1
|
Tan Y, Li H, Cao G, Xin J, Yan D, Liu Y, Li P, Zhang Y, Shi L, Zhang B, Yi W, Sun Y. N-terminal domain of CTRP9 promotes cardiac fibroblast activation in myocardial infarction via Rap1/Mek/Erk pathway. J Transl Med 2025; 23:300. [PMID: 40065407 PMCID: PMC11892279 DOI: 10.1186/s12967-025-06274-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Accepted: 02/19/2025] [Indexed: 03/14/2025] Open
Abstract
BACKGROUND In developed nations, myocardial infarction (MI) is one of the main causes of morbidity and mortality, resulting in a significant economic burden and becoming a global public health problem. C1q/tumor necrosis factor-related protein 9 (CTRP9) is a secreted protein comprising a variable domain, a collagenous region, and a C-terminal trimerizing globular C1q (gC1q) domain. In vivo, the full-length CTRP9 (fCTRP9) can be cleaved into the globular domain of CTRP9 (gCTRP9). Here, we tested the cardio-protective impacts of fCTRP9, gCTRP9, and N-terminal domain, including the variable and collagenous domain, of CTRP9 (nCTRP9) in the context of MI. METHODS Studies comparing the protective properties of fCTRP9 and gCTRP9 against MI in mice hearts were performed both in vitro and in vivo. The role of matrix metalloproteinase-9 (MMP9) in CTRP9 cleavage was examined, and the effects of different CTRP9 domains on cardiac fibrosis and cardiac fibroblast (CF) activation were investigated. RESULTS gCTRP9 exerted better protective effects than fCTRP9 against MI, demonstrating superior anti-apoptotic and anti-fibrotic properties. fCTRP9 was cleaved by MMP9, resulting in gCTRP9 and nCTRP9. MMP9 overexpression enhanced the cardioprotective effects of fCTRP9, while nCTRP9 supplementation aggravated cardiac fibrosis in MI mice. Mechanistically, nCTRP9 activated CFs via an increase in Rap1 expression and MEK 1/2 and ERK1/2 phosphorylation. CONCLUSIONS Different domains of CTRP9 have distinct cardioprotective effects. gCTRP9 shows beneficial effects, while nCTRP9 promotes cardiac fibrosis. These findings highlight the importance of CTRP9 in cardiac function regulation and suggest prospective therapeutic options for MI treatment.
Collapse
Affiliation(s)
- Yanzhen Tan
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Hong Li
- Department of Geriatrics, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
- Department of General Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Guojie Cao
- Department of Geriatrics, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Jialin Xin
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Dongxu Yan
- Department of Geriatrics, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Yingying Liu
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Panpan Li
- Department of Geriatrics, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Yuxi Zhang
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Lei Shi
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Bing Zhang
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Wei Yi
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China.
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, No.127, Changlexi Road, Xi'an, Shaanxi, 710032, China.
| | - Yang Sun
- Department of Geriatrics, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China.
- Department of Geriatrics, Xijing Hospital, Fourth Military Medical University, No.127, Changlexi Road, Xi'an, Shaanxi, 710032, China.
| |
Collapse
|
2
|
Zeng M, He Y, Yang Y, Wang M, Chen Y, Wei X. Mesenchymal stem cell-derived extracellular vesicles relieve endothelial cell senescence via recovering CTRP9 upon repressing miR-674-5p in atherosclerosis. Regen Ther 2024; 27:354-364. [PMID: 38645280 PMCID: PMC11031720 DOI: 10.1016/j.reth.2024.03.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 03/14/2024] [Accepted: 03/24/2024] [Indexed: 04/23/2024] Open
Abstract
Background The senescence of endothelial cells is of great importance involving in atherosclerosis (AS) development. Recent studies have proved the protective role of mesenchymal stem cell-derived extracellular vesicles in AS, herein, we further desired to unvei their potential regulatory mechanisms in endothelial cell senescence. Methods Senescence induced by H2O2 in primary mouse aortic endothelial cells (MAECs) was evaluated by SA-β-gal staining. Targeted molecule expression was detected by qRT-PCR and Western blotting. The biological functions of MAECs were determined by CCK-8, flow cytometry, transwell, and tube formation assays. Oxidative injury was assessed by LDH, total and lipid ROS, LPO and MDA levels. The proliferation of adipose-derived mesenchymal stem cell (ADSCs) was analyzed by EdU assay. Effect of ADSCs-derived extracellular vesicles (ADSC-EVs) on AS was investigated in HFD-fed ApoE-/- mice. Results miR-674-5p was up-regulated, while C1q/TNF-related protein 9 (CTRP9) was down-regulated in H2O2-induced senescent MAECs. CTRP9 was demonstrated as a target gene of miR-674-5p. miR-674-5p inhibition restrained senescence, oxidative stress, promoted proliferation, migration, and angiogenesis of H2O2-stimulated MAECs via enhancing CTRP9 expression. Moreover, treatment with ADSC-EVs inhibited H2O2-induced senescence and dysfunction of MAECs through regulating miR-674-5p/CTRP9 axis. In the in vivo AS mouse model, ADSC-EVs combination with miR-674-5p silencing slowed down AS progression via up-regulation of CTRP9. Conclusion ADSC-EVs repressed endothelial cell senescence and improved dysfunction via promotion of CTRP9 expression upon miR-674-5p deficiency during AS progression, which might provide vital evidence for ADSC-EVs as a promising therapy for AS.
Collapse
Affiliation(s)
- Min Zeng
- Medical Center, Hainan Affiliated Hospital of Hainan Medical University (Hainan General Hospital), Haikou 570311, Hainan Province, PR China
| | - Yangli He
- Medical Center, Hainan Affiliated Hospital of Hainan Medical University (Hainan General Hospital), Haikou 570311, Hainan Province, PR China
| | - Yali Yang
- Hainan Medical University, Haikou 570311, Hainan Province, PR China
| | - Mengdi Wang
- Hainan Medical University, Haikou 570311, Hainan Province, PR China
| | - Yue Chen
- Hainan Medical University, Haikou 570311, Hainan Province, PR China
| | - Xin Wei
- Department of Otolaryngology Head and Neck Surgery, Hainan Affiliated Hospital of Hainan Medical University (Hainan General Hospital), Haikou 570311, Hainan Province, PR China
| |
Collapse
|
3
|
Ma W, Zhou T, Tang S, Gan L, Cao Y. Advantages and disadvantages of targeting senescent endothelial cells in cardiovascular and cerebrovascular diseases based on small extracellular vesicles. Expert Opin Ther Targets 2024; 28:1001-1015. [PMID: 39475108 DOI: 10.1080/14728222.2024.2421760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 10/23/2024] [Indexed: 12/13/2024]
Abstract
INTRODUCTION With the growth of the aging population, age-related diseases have become a heavy global burden, particularly cardiovascular and cerebrovascular diseases (CVDs). Endothelial cell (EC) senescence constitutes an essential factor in the development of CVDs, prompting increased focus on strategies to alleviate or reverse EC senescence. AREAS COVERED Small extracellular vesicles (sEVs) are cell-derived membrane structures, that contain proteins, lipids, RNAs, metabolites, growth factors and cytokines. They are widely used in treating CVDs, and show remarkable therapeutic potential in alleviating age-related CVDs by inhibiting or reversing EC senescence. However, unclear anti-senescence mechanism poses challenges for clinical application of sEVs, and a systematic review is lacking. EXPERT OPINION Targeting senescent ECs with sEVs in age-related CVDs treatment represents a promising therapeutic strategy, with modifying sEVs and their contents emerging as a prevalent approach. Nevertheless, challenges remain, such as identifying and selectively targeting senescent cells, understanding the consequences of removing senescent ECs and senescence-associated secretory phenotype (SASP), and assessing the side effects of therapeutic sEVs on CVDs. More substantial experimental and clinical data are needed to advance clinical practice.
Collapse
Affiliation(s)
- Wen Ma
- Institute for Disaster Management and Reconstruction, Sichuan University-The Hong Kong Polytechnic University, Chengdu, China
- Department of Emergency Medicine and Laboratory of Emergency Medicine, West China Hospital, Sichuan University, Chengdu, China
- Disaster Medical Center, Sichuan University, Chengdu, China
| | - Tingyuan Zhou
- Institute for Disaster Management and Reconstruction, Sichuan University-The Hong Kong Polytechnic University, Chengdu, China
- Department of Emergency Medicine and Laboratory of Emergency Medicine, West China Hospital, Sichuan University, Chengdu, China
- Disaster Medical Center, Sichuan University, Chengdu, China
| | - Songling Tang
- Department of Emergency Medicine and Laboratory of Emergency Medicine, West China Hospital, Sichuan University, Chengdu, China
- Disaster Medical Center, Sichuan University, Chengdu, China
| | - Lu Gan
- Department of Emergency Medicine and Laboratory of Emergency Medicine, West China Hospital, Sichuan University, Chengdu, China
- Disaster Medical Center, Sichuan University, Chengdu, China
| | - Yu Cao
- Department of Emergency Medicine and Laboratory of Emergency Medicine, West China Hospital, Sichuan University, Chengdu, China
- Disaster Medical Center, Sichuan University, Chengdu, China
| |
Collapse
|
4
|
Akopova O, Korkach Y, Sagach V. The effects of ecdysterone and enalapril on nitric oxide synthesis and the markers of oxidative stress in streptozotocin-induced diabetes in rats: a comparative study. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:8089-8099. [PMID: 38789633 DOI: 10.1007/s00210-024-03154-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024]
Abstract
Cardiovascular functions in diabetes greatly depend on constitutive NOS (cNOS) activity. A comparative study of the effects of a steroid hormone ecdysterone and enalapril, an ACE inhibitor widely used to treat cardiac disorders on cNOS, inducible NOS (iNOS), xanthine oxidoreductase (XOR) activity, RNS, ROS, and lipid peroxidation in heart tissue in experimental diabetes was conducted. The rat model of diabetes was established by streptozotocin injection. NOS activity, NO2-, NO3-, uric acid, nitrosothiols, hydroperoxide, superoxide, and diene conjugate formation were studied spectrophotomerically. In diabetes, cNOS downregulation correlated with a dramatic fall of NO2- production and ~4.5-fold elevation of nitrosothiols, which agreed with a steep rise of iNOS activity, while NO3- remained close to control. Dramatic activation of XOR was observed, which correlated with the elevation of both superoxide production and nitrate reductase activity and resulted in strong lipid peroxidation. Ecdysterone and enalapril differently affected RNS metabolism. Ecdysterone moderately restored cNOS but strongly suppressed iNOS, which resulted in the reduction of NO3-, but full restoration of NO2- production. Enalapril better restored cNOS but less effectively suppressed iNOS, which promoted NO3- formation. Both drugs similarly inhibited XOR, which equally alleviated oxidative stress and lipid peroxidation. The synergistic action of iNOS and XOR was a plausible explanation for strong lipid peroxidation, abolished by the inhibition of iNOS and XOR by ecdysterone or enalapril. Complementary effects of ecdysterone and enalapril on cNOS, iNOS, and RNS are a promising basis for their combined use in the treatment of cardiovascular disorders caused by cNOS dysfunction in diabetes.
Collapse
Affiliation(s)
- Olga Akopova
- Stem cell laboratory, Bogomoletz Institute of Physiology, NAS of Ukraine, Kiev, Ukraine.
| | - Yulia Korkach
- Circulation department, Bogomoletz Institute of Physiology, NAS of Ukraine, Kiev, Ukraine
| | - Vadim Sagach
- Circulation department, Bogomoletz Institute of Physiology, NAS of Ukraine, Kiev, Ukraine
| |
Collapse
|
5
|
Luo J, He Z, Li Q, Lv M, Cai Y, Ke W, Niu X, Zhang Z. Adipokines in atherosclerosis: unraveling complex roles. Front Cardiovasc Med 2023; 10:1235953. [PMID: 37645520 PMCID: PMC10461402 DOI: 10.3389/fcvm.2023.1235953] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/02/2023] [Indexed: 08/31/2023] Open
Abstract
Adipokines are biologically active factors secreted by adipose tissue that act on local and distant tissues through autocrine, paracrine, and endocrine mechanisms. However, adipokines are believed to be involved in an increased risk of atherosclerosis. Classical adipokines include leptin, adiponectin, and ceramide, while newly identified adipokines include visceral adipose tissue-derived serpin, omentin, and asprosin. New evidence suggests that adipokines can play an essential role in atherosclerosis progression and regression. Here, we summarize the complex roles of various adipokines in atherosclerosis lesions. Representative protective adipokines include adiponectin and neuregulin 4; deteriorating adipokines include leptin, resistin, thrombospondin-1, and C1q/tumor necrosis factor-related protein 5; and adipokines with dual protective and deteriorating effects include C1q/tumor necrosis factor-related protein 1 and C1q/tumor necrosis factor-related protein 3; and adipose tissue-derived bioactive materials include sphingosine-1-phosphate, ceramide, and adipose tissue-derived exosomes. However, the role of a newly discovered adipokine, asprosin, in atherosclerosis remains unclear. This article reviews progress in the research on the effects of adipokines in atherosclerosis and how they may be regulated to halt its progression.
Collapse
Affiliation(s)
- Jiaying Luo
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhiwei He
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Qingwen Li
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Mengna Lv
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yuli Cai
- Department of Endocrinology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Wei Ke
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xuan Niu
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhaohui Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
6
|
Du YW, Li XK, Wang TT, Zhou L, Li HR, Feng L, Ma H, Liu HB. Cyanidin-3-glucoside inhibits ferroptosis in renal tubular cells after ischemia/reperfusion injury via the AMPK pathway. Mol Med 2023; 29:42. [PMID: 37013504 PMCID: PMC10069074 DOI: 10.1186/s10020-023-00642-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 03/21/2023] [Indexed: 04/05/2023] Open
Abstract
BACKGROUND Ferroptosis, which is characterized by lipid peroxidation and iron accumulation, is closely associated with the pathogenesis of acute renal injury (AKI). Cyanidin-3-glucoside (C3G), a typical flavonoid that has anti-inflammatory and antioxidant effects on ischemia‒reperfusion (I/R) injury, can induce AMP-activated protein kinase (AMPK) activation. This study aimed to show that C3G exerts nephroprotective effects against I/R-AKI related ferroptosis by regulating the AMPK pathway. METHODS Hypoxia/reoxygenation (H/R)-induced HK-2 cells and I/R-AKI mice were treated with C3G with or without inhibiting AMPK. The level of intracellular free iron, the expression of the ferroptosis-related proteins acyl-CoA synthetase long chain family member 4 (ACSL4) and glutathione peroxidase 4 (GPX4), and the levels of the lipid peroxidation markers 4-hydroxynonenal (4-HNE), lipid reactive oxygen species (ROS) and malondialdehyde (MDA) were examined. RESULTS We observed the inhibitory effect of C3G on ferroptosis in vitro and in vivo, which was characterized by the reversion of excessive intracellular free iron accumulation, a decrease in 4-HNE, lipid ROS, MDA levels and ACSL4 expression, and an increase in GPX4 expression and glutathione (GSH) levels. Notably, the inhibition of AMPK by CC significantly abrogated the nephroprotective effect of C3G on I/R-AKI models in vivo and in vitro. CONCLUSION Our results provide new insight into the nephroprotective effect of C3G on acute I/R-AKI by inhibiting ferroptosis by activating the AMPK pathway.
Collapse
Affiliation(s)
- Yi-Wei Du
- Department of Nephrology, Tangdu Hospital, Air Force Military Medical University (Fourth Military Medical University), Xi'an, 710038, China
| | - Xiao-Kang Li
- Department of Cardiology, Tangdu Hospital, Air Force Military Medical University (Fourth Military Medical University), Xi'an, 710038, China
| | - Ting-Ting Wang
- Department of Nephrology, Tangdu Hospital, Air Force Military Medical University (Fourth Military Medical University), Xi'an, 710038, China
| | - Lu Zhou
- Department of Nephrology, Tangdu Hospital, Air Force Military Medical University (Fourth Military Medical University), Xi'an, 710038, China
| | - Hui-Rong Li
- Department of Nephrology, Tangdu Hospital, Air Force Military Medical University (Fourth Military Medical University), Xi'an, 710038, China
| | - Lan Feng
- Department of Nephrology, Tangdu Hospital, Air Force Military Medical University (Fourth Military Medical University), Xi'an, 710038, China
| | - Heng Ma
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Air Force Military Medical University (Fourth Military Medical University), Xi'an, 710038, China.
| | - Hong-Bao Liu
- Department of Nephrology, Tangdu Hospital, Air Force Military Medical University (Fourth Military Medical University), Xi'an, 710038, China.
| |
Collapse
|
7
|
Hu ZP, Wu F, Du YH, Ye M. Association between serum complement 1q and the associated factors of acute ischemic stroke in patients with type 2 diabetes. Hum Exp Toxicol 2023; 42:9603271231188291. [PMID: 37550830 DOI: 10.1177/09603271231188291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2023]
Abstract
OBJECTIVE The aim of this study was to examine the association between serum complement 1q (C1q) and the associated factors of acute ischemic stroke in patients with type 2 diabetes (T2DM). METHODS The baseline clinical variables of the participants were collected, and the levels of blood lipids, blood sugar, inflammatory cytokines, and C1q in the three groups were then compared. The variables which affected the associated factors of acute ischemic stroke in T2DM cases were determined. RESULTS The levels of C1q in the DAIS group were increased significantly compared with those in the T2DM group. Receiver operating characteristic curve analyses showed that the AUC for C1q and the combined diagnosis of acute ischemic stroke were 0.830 (95%CI 0.747-0.914), with a sensitivity of 0.854 and specificity of 0.780. The results of Pearson's correlation analyses demonstrated that C1q was associated positively with low-density lipoprotein cholesterol (LDL-C), fasting blood glucose (PBG), 2-h postprandial blood glucose (2h PG), and high-sensitive C reaction protein (hs-CRP) (all p < .05). Stratified analysis showed that there was a positive relationship between C1q and the associated factors of acute ischemic stroke for partial LDL-C, and hs-CRP strata. Logistic model analysis suggested that C1q was an independent risk factor for acute ischemic stroke in patients with T2DM. After adjusting for potential confounders, a one-standard deviation (SD) increase in C1q level was strongly related to an approximately 1.5-fold increased risk of acute ischemic stroke in cases with a hs-CRP ≥1.78 mg/L. CONCLUSION In DAIS patients, the levels of C1q were increased significantly and were an independent associated factor which affected the occurrence of acute ischemic stroke.
Collapse
Affiliation(s)
- Zhen-Ping Hu
- Department of Endocrinology, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, China
| | - Fang Wu
- Rehabilitation Medical Center, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, China
| | - Yuan-Hong Du
- Rehabilitation Medical Center, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, China
| | - Mao Ye
- Department of Endocrinology, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, China
| |
Collapse
|
8
|
Zhang Y, Xu G, Huang B, Chen D, Ye R. Astragaloside IV Regulates Insulin Resistance and Inflammatory Response of Adipocytes via Modulating CTRP3 and PI3K/AKT Signaling. Diabetes Ther 2022; 13:1823-1834. [PMID: 36103112 PMCID: PMC9663774 DOI: 10.1007/s13300-022-01312-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 08/03/2022] [Indexed: 11/29/2022] Open
Abstract
INTRODUCTION Emerging evidence showed that adipocytes are important regulators in controlling insulin resistance in type 2 diabetes mellitus (T2DM). So far, compounds isolated from natural plants have been widely studied for their roles in alleviating T2DM-associated complications. This work evaluated the actions of astragaloside IV (AS-IV) on insulin resistance and inflammatory biomarker expression in adipocytes and explored the potential mechanisms. METHODS Glucose consumption of the adipocytes was determined by a glucose assay kit; the mRNA expression levels of glucose transporter type 4 (GLUT-4), interleukin-6 (IL-6), TNF-α and C1q tumor necrosis factor-related protein 3 (CTRP3) were measured by quantitative real-time PCR (qRT-PCR); the protein levels were determined by western blot assay and enzyme-linked immunosorbent assay. RESULTS AS-IV concentration-dependently increased glucose consumption in the insulin resistance adipocytes. Further qRT-PCR results showed that AS-IV concentration-dependently reduced adipocyte IL-6 and TNF-α expression. Moreover, GLUT-4 expression in adipocytes was also significantly upregulated by AS-IV. Furthermore, we found that AS-IV concentration-dependently increased CTRP3 expression in adipocytes. CTRP3 silence decreased glucose consumption, upregulated IL-6 and TNF-α expression and downregulated GLUT-4 mRNA expression in 200 µM AS-IV-treated adipocytes. Moreover, AS-IV treatment enhanced the activity of phosphoinositide 3-kinase (PI3K)/AKT signaling in adipocytes, which was markedly attenuated by CTRP3 silencing. Importantly, inhibition of PI3K/AKT signaling also attenuated AS-IV induced an increase in glucose consumption and GLUT-4 expression and a decrease in IL-6 and TNF-α expression of adipocytes. CONCLUSIONS Collectively, our data indicated that AS-IV attenuated insulin resistance and inflammation in adipocytes via targeting CTRP3/PI3K/Akt signaling.
Collapse
Affiliation(s)
- Yue Zhang
- Department of Endocriology, Shenzhen Bao’an Traditional Chinese Medicine Hospital, the Affiliated Hospital of Guangzhou University of Chinese Medicine, Shenzhen, 518100 China
| | - Guangning Xu
- Department of Traditional Chinese Medicine, Shenzhen Shekou People’s Hospital, Shenzhen, China
| | - Baoyi Huang
- Department of Endocriology, Shenzhen Bao’an Traditional Chinese Medicine Hospital, the Affiliated Hospital of Guangzhou University of Chinese Medicine, Shenzhen, 518100 China
| | - Dongni Chen
- Department of Endocriology, Shenzhen Bao’an Traditional Chinese Medicine Hospital, the Affiliated Hospital of Guangzhou University of Chinese Medicine, Shenzhen, 518100 China
| | - Renqun Ye
- Department of Endocriology, Shenzhen Bao’an Traditional Chinese Medicine Hospital, the Affiliated Hospital of Guangzhou University of Chinese Medicine, Shenzhen, 518100 China
| |
Collapse
|
9
|
Ye M, Wu QH, Yang K, Luo Y. C1q/TNF-related protein-2 improved angiogenesis to protect myocardial function during ischaemia‒reperfusion. Diab Vasc Dis Res 2022; 19:14791641221137355. [PMID: 36409464 PMCID: PMC9706074 DOI: 10.1177/14791641221137355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Collateral growth plays an important role in the recovery of acute myocardial infarction. C1q/TNF-related protein-2 (CTRP2), a CTRP family member, showed some protective effects on cell survival. In this study, the relationship between CTRP2 and collateral growth was examined. METHODS C57BL/6 mice were subjected to myocardial ischaemia/reperfusion (I/R), and the expression of CTRP2 and the effect of CTRP2 on infarction size, cardiac function and angiogenesis were examined. The ischaemic hindlimb model was also used to examine the effect of CTRP2. In vitro, CTRP2-mediated regulation of angiogenesis, AKT activation and VEGFR2 expression in endothelial cells was examined. The CTRP2 level associated with good collateral growth was observed in a cohort. RESULTS I/R reduced CTRP2 expression, and intraperitoneal injection of recombinant CTRP2 protein improved infarction size, cardiac function and angiogenesis. Overexpression of CTRP2 promoted blood refusion and collateral growth in ischaemic hindlimb mice. In vitro, CTRP2 enhanced tube formation and migration in a dose-dependent manner, while CTRP2 increased AKT phosphorylation and VEGFR2 expression. In an observational clinical cohort, CTRP2 levels were significantly increased in patients with good collateral growth, and CTRP2 was negatively associated with poor collateral growth in patients. CONCLUSION CTRP2 improved cardiac function by promoting collateral growth by promoting AKT-VEGFR2.
Collapse
Affiliation(s)
- Mingfang Ye
- Department of Cardiology,
Fujian
Medical University Union Hospital,
Fujian Medical Center for Cardiovascular Diseases, Fujian Institute of Coronary
Heart Disease, Fujian Key Laboratory of Vascular Aging, Fujian Medical
University, Fujian, China
| | - Qi-Hong Wu
- Department of Cardiovascular
Medicine, State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of
Hypertension, Shanghai Institute of Hypertension, Ruijin Hospital,
Shanghai
Jiao Tong University School of
Medicine, Shanghai, China
| | - Ke Yang
- Department of Cardiovascular
Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of
Medicine, Shanghai, China
- Yukun Luo, Department of Cardiology, Fujian
Medical University Union Hospital, Fujian Medical Center for Cardiovascular
Diseases, Fujian Institute of Coronary Heart Disease, Fujian Key Laboratory of
Vascular Aging, Fujian Medical University, Fujian 350000, China.
Ke Yang, Department of Cardiovascular
Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine,
Shanghai 200025, China.
| | - Yukun Luo
- Department of Cardiology,
Fujian
Medical University Union Hospital,
Fujian Medical Center for Cardiovascular Diseases, Fujian Institute of Coronary
Heart Disease, Fujian Key Laboratory of Vascular Aging, Fujian Medical
University, Fujian, China
- Yukun Luo, Department of Cardiology, Fujian
Medical University Union Hospital, Fujian Medical Center for Cardiovascular
Diseases, Fujian Institute of Coronary Heart Disease, Fujian Key Laboratory of
Vascular Aging, Fujian Medical University, Fujian 350000, China.
Ke Yang, Department of Cardiovascular
Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine,
Shanghai 200025, China.
| |
Collapse
|
10
|
Zhang B, Wang Y, Li X, Wang Y, Jia X, Ke J. The clinical significance of serum complement component 1q tumor necrosis factor-related protein 3 and complement component 1q tumor necrosis factor-related protein 9 levels in patients with rheumatoid arthritis. ENVIRONMENTAL DISEASE 2022. [DOI: 10.4103/ed.ed_19_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
|