, Faculdade de Ciências Exatas e Engenharia, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal
- Corresponding author. CQM – Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal.
| |
Collapse
|
11
|
Ascoët S, Touchard A, Téné N, Lefranc B, Leprince J, Paquet F, Jouvensal L, Barassé V, Treilhou M, Billet A, Bonnafé E. The mechanism underlying toxicity of a venom peptide against insects reveals how ants are master at disrupting membranes. iScience 2023; 26:106157. [PMID: 36879819 PMCID: PMC9985030 DOI: 10.1016/j.isci.2023.106157] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/17/2023] [Accepted: 02/02/2023] [Indexed: 02/10/2023] Open
Abstract
Hymenopterans represent one of the most abundant groups of venomous organisms but remain little explored due to the difficult access to their venom. The development of proteo-transcriptomic allowed us to explore diversity of their toxins offering interesting perspectives to identify new biological active peptides. This study focuses on U9 function, a linear, amphiphilic and polycationic peptide isolated from ant Tetramorium bicarinatum venom. It shares physicochemical properties with M-Tb1a, exhibiting cytotoxic effects through membrane permeabilization. In the present study, we conducted a comparative functional investigation of U9 and M-Tb1a and explored the mechanisms underlying their cytotoxicity against insect cells. After showing that both peptides induced the formation of pores in cell membrane, we demonstrated that U9 induced mitochondrial damage and, at high concentrations, localized into cells and induced caspase activation. This functional investigation highlighted an original mechanism of U9 questioning on potential valorization and endogen activity in T. bicarinatum venom.
Collapse
Affiliation(s)
- Steven Ascoët
- BTSB-UR 7417, Université de Toulouse, Institut National Universitaire Jean-François Champollion, Place de Verdun, 81000 Albi, France
| | - Axel Touchard
- CNRS, UMR Ecologie des Forêts de Guyane, AgroParisTech, CIRAD, INRA, Université de Guyane, Université des Antilles, Campus Agronomique, BP316 97310 Kourou, France
| | - Nathan Téné
- BTSB-UR 7417, Université de Toulouse, Institut National Universitaire Jean-François Champollion, Place de Verdun, 81000 Albi, France
| | - Benjamin Lefranc
- Inserm U1239, NorDiC, Laboratoire de Différenciation et Communication Neuroendocrine, Endocrine et Germinale, Université de Rouen-Normandie, 76000 Rouen, France
- Inserm US51, HeRacLeS, Université de Rouen-Normandie, 76000 Rouen, France
| | - Jérôme Leprince
- Inserm U1239, NorDiC, Laboratoire de Différenciation et Communication Neuroendocrine, Endocrine et Germinale, Université de Rouen-Normandie, 76000 Rouen, France
- Inserm US51, HeRacLeS, Université de Rouen-Normandie, 76000 Rouen, France
| | - Françoise Paquet
- Centre de Biophysique Moléculaire, CNRS UPR 4301, Rue Charles Sadron CS-80054, 45071 Orléans, France
| | - Laurence Jouvensal
- Centre de Biophysique Moléculaire, CNRS UPR 4301, Rue Charles Sadron CS-80054, 45071 Orléans, France
| | - Valentine Barassé
- BTSB-UR 7417, Université de Toulouse, Institut National Universitaire Jean-François Champollion, Place de Verdun, 81000 Albi, France
| | - Michel Treilhou
- BTSB-UR 7417, Université de Toulouse, Institut National Universitaire Jean-François Champollion, Place de Verdun, 81000 Albi, France
| | - Arnaud Billet
- BTSB-UR 7417, Université de Toulouse, Institut National Universitaire Jean-François Champollion, Place de Verdun, 81000 Albi, France
| | - Elsa Bonnafé
- BTSB-UR 7417, Université de Toulouse, Institut National Universitaire Jean-François Champollion, Place de Verdun, 81000 Albi, France
| |
Collapse
|
12
|
Hurka S, Lüddecke T, Paas A, Dersch L, Schulte L, Eichberg J, Hardes K, Brinkrolf K, Vilcinskas A. Bioactivity Profiling of In Silico Predicted Linear Toxins from the Ants Myrmica rubra and Myrmica ruginodis. Toxins (Basel) 2022; 14:toxins14120846. [PMID: 36548743 PMCID: PMC9784689 DOI: 10.3390/toxins14120846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/22/2022] [Accepted: 11/29/2022] [Indexed: 12/03/2022] Open
Abstract
The venoms of ants (Formicidae) are a promising source of novel bioactive molecules with potential for clinical and agricultural applications. However, despite the rich diversity of ant species, only a fraction of this vast resource has been thoroughly examined in bioprospecting programs. Previous studies focusing on the venom of Central European ants (subfamily Myrmicinae) identified a number of short linear decapeptides and nonapeptides resembling antimicrobial peptides (AMPs). Here, we describe the in silico approach and bioactivity profiling of 10 novel AMP-like peptides from the fellow Central European myrmicine ants Myrmica rubra and Myrmica ruginodis. Using the sequences of known ant venom peptides as queries, we screened the venom gland transcriptomes of both species. We found transcripts of nine novel decapeptides and one novel nonapeptide. The corresponding peptides were synthesized for bioactivity profiling in a broad panel of assays consisting of tests for cytotoxicity as well as antiviral, insecticidal, and antimicrobial activity. U-MYRTX-Mrug5a showed moderately potent antimicrobial effects against several bacteria, including clinically relevant pathogens such as Listeria monocytogenes and Staphylococcus epidermidis, but high concentrations showed negligible cytotoxicity. U-MYRTX-Mrug5a is, therefore, a probable lead for the development of novel peptide-based antibiotics.
Collapse
Affiliation(s)
- Sabine Hurka
- Institute for Insect Biotechnology, Justus Liebig University Giessen, 35392 Giessen, Germany
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), 60325 Frankfurt, Germany
- Correspondence: (S.H.); (T.L.)
| | - Tim Lüddecke
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), 60325 Frankfurt, Germany
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, 35392 Giessen, Germany
- Correspondence: (S.H.); (T.L.)
| | - Anne Paas
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), 60325 Frankfurt, Germany
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, 35392 Giessen, Germany
| | - Ludwig Dersch
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), 60325 Frankfurt, Germany
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, 35392 Giessen, Germany
| | - Lennart Schulte
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), 60325 Frankfurt, Germany
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, 35392 Giessen, Germany
| | - Johanna Eichberg
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, 35392 Giessen, Germany
- BMBF Junior Research Group in Infection Research “ASCRIBE”, 35392 Giessen, Germany
| | - Kornelia Hardes
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), 60325 Frankfurt, Germany
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, 35392 Giessen, Germany
- BMBF Junior Research Group in Infection Research “ASCRIBE”, 35392 Giessen, Germany
| | - Karina Brinkrolf
- Bioinformatics and Systems Biology, Justus Liebig University Giessen, 35392 Giessen, Germany
| | - Andreas Vilcinskas
- Institute for Insect Biotechnology, Justus Liebig University Giessen, 35392 Giessen, Germany
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), 60325 Frankfurt, Germany
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, 35392 Giessen, Germany
| |
Collapse
|
13
|
Venom-derived pain-causing toxins: insights into sensory neuron function and pain mechanisms. Pain 2022; 163:S46-S56. [DOI: 10.1097/j.pain.0000000000002701] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 05/19/2022] [Indexed: 11/25/2022]
|
14
|
Guido-Patiño JC, Plisson F. Profiling hymenopteran venom toxins: Protein families, structural landscape, biological activities, and pharmacological benefits. Toxicon X 2022; 14:100119. [PMID: 35372826 PMCID: PMC8971319 DOI: 10.1016/j.toxcx.2022.100119] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 03/14/2022] [Accepted: 03/16/2022] [Indexed: 12/24/2022] Open
Abstract
Hymenopterans are an untapped source of venom secretions. Their recent proteo-transcriptomic studies have revealed an extraordinary pool of toxins that participate in various biological processes, including pain, paralysis, allergic reactions, and antimicrobial activities. Comprehensive and clade-specific campaigns to collect hymenopteran venoms are therefore needed. We consider that data-driven bioprospecting may help prioritise sampling and alleviate associated costs. This work established the current protein landscape from hymenopteran venoms to evaluate possible sample bias by studying their origins, sequence diversity, known structures, and biological functions. We collected all 282 reported hymenopteran toxins (peptides and proteins) from the UniProt database that we clustered into 21 protein families from the three studied clades - wasps, bees, and ants. We identified 119 biological targets of hymenopteran toxins ranging from pathogen membranes to eukaryotic proteases, ion channels and protein receptors. Our systematic study further extended to hymenopteran toxins' therapeutic and biotechnological values, where we revealed promising applications in crop pests, human infections, autoimmune diseases, and neurodegenerative disorders. The hymenopteran toxin diversity includes 21 protein families from 81 species. Some toxins are shared across wasps, bees and ants, others are clade-specific. Their venoms contain membrane-active peptides, neurotoxins, allergens and enzymes. Hymenopteran toxins have been tested against a total of 119 biological targets. Hymenopteran toxins were predominantly evaluated as anti-infective agents.
Collapse
Affiliation(s)
- Juan Carlos Guido-Patiño
- Centro de Investigación y de Estudios Avanzados Del IPN (CINVESTAV), Unidad de Genómica Avanzada, Laboratorio Nacional de Genómica para La Biodiversidad (Langebio), Irapuato, Guanajuato, 36824, Mexico
| | - Fabien Plisson
- CONACYT, Centro de Investigación y de Estudios Avanzados Del IPN (CINVESTAV), Unidad de Genómica Avanzada, Laboratorio Nacional de Genómica para La Biodiversidad (Langebio), Irapuato, Guanajuato, 36824, Mexico
- Corresponding author.
| |
Collapse
|
15
|
Venomics of the Central European Myrmicine Ants Myrmica rubra and Myrmica ruginodis. Toxins (Basel) 2022; 14:toxins14050358. [PMID: 35622604 PMCID: PMC9147725 DOI: 10.3390/toxins14050358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/11/2022] [Accepted: 05/19/2022] [Indexed: 11/16/2022] Open
Abstract
Animal venoms are a rich source of novel biomolecules with potential applications in medicine and agriculture. Ants are one of the most species-rich lineages of venomous animals. However, only a fraction of their biodiversity has been studied so far. Here, we investigated the venom components of two myrmicine (subfamily Myrmicinae) ants: Myrmica rubra and Myrmica ruginodis. We applied a venomics workflow based on proteotranscriptomics and found that the venoms of both species are composed of several protein classes, including venom serine proteases, cysteine-rich secretory protein, antigen 5 and pathogenesis-related 1 (CAP) superfamily proteins, Kunitz-type serine protease inhibitors and venom acid phosphatases. Several of these protein classes are known venom allergens, and for the first time we detected phospholipase A1 in the venom of M. ruginodis. We also identified two novel epidermal growth factor (EGF) family toxins in the M. ruginodis venom proteome and an array of additional EGF-like toxins in the venom gland transcriptomes of both species. These are similar to known toxins from the related myrmicine ant, Manica rubida, and the myrmecine (subfamily Myrmeciinae) Australian red bulldog ant Myrmecia gullosa, and are possibly deployed as weapons in defensive scenarios or to subdue prey. Our work suggests that M.rubra and M. ruginodis venoms contain many enzymes and other high-molecular-weight proteins that cause cell damage. Nevertheless, the presence of EGF-like toxins suggests that myrmicine ants have also recruited smaller peptide components into their venom arsenal. Although little is known about the bioactivity and function of EGF-like toxins, their presence in myrmicine and myrmecine ants suggests they play a key role in the venom systems of the superfamily Formicoidea. Our work adds to the emerging picture of ant venoms as a source of novel bioactive molecules and highlights the need to incorporate such taxa in future venom bioprospecting programs.
Collapse
|