1
|
Herrmann A, Gege C, Wangen C, Wagner S, Kögler M, Cordsmeier A, Irrgang P, Ip WH, Weil T, Hunszinger V, Groß R, Heinen N, Pfaender S, Reuter S, Klopfleisch R, Uhlig N, Eberlein V, Issmail L, Grunwald T, Hietel B, Cynis H, Münch J, Sparrer KMJ, Ensser A, Tenbusch M, Dobner T, Vitt D, Kohlhof H, Hahn F. Orally bioavailable RORγ/DHODH dual host-targeting small molecules with broad-spectrum antiviral activity. Antiviral Res 2024; 231:106008. [PMID: 39306285 DOI: 10.1016/j.antiviral.2024.106008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/17/2024] [Accepted: 09/18/2024] [Indexed: 10/03/2024]
Abstract
Host-directed antivirals (HDAs) represent an attractive treatment option and a strategy for pandemic preparedness, especially due to their potential broad-spectrum antiviral activity and high barrier to resistance development. Particularly, dual-targeting HDAs offer a promising approach for antiviral therapy by simultaneously disrupting multiple pathways essential for viral replication. Izumerogant (IMU-935) targets two host proteins, (i) the retinoic acid receptor-related orphan receptor γ isoform 1 (RORγ1), which modulates cellular cholesterol metabolism, and (ii) the enzyme dihydroorotate dehydrogenase (DHODH), which is involved in de novo pyrimidine synthesis. Here, we synthesized optimized derivatives of izumerogant and characterized their antiviral activity in comparison to a recently described structurally distinct RORγ/DHODH dual inhibitor. Cell culture-based infection models for enveloped and non-enveloped DNA and RNA viruses, as well as a retrovirus, demonstrated high potency and broad-spectrum activity against human viral pathogens for RORγ/DHODH dual inhibitors at nanomolar concentrations. Comparative analyses with equipotent single-target inhibitors in metabolite supplementation approaches revealed that the dual-targeting mode represents the mechanistic basis for the potent antiviral activity. For SARS-CoV-2, an optimized dual inhibitor completely blocked viral replication in human airway epithelial cells at 5 nM and displayed a synergistic drug interaction with the nucleoside analog molnupiravir. In a SARS-CoV-2 mouse model, treatment with a dual inhibitor alone, or in combination with molnupiravir, reduced the viral load by 7- and 58-fold, respectively. Considering the clinical safety, oral bioavailability, and tolerability of izumerogant in a recent Phase I study, izumerogant-like drugs represent potent dual-targeting antiviral HDAs with pronounced broad-spectrum activity for further clinical development.
Collapse
Affiliation(s)
| | | | - Christina Wangen
- Institute for Clinical and Molecular Virology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.
| | - Sabrina Wagner
- Institute for Clinical and Molecular Virology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.
| | - Melanie Kögler
- Institute for Clinical and Molecular Virology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.
| | - Arne Cordsmeier
- Institute for Clinical and Molecular Virology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.
| | - Pascal Irrgang
- Institute for Clinical and Molecular Virology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.
| | - Wing-Hang Ip
- Leibniz Institute of Virology, Hamburg, Germany.
| | - Tatjana Weil
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany.
| | - Victoria Hunszinger
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany.
| | - Rüdiger Groß
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany.
| | - Natalie Heinen
- Ruhr-University Bochum, Department of Molecular and Medical Virology, Bochum, Germany.
| | - Stephanie Pfaender
- Leibniz Institute of Virology, Hamburg, Germany; Ruhr-University Bochum, Department of Molecular and Medical Virology, Bochum, Germany; University of Luebeck, Department of Natural Sciences, Institute of Virology and Cell Biology, Lübeck, Germany.
| | - Sebastian Reuter
- University Hospital Essen - Ruhrlandklinik, Department of Pulmonary Medicine, Experimental Pneumology, Essen, Germany.
| | - Robert Klopfleisch
- Institute for Animal Pathology, Freie Universität Berlin, Berlin, Germany.
| | - Nadja Uhlig
- Fraunhofer Institute for Cell Therapy and Immunology, Preclinical Validation, Leipzig, Germany.
| | - Valentina Eberlein
- Fraunhofer Institute for Cell Therapy and Immunology, Preclinical Validation, Leipzig, Germany.
| | - Leila Issmail
- Fraunhofer Institute for Cell Therapy and Immunology, Preclinical Validation, Leipzig, Germany.
| | - Thomas Grunwald
- Fraunhofer Institute for Cell Therapy and Immunology, Preclinical Validation, Leipzig, Germany.
| | - Benjamin Hietel
- Fraunhofer Institute for Cell Therapy and Immunology, Department of Drug Design and Target Validation, Halle, Germany.
| | - Holger Cynis
- Fraunhofer Institute for Cell Therapy and Immunology, Department of Drug Design and Target Validation, Halle, Germany; Junior Research Group "Immunomodulation in Pathophysiological Processes", Faculty of Medicine, Martin Luther University Halle-Wittenberg, Halle, Germany.
| | - Jan Münch
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany.
| | | | - Armin Ensser
- Institute for Clinical and Molecular Virology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.
| | - Matthias Tenbusch
- Institute for Clinical and Molecular Virology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.
| | | | | | | | - Friedrich Hahn
- Institute for Clinical and Molecular Virology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.
| |
Collapse
|
2
|
Koyama S, Yu Z, Choi SH, Jurgens SJ, Selvaraj MS, Klarin D, Huffman JE, Clarke SL, Trinh MN, Ravi A, Dron JS, Spinks C, Surakka I, Bhatnagar A, Lannery K, Hornsby W, Damrauer SM, Chang KM, Lynch JA, Assimes TL, Tsao PS, Rader DJ, Cho K, Peloso GM, Ellinor PT, Sun YV, Wilson PWF, Program MV, Natarajan P. Exome wide association study for blood lipids in 1,158,017 individuals from diverse populations. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.09.17.24313718. [PMID: 39371182 PMCID: PMC11451673 DOI: 10.1101/2024.09.17.24313718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Rare coding alleles play crucial roles in the molecular diagnosis of genetic diseases. However, the systemic identification of these alleles has been challenging due to their scarcity in the general population. Here, we discovered and characterized rare coding alleles contributing to genetic dyslipidemia, a principal risk for coronary artery disease, among over a million individuals combining three large contemporary genetic datasets (the Million Veteran Program, n = 634,535, UK Biobank, n = 431,178, and the All of Us Research Program, n = 92,304) totaling 1,158,017 multi-ancestral individuals. Unlike previous rare variant studies in lipids, this study included 238,243 individuals (20.6%) from non-European-like populations. Testing 2,997,401 rare coding variants from diverse backgrounds, we identified 800 exome-wide significant associations across 209 genes including 176 predicted loss of function and 624 missense variants. Among these exome-wide associations, 130 associations were driven by non-European-like populations. Associated alleles are highly enriched in functional variant classes, showed significant additive and recessive associations, exhibited similar effects across populations, and resolved pathogenicity for variants enriched in African or South-Asian populations. Furthermore, we identified 5 lipid-related genes associated with coronary artery disease (RORC, CFAP65, GTF2E2, PLCB3, and ZNF117). Among them, RORC is a potentially novel therapeutic target through the down regulation of LDLC by its silencing. This study provides resources and insights for understanding causal mechanisms, quantifying the expressivity of rare coding alleles, and identifying novel drug targets across diverse populations.
Collapse
Affiliation(s)
- Satoshi Koyama
- VA Boston Healthcare System, Boston, MA
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA
| | - Zhi Yu
- VA Boston Healthcare System, Boston, MA
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA
| | - Seung Hoan Choi
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA
- Department of Biostatistics, Boston University School of Public Health, Boston, MA
| | - Sean J. Jurgens
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA
- Department of Experimental Cardiology, Heart Center, Heart Failure and Arrhythmias, Amsterdam UMC location University of Amsterdam, Amsterdam, Netherlands
| | - Margaret Sunitha Selvaraj
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA
| | - Derek Klarin
- VA Palo Alto Healthcare System, Palo Alto, CA
- Department of Surgery, Stanford University School of Medicine, Stanford, CA
| | | | - Shoa L. Clarke
- VA Palo Alto Healthcare System, Palo Alto, CA
- Department of Medicine, Stanford University School of Medicine, Stanford, CA
| | - Michael N. Trinh
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA
| | - Akshaya Ravi
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA
| | - Jacqueline S. Dron
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA
| | - Catherine Spinks
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA
| | - Ida Surakka
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA
- Department of Medicine, Stanford University School of Medicine, Stanford, CA
| | - Aarushi Bhatnagar
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA
| | - Kim Lannery
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA
| | - Whitney Hornsby
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA
| | - Scott M. Damrauer
- Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA
- University of Pennsylvania, Philadelphia, PA
| | - Kyong-Mi Chang
- Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA
- University of Pennsylvania, Philadelphia, PA
| | - Julie A Lynch
- VA Salt Lake City Health Care System, Salt Lake City, UT
- College of Nursing and Health Sciences, University of Massachusetts, Boston, MA
| | - Themistocles L. Assimes
- VA Palo Alto Healthcare System, Palo Alto, CA
- Department of Medicine, Stanford University School of Medicine, Stanford, CA
| | - Philip S. Tsao
- VA Palo Alto Healthcare System, Palo Alto, CA
- Department of Medicine, Stanford University School of Medicine, Stanford, CA
| | | | - Kelly Cho
- VA Boston Healthcare System, Boston, MA
- Massachusetts General Brigham, Boston, MA
- Department of Medicine, Harvard Medical School, Boston, MA
| | - Gina M. Peloso
- VA Boston Healthcare System, Boston, MA
- Department of Biostatistics, Boston University School of Public Health, Boston, MA
| | - Patrick T. Ellinor
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA
| | - Yan V. Sun
- VA Atlanta Healthcare System, Decatur, GA
- Department of Epidemiology and Global Health, Emory University Rollins School of Public Health, Atlanta, GA
- Emory University School of Medicine, Atlanta, GA
| | - Peter WF. Wilson
- VA Atlanta Healthcare System, Decatur, GA
- Emory University School of Medicine, Atlanta, GA
| | | | - Pradeep Natarajan
- VA Boston Healthcare System, Boston, MA
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA
- Department of Medicine, Harvard Medical School, Boston, MA
| |
Collapse
|
3
|
Chen Y, Anderson MT, Payne N, Santori FR, Ivanova NB. Nuclear Receptors and the Hidden Language of the Metabolome. Cells 2024; 13:1284. [PMID: 39120315 PMCID: PMC11311682 DOI: 10.3390/cells13151284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/16/2024] [Accepted: 07/22/2024] [Indexed: 08/10/2024] Open
Abstract
Nuclear hormone receptors (NHRs) are a family of ligand-regulated transcription factors that control key aspects of development and physiology. The regulation of NHRs by ligands derived from metabolism or diet makes them excellent pharmacological targets, and the mechanistic understanding of how NHRs interact with their ligands to regulate downstream gene networks, along with the identification of ligands for orphan NHRs, could enable innovative approaches for cellular engineering, disease modeling and regenerative medicine. We review recent discoveries in the identification of physiologic ligands for NHRs. We propose new models of ligand-receptor co-evolution, the emergence of hormonal function and models of regulation of NHR specificity and activity via one-ligand and two-ligand models as well as feedback loops. Lastly, we discuss limitations on the processes for the identification of physiologic NHR ligands and emerging new methodologies that could be used to identify the natural ligands for the remaining 17 orphan NHRs in the human genome.
Collapse
Affiliation(s)
- Yujie Chen
- Center for Molecular Medicine, University of Georgia, Athens, GA 30602, USA; (Y.C.); (M.T.A.); (N.P.)
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Matthew Tom Anderson
- Center for Molecular Medicine, University of Georgia, Athens, GA 30602, USA; (Y.C.); (M.T.A.); (N.P.)
| | - Nathaniel Payne
- Center for Molecular Medicine, University of Georgia, Athens, GA 30602, USA; (Y.C.); (M.T.A.); (N.P.)
| | - Fabio R. Santori
- Center for Molecular Medicine, University of Georgia, Athens, GA 30602, USA; (Y.C.); (M.T.A.); (N.P.)
| | - Natalia B. Ivanova
- Center for Molecular Medicine, University of Georgia, Athens, GA 30602, USA; (Y.C.); (M.T.A.); (N.P.)
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
4
|
Wangen C, Raithel A, Tillmanns J, Gege C, Herrmann A, Vitt D, Kohlhof H, Marschall M, Hahn F. Validation of nuclear receptor RORγ isoform 1 as a novel host-directed antiviral target based on the modulation of cholesterol levels. Antiviral Res 2024; 221:105769. [PMID: 38056603 DOI: 10.1016/j.antiviral.2023.105769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 11/29/2023] [Accepted: 11/30/2023] [Indexed: 12/08/2023]
Abstract
Currently, the clinically approved repertoire of antiviral drugs predominantly comprises direct-acting antivirals (DAAs). However, the use of DAAs is frequently limited by adverse effects, restriction to individual virus species, or the induction of viral drug resistance. These issues will likely be resolved by the introduction of host-directed antivirals (HDAs) targeting cellular proteins crucial for viral replication. However, experiences with the development of antiviral HDAs and clinical applications are still in their infancy. With the present study, we explored the human nuclear receptor and transcription factor RORγ isoform 1 (RORγ1), a member of the retinoic acid receptor-related orphan receptor (ROR) family, as a putative target of antiviral HDAs. To this end, cell culture models were used to investigate major viral human pathogens, i.e. the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), human cytomegalovirus (HCMV), varicella zoster virus (VZV) and human immunodeficiency virus 1 (HIV-1). Our results demonstrated (i) an antiviral activity of the clinically relevant RORγ modulators cedirogant and others, (ii) that isoform RORγ1 acts as the responsible determinant and drug target in the analyzed cell culture-based models, (iii) a selectivity of the antiviral effect for RORγ1 over related receptors RORα and RORβ, (iv) a late-phase inhibition exerted by cedirogant in HCMV replication and (v) a mechanistic link to the cellular cholesterol biosynthesis. Combined, the data highlight this novel RORγ-specific antiviral targeting concept and the developmental potential of RORγ-directed small molecules.
Collapse
Affiliation(s)
- Christina Wangen
- Institute for Clinical and Molecular Virology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.
| | - Andrea Raithel
- Institute for Clinical and Molecular Virology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.
| | - Julia Tillmanns
- Institute for Clinical and Molecular Virology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.
| | | | - Alexandra Herrmann
- Institute for Clinical and Molecular Virology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany; Immunic AG, Gräfelfing, Germany.
| | | | | | - Manfred Marschall
- Institute for Clinical and Molecular Virology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.
| | - Friedrich Hahn
- Institute for Clinical and Molecular Virology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.
| |
Collapse
|
5
|
Erkner E, Hentrich T, Schairer R, Fitzel R, Secker-Grob KA, Jeong J, Keppeler H, Korkmaz F, Schulze-Hentrich JM, Lengerke C, Schneidawind D, Schneidawind C. The RORɣ/SREBP2 pathway is a master regulator of cholesterol metabolism and serves as potential therapeutic target in t(4;11) leukemia. Oncogene 2024; 43:281-293. [PMID: 38030791 PMCID: PMC10798886 DOI: 10.1038/s41388-023-02903-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 11/10/2023] [Accepted: 11/16/2023] [Indexed: 12/01/2023]
Abstract
Dysregulated cholesterol homeostasis promotes tumorigenesis and progression. Therefore, metabolic reprogramming constitutes a new hallmark of cancer. However, until today, only few therapeutic approaches exist to target this pathway due to the often-observed negative feedback induced by agents like statins leading to controversially increased cholesterol synthesis upon inhibition. Sterol regulatory element-binding proteins (SREBPs) are key transcription factors regulating the synthesis of cholesterol and fatty acids. Since SREBP2 is difficult to target, we performed pharmacological inhibition of retinoic acid receptor (RAR)-related orphan receptor gamma (RORγ), which acts upstream of SREBP2 and serves as master regulator of the cholesterol metabolism. This resulted in an inactivated cholesterol-related gene program with significant downregulation of cholesterol biosynthesis. Strikingly, these effects were more pronounced than the effects of fatostatin, a direct SREBP2 inhibitor. Upon RORγ inhibition, RNA sequencing showed strongly increased cholesterol efflux genes leading to leukemic cell death and cell cycle changes in a dose- and time-dependent manner. Combinatorial treatment of t(4;11) cells with the RORγ inhibitor showed additive effects with cytarabine and even strong anti-leukemia synergism with atorvastatin by circumventing the statin-induced feedback. Our results suggest a novel therapeutic strategy to inhibit tumor-specific cholesterol metabolism for the treatment of t(4;11) leukemia.
Collapse
Affiliation(s)
- Estelle Erkner
- Department of Hematology, Oncology, Clinical Immunology and Rheumatology, University Hospital Tuebingen, Tuebingen, Germany
| | - Thomas Hentrich
- Department of Genetics/Epigenetics, Faculty NT, Saarland University, Saarbruecken, Germany
| | - Rebekka Schairer
- Department of Hematology, Oncology, Clinical Immunology and Rheumatology, University Hospital Tuebingen, Tuebingen, Germany
| | - Rahel Fitzel
- Department of Hematology, Oncology, Clinical Immunology and Rheumatology, University Hospital Tuebingen, Tuebingen, Germany
| | - Kathy-Ann Secker-Grob
- Department of Hematology, Oncology, Clinical Immunology and Rheumatology, University Hospital Tuebingen, Tuebingen, Germany
| | - Johan Jeong
- Process Cell Sciences, Merck & Co., Inc., Kenilworth, NJ, USA
| | - Hildegard Keppeler
- Department of Hematology, Oncology, Clinical Immunology and Rheumatology, University Hospital Tuebingen, Tuebingen, Germany
| | - Fulya Korkmaz
- Department of Hematology, Oncology, Clinical Immunology and Rheumatology, University Hospital Tuebingen, Tuebingen, Germany
| | | | - Claudia Lengerke
- Department of Hematology, Oncology, Clinical Immunology and Rheumatology, University Hospital Tuebingen, Tuebingen, Germany
| | - Dominik Schneidawind
- Department of Hematology, Oncology, Clinical Immunology and Rheumatology, University Hospital Tuebingen, Tuebingen, Germany
- Department of Medical Oncology and Hematology, University Hospital Zurich, Zurich, Switzerland
| | - Corina Schneidawind
- Department of Hematology, Oncology, Clinical Immunology and Rheumatology, University Hospital Tuebingen, Tuebingen, Germany.
- Department of Medical Oncology and Hematology, University Hospital Zurich, Zurich, Switzerland.
| |
Collapse
|
6
|
Meanwell NA. Applications of Bioisosteres in the Design of Biologically Active Compounds. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:18087-18122. [PMID: 36961953 DOI: 10.1021/acs.jafc.3c00765] [Citation(s) in RCA: 64] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The design of bioisosteres represents a creative and productive approach to improve a molecule, including by enhancing potency, addressing pharmacokinetic challenges, reducing off-target liabilities, and productively modulating physicochemical properties. Bioisosterism is a principle exploited in the design of bioactive compounds of interest to both medicinal and agricultural chemists, and in this review, we provide a synopsis of applications where this kind of molecular editing has proved to be advantageous in molecule optimization. The examples selected for discussion focus on bioisosteres of carboxylic acids, applications of fluorine and fluorinated motifs in compound design, some applications of the sulfoximine functionality, the design of bioisosteres of drug-H2O complexes, and the design of bioisosteres of the phenyl ring.
Collapse
Affiliation(s)
- Nicholas A Meanwell
- The Baruch S. Blumberg Institute, 3805 Old Easton Rd, Doylestown, Pennsylvania 18902, United States
| |
Collapse
|
7
|
Oubounyt M, Adlung L, Patroni F, Wenke NK, Maier A, Hartung M, Baumbach J, Elkjaer ML. Inference of differential key regulatory networks and mechanistic drug repurposing candidates from scRNA-seq data with SCANet. Bioinformatics 2023; 39:btad644. [PMID: 37862243 PMCID: PMC10628438 DOI: 10.1093/bioinformatics/btad644] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 09/07/2023] [Accepted: 10/19/2023] [Indexed: 10/22/2023] Open
Abstract
MOTIVATION The reconstruction of small key regulatory networks that explain the differences in the development of cell (sub)types from single-cell RNA sequencing is a yet unresolved computational problem. RESULTS To this end, we have developed SCANet, an all-in-one package for single-cell profiling that covers the whole differential mechanotyping workflow, from inference of trait/cell-type-specific gene co-expression modules, driver gene detection, and transcriptional gene regulatory network reconstruction to mechanistic drug repurposing candidate prediction. To illustrate the power of SCANet, we examined data from two studies. First, we identify the drivers of the mechanotype of a cytokine storm associated with increased mortality in patients with acute respiratory illness. Secondly, we find 20 drugs for eight potential pharmacological targets in cellular driver mechanisms in the intestinal stem cells of obese mice. AVAILABILITY AND IMPLEMENTATION SCANet is a free, open-source, and user-friendly Python package that can be seamlessly integrated into single-cell-based systems medicine research and mechanistic drug discovery.
Collapse
Affiliation(s)
- Mhaned Oubounyt
- Institute for Computational Systems Biology, University of Hamburg, Hamburg 22607, Germany
| | - Lorenz Adlung
- Department of Medicine, Hamburg Center for Translational Immunology (HCTI) and Center for Biomedical AI (bAIome), University Medical Center Hamburg-Eppendorf (UKE), Hamburg 20246, Germany
| | - Fabio Patroni
- Institute for Computational Systems Biology, University of Hamburg, Hamburg 22607, Germany
- Center for Molecular Biology and Genetic Engineering (CBMEG), State University of Campinas (Unicamp), Campinas, SP 13083-875, Brazil
| | - Nina Kerstin Wenke
- Institute for Computational Systems Biology, University of Hamburg, Hamburg 22607, Germany
| | - Andreas Maier
- Institute for Computational Systems Biology, University of Hamburg, Hamburg 22607, Germany
| | - Michael Hartung
- Institute for Computational Systems Biology, University of Hamburg, Hamburg 22607, Germany
| | - Jan Baumbach
- Institute for Computational Systems Biology, University of Hamburg, Hamburg 22607, Germany
- Department of Mathematics and Computer Science, University of Southern Denmark, Odense 5000, Denmark
| | - Maria L Elkjaer
- Institute for Computational Systems Biology, University of Hamburg, Hamburg 22607, Germany
- Department of Neurology, Odense University Hospital, Odense 5000, Denmark
- Institute of Clinical Research, University of Southern Denmark, Odense 5000, Denmark
- Institute of Molecular Medicine, University of Southern Denmark, Odense 5000, Denmark
| |
Collapse
|
8
|
Kadasah SF, Radwan MO. Overview of Ursolic Acid Potential for the Treatment of Metabolic Disorders, Autoimmune Diseases, and Cancers via Nuclear Receptor Pathways. Biomedicines 2023; 11:2845. [PMID: 37893218 PMCID: PMC10604592 DOI: 10.3390/biomedicines11102845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 10/17/2023] [Accepted: 10/18/2023] [Indexed: 10/29/2023] Open
Abstract
Nuclear receptors (NRs) form a family of druggable transcription factors that are regulated by ligand binding to orchestrate multifaceted physiological functions, including reproduction, immunity, metabolism, and growth. NRs represent attractive and valid targets for the management and treatment of a vast array of ailments. Pentacyclic triterpenes (PTs) are ubiquitously distributed natural products in medicinal and aromatic plants, of which ursolic acid (UA) is an extensively studied member, due to its diverse bio-pertinent activities against different cancers, inflammation, aging, obesity, diabetes, dyslipidemia, and liver injury. In fact, PTs share a common lipophilic structure that resembles NRs' endogenous ligands. Herein, we present a review of the literature on UA's effect on NRs, showcasing the resulting health benefits and potential therapeutic outcomes. De facto, UA exhibited numerous pharmacodynamic effects on PPAR, LXR, FXR, and PXR, resulting in remarkable anti-inflammatory, anti-hyperlipidemic, and hepatoprotective properties, by lowering lipid accumulation in hepatocytes and mitigating non-alcoholic steatohepatitis (NASH) and its subsequent liver fibrosis. Furthermore, UA reversed valproate and rifampicin-induced hepatic lipid accumulation. Additionally, UA showed great promise for the treatment of autoimmune inflammatory diseases such as multiple sclerosis and autoimmune arthritis by antagonizing RORγ. UA exhibited antiproliferative effects against skin, prostate, and breast cancers, partially via PPARα and RORγ pathways. Herein, for the first time, we explore and provide insights into UA bioactivity with respect to NR modulation.
Collapse
Affiliation(s)
- Sultan F. Kadasah
- Department of Biology, Faculty of Science, University of Bisha, P.O. Box 551, Bisha 61922, Saudi Arabia
| | - Mohamed O. Radwan
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, Kumamoto 862-0973, Japan
| |
Collapse
|
9
|
Ben Hassen C, Goupille C, Vigor C, Durand T, Guéraud F, Silvente-Poirot S, Poirot M, Frank PG. Is cholesterol a risk factor for breast cancer incidence and outcome? J Steroid Biochem Mol Biol 2023; 232:106346. [PMID: 37321513 DOI: 10.1016/j.jsbmb.2023.106346] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 06/04/2023] [Accepted: 06/05/2023] [Indexed: 06/17/2023]
Abstract
Cholesterol plays important roles in many physiological processes, including cell membrane structure and function, hormone synthesis, and the regulation of cellular homeostasis. The role of cholesterol in breast cancer is complex, and some studies have suggested that elevated cholesterol levels may be associated with an increased risk of developing breast cancer, while others have found no significant association. On the other hand, other studies have shown that, for total cholesterol and plasma HDL-associated cholesterol levels, there was inverse association with breast cancer risk. One possible mechanism by which cholesterol may contribute to breast cancer risk is as a key precursor of estrogen. Other potential mechanisms by which cholesterol may contribute to breast cancer risk include its role in inflammation and oxidative stress, which have been linked to cancer progression. Cholesterol has also been shown to play a role in signaling pathways regulating the growth and proliferation of cancer cells. In addition, recent studies have shown that cholesterol metabolism can generate tumor promoters such as cholesteryl esters, oncosterone, 27-hydroxycholesterol but also tumor suppressor metabolites such as dendrogenin A. This review summarizes some of the most important clinical studies that have evaluated the role of cholesterol or its derivatives in breast cancer. It also addresses the role of cholesterol and its derivatives at the cellular level.
Collapse
Affiliation(s)
| | - Caroline Goupille
- INSERM N2C UMR1069, University of Tours, 37032 Tours, France; Department of Gynecology, CHRU Hôpital Bretonneau, boulevard Tonnellé, 37044 Tours, France
| | - Claire Vigor
- Institut des Biomolécules Max Mousseron, IBMM, Pôle Chimie Balard Recherche, Université de Montpellier, CNRS, ENSCM, 34293 CEDEX 5 Montpellier, France
| | - Thierry Durand
- Institut des Biomolécules Max Mousseron, IBMM, Pôle Chimie Balard Recherche, Université de Montpellier, CNRS, ENSCM, 34293 CEDEX 5 Montpellier, France
| | - Françoise Guéraud
- INRAE, Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Sandrine Silvente-Poirot
- Cancer Research Center of Toulouse (CRCT), Inserm, CNRS, University of Toulouse, Team INOV:"Cholesterol Metabolism and Therapeutic Innovations", Toulouse, France; Equipe labellisée par la Ligue Nationale contre le Cancer, France
| | - Marc Poirot
- Cancer Research Center of Toulouse (CRCT), Inserm, CNRS, University of Toulouse, Team INOV:"Cholesterol Metabolism and Therapeutic Innovations", Toulouse, France; Equipe labellisée par la Ligue Nationale contre le Cancer, France
| | - Philippe G Frank
- INSERM N2C UMR1069, University of Tours, 37032 Tours, France; SGS Health and Nutrition, Saint Benoît, France.
| |
Collapse
|
10
|
Morioka N, Tsuruta M, Masuda N, Yamano K, Nakano M, Kochi T, Nakamura Y, Hisaoka-Nakashima K. Inhibition of Nuclear Receptor Related Orphan Receptor γ Ameliorates Mechanical Hypersensitivity Through the Suppression of Spinal Microglial Activation. Neuroscience 2023; 526:223-236. [PMID: 37419402 DOI: 10.1016/j.neuroscience.2023.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 06/21/2023] [Accepted: 07/01/2023] [Indexed: 07/09/2023]
Abstract
Microglia are crucial in induction of central sensitization under a chronic pain state. Therefore, control of microglial activity is important to ameliorate nociceptive hypersensitivity. The nuclear receptor retinoic acid related orphan receptor γ (RORγ) contributes to the regulation of inflammation-related gene transcription in some immune cells, including T cells and macrophages. Their role and function in regulation of microglial activity and nociceptive transduction have yet to be elaborated. Treatment of cultured microglia with specific RORγ inverse agonists, SR2211 or GSK2981278, significantly suppressed lipopolysaccharide (LPS)-induced mRNA expression of pronociceptive molecules interleukin-1β (IL-1β), interleukin-6 (IL-6), and tumor necrosis factor (TNF). Intrathecal treatment of naïve male mice with LPS markedly induced mechanical hypersensitivity and upregulation of ionized calcium-biding adaptor molecule (Iba1) in the spinal dorsal horn, indicating microglial activation. In addition, intrathecal treatment with LPS significantly induced mRNA upregulation of IL-1β and IL-6 in the spinal dorsal horn. These responses were prevented by intrathecal pretreatment with SR2211. In addition, intrathecal administration of SR2211 significantly ameliorated established mechanical hypersensitivity and upregulation of Iba1 immunoreactivity in the spinal dorsal horn of male mice following peripheral sciatic nerve injury. The current findings demonstrate that blockade of RORγ in spinal microglia exerts anti-inflammatory effects, and that RORγ may be an appropriate target for the treatment of chronic pain.
Collapse
Affiliation(s)
- Norimitsu Morioka
- Department of Pharmacology, Hiroshima University Graduate School of Biomedical and Health Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan.
| | - Maho Tsuruta
- Department of Pharmacology, Hiroshima University Graduate School of Biomedical and Health Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Nao Masuda
- Department of Pharmacology, Hiroshima University Graduate School of Biomedical and Health Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Kiichi Yamano
- Department of Pharmacology, Hiroshima University Graduate School of Biomedical and Health Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Manaya Nakano
- Department of Pharmacology, Hiroshima University Graduate School of Biomedical and Health Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Takahiro Kochi
- Department of Pharmacology, Hiroshima University Graduate School of Biomedical and Health Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Yoki Nakamura
- Department of Pharmacology, Hiroshima University Graduate School of Biomedical and Health Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Kazue Hisaoka-Nakashima
- Department of Pharmacology, Hiroshima University Graduate School of Biomedical and Health Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| |
Collapse
|
11
|
Cao Z, Yao J, He Y, Lou D, Huang J, Zhang Y, Chen M, Zhou Z, Zhou X. Association Between Statin Exposure and Incidence and Prognosis of Prostate Cancer: A Meta-analysis Based on Observational Studies. Am J Clin Oncol 2023; 46:323-334. [PMID: 37143189 PMCID: PMC10281183 DOI: 10.1097/coc.0000000000001012] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
It is widely thought that statins have huge therapeutic potential against prostate cancer (PCA). This study aimed to investigate the effect of statin exposure on PCA incidence and prognosis. PubMed, Web of Science, Embase, and Cochrane databases were searched for observational studies on the association between statin exposure and PCA from inception until July 2022. The primary endpoints were the incidence of PCA and the survival rate. A total of 21 studies were included in this meta-analysis. The pooled estimates showed that exposure to hydrophilic statins was not associated with the incidence of PCA (odds ratio [OR]=0.94, 95% CI=0.88-1.01, P =0.075), while the incidence of PCA was significantly decreased in populations exposed to lipophilic statins compared with the nonexposed group (OR=0.94, 95% CI=0.90-0.98, P =0.001), mainly in Western countries (OR=0.94, 95% CI=0.91-0.98, P =0.006). Subgroup analysis showed that simvastatin (OR=0.83, 95% CI=0.71-0.97, P =0.016) effectively reduced the incidence of PCA. The prognosis of PCA in patients exposed to both hydrophilic (hazard ratio [HR]=0.57, 95% CI=0.49-0.66, P <0.001) and lipophilic (HR=0.65, 95% CI=0.58-0.73, P <0.001) statins were better than in the nonexposed group, and this improvement was more significant in the East than in Western countries. This study demonstrates that statins can reduce the incidence of PCA and improve prognosis, and are affected by population region and statin properties (hydrophilic and lipophilic).
Collapse
Affiliation(s)
- Zipei Cao
- Urology Department, Ningbo Urology & Nephrology Hospital
- Urology Department, Ningbo Yinzhou No. 2 Hospital, Ningbo
| | | | | | - Dandi Lou
- The First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou
| | | | | | | | | | - Xiaomei Zhou
- Department of Pharmacy, Hangzhou Women’s Hospital, Hangzhou, Zhejiang, China
| |
Collapse
|
12
|
Ford BE, Chachra SS, Rodgers K, Moonira T, Al-Oanzi ZH, Anstee QM, Reeves HL, Schattenberg JM, Fairclough RJ, Smith DM, Tiniakos D, Agius L. The GCKR-P446L gene variant predisposes to raised blood cholesterol and lower blood glucose in the P446L mouse-a model for GCKR rs1260326. Mol Metab 2023; 72:101722. [PMID: 37031802 PMCID: PMC10182400 DOI: 10.1016/j.molmet.2023.101722] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 03/28/2023] [Accepted: 04/04/2023] [Indexed: 04/11/2023] Open
Abstract
OBJECTIVES The Glucokinase Regulatory Protein GKRP, encoded by GCKR, enables acute regulation of liver glucokinase to support metabolic demand. The common human GCKR rs1260326:Pro446 > Leu variant within a large linkage disequilibrium region associates with pleiotropic traits including lower Type 2 diabetes risk and raised blood triglycerides and cholesterol. Whether the GCKR-P446 > L substitution is causal to the raised lipids is unknown. We determined whether mouse GKRP phenocopies the human GKRP:P446 > L substitution and studied a GKRP:P446L knockin mouse to identify physiological consequences to P446 > L. METHODS GKRP-deficient hepatocytes were transfected with adenoviral vectors for human or mouse GKRP:446 P or 446 L for cellular comprehensive analysis including transcriptomics consequent to P446 > L. Physiological traits in the diet-challenged P446L mouse were compared with pleiotropic associations at the human rs1260326 locus. Transcriptomics was compared in P446L mouse liver with hepatocytes overexpressing glucokinase or GKRP:446 P/L. RESULTS 1. P446 > L substitution in mouse or human GKRP similarly compromises protein expressivity of GKRP:446 L, nuclear sequestration of glucokinase and counter-regulation of gene expression. 2. The P446L knockin mouse has lower liver glucokinase and GKRP protein similar to human liver homozygous for rs1260326-446 L. 3. The diet-challenged P446L mouse has lower blood glucose, raised blood cholesterol and altered hepatic cholesterol homeostasis consistent with relative glucokinase-to-GKRP excess, but not raised blood triglycerides. CONCLUSIONS Mouse GKRP phenocopies the human GKRP:P446 > L substitution despite the higher affinity for glucokinase of human GKRP. The diet-challenged P446L mouse replicates several traits found in association with the rs1260326 locus on chromosome 2 including raised blood cholesterol, lower blood glucose and lower liver glucokinase and GKRP protein but not raised blood triglycerides.
Collapse
Affiliation(s)
- Brian E Ford
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Shruti S Chachra
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Katrina Rodgers
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Tabassum Moonira
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Ziad H Al-Oanzi
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK; Jouf University, Clinical Laboratory Science, Sakaka, Saudi Arabia
| | - Quentin M Anstee
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK; Newcastle NIHR Biomedical Research Center, Newcastle upon Tyne Hospitals NHS Trust, Newcastle upon Tyne, UK
| | - Helen L Reeves
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK; Newcastle NIHR Biomedical Research Center, Newcastle upon Tyne Hospitals NHS Trust, Newcastle upon Tyne, UK
| | - Jörn M Schattenberg
- Metabolic Liver Research Programm, Department of Medicine, University Hospital Mainz, Mainz, Germany
| | - Rebecca J Fairclough
- Emerging Innovations Unit, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - David M Smith
- Emerging Innovations Unit, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Dina Tiniakos
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK; Newcastle NIHR Biomedical Research Center, Newcastle upon Tyne Hospitals NHS Trust, Newcastle upon Tyne, UK; Dept of Pathology, Aretaieion Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Loranne Agius
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK.
| |
Collapse
|
13
|
Zeng J, Li M, Zhao Q, Chen M, Zhao L, Wei S, Yang H, Zhao Y, Wang A, Shen J, Du F, Chen Y, Deng S, Wang F, Zhang Z, Li Z, Wang T, Wang S, Xiao Z, Wu X. Small molecule inhibitors of RORγt for Th17 regulation in inflammatory and autoimmune diseases. J Pharm Anal 2023; 13:545-562. [PMID: 37440911 PMCID: PMC10334362 DOI: 10.1016/j.jpha.2023.05.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 05/05/2023] [Accepted: 05/16/2023] [Indexed: 07/15/2023] Open
Abstract
As a ligand-dependent transcription factor, retinoid-associated orphan receptor γt (RORγt) that controls T helper (Th) 17 cell differentiation and interleukin (IL)-17 expression plays a critical role in the progression of several inflammatory and autoimmune conditions. An emerging novel approach to the therapy of these diseases thus involves controlling the transcriptional capacity of RORγt to decrease Th17 cell development and IL-17 production. Several RORγt inhibitors including both antagonists and inverse agonists have been discovered to regulate the transcriptional activity of RORγt by binding to orthosteric- or allosteric-binding sites in the ligand-binding domain. Some of small-molecule inhibitors have entered clinical evaluations. Therefore, in current review, the role of RORγt in Th17 regulation and Th17-related inflammatory and autoimmune diseases was highlighted. Notably, the recently developed RORγt inhibitors were summarized, with an emphasis on their optimization from lead compounds, efficacy, toxicity, mechanisms of action, and clinical trials. The limitations of current development in this area were also discussed to facilitate future research.
Collapse
Affiliation(s)
- Jiuping Zeng
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, 646000, China
| | - Mingxing Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, 646000, China
| | - Qianyun Zhao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, 646000, China
| | - Meijuan Chen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Long Zhao
- Department of Spleen and Stomach Diseases, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Shulin Wei
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, 646000, China
| | - Huan Yang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, 646000, China
| | - Yueshui Zhao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, 646000, China
| | - Anqi Wang
- School of Medicine, Chengdu University, Chengdu, 610106, China
| | - Jing Shen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, 646000, China
| | - Fukuan Du
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, 646000, China
| | - Yu Chen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, 646000, China
| | - Shuai Deng
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, 646000, China
| | - Fang Wang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, 646000, China
| | - Zhuo Zhang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, 646000, China
| | - Zhi Li
- Department of Spleen and Stomach Diseases, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Tiangang Wang
- Department of Spleen and Stomach Diseases, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Shengpeng Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, 999078, China
| | - Zhangang Xiao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Xu Wu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, 999078, China
| |
Collapse
|
14
|
Pitsillou E, Liang JJ, Beh RC, Hung A, Karagiannis TC. Identification of dietary compounds that interact with the circadian clock machinery: Molecular docking and structural similarity analysis. J Mol Graph Model 2023; 123:108529. [PMID: 37263157 DOI: 10.1016/j.jmgm.2023.108529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/11/2023] [Accepted: 05/21/2023] [Indexed: 06/03/2023]
Abstract
The molecular clock is vital for regulating circadian rhythms in various physiological processes, and its dysregulation is associated with multiple diseases. As such, the use of small molecule modulators to regulate the molecular clock presents a promising therapeutic approach. In this study, we generated a homology model of the human circadian locomotor output cycles kaput (CLOCK) protein to evaluate its ligand binding sites. Using molecular docking, we obtained further insights into the binding mode of the control compound CLK8 and explored a selection of dietary compounds. Our investigation of dietary compounds was guided by their potential interactions with the retinoic acid-related orphan receptors RORα/γ, which are involved in circadian regulation. Through the molecular similarity and docking analyses, we identified oleanolic acid demethyl, 3-epi-lupeol, and taraxasterol as potential ROR-interacting compounds. These compounds may exert therapeutic effects through their modulation of RORα/γ activity and subsequently influence the molecular clock. Overall, our study highlights the potential of small molecule modulators in regulating the molecular clock and the importance of exploring dietary compounds as a source of such modulators. Our findings also provide insights into the binding mechanisms of CLK8 and shed light on potential compounds that can interact with RORs to regulate the molecular clock. Future investigations could focus on validating the efficacy of these compounds in modulating the molecular clock and their potential use as therapeutic agents.
Collapse
Affiliation(s)
- Eleni Pitsillou
- Epigenomic Medicine Laboratory at ProspED, Carlton, VIC, 3053, Australia; School of Science, STEM College, RMIT University, VIC, 3001, Australia
| | - Julia J Liang
- Epigenomic Medicine Laboratory at ProspED, Carlton, VIC, 3053, Australia; School of Science, STEM College, RMIT University, VIC, 3001, Australia
| | - Raymond C Beh
- Epigenomic Medicine Laboratory at ProspED, Carlton, VIC, 3053, Australia; School of Science, STEM College, RMIT University, VIC, 3001, Australia
| | - Andrew Hung
- School of Science, STEM College, RMIT University, VIC, 3001, Australia
| | - Tom C Karagiannis
- Epigenomic Medicine Laboratory at ProspED, Carlton, VIC, 3053, Australia; Department of Clinical Pathology, The University of Melbourne, Parkville, VIC, 3010, Australia.
| |
Collapse
|
15
|
Zou H, Yang Y, Chen HW. Natural compounds ursolic acid and digoxin exhibit inhibitory activities to cancer cells in RORγ-dependent and -independent manner. Front Pharmacol 2023; 14:1146741. [PMID: 37180705 PMCID: PMC10169565 DOI: 10.3389/fphar.2023.1146741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 04/04/2023] [Indexed: 05/16/2023] Open
Abstract
Natural compounds ursolic acid (UA) and digoxin isolated from fruits and other plants display potent anti-cancer effects in preclinical studies. UA and digoxin have been at clinical trials for treatment of different cancers including prostate cancer, pancreatic cancer and breast cancer. However, they displayed limited benefit to patients. Currently, a poor understanding of their direct targets and mechanisms of action (MOA) severely hinders their further development. We previously identified nuclear receptor RORγ as a novel therapeutic target for castration-resistant prostate cancer (CRPC) and triple-negative breast cancer (TNBC) and demonstrated that tumor cell RORγ directly activates gene programs such as androgen receptor (AR) signaling and cholesterol metabolism. Previous studies also demonstrated that UA and digoxin are potential RORγt antagonists in modulating the functions of immune cells such as Th17 cells. Here we showed that UA displays a strong activity in inhibition of RORγ-dependent transactivation function in cancer cells, while digoxin exhibits no effect at clinically relevant concentrations. In prostate cancer cells, UA downregulates RORγ-stimulated AR expression and AR signaling, whereas digoxin upregulates AR signaling pathway. In TNBC cells, UA but not digoxin alters RORγ-controlled gene programs of cell proliferation, apoptosis and cholesterol biosynthesis. Together, our study reveals for the first-time that UA, but not digoxin, acts as a natural antagonist of RORγ in the cancer cells. Our finding that RORγ is a direct target of UA in cancer cells will help select patients with tumors that likely respond to UA treatment.
Collapse
Affiliation(s)
- Hongye Zou
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, Sacramento, CA, United States
| | - Yatian Yang
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, Sacramento, CA, United States
| | - Hong-Wu Chen
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, Sacramento, CA, United States
- UC Davis Comprehensive Cancer Center, University of California, Davis, Sacramento, CA, United States
- VA Northern California Health Care System, Mather, CA, United States
| |
Collapse
|
16
|
Yang N, Yang Y, Huang Z, Chen HW. Deregulation of Cholesterol Homeostasis by a Nuclear Hormone Receptor Crosstalk in Advanced Prostate Cancer. Cancers (Basel) 2022; 14:3110. [PMID: 35804882 PMCID: PMC9265016 DOI: 10.3390/cancers14133110] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 06/13/2022] [Accepted: 06/21/2022] [Indexed: 01/26/2023] Open
Abstract
Metastatic castration-resistant prostate cancer (mCRPC) features high intratumoral cholesterol levels, due to aberrant regulation of cholesterol homeostasis. However, the underlying mechanisms are still poorly understood. The retinoid acid receptor-related orphan receptor gamma (RORγ), an attractive therapeutic target for cancer and autoimmune diseases, is strongly implicated in prostate cancer progression. We demonstrate in this study that in mCRPC cells and tumors, RORγ plays a crucial role in deregulation of cholesterol homeostasis. First, we found that RORγ activates the expression of key cholesterol biosynthesis proteins, including HMGCS1, HMGCR, and SQLE. Interestingly, we also found that RORγ inhibition induces cholesterol efflux gene program including ABCA1, ABCG1 and ApoA1. Our further studies revealed that liver X receptors (LXRα and LXRβ), the master regulators of cholesterol efflux pathway, mediate the function of RORγ in repression of cholesterol efflux. Finally, we demonstrated that RORγ antagonist in combination with statins has synergistic effect in killing mCRPC cells through blocking statin-induced feedback induction of cholesterol biosynthesis program and that the combination treatment also elicits stronger anti-tumor effects than either alone. Altogether, our work revealed that in mCRPC, RORγ contributes to aberrant cholesterol homeostasis by induction of cholesterol biosynthesis program and suppression of cholesterol efflux genes. Our findings support a therapeutic strategy of targeting RORγ alone or in combination with statin for effective treatment of mCRPC.
Collapse
Affiliation(s)
- Nianxin Yang
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, Sacramento, CA 95817, USA; (N.Y.); (Y.Y.); (Z.H.)
| | - Yatian Yang
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, Sacramento, CA 95817, USA; (N.Y.); (Y.Y.); (Z.H.)
| | - Zenghong Huang
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, Sacramento, CA 95817, USA; (N.Y.); (Y.Y.); (Z.H.)
| | - Hong-Wu Chen
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, Sacramento, CA 95817, USA; (N.Y.); (Y.Y.); (Z.H.)
- National Cancer Institute Designated Comprehensive Cancer Center, University of California, Davis, Sacramento, CA 95817, USA
- Veterans Affairs Northern California Health Care System, Mather, CA 95655, USA
| |
Collapse
|
17
|
Gu H, Hu P, Zhao Y, Liu Y, Wang YT, Ahmed AA, Liu HY, Cai D. Nuclear Receptor RORα/γ: Exciting Modulators in Metabolic Syndrome and Related Disorders. Front Nutr 2022; 9:925267. [PMID: 35799591 PMCID: PMC9253614 DOI: 10.3389/fnut.2022.925267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 05/18/2022] [Indexed: 11/29/2022] Open
Abstract
Under the influences of modern lifestyle, metabolic syndromes (MetS), including insulin resistance, obesity, and fatty liver, featuring a worldwide chronic disease, greatly raise the risk of type 2 diabetes, heart disease, and stroke. However, its pathogenesis is still unclear, and there are limited drugs with strong clinical efficacy and specificity. Given the close connection between impaired lipid metabolism and MetS onset, modulating the lipid metabolic genes may provide potential prospects in the development of MetS therapeutics. Nuclear receptors are such druggable transcription factors that translate physiological signals into gene regulation via DNA binding upon ligand activation. Recent studies reveal vital functions of the NRs retinoic acid's receptor-related orphan receptors (RORs), including RORα and RORγ, in the gene regulation in lipid metabolism and MetS. This review focuses on the latest developments in their actions on MetS and related metabolic disorders, which would benefit future clinically therapeutic applications.
Collapse
Affiliation(s)
- Haotian Gu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Ping Hu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Yahui Zhao
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Yaya Liu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Yi-Ting Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Abdelkareem A. Ahmed
- Department of Veterinary Biomedical Sciences, Botswana University of Agriculture and Agriculture and Natural Resources, Gaborone, Botswana
- Biomedical Research Institute, Darfur University College, Nyala, Sudan
| | - Hao-Yu Liu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
- *Correspondence: Hao-Yu Liu
| | - Demin Cai
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
- Demin Cai
| |
Collapse
|
18
|
Silva LND, Garcia IJP, Valadares JMM, Pessoa MTC, Toledo MM, Machado MV, Busch MS, Rocha I, Villar JAFP, Atella GC, Santos HL, Cortes VF, Barbosa LA. Evaluation of Cardiotonic Steroid Modulation of Cellular Cholesterol and Phospholipid. J Membr Biol 2021; 254:499-512. [PMID: 34716469 DOI: 10.1007/s00232-021-00203-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 10/09/2021] [Indexed: 02/05/2023]
Abstract
We have previously shown that 21-benzylidene digoxin (21-BD) increases the total cholesterol and phospholipid content on the membrane of HeLa cells. Lipid modulation caused by cardiotonic steroids (CTS) is still unexplored. Therefore, the aim of the present study was to evaluate the cholesterol and phospholipid modulation of the cell membrane caused by ouabain and 21-BD and the possible involvement of the caveolae on this modulation. For this, one cell line containing caveolae (HeLa) and other not containing (Caco-2) were used. The modulation of the lipid profile was evaluated by total cholesterol and phospholipids measurements, and identification of membrane phospholipids by HPTLC. The cholesterol distribution was evaluated by filipin staining. The caveolin-1 expression was evaluated by Western Blotting. Ouabain had no effect on the total membrane lipid content in both cell lines. However, 21-BD increased total membrane phospholipid content and had no effect on the membrane cholesterol content in Caco-2 cells. CTS were not able to alter the specific phospholipids content. In the filipin experiments, 21-BD provoked a remarkable redistribution of cholesterol to the perinuclear region of HeLa cells. In Caco-2 cells, it was observed only a slight increase in cholesterol, especially as intracellular vesicles. The caveolin-1 expression was not altered by any of the compounds. Our data mainly show different effects of two cardiotonic steroids. Ouabain had no effect on the lipid profile of cells, whereas 21-BD causes important changes in cholesterol and phospholipid content. Therefore, the modulation of cholesterol content in the plasma membrane of HeLa cells is not correlated with the expression of caveolin-1.
Collapse
Affiliation(s)
- Lilian N D Silva
- Laboratório de Bioquímica Celular, Universidade Federal de São João del Rei, Campus Centro-Oeste Dona Lindu, Av Sebastião Gonçalves Coelho, 400, Divinópolis, MG, Zip Code: 35501-296, Brazil.,Laboratório de Bioquímica de Membranas e ATPases, Universidade Federal de São João del Rei, Campus Centro-Oeste Dona Lindu, Divinópolis, MG, Brazil
| | - Israel J P Garcia
- Laboratório de Bioquímica Celular, Universidade Federal de São João del Rei, Campus Centro-Oeste Dona Lindu, Av Sebastião Gonçalves Coelho, 400, Divinópolis, MG, Zip Code: 35501-296, Brazil.,Laboratório de Bioquímica de Membranas e ATPases, Universidade Federal de São João del Rei, Campus Centro-Oeste Dona Lindu, Divinópolis, MG, Brazil
| | - Jessica M M Valadares
- Laboratório de Bioquímica Celular, Universidade Federal de São João del Rei, Campus Centro-Oeste Dona Lindu, Av Sebastião Gonçalves Coelho, 400, Divinópolis, MG, Zip Code: 35501-296, Brazil.,Laboratório de Bioquímica de Membranas e ATPases, Universidade Federal de São João del Rei, Campus Centro-Oeste Dona Lindu, Divinópolis, MG, Brazil
| | - Marco Tulio C Pessoa
- Laboratório de Bioquímica Celular, Universidade Federal de São João del Rei, Campus Centro-Oeste Dona Lindu, Av Sebastião Gonçalves Coelho, 400, Divinópolis, MG, Zip Code: 35501-296, Brazil.,Laboratório de Bioquímica de Membranas e ATPases, Universidade Federal de São João del Rei, Campus Centro-Oeste Dona Lindu, Divinópolis, MG, Brazil
| | - Marina Marques Toledo
- Laboratório de Bioquímica Celular, Universidade Federal de São João del Rei, Campus Centro-Oeste Dona Lindu, Av Sebastião Gonçalves Coelho, 400, Divinópolis, MG, Zip Code: 35501-296, Brazil.,Laboratório de Bioquímica de Membranas e ATPases, Universidade Federal de São João del Rei, Campus Centro-Oeste Dona Lindu, Divinópolis, MG, Brazil
| | - Matheus V Machado
- Laboratório de Síntese Orgânica e Nanoestruturas, Universidade Federal de São João del Rei, Campus Centro-Oeste Dona Lindu, Divinópolis, MG, Brazil
| | - Mileane Souza Busch
- Laboratório de Bioquímica de Lipídios, Instituto de Bioquímica Médica Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Isabella Rocha
- Laboratório de Bioquímica de Lipídios, Instituto de Bioquímica Médica Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - José Augusto F P Villar
- Laboratório de Síntese Orgânica e Nanoestruturas, Universidade Federal de São João del Rei, Campus Centro-Oeste Dona Lindu, Divinópolis, MG, Brazil
| | - Georgia C Atella
- Laboratório de Bioquímica de Lipídios, Instituto de Bioquímica Médica Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Herica L Santos
- Laboratório de Bioquímica Celular, Universidade Federal de São João del Rei, Campus Centro-Oeste Dona Lindu, Av Sebastião Gonçalves Coelho, 400, Divinópolis, MG, Zip Code: 35501-296, Brazil.,Laboratório de Bioquímica de Membranas e ATPases, Universidade Federal de São João del Rei, Campus Centro-Oeste Dona Lindu, Divinópolis, MG, Brazil
| | - Vanessa F Cortes
- Laboratório de Bioquímica Celular, Universidade Federal de São João del Rei, Campus Centro-Oeste Dona Lindu, Av Sebastião Gonçalves Coelho, 400, Divinópolis, MG, Zip Code: 35501-296, Brazil. .,Laboratório de Bioquímica de Membranas e ATPases, Universidade Federal de São João del Rei, Campus Centro-Oeste Dona Lindu, Divinópolis, MG, Brazil.
| | - Leandro A Barbosa
- Laboratório de Bioquímica Celular, Universidade Federal de São João del Rei, Campus Centro-Oeste Dona Lindu, Av Sebastião Gonçalves Coelho, 400, Divinópolis, MG, Zip Code: 35501-296, Brazil. .,Laboratório de Bioquímica de Membranas e ATPases, Universidade Federal de São João del Rei, Campus Centro-Oeste Dona Lindu, Divinópolis, MG, Brazil.
| |
Collapse
|