1
|
Liu J, Deng L, Yao B, Zhang Y, Huang J, Huang S, Liang C, Shen Y, Wang X. Carboxylesterase 2A gene knockout or enzyme inhibition alleviates steatohepatitis in rats by regulating PPARγ and endoplasmic reticulum stress. Free Radic Biol Med 2025; 232:279-291. [PMID: 40089078 DOI: 10.1016/j.freeradbiomed.2025.03.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 03/09/2025] [Accepted: 03/13/2025] [Indexed: 03/17/2025]
Abstract
Metabolic dysfunction associated steatotic liver disease (MASLD) is a widespread liver disease that progresses from simple steatosis to severe steatohepatitis stage. Despite the recognized importance of carboxylesterase 2 (CES2) in hepatic lipid metabolism, the role of CES2 in hepatic inflammation remains unclear. The rat genome encodes six Ces2 genes and Ces2a shows high expression in the liver and intestine. Lipid metabolism, inflammation, fibrosis, and endoplasmic reticulum (ER) stress were investigated in Ces2a knockout (KO) rats. KO rats showed spontaneous liver lipid accumulation due to increased lipogenesis and reduced fatty acid oxidation. Non-targeted lipidomic analysis revealed enhanced lysophosphatidylcholines (LPCs) and phosphatidylcholines (PCs) in KO rats and increased concentrations of ligands, thus activating the expression of PPARγ. Although there was simple lipid accumulation in the liver of KO rats, Ces2a deficiency showed a significant protective effect against LPS and diet-induced hepatic steatohepatitis by inhibiting ER stress regulated by PPARγ activation. In line with this, treatment with tanshinone IIA, a CES2 inhibitor, significantly alleviated the progression of steatohepatitis induced by the MCD diet. In conclusion, the increased PPARγ expression in Ces2a deficiency may counteract liver inflammation and ER stress despite the presence of simple steatosis. Therefore, CES2 inhibition represents a potential therapeutic approach for steatohepatitis.
Collapse
Affiliation(s)
- Jie Liu
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai, China
| | - Luyao Deng
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai, China
| | - Bingyi Yao
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai, China
| | - Yuanjin Zhang
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai, China
| | - Junze Huang
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai, China
| | - Shengbo Huang
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai, China
| | - Chenmeizi Liang
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai, China
| | - Yifei Shen
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai, China
| | - Xin Wang
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai, China.
| |
Collapse
|
2
|
Zhang Z, Li J, Ma M, Shi H, Lu M, Liang F, Wang X, Ma P, Tian Y, Song D, Zhang Z. Near-infrared fluorescence imaging tool with large Stokes shift for sensitively detecting carboxylesterase 2 and monitoring its expression in non-alcoholic fatty liver disease. Talanta 2025; 285:127378. [PMID: 39689640 DOI: 10.1016/j.talanta.2024.127378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 11/30/2024] [Accepted: 12/11/2024] [Indexed: 12/19/2024]
Abstract
Non-alcoholic fatty liver disease (NAFLD) now affects more than one quarter of the global population and becomes a heavy public health burden. However, the underlying mechanism for the pathogenesis of NAFLD is still not clear. Carboxylesterase 2 (CES2), highly abundant in the liver and intestine, plays an important role in endogenous lipid metabolism and lipolysis. So far, the literatures for the role of CES2 in the development of NAFLD are still limited. In this study, we designed and synthesized a near-infrared fluorescent probe (HP-LZ-CES2) which can be specifically recognized and hydrolyzed by CES2, releasing a benzoate residue and a fluorophore (HP-LZ) with good fluorescence signal. With this probe, CES2 levels can be quantitatively measured in vitro and qualitatively visualized in living cells and mice. The probe has the advantages of large Stokes shift, high detection sensitivity and good selectivity. Further, the CES2 expression levels were visually investigated in both high-fat cells as the in vitro model for NAFLD and high-fat diet fed mouse as the in vivo model for NAFLD. The cell imaging experiments indicated a reduction of fluorescence signal in high-fat hepatic cells. The in vivo experiments showed an obvious reduction of fluorescence in the liver of NAFLD mouse model, which is consistent with the hepatic cell experiments. In contrast, an enhancement of fluorescence was observed in the intestine of NAFLD mouse model. As a result, the NAFLD mouse model can be visually distinguished from the normal chow mouse by vision. Therefore, the proposed probe can be an auxiliary tool for the diagnosis of NAFLD and a visual tool for understanding CES2's role in the development of NAFLD.
Collapse
Affiliation(s)
- Zhimin Zhang
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun, 130012, China; Department of Pharmacy, Changchun Medical College, Changchun, 130031, China
| | - Jingkang Li
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun, 130012, China
| | - Mo Ma
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun, 130012, China; School of Pharmacy, Jilin University, Qianjin Street 2699, Changchun, 130012, China
| | - Hui Shi
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun, 130012, China
| | - Meijun Lu
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun, 130012, China
| | - Fanghui Liang
- Department of Pharmacy, Changchun Medical College, Changchun, 130031, China
| | - Xinghua Wang
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun, 130012, China
| | - Pinyi Ma
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun, 130012, China
| | - Yuan Tian
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun, 130012, China
| | - Daqian Song
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun, 130012, China
| | - Ziwei Zhang
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun, 130012, China.
| |
Collapse
|
3
|
Ates E, My Ong HT, Yu SM, Kim JH, Kang MJ. Comparative Analysis of the Total Proteome in Nonalcoholic Steatohepatitis: Identification of Potential Biomarkers. Mol Cell Proteomics 2025; 24:100921. [PMID: 39894410 PMCID: PMC11910689 DOI: 10.1016/j.mcpro.2025.100921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 10/06/2024] [Accepted: 11/08/2024] [Indexed: 02/04/2025] Open
Abstract
Nonalcoholic fatty liver disease is a hepatic condition characterized by excessive fat accumulation in the liver with advanced stage nonalcoholic steatohepatitis (NASH), potentially leading to liver fibrosis, cirrhosis, and cancer. Currently, the identification and classification of NASH require invasive liver biopsy, which has certain limitations. Mass spectrometry-based proteomics can detect crucial proteins and pathways implicated in NASH development and progression. We collected the liver and serum samples from choline-deficient, L-amino acid-defined high-fat diet fed NASH C57BL/6J mice and human serum samples to examine proteomic alterations and identify early biomarkers for NASH diagnosis. In-depth targeted multiple reaction monitoring scanning and immunoblotting assays were used to verify the biomarker candidates from mouse liver and serum samples, and enzyme-linked immunosorbent assay (ELISA) was employed to analyze human serum samples. The multiple reaction monitoring analysis of NASH liver revealed 50 proteins with altered expression (21 upregulated and 29 downregulated) that are involved in biological processes such as detoxification, fibrosis, inflammation, and fatty acid metabolism. Ingenuity pathway analysis identified impaired protein synthesis, cellular stress and defense, cellular processes and communication, and metabolism in NASH mouse liver. Immunoblotting analysis confirmed that the expression of proteins associated with fatty acid metabolism (Aldo B and Fasn) and urea cycle (Arg1, Cps1, and Otc) was altered in the mouse liver and serum. Further analysis on human serum samples using ELISA confirmed the increased expression of multiple proteins, including Aldo B, Asl, and Lgals3, demonstrating values of 0.917, 0.979, and 0.965 of area under the curve in NASH diagnosis. These findings offer valuable insights into the molecular mechanisms of NASH and possible diagnostic biomarkers for early detection.
Collapse
Affiliation(s)
- Eda Ates
- Center for Advanced Biomolecular Recognition, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, Republic of Korea; Division of Bio-Medical Science & Technology, KIST School, University of Science and Technology, Seoul, Republic of Korea
| | - Hien Thi My Ong
- Center for Advanced Biomolecular Recognition, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, Republic of Korea; Division of Bio-Medical Science & Technology, KIST School, University of Science and Technology, Seoul, Republic of Korea
| | - Seung-Min Yu
- Center for Advanced Biomolecular Recognition, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, Republic of Korea; College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Ji-Hoon Kim
- Center for Advanced Biomolecular Recognition, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, Republic of Korea
| | - Min-Jung Kang
- Center for Advanced Biomolecular Recognition, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, Republic of Korea; Division of Bio-Medical Science & Technology, KIST School, University of Science and Technology, Seoul, Republic of Korea.
| |
Collapse
|
4
|
Zhao J, Zhong Y, Huang Q, Pan Z, Zheng Y, Miao D, Liu S, Chen P, Liu C, Liu M, Shen C. Cassia mimosoides L. decoction improves non-alcoholic fatty liver disease by modulating the pregnane X receptor. JOURNAL OF ETHNOPHARMACOLOGY 2025; 340:119199. [PMID: 39631715 DOI: 10.1016/j.jep.2024.119199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 11/29/2024] [Accepted: 12/01/2024] [Indexed: 12/07/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Cassia mimosoides L. (CML) is a traditional Chinese medicine (TCM), which is frequently used in the clinical practice of TCM in the Lingnan region of China for the treatment of obesity. However, it is not clear whether decoction of cassia seeds has beneficial effects on non-alcoholic fatty liver disease (NAFLD). OBJECTIVES This study investigates the effect of CML on NAFLD and its underlying mechanisms. MATERIALS AND METHODS The high-fat diet (HFD) was used to induce NAFLD mice, and 40 male C57BL/6J mice were divided into Control, HFD, and CML groups (CML-low 1.5 g/kg, CML-medium 2.25 g/kg, CML-high 4.5 g/kg). The mouse primary hepatocytes (MPHs) of wild type (WT) and PXR-/- mice were induced using OAPA and divided into Control, OAPA, and CML groups (10 mg/L, 100 mg/L). Glycolipid metabolism, inflammation, and oxidative stress levels were detected in vivo and in vitro. RESULTS Compared to the HFD group, the CML groups demonstrated reduced body weight, triglycerides, total cholesterol, blood glucose, and mRNA levels of the lipid metabolism genes Srebp-1c and ACC1 in mice (p < 0.05 or 0.01). The ELISA results indicated that CML inhibited the production of IL-1β, IL-6, and TNF-α (p < 0.05). Furthermore, CML increased the SOD level (p < 0.01) to improve oxidative stress. RNA-seq expression showed that CML suppressed the transcriptional level of pregnane X receptor (PXR)(p < 0.05). In vitro experiments, the protective effect of CML against OAPA-induced lipid accumulation and inflammation observed in WT MPHs disappeared in PXR-/- MPHs (IC50: 1.04 mg/mL). CONCLUSION CML decoction ameliorates NAFLD mainly by inhibiting the PXR signaling pathway, which provides a theoretical basis for the broad application of CML in clinical practice.
Collapse
Affiliation(s)
- Jian Zhao
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yanhua Zhong
- Department of Acupuncture-Rehabilitation, Guangzhou-Liwan Hospital of Chinese Medicine, Guangzhou, China
| | - Qingyin Huang
- Department of Endocrinology, First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhisen Pan
- The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yi Zheng
- The Second Affiliated Hospital of Zhejiang Chinese Medical University, Xinhua Hospital of Zhejiang Province, Hangzhou, China
| | - Deyu Miao
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Siqi Liu
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Penglong Chen
- Pharmacy Department of the First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Changhui Liu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Min Liu
- Department of Endocrinology, First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Chuangpeng Shen
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China; Department of Endocrinology, First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; ShenShan Hospital, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Shanwei, 516600, China; Guangdong Clinical Research Academy of Chinese Medicine, Guangzhou, 510405, China.
| |
Collapse
|
5
|
Ma ZJ, Qiu YK, Yu ZW, Song TT, Hu YT, Peng AK, Qi R. Natural small molecule hinokitone mitigates NASH fibrosis by targeting regulation of FXR-mediated hepatocyte apoptosis. J Adv Res 2024:S2090-1232(24)00593-9. [PMID: 39675503 DOI: 10.1016/j.jare.2024.12.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 09/23/2024] [Accepted: 12/10/2024] [Indexed: 12/17/2024] Open
Abstract
INTRODUCTION Liver fibrosis is the common fate of NASH and poses a major health threat with very limited pharmacological treatments. OBJECTIVES This study aims to investigate the preventive effect of hinokitone (HO), an isolated compound from Agathis dammara, on NASH fibrosis and its underlying mechanism. METHODS To investigate the effect of HO on NASH fibrosis, C57BL/6 mice were either fed a high-fat diet (HFD) in conjunction with intraperitoneal injection of CCl4 for 8 weeks or single CCl4 for 14 days to establish mouse liver fibrosis model, and HO was administered by gavage simultaneously. To elucidate the underlying mechanisms, HepG2 cells were stimulated by palmitic acid (PA) or tumor necrosis factor α plus actinomycin-D (Act-D + TNFα) to induce hepatocyte apoptosis model. Furthermore, hepatocyte Farnesoid-X-receptor (FXR) specifically knocked out mice were established by the albumin-Cre-loxP recombination enzyme system to ascertain the role of FXR in the anti-NASH fibrosis effects of HO. RESULTS The results showed that HO presented dose-dependent anti-liver fibrosis efficacy in NASH mice induced by HFD + CCl4 and CCl4-induced mouse liver fibrosis. Cellularly, HO significantly inhibited PA-induced lipotoxic apoptosis and Act-D + TNFα-induced exogenous apoptosis in hepatocytes, which in turn prevented HSC activation. Mechanistically, bioinformatics analysis and surface plasmon resonance assay had identified hepatocyte FXR as a target of HO. Specifically, HO directly bound to FXR and upregulated its protein level by inhibiting proteasomal degradation. In turn, HO attenuated hepatocyte lipid deposition through upregulating the FXR's downstream target genes SHP and CES1, and reduced cleaved-CASP8 level, thereby inhibiting hepatocyte apoptosis. Furthermore, HO lost its function in the inhibition of hepatocyte apoptosis and liver fibrosis when knockout hepatocyte FXR. CONCLUSION In conclusion, HO has an inhibitory effect on NASH fibrosis. This effect is mediated by targeting upregulation of hepatocyte FXR, which in turn attenuates hepatocyte apoptosis and thus indirectly inhibits the activation of HSCs.
Collapse
Affiliation(s)
- Ze-Jiang Ma
- Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing 100191, China; State Key Laboratory of Vascular Homeostasis and Remodeling, State Key Laboratory of Natural and Biomimetic Drugs, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Peking University, Beijing 100191, China; Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, Beijing 100191, China; Department of Physiology, School of Basic Medical Sciences, Xinjiang Second Medical College, Karamay, China
| | - Ying-Kun Qiu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
| | - Zhe-Wei Yu
- Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing 100191, China; Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
| | - Tian-Tian Song
- Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing 100191, China; State Key Laboratory of Vascular Homeostasis and Remodeling, State Key Laboratory of Natural and Biomimetic Drugs, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Peking University, Beijing 100191, China; Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, Beijing 100191, China
| | - Yi-Tong Hu
- Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing 100191, China; State Key Laboratory of Vascular Homeostasis and Remodeling, State Key Laboratory of Natural and Biomimetic Drugs, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Peking University, Beijing 100191, China; Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, Beijing 100191, China
| | - An-Kang Peng
- Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing 100191, China; State Key Laboratory of Vascular Homeostasis and Remodeling, State Key Laboratory of Natural and Biomimetic Drugs, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Peking University, Beijing 100191, China; Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, Beijing 100191, China; Department of Cardiology, Pu'er People's Hospital, Yunnan, China
| | - Rong Qi
- Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing 100191, China; State Key Laboratory of Vascular Homeostasis and Remodeling, State Key Laboratory of Natural and Biomimetic Drugs, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Peking University, Beijing 100191, China; Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, Beijing 100191, China.
| |
Collapse
|
6
|
Elkhanoufi S, Rakhshan S, Nespeca MJ, Alberti D, Boudries D, Pokong-Touyam J, Stefania R, Parzy E, Massot P, Mellet P, Franconi JM, Thiaudiere E, Geninatti Crich S. A radical containing micellar probe for assessing esterase enzymatic activity with ultra-low field Overhauser-enhanced magnetic resonance imaging. J Mater Chem B 2024; 12:10923-10933. [PMID: 39331028 DOI: 10.1039/d4tb00639a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
The ability to track altered enzyme activity using a non-invasive imaging protocol is crucial for the early diagnosis of many diseases but is often challenging. Herein, we show that Overhauser magnetic resonance imaging (OMRI) can be used to monitor enzymatic conversion at an ultra-low field (206 μT) using a highly sensitive "off/on" probe with a nitroxide stable radical containing ester, named T2C12-T80. This TEMPO derivative containing probe forms stable electron paramagnetic resonance (EPR) silent micelles in water that are hydrolysed by esterases, thus yielding narrow EPR signals whose intensities correlate directly with specific enzymatic activity. The responsiveness of the probe to tumours, facilitated by increased esterase activity, was initially determined by comparing EPR signals measured upon incubation with 3T3 (healthy fibroblasts used as control), HepG2 (human hepatoma) and Hs766T (human pancreatic cancer cells) cell lysates and then with Hs766T and 3T3 living cells. Next, Overhauser MR images were detected on a phantom containing the probe and the esterases to show that the approach is well suited for being translated to the in vivo detection at the earth's magnetic field. Regarding detection sensitivity, ultra-low field OMRI (ULF-OMRI) is beneficial over OMRI at higher fields (e.g. 0.2 T) since Overhauser enhancements are significantly higher and the technique is safe in terms of the specific absorption rate.
Collapse
Affiliation(s)
- Sabrina Elkhanoufi
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126 Torino, Italy.
| | - Sahar Rakhshan
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126 Torino, Italy.
| | - Martin J Nespeca
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126 Torino, Italy.
| | - Diego Alberti
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126 Torino, Italy.
| | - Dahmane Boudries
- Magnetic Resonance Center UMR, Univ. Bordeaux, CNRS, CRMSB, UMR 5536, Case 93 146, rue Leo Saignat, F-33000 Bordeaux, France.
| | - Joyce Pokong-Touyam
- Magnetic Resonance Center UMR, Univ. Bordeaux, CNRS, CRMSB, UMR 5536, Case 93 146, rue Leo Saignat, F-33000 Bordeaux, France.
| | - Rachele Stefania
- Department of Science and Technological Innovation, University of Eastern Piedmont "Amedeo Avogadro", Alessandria, Italy
| | - Elodie Parzy
- Magnetic Resonance Center UMR, Univ. Bordeaux, CNRS, CRMSB, UMR 5536, Case 93 146, rue Leo Saignat, F-33000 Bordeaux, France.
| | - Philippe Massot
- Magnetic Resonance Center UMR, Univ. Bordeaux, CNRS, CRMSB, UMR 5536, Case 93 146, rue Leo Saignat, F-33000 Bordeaux, France.
| | - Philippe Mellet
- Magnetic Resonance Center UMR, Univ. Bordeaux, CNRS, CRMSB, UMR 5536, Case 93 146, rue Leo Saignat, F-33000 Bordeaux, France.
- INSERM, Bordeaux, France
| | | | - Eric Thiaudiere
- Magnetic Resonance Center UMR, Univ. Bordeaux, CNRS, CRMSB, UMR 5536, Case 93 146, rue Leo Saignat, F-33000 Bordeaux, France.
| | - Simonetta Geninatti Crich
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126 Torino, Italy.
| |
Collapse
|
7
|
Itoh M, Watanabe K, Mizukami Y, Sugimoto H. Molecular alterations associated with pathophysiology in liver-specific ZO-1 and ZO-2 knockout mice. Cell Struct Funct 2024; 49:83-99. [PMID: 39322562 PMCID: PMC11930773 DOI: 10.1247/csf.24046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 09/21/2024] [Indexed: 09/27/2024] Open
Abstract
The liver is a complex organ with a highly organized structure in which tight junctions (TJs) play an important role in maintaining their function by regulating barrier properties and cellular polarity. Dysfunction of TJs is associated with liver diseases, including progressive familial intrahepatic cholestasis (PFIC). In this study, we investigated the molecular alterations in a liver-specific ZO-1 and ZO-2 double-knockout (DKO) mouse model, which exhibits features resembling those of PFIC4 patients with mutations in the ZO-2 gene. RNA-seq analysis revealed the upregulation of genes involved in the oxidative stress response, xenobiotic metabolism, and cholesterol metabolism in DKO livers. Conversely, the expression of genes regulated by HNF4α was lower in DKO livers than in the wild-type controls. Furthermore, age-associated analysis elucidated the timing and progression of these pathway changes as well as alterations in molecules related to TJs and apical polarity. Our research uncovered previously unknown implications of ZO-1 and ZO-2 in liver physiology and provides new insights into the molecular pathogenesis of PFIC4 and other tight junction-related liver diseases. These findings contribute to a better understanding of the complex mechanisms underlying liver function and dysfunction and may lead to the development of novel therapeutic strategies for liver diseases associated with tight junction impairment.Key words: tight junctions, ZO-1/ZO-2 knockout mouse, liver, transcriptome analysis, molecular pathological progression.
Collapse
Affiliation(s)
- Masahiko Itoh
- Department of Biochemistry, School of Medicine, Dokkyo Medical University, Tochigi 321-0293, Japan
| | - Kenji Watanabe
- Institute of Gene Research, Yamaguchi University Science Research Center, Yamaguchi 755-8505, Japan
| | - Yoichi Mizukami
- Institute of Gene Research, Yamaguchi University Science Research Center, Yamaguchi 755-8505, Japan
| | - Hiroyuki Sugimoto
- Department of Biochemistry, School of Medicine, Dokkyo Medical University, Tochigi 321-0293, Japan
| |
Collapse
|
8
|
McGlone ER, Hope DCD, Davies I, Dore M, Goldin R, Jones B, Liu Z, Li JV, Vorkas PA, Khoo B, Carling D, Minnion J, Bloom SR, Tan TMM. Chronic treatment with glucagon-like peptide-1 and glucagon receptor co-agonist causes weight loss-independent improvements in hepatic steatosis in mice with diet-induced obesity. Biomed Pharmacother 2024; 176:116888. [PMID: 38861859 DOI: 10.1016/j.biopha.2024.116888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 05/28/2024] [Accepted: 06/03/2024] [Indexed: 06/13/2024] Open
Abstract
OBJECTIVES Co-agonists at the glucagon-like peptide-1 and glucagon receptors (GLP1R/GCGR) show promise as treatments for metabolic dysfunction-associated steatotic liver disease (MASLD). Although most co-agonists to date have been heavily GLP1R-biased, glucagon directly acts on the liver to reduce fat content. The aims of this study were to investigate a GCGR-biased co-agonist as treatment for hepatic steatosis in mice. METHODS Mice with diet-induced obesity (DIO) were treated with Dicretin, a GLP1/GCGR co-agonist with high potency at the GCGR, Semaglutide (GLP1R monoagonist) or food restriction over 24 days, such that their weight loss was matched. Hepatic steatosis, glucose tolerance, hepatic transcriptomics, metabolomics and lipidomics at the end of the study were compared with Vehicle-treated mice. RESULTS Dicretin lead to superior reduction of hepatic lipid content when compared to Semaglutide or equivalent weight loss by calorie restriction. Markers of glucose tolerance and insulin resistance improved in all treatment groups. Hepatic transcriptomic and metabolomic profiling demonstrated many changes that were unique to Dicretin-treated mice. These include some known targets of glucagon signaling and others with as yet unclear physiological significance. CONCLUSIONS Our study supports the development of GCGR-biased GLP1/GCGR co-agonists for treatment of MASLD and related conditions.
Collapse
Affiliation(s)
- Emma Rose McGlone
- Department of Surgery and Cancer, Imperial College London, London, UK; Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - David C D Hope
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Iona Davies
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Marian Dore
- Genomics facility, MRC Laboratory of Medical Sciences (LMS), Imperial College London, London, UK
| | - Rob Goldin
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Ben Jones
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Zhigang Liu
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Jia V Li
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Panagiotis A Vorkas
- Institute of Applied Biosciences, Centre for Research and Technology Hellas (INAB|CERTH), Thessaloniki 57001, Greece; School of Cardiovascular and Metabolic Medicine & Sciences, King's College London, London, UK
| | - Bernard Khoo
- Endocrinology, Division of Medicine, University College London, London, UK
| | - David Carling
- Cellular Stress group, MRC LMS, Imperial College London, London, UK
| | - James Minnion
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Stephen R Bloom
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Tricia M-M Tan
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK.
| |
Collapse
|
9
|
Chen Y, Zhao T, Miao Z, Huang T, Chen M, Zhao Y, Hai A, Qi Q, Feng P, Li M, Ke B. Identification of the first selective bioluminescent probe for real-time monitoring of carboxylesterase 2 in vitro and in vivo. Analyst 2024; 149:418-425. [PMID: 38078792 DOI: 10.1039/d3an01745a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
Carboxylesterase (CES), a main hydrolysis enzyme family in the human body, plays a crucial role in drug metabolism. Among them, CES1 and CES2 are the primary subtypes, and each exhibits distinct distribution and functions. However, convenient and non-invasive methods for distinguishing them and the real-time monitoring of CES2 are relatively rare, hindering the further understanding of physiological functions and underlying mechanisms. In this study, we have designed, synthesized, and evaluated the first selective bioluminescent probe (CBP 1) for CES2 with high sensitivity, high specificity and rapid reactivity. This probe offers a promising approach for the real-time detection of CES2 and its dynamic fluctuations both in vitro and in vivo.
Collapse
Affiliation(s)
- Yuhao Chen
- Department of Anesthesiology, Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.
- West China School of Pharmacy, Sichuan University, Chengdu, Sichuan 610041, China
| | - Tiantian Zhao
- Department of Anesthesiology, Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.
| | - Zhuang Miao
- Department of Anesthesiology, Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.
| | - Tianguang Huang
- Department of Anesthesiology, Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.
| | - Meiyuan Chen
- Department of Anesthesiology, Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.
| | - Yi Zhao
- Department of Anesthesiology, Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.
| | - Ao Hai
- Department of Anesthesiology, Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.
| | - Qingrong Qi
- West China School of Pharmacy, Sichuan University, Chengdu, Sichuan 610041, China
| | - Ping Feng
- Institute of Clinical Trials, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.
| | - Minyong Li
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (MOE), School of Pharmacy, Shandong University, Jinan, Shandong 250012, China.
| | - Bowen Ke
- Department of Anesthesiology, Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.
| |
Collapse
|