1
|
De Coster T, David K, Breckpot J, Decallonne B. Management of autosomal dominant hypocalcemia type 1: Literature review and clinical practice recommendations. J Endocrinol Invest 2025; 48:831-844. [PMID: 39607645 PMCID: PMC11950097 DOI: 10.1007/s40618-024-02496-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 11/01/2024] [Indexed: 11/29/2024]
Abstract
PURPOSE Autosomal Dominant Hypocalcemia type 1 (ADH1), caused by gain-of-function variants in the calcium-sensing receptor (CASR), is characterized by a variable degree of hypocalcemia and hypercalciuria with inappropriately low PTH. The clinical spectrum is broad, ranging from being asymptomatic to presenting with severe clinical features of hypocalcemia and end-organ damage such as nephrolithiasis and intracerebral calcifications. Although the underlying pathophysiology is different, ADH1 patients are often managed as patients with 'classical' primary hypoparathyroidism, possibly leading to (exacerbation of) hypercalciuria. New treatments such as PTH analogues and calcilytics directly targeting the CASR are in the pipeline. Specific clinical guidance for treatment and monitoring of ADH1 patients is lacking. The purpose of this study is to provide a literature review on management of ADH1, including new therapies, and to formulate practice recommendations. METHODS We searched for articles and ongoing clinical trials regarding management of ADH1. RESULTS Forty articles were included. First we review the conventional treatment of ADH1, focusing on active vitamin D, calcium supplements, thiazide diuretics, phosphorus binders and dietary recommendations. In a second part we give an overview of studies with emerging treatments in ADH1: PTH analogues (PTH1-34, rhPTH1-84, TransCon PTH and others) and calcilytics (preclinical studies and clinical trials). In a third part we discuss literature findings regarding monitoring of ADH1 patients. Finally, we formulate clinical practice recommendations. CONCLUSION We provide an overview of conventional and new treatments for ADH1 patients. Based on these data, we propose practical recommendations to assist clinicians in the management of ADH1 patients.
Collapse
Affiliation(s)
- Thomas De Coster
- General Internal Medicine, University Hospitals Leuven, Leuven, Belgium
| | - Karel David
- Endocrinology, University Hospitals Leuven, Leuven, Herestraat 49, 3000, Belgium
| | - Jeroen Breckpot
- Center for Human Genetics, University Hospitals Leuven, Leuven, Belgium
| | - Brigitte Decallonne
- Endocrinology, University Hospitals Leuven, Leuven, Herestraat 49, 3000, Belgium.
| |
Collapse
|
2
|
Rodriguez R, Müller S, Colombeau L, Solier S, Sindikubwabo F, Cañeque T. Metal Ion Signaling in Biomedicine. Chem Rev 2025; 125:660-744. [PMID: 39746035 PMCID: PMC11758815 DOI: 10.1021/acs.chemrev.4c00577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 11/10/2024] [Accepted: 12/10/2024] [Indexed: 01/04/2025]
Abstract
Complex multicellular organisms are composed of distinct tissues involving specialized cells that can perform specific functions, making such life forms possible. Species are defined by their genomes, and differences between individuals within a given species directly result from variations in their genetic codes. While genetic alterations can give rise to disease-causing acquisitions of distinct cell identities, it is now well-established that biochemical imbalances within a cell can also lead to cellular dysfunction and diseases. Specifically, nongenetic chemical events orchestrate cell metabolism and transcriptional programs that govern functional cell identity. Thus, imbalances in cell signaling, which broadly defines the conversion of extracellular signals into intracellular biochemical changes, can also contribute to the acquisition of diseased cell states. Metal ions exhibit unique chemical properties that can be exploited by the cell. For instance, metal ions maintain the ionic balance within the cell, coordinate amino acid residues or nucleobases altering folding and function of biomolecules, or directly catalyze specific chemical reactions. Thus, metals are essential cell signaling effectors in normal physiology and disease. Deciphering metal ion signaling is a challenging endeavor that can illuminate pathways to be targeted for therapeutic intervention. Here, we review key cellular processes where metal ions play essential roles and describe how targeting metal ion signaling pathways has been instrumental to dissecting the biochemistry of the cell and how this has led to the development of effective therapeutic strategies.
Collapse
Affiliation(s)
- Raphaël Rodriguez
- Institut
Curie, CNRS, INSERM, PSL Research University, 75005 Paris, France
| | - Sebastian Müller
- Institut
Curie, CNRS, INSERM, PSL Research University, 75005 Paris, France
| | - Ludovic Colombeau
- Institut
Curie, CNRS, INSERM, PSL Research University, 75005 Paris, France
| | - Stéphanie Solier
- Institut
Curie, CNRS, INSERM, PSL Research University, 75005 Paris, France
- Université
Paris-Saclay, UVSQ, 78180 Montigny-le-Bretonneux, France
| | | | - Tatiana Cañeque
- Institut
Curie, CNRS, INSERM, PSL Research University, 75005 Paris, France
| |
Collapse
|
3
|
Afrah A, Finkel MA, Fonseca C, Asato MT, Jay MS, Pappas A, Gowda SB, Jay A. Demineralization of Osseous Structures as Presentation of a Rare Genetic Disorder That Is Associated With a High Rate of Mortality. Case Rep Endocrinol 2024; 2024:6063059. [PMID: 39703927 PMCID: PMC11658845 DOI: 10.1155/crie/6063059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 11/28/2024] [Indexed: 12/21/2024] Open
Abstract
Objectives: Describe the details of the clinical presentation, diagnostic challenges, and management of a female neonate with neonatal severe hyperparathyroidism (NSHPT). Methods: This case report was developed from a retrospective chart review. The female infant was born to consanguineous parents-first cousins, with multiple prenatal concerns, including gestational diabetes, intrauterine growth restriction, polyhydramnios, and suspicion of a hypoplastic left atrium on prenatal echocardiogram (ECHO). Following a planned C-section at 37 weeks gestation, the neonate exhibited moderate respiratory distress with subcostal retractions. On physical examination, craniotabes, a bell-shaped chest, and a continuous machinery-type murmur were noted. Results: Evaluation at birth revealed a large Patent Ductus Arteriosus and significant demineralization of skeletal structures with atypical rib morphology. Lab work at 24 h of life (HOL) showed elevated serum calcium level (14.3 mg/dL), ionized calcium-iCal (2.32 mmol/L), and normal 25-OH Vitamin D (54.2 ng/mL). A comprehensive skeletal survey uncovered generalized osteopenia, metaphyseal lucencies, and evidence of healing fractures. Repeat lab work at 43 HOL, showed serum calcium of 18.0 mg/dL, iCal 2.67 mmol/L, and elevated parathyroid hormone (PTH) of 2116 pg/mL. Diagnosis of NSHPT was established based on laboratory findings. Molecular testing confirmed a homozygous variant (c.1744T >A; p.Cys582Ser) in the calcium-sensing receptor (CaSR) gene which confirmed the diagnosis of NSHPT. NSHPT, a rare genetic disorder associated with high mortality rates, is often caused by inactivating CaSR gene variants. The patient's family history revealed a strong correlation with familial hypocalciuric hypercalcemia (FHH), a benign condition associated with asymptomatic hypercalcemia, normal to minimally elevated parathyroid level, and hypocalciuria, it is caused by heterozygous inactivating mutations in the CaSR gene. Treatment of NSHPT typically involves total or subtotal parathyroidectomy; however, initial medical intervention is often necessary. In this case, the neonate underwent medical treatment with calcitonin, furosemide to help facilitate renal clearance of calcium, and intravenous fluids before a successful parathyroidectomy. Conclusions: This case accentuates the importance of considering rare genetic disorders in neonates with complex clinical presentations and affirms the need for comprehensive counseling and education, particularly in consanguineous parents, to address familial implications and guide appropriate interventions.
Collapse
Affiliation(s)
- Adeeba Afrah
- Department of Pediatrics, Division of Pediatric Pulmonology, University of Michigan, Medicine, Ann Arbor, Michigan, USA
| | - Michael A. Finkel
- Division of Genetic, Genomic and Metabolic Disorders, Department of Pediatrics, University of Michigan, Ann Arbor, Michigan, USA
| | - Carolina Fonseca
- Department of Pediatrics, Division of Pediatric Hospital Medicine, University of San Francisco, San Francisco, California, USA
| | | | - M. Susan Jay
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Athina Pappas
- Henry Ford St. John Hospital, Detroit, Michigan, USA
| | | | - Allison Jay
- Henry Ford St. John Hospital, Detroit, Michigan, USA
| |
Collapse
|
4
|
Carletti A, Gavaia PJ, Cancela ML, Laizé V. Metabolic bone disorders and the promise of marine osteoactive compounds. Cell Mol Life Sci 2023; 81:11. [PMID: 38117357 PMCID: PMC10733242 DOI: 10.1007/s00018-023-05033-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 10/12/2023] [Accepted: 11/05/2023] [Indexed: 12/21/2023]
Abstract
Metabolic bone disorders and associated fragility fractures are major causes of disability and mortality worldwide and place an important financial burden on the global health systems. These disorders result from an unbalance between bone anabolic and resorptive processes and are characterized by different pathophysiological mechanisms. Drugs are available to treat bone metabolic pathologies, but they are either poorly effective or associated with undesired side effects that limit their use. The molecular mechanism underlying the most common metabolic bone disorders, and the availability, efficacy, and limitations of therapeutic options currently available are discussed here. A source for the unmet need of novel drugs to treat metabolic bone disorders is marine organisms, which produce natural osteoactive compounds of high pharmaceutical potential. In this review, we have inventoried the marine osteoactive compounds (MOCs) currently identified and spotted the groups of marine organisms with potential for MOC production. Finally, we briefly examine the availability of in vivo screening and validation tools for the study of MOCs.
Collapse
Affiliation(s)
- Alessio Carletti
- Centre of Marine Sciences (CCMAR), University of Algarve, Faro, Portugal
- Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve, Faro, Portugal
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Paulo Jorge Gavaia
- Centre of Marine Sciences (CCMAR), University of Algarve, Faro, Portugal
- Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve, Faro, Portugal
- Associação Oceano Verde (GreenCoLab), Faro, Portugal
| | - Maria Leonor Cancela
- Centre of Marine Sciences (CCMAR), University of Algarve, Faro, Portugal
- Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve, Faro, Portugal
- Algarve Biomedical Center (ABC), University of Algarve, Faro, Portugal
| | - Vincent Laizé
- Centre of Marine Sciences (CCMAR), University of Algarve, Faro, Portugal.
- Collaborative Laboratory for Sustainable and Smart Aquaculture (S2AQUAcoLAB), Olhão, Portugal.
| |
Collapse
|
5
|
Pereira RS, Kumar R, Cais A, Paulini L, Kahler A, Bravo J, Minciacchi VR, Krack T, Kowarz E, Zanetti C, Godavarthy PS, Hoeller F, Llavona P, Stark T, Tascher G, Nowak D, Meduri E, Huntly BJP, Münch C, Pampaloni F, Marschalek R, Krause DS. Distinct and targetable role of calcium-sensing receptor in leukaemia. Nat Commun 2023; 14:6242. [PMID: 37802982 PMCID: PMC10558580 DOI: 10.1038/s41467-023-41770-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 09/12/2023] [Indexed: 10/08/2023] Open
Abstract
Haematopoietic stem cells (HSC) reside in the bone marrow microenvironment (BMM), where they respond to extracellular calcium [eCa2+] via the G-protein coupled calcium-sensing receptor (CaSR). Here we show that a calcium gradient exists in this BMM, and that [eCa2+] and response to [eCa2+] differ between leukaemias. CaSR influences the location of MLL-AF9+ acute myeloid leukaemia (AML) cells within this niche and differentially impacts MLL-AF9+ AML versus BCR-ABL1+ leukaemias. Deficiency of CaSR reduces AML leukaemic stem cells (LSC) 6.5-fold. CaSR interacts with filamin A, a crosslinker of actin filaments, affects stemness-associated factors and modulates pERK, β-catenin and c-MYC signaling and intracellular levels of [Ca2+] in MLL-AF9+ AML cells. Combination treatment of cytarabine plus CaSR-inhibition in various models may be superior to cytarabine alone. Our studies suggest CaSR to be a differential and targetable factor in leukaemia progression influencing self-renewal of AML LSC via [eCa2+] cues from the BMM.
Collapse
Affiliation(s)
- Raquel S Pereira
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany
| | - Rahul Kumar
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany
| | - Alessia Cais
- Pediatric Neurooncology, Hopp Children's Cancer Center Heidelberg (KiTZ) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Lara Paulini
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany
| | - Alisa Kahler
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany
| | - Jimena Bravo
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany
| | - Valentina R Minciacchi
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany
| | - Theresa Krack
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany
| | - Eric Kowarz
- Institute of Pharmaceutical Biology, Goethe University, Frankfurt am Main, Germany
| | - Costanza Zanetti
- University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany
| | | | - Fabian Hoeller
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany
| | - Pablo Llavona
- Institute of Molecular Biology gGmbH (IMB), Mainz, Germany
| | - Tabea Stark
- Institute of Biochemistry II, Faculty of Medicine, Goethe University, Frankfurt am Main, Germany
| | - Georg Tascher
- Institute of Biochemistry II, Faculty of Medicine, Goethe University, Frankfurt am Main, Germany
| | - Daniel Nowak
- Department of Hematology and Oncology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Eshwar Meduri
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - Brian J P Huntly
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - Christian Münch
- Institute of Biochemistry II, Faculty of Medicine, Goethe University, Frankfurt am Main, Germany
| | - Francesco Pampaloni
- Buchmann Institute for Molecular Life Sciences (BMLS, CEF-MC), Goethe University, Frankfurt am Main, Germany
| | - Rolf Marschalek
- Institute of Pharmaceutical Biology, Goethe University, Frankfurt am Main, Germany
| | - Daniela S Krause
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany.
- Institute of Biochemistry II, Faculty of Medicine, Goethe University, Frankfurt am Main, Germany.
- Institute of General Pharmacology and Toxicology, Goethe-University, Frankfurt am Main, Germany.
- German Cancer Research Center (DKFZ), Heidelberg, Germany.
- German Cancer Consortium (DKTK), Heidelberg, Germany.
- Frankfurt Cancer Institute, Frankfurt, Germany.
| |
Collapse
|
6
|
Mannstadt M, Cianferotti L, Gafni RI, Giusti F, Kemp EH, Koch CA, Roszko KL, Yao L, Guyatt GH, Thakker RV, Xia W, Brandi ML. Hypoparathyroidism: Genetics and Diagnosis. J Bone Miner Res 2022; 37:2615-2629. [PMID: 36375809 DOI: 10.1002/jbmr.4667] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 07/22/2022] [Accepted: 07/31/2022] [Indexed: 01/05/2023]
Abstract
This narrative report summarizes diagnostic criteria for hypoparathyroidism and describes the clinical presentation and underlying genetic causes of the nonsurgical forms. We conducted a comprehensive literature search from January 2000 to January 2021 and included landmark articles before 2000, presenting a comprehensive update of these topics and suggesting a research agenda to improve diagnosis and, eventually, the prognosis of the disease. Hypoparathyroidism, which is characterized by insufficient secretion of parathyroid hormone (PTH) leading to hypocalcemia, is diagnosed on biochemical grounds. Low albumin-adjusted calcium or ionized calcium with concurrent inappropriately low serum PTH concentration are the hallmarks of the disease. In this review, we discuss the characteristics and pitfalls in measuring calcium and PTH. We also undertook a systematic review addressing the utility of measuring calcium and PTH within 24 hours after total thyroidectomy to predict long-term hypoparathyroidism. A summary of the findings is presented here; results of the detailed systematic review are published separately in this issue of JBMR. Several genetic disorders can present with hypoparathyroidism, either as an isolated disease or as part of a syndrome. A positive family history and, in the case of complex diseases, characteristic comorbidities raise the clinical suspicion of a genetic disorder. In addition to these disorders' phenotypic characteristics, which include autoimmune diseases, we discuss approaches for the genetic diagnosis. © 2022 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Michael Mannstadt
- Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Luisella Cianferotti
- Bone Metabolic Diseases Unit, Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Rachel I Gafni
- National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | | | | | - Christian A Koch
- Department of Medicine/Endocrinology, Fox Chase Cancer Center, Philadelphia, PA, USA.,Department of Medicine/Endocrinology, The University of Tennessee Health Science Center, Memphis, TN, USA
| | - Kelly L Roszko
- National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Liam Yao
- Department of Health Research Methods, Evidence, and Impact, and Department of Medicine, McMaster University, Hamilton, Canada
| | - Gordon H Guyatt
- Department of Health Research Methods, Evidence, and Impact, and Department of Medicine, McMaster University, Hamilton, Canada
| | - Rajesh V Thakker
- Academic Endocrine Unit, Radcliffe Department of Medicine, University of Oxford, Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), Churchill Hospital, Headington, Oxford, UK.,Oxford National Institute for Health Research (NIHR) Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Oxford, UK
| | - Weibo Xia
- Department of Endocrinology, Peking Union Medical Collage Hospital, Beijing, China
| | - Maria-Luisa Brandi
- Fondazione Italiana sulla Ricerca sulle Malattie dell'Osso (F.I.R.M.O. Foundation), Florence, Italy
| |
Collapse
|
7
|
Xiang Z, Wang M, Miao C, Jin D, Wang H. Mechanism of calcitriol regulating parathyroid cells in secondary hyperparathyroidism. Front Pharmacol 2022; 13:1020858. [PMID: 36267284 PMCID: PMC9577402 DOI: 10.3389/fphar.2022.1020858] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 09/15/2022] [Indexed: 12/03/2022] Open
Abstract
A common consequence of chronic renal disease is secondary hyperparathyroidism (SHPT) and is closely related to the mortality and morbidity of uremia patients. Secondary hyperparathyroidism (SHPT) is caused by excessive PTH production and release, as well as parathyroid enlargement. At present, the mechanism of cell proliferation in secondary hyperparathyroidism (SHPT) is not completely clear. Decreased expression of the vitamin D receptor (VDR) and calcium-sensing receptor (CaSR), and 1,25(OH)2D3 insufficiency all lead to a decrease in cell proliferation suppression, and activation of multiple pathways is also involved in cell proliferation in renal hyperparathyroidism. The interaction between the parathormone (PTH) and parathyroid hyperplasia and 1,25(OH)2D3 has received considerable attention. 1,25(OH)2D3 is commonly applied in the therapy of renal hyperparathyroidism. It regulates the production of parathormone (PTH) and parathyroid cell proliferation through transcription and post-transcription mechanisms. This article reviews the role of 1,25(OH)2D3 in parathyroid cells in secondary hyperparathyroidism and its current understanding and potential molecular mechanism.
Collapse
|
8
|
Symmetric activation and modulation of the human calcium-sensing receptor. Proc Natl Acad Sci U S A 2021; 118:2115849118. [PMID: 34916296 DOI: 10.1073/pnas.2115849118] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/10/2021] [Indexed: 01/14/2023] Open
Abstract
The human extracellular calcium-sensing (CaS) receptor controls plasma Ca2+ levels and contributes to nutrient-dependent maintenance and metabolism of diverse organs. Allosteric modulation of the CaS receptor corrects disorders of calcium homeostasis. Here, we report the cryogenic-electron microscopy reconstructions of a near-full-length CaS receptor in the absence and presence of allosteric modulators. Activation of the homodimeric CaS receptor requires a break in the transmembrane 6 (TM6) helix of each subunit, which facilitates the formation of a TM6-mediated homodimer interface and expansion of homodimer interactions. This transformation in TM6 occurs without a positive allosteric modulator. Two modulators with opposite functional roles bind to overlapping sites within the transmembrane domain through common interactions, acting to stabilize distinct rotamer conformations of key residues on the TM6 helix. The positive modulator reinforces TM6 distortion and maximizes subunit contact to enhance receptor activity, while the negative modulator strengthens an intact TM6 to dampen receptor function. In both active and inactive states, the receptor displays symmetrical transmembrane conformations that are consistent with its homodimeric assembly.
Collapse
|
9
|
Romagnoli C, Sharma P, Zonefrati R, Palmini G, Lucattelli E, Ward DT, Ellinger I, Innocenti M, Brandi ML. Study of the Expression and Function of Calcium-Sensing Receptor in Human Skeletal Muscle. Int J Mol Sci 2021; 22:ijms22147282. [PMID: 34298895 PMCID: PMC8304165 DOI: 10.3390/ijms22147282] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/01/2021] [Accepted: 07/02/2021] [Indexed: 01/20/2023] Open
Abstract
Skeletal muscle has an outstanding capacity for regeneration in response to injuries, but there are disorders in which this process is seriously impaired, such as sarcopenia. Pharmacological treatments to restore muscle trophism are not available, therefore, the identification of suitable therapeutic targets that could be useful for the treatment of skeletal reduced myogenesis is highly desirable. In this in vitro study, we explored the expression and function of the calcium-sensing receptor (CaSR) in human skeletal muscle tissues and their derived satellite cells. The results obtained from analyses with various techniques of gene and protein CaSR expression and of its secondary messengers in response to calcium (Ca2+) and CaSR drugs have demonstrated that this receptor is not present in human skeletal muscle tissues, neither in the established satellite cells, nor during in vitro myogenic differentiation. Taken together, our data suggest that, although CaSR is a very important drug target in physiology and pathology, this receptor probably does not have any physiological role in skeletal muscle in normal conditions.
Collapse
Affiliation(s)
- Cecilia Romagnoli
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50139 Florence, Italy; (C.R.); (P.S.); (R.Z.); (G.P.)
| | - Preeti Sharma
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50139 Florence, Italy; (C.R.); (P.S.); (R.Z.); (G.P.)
| | - Roberto Zonefrati
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50139 Florence, Italy; (C.R.); (P.S.); (R.Z.); (G.P.)
- Fondazione Italiana Ricerca sulla Malattie dell’Osso (FIRMO Onlus), 50141 Florence, Italy
| | - Gaia Palmini
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50139 Florence, Italy; (C.R.); (P.S.); (R.Z.); (G.P.)
| | - Elena Lucattelli
- Plastic and Reconstructive Microsurgery, Careggi University Hospital, 50139 Florence, Italy; (E.L.); (M.I.)
| | - Donald T. Ward
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PL, UK;
| | - Isabella Ellinger
- Institute for Pathophysiology and Allergy Research, Medical University of Vienna, 1090 Vienna, Austria;
| | - Marco Innocenti
- Plastic and Reconstructive Microsurgery, Careggi University Hospital, 50139 Florence, Italy; (E.L.); (M.I.)
| | - Maria Luisa Brandi
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50139 Florence, Italy; (C.R.); (P.S.); (R.Z.); (G.P.)
- Fondazione Italiana Ricerca sulla Malattie dell’Osso (FIRMO Onlus), 50141 Florence, Italy
- Correspondence:
| |
Collapse
|
10
|
Patel BS, Ravix J, Pabelick C, Prakash YS. Class C GPCRs in the airway. Curr Opin Pharmacol 2020; 51:19-28. [PMID: 32375079 DOI: 10.1016/j.coph.2020.04.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 03/17/2020] [Accepted: 04/02/2020] [Indexed: 02/07/2023]
Abstract
Understanding and targeting of GPCRs remain a critical aspect of airway pharmacology and therapeutics for diseases such as asthma or COPD. Most attention has been on the large Class A GPCRs towards improved bronchodilation and blunting of remodeling. Better known in the central or peripheral nervous system, there is increasing evidence that Class C GPCRs which include metabotropic glutamate and GABA receptors, the calcium sensing receptor, sweet/umami taste receptors and a number of orphan receptors, can contribute to airway structure and function. In this review, we will summarize current state of knowledge regarding the pharmacology of Class C GPCRs, their expression and potential functions in the airways, and the application of pharmacological agents targeting this group in the context of airway diseases.
Collapse
Affiliation(s)
- Brijeshkumar S Patel
- Department of Anesthesiologyand Perioperative Medicine, Mayo Clinic, Rochester, MN, United States
| | - Jovanka Ravix
- Department of Anesthesiologyand Perioperative Medicine, Mayo Clinic, Rochester, MN, United States
| | - Christina Pabelick
- Department of Anesthesiologyand Perioperative Medicine, Mayo Clinic, Rochester, MN, United States; Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, United States
| | - Y S Prakash
- Department of Anesthesiologyand Perioperative Medicine, Mayo Clinic, Rochester, MN, United States; Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, United States.
| |
Collapse
|
11
|
Chindamo G, Sapino S, Peira E, Chirio D, Gonzalez MC, Gallarate M. Bone Diseases: Current Approach and Future Perspectives in Drug Delivery Systems for Bone Targeted Therapeutics. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E875. [PMID: 32370009 PMCID: PMC7279399 DOI: 10.3390/nano10050875] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 04/16/2020] [Accepted: 04/19/2020] [Indexed: 12/14/2022]
Abstract
Bone diseases include a wide group of skeletal-related disorders that cause mobility limitations and mortality. In some cases, e.g., in osteosarcoma (OS) and metastatic bone cancer, current treatments are not fully effective, mainly due to low patient compliance and to adverse side effects. To overcome these drawbacks, nanotechnology is currently under study as a potential strategy allowing specific drug release kinetics and enhancing bone regeneration. Polymers, ceramics, semiconductors, metals, and self-assembled molecular complexes are some of the most used nanoscale materials, although in most cases their surface properties need to be tuned by chemical or physical reactions. Among all, scaffolds, nanoparticles (NPs), cements, and hydrogels exhibit more advantages than drawbacks when compared to other nanosystems and are therefore the object of several studies. The aim of this review is to provide information about the current therapies of different bone diseases focusing the attention on new discoveries in the field of targeted delivery systems. The authors hope that this paper could help to pursue further directions about bone targeted nanosystems and their application for bone diseases and bone regeneration.
Collapse
Affiliation(s)
- Giulia Chindamo
- Department of Drug Science and Technology, University of Turin, 10125 Turin, Italy; (G.C.); (E.P.); (D.C.); (M.G.)
| | - Simona Sapino
- Department of Drug Science and Technology, University of Turin, 10125 Turin, Italy; (G.C.); (E.P.); (D.C.); (M.G.)
| | - Elena Peira
- Department of Drug Science and Technology, University of Turin, 10125 Turin, Italy; (G.C.); (E.P.); (D.C.); (M.G.)
| | - Daniela Chirio
- Department of Drug Science and Technology, University of Turin, 10125 Turin, Italy; (G.C.); (E.P.); (D.C.); (M.G.)
| | - Mónica Cristina Gonzalez
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata 1900, Argentina;
| | - Marina Gallarate
- Department of Drug Science and Technology, University of Turin, 10125 Turin, Italy; (G.C.); (E.P.); (D.C.); (M.G.)
| |
Collapse
|
12
|
Guo D, He H, Hou T. Purification and characterization of positive allosteric regulatory peptides of calcium sensing receptor (CaSR) from desalted duck egg white. Food Chem 2020; 325:126919. [PMID: 32387992 DOI: 10.1016/j.foodchem.2020.126919] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 04/21/2020] [Accepted: 04/25/2020] [Indexed: 02/07/2023]
Abstract
HPLC-ESI-MS/MS, molecular docking simulation and in situ single-pass intestinal perfusion (SPIP) study were used to identify, select, and confirm the binding affinities between peptides identified from desalted duck egg white peptides (DPs) and calcium sensing receptor (CaSR), respectively. F3 fraction from DPs possessed superior calcium binding activity (P < 0.05), and 16 peptides enriched aromatic amino acids and other 33 peptides were identified. FAE, FNE, INSW, FDPE and NFE presented well binding affinities with CaSR in molecular docking. Additionally, SPIP results showed that NFE and INSW significantly reduced the increased PTH levels by 45.8% and 48.8%, respectively (P < 0.05), and increased calcium percent absorption, calcium absorption rate constant (Ka) and calcium effective permeability (Peff) (P < 0.05), as well as up-regulated mRNA levels of CaSR (P < 0.05). Moreover, NFE and INSW could interact with the VFT domain of CaSR, which exhibited the potential activities in regulation of CaSR.
Collapse
Affiliation(s)
- Danjun Guo
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Hui He
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Tao Hou
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
13
|
Lucas J, Badia JL, Lucas E, Remon A. Cinacalcet treatment experience in hereditary vitamin D resistant rickets. J Pediatr Endocrinol Metab 2020; 33:313-318. [PMID: 31926093 DOI: 10.1515/jpem-2019-0258] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 11/18/2019] [Indexed: 01/23/2023]
Abstract
Background Hereditary vitamin D resistant rickets (HVDRR) is a bone disorder characterized by a phenotype of rickets with onset at early stage of life with elevated alkaline phosphatase, hypocalcemia, hypophosphatemia, hyperparathyroidism and elevated levels of 1,25-dihydroxyvitamin D (calcitriol) as a consequence of the resistance of the vitamin D receptor (VDR). Mutations in the DNA-binding domain of the VDR of the vitamin D receptor have been characterized by a lack of response to traditional treatment with calcium and calcitriol. Secondary hyperparathyroidism and hypophosphatemia are the main factors in its pathogenesis. Cinacalcet is a calciomimetic drug that reproduces the action of calcium by increasing the sensitivity of the calcium-sensitive receptors (CASR) of the parathyroid glands that regulate the secretion of the parathyroid hormone (PTH). Case presentation We describe its effectiveness and safety in a patient with HVDRR and review other published report cases in the literature. According to published experience, cinacalcet could be used as an adjunctive treatment for the HVDRR with mutations in the DNA-binding domain of the VDR refractory to traditional treatment. Due to lack of knowledge of possible effects of cinacalcet on CASR in the skeleton, long-term use should be avoided. Conclusions The optimal dose of cinacalcet for treatment of HVDRR ranges between 0.25 and 0.5 mg/kg/day. Serious side effects of cinacalcet have not been published in this type of patient, although we considered that a close monitoring is necessary in order to detect hypocalcemia.
Collapse
Affiliation(s)
- Jesús Lucas
- Pediatric Nephrology, General University Hospital of Castellón, Castellón, Spain
| | - Jose Luis Badia
- Pediatric Nephrology, General University Hospital of Castellón, Castellón, Spain
| | | | - Ana Remon
- Pediatric Nephrology, General University Hospital of Castellón, Castellón, Spain
| |
Collapse
|
14
|
Abstract
Ca2+ binding proteins (CBP) are of key importance for calcium to play its role as a pivotal second messenger. CBP bind Ca2+ in specific domains, contributing to the regulation of its concentration at the cytosol and intracellular stores. They also participate in numerous cellular functions by acting as Ca2+ transporters across cell membranes or as Ca2+-modulated sensors, i.e. decoding Ca2+ signals. Since CBP are integral to normal physiological processes, possible roles for them in a variety of diseases has attracted growing interest in recent years. In addition, research on CBP has been reinforced with advances in the structural characterization of new CBP family members. In this chapter we have updated a previous review on CBP, covering in more depth potential participation in physiopathological processes and candidacy for pharmacological targets in many diseases. We review intracellular CBP that contain the structural EF-hand domain: parvalbumin, calmodulin, S100 proteins, calcineurin and neuronal Ca2+ sensor proteins (NCS). We also address intracellular CBP lacking the EF-hand domain: annexins, CBP within intracellular Ca2+ stores (paying special attention to calreticulin and calsequestrin), proteins that contain a C2 domain (such as protein kinase C (PKC) or synaptotagmin) and other proteins of interest, such as regucalcin or proprotein convertase subtisilin kexins (PCSK). Finally, we summarise the latest findings on extracellular CBP, classified according to their Ca2+ binding structures: (i) EF-hand domains; (ii) EGF-like domains; (iii) ɣ-carboxyl glutamic acid (GLA)-rich domains; (iv) cadherin domains; (v) Ca2+-dependent (C)-type lectin-like domains; (vi) Ca2+-binding pockets of family C G-protein-coupled receptors.
Collapse
|
15
|
Dal Prà I, Armato U, Chiarini A. Family C G-Protein-Coupled Receptors in Alzheimer's Disease and Therapeutic Implications. Front Pharmacol 2019; 10:1282. [PMID: 31719824 PMCID: PMC6826475 DOI: 10.3389/fphar.2019.01282] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 10/07/2019] [Indexed: 12/12/2022] Open
Abstract
Alzheimer’s disease (AD), particularly its sporadic or late-onset form (SAD/LOAD), is the most prevalent (96–98% of cases) neurodegenerative dementia in aged people. AD’s neuropathology hallmarks are intrabrain accumulation of amyloid-β peptides (Aβs) and of hyperphosphorylated Tau (p-Tau) proteins, diffuse neuroinflammation, and progressive death of neurons and oligodendrocytes. Mounting evidences suggest that family C G-protein-coupled receptors (GPCRs), which include γ-aminobutyric acid B receptors (GABABRs), metabotropic glutamate receptors (mGluR1-8), and the calcium-sensing receptor (CaSR), are involved in many neurotransmitter systems that dysfunction in AD. This review updates the available knowledge about the roles of GPCRs, particularly but not exclusively those expressed by brain astrocytes, in SAD/LOAD onset and progression, taking stock of their respective mechanisms of action and of their potential as anti-AD therapeutic targets. In particular, GABABRs prevent Aβs synthesis and neuronal hyperexcitability and group I mGluRs play important pathogenetic roles in transgenic AD-model animals. Moreover, the specific binding of Aβs to the CaSRs of human cortical astrocytes and neurons cultured in vitro engenders a pathological signaling that crucially promotes the surplus synthesis and release of Aβs and hyperphosphorylated Tau proteins, and also of nitric oxide, vascular endothelial growth factor-A, and proinflammatory agents. Concurrently, Aβs•CaSR signaling hinders the release of soluble (s)APP-α peptide, a neurotrophic agent and GABABR1a agonist. Altogether these effects progressively kill human cortical neurons in vitro and likely also in vivo. Several CaSR’s negative allosteric modulators suppress all the noxious effects elicited by Aβs•CaSR signaling in human cortical astrocytes and neurons thus safeguarding neurons’ viability in vitro and raising hopes about their potential therapeutic benefits in AD patients. Further basic and clinical investigations on these hot topics are needed taking always heed that activation of the several brain family C GPCRs may elicit divergent upshots according to the models studied.
Collapse
Affiliation(s)
- Ilaria Dal Prà
- Human Histology and Embryology Unit, University of Verona Medical School, Verona, Italy
| | - Ubaldo Armato
- Human Histology and Embryology Unit, University of Verona Medical School, Verona, Italy
| | - Anna Chiarini
- Human Histology and Embryology Unit, University of Verona Medical School, Verona, Italy
| |
Collapse
|
16
|
Mun HC, Leach KM, Conigrave AD. L-Amino Acids Promote Calcitonin Release via a Calcium-Sensing Receptor: Gq/11-Mediated Pathway in Human C-Cells. Endocrinology 2019; 160:1590-1599. [PMID: 31127815 DOI: 10.1210/en.2018-00860] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 04/19/2019] [Indexed: 11/19/2022]
Abstract
Human calcitonin release is promoted by elevated extracellular Ca2+ (Ca2+o) concentration acting, at least in part, via the calcium-sensing receptor (CaSR). The CaSR is positively modulated by L-amino acids, including the aromatic amino acids L-phenylalanine (Phe) and L-tryptophan (Trp). To investigate the effect of L-amino acids on human calcitonin secretion, we selected thyroid TT cells and exposed them to various Ca2+o concentrations in the absence or presence of L-Phe, plasma-like mixtures of L-amino acids, or the clinically effective positive modulator (calcimimetic) cinacalcet. In the presence of L-Phe or plasma-like mixtures of amino acids, TT cells exhibited enhanced Ca2+o sensitivity in assays of calcitonin release and intracellular Ca2+ mobilization. Furthermore, the effect of elevated Ca2+o and L-Phe on calcitonin release was markedly suppressed by the calcilytic NPS-2143. These effects were dependent on CaSR-mediated activation of Gq/11 as revealed by the specific inhibitor YM-254890. The findings support the hypothesis that calcitonin release is stimulated by increases in plasma L-amino acid levels as well as elevated Ca2+o concentration. They also demonstrate that stimulated calcitonin release as well as basal levels of calcitonin secretion are mediated by a CaSR:Gq/11 signaling mechanism.
Collapse
Affiliation(s)
- Hee-Chang Mun
- School of Life and Environmental Sciences, Charles Perkins Centre (D17), University of Sydney, Sydney, New South Wales, Australia
| | - Katie M Leach
- Drug Discovery Biology and Department of Pharmacology, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia
| | - Arthur D Conigrave
- School of Life and Environmental Sciences, Charles Perkins Centre (D17), University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
17
|
Feng R, Ding F, Mi XH, Liu SF, Jiang AL, Liu BH, Lian Y, Shi Q, Wang YJ, Zhang Y. Protective Effects of Ligustroflavone, an Active Compound from Ligustrum lucidum, on Diabetes-Induced Osteoporosis in Mice: A Potential Candidate as Calcium-Sensing Receptor Antagonist. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2019; 47:457-476. [PMID: 30834778 DOI: 10.1142/s0192415x1950023x] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Ligustroflavone is one major compound contained in active fraction from Fructus Ligustri Lucidi (the fruit of Ligustrum lucidum), which could regulate parathyroid hormone (PTH) levels and improve calcium balance by acting on calcium-sensing receptors (CaSR). This study aimed to explore the potency of ligustroflavone as a CaSR antagonist and its protective effects against diabetic osteoporosis in mice. LF interacted well with the allosteric site of CaSR shown by molecular docking analysis, increased PTH release of primary parathyroid gland cells and suppressed extracellular calcium influx in HEK-293 cells. The serum level of PTH attained peak value at 2 h and maintained high during the period of 1 h and 3 h than that before treatment in mice after a single dose of LF. Treatment of diabetic mice with LF inhibited the decrease in calcium level of serum and bone and the enhancement in urinary calcium excretion as well as elevated circulating PTH levels. Trabecular bone mineral density and micro-architecture were markedly improved in diabetic mice upon to LF treatment for 8 weeks. LF reduced CaSR mRNA and protein expression in the kidneys of diabetic mice. Taken together, ligustroflavone could transiently increase PTH level and regulate calcium metabolism as well as prevent osteoporosis in diabetic mice, suggesting that ligustroflavone might be an effective antagonist on CaSR.
Collapse
Affiliation(s)
- Rui Feng
- * Spine Disease Research Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, P. R. China
| | - Fan Ding
- * Spine Disease Research Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, P. R. China
| | - Xiu-Hua Mi
- † Section of Nephrology, Yangpu Traditional Chinese Medicine Hospital, Shanghai 200090, P. R. China
| | - Shu-Fen Liu
- * Spine Disease Research Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, P. R. China.,‡ Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai 200032, P. R. China
| | - Ai-Ling Jiang
- § School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, P. R. China
| | - Bi-Hui Liu
- ¶ Department of Orthopaedic, Shenzhen Pingle Orthopaedic Hospital, Shenzhen 518000, P. R. China
| | - Yin Lian
- ¶ Department of Orthopaedic, Shenzhen Pingle Orthopaedic Hospital, Shenzhen 518000, P. R. China
| | - Qi Shi
- * Spine Disease Research Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, P. R. China.,‡ Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai 200032, P. R. China
| | - Yong-Jun Wang
- * Spine Disease Research Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, P. R. China.,‡ Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai 200032, P. R. China
| | - Yan Zhang
- * Spine Disease Research Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, P. R. China.,‡ Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai 200032, P. R. China
| |
Collapse
|
18
|
Chamberlin M, Kemp EH, Weetman AP, Khadka B, Brown EM. Immunosuppressive therapy of autoimmune hypoparathyroidism in a patient with activating autoantibodies against the calcium-sensing receptor. Clin Endocrinol (Oxf) 2019; 90:214-221. [PMID: 30358904 DOI: 10.1111/cen.13886] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 08/15/2018] [Accepted: 10/18/2018] [Indexed: 12/31/2022]
Abstract
CONTEXT Activating antibodies directed at the extracellular calcium-sensing receptor (CaSR) have been described in autoimmune hypoparathyroidism in the setting of isolated hypoparathyroidism or autoimmune polyglandular syndrome type 1. MATERIALS AND METHODS A 34-year-old female presented with hypocalcaemia (6.0 mg/dL) and hypomagnesaemia (1.1 mg/dL) accompanied by low serum PTH (2.4 pg/mL) as well as urinary calcium and magnesium wasting. She was diagnosed with hypoparathyroidism, which was refractory to standard therapy. She was started on 60 mg prednisone and 150 mg azathioprine treatment daily on suspicion of an autoimmune aetiology. The patient was tested for CaSR antibodies. RESULTS The patient was positive for CaSR antibodies of the IgG1 subtype, which stimulated phosphorylation of extracellular signal-regulated kinases 1 and 2 (ERK1/2) and inositol phosphate (IP) accumulation. Post-treatment with prednisone and azathioprine, her serum calcium and magnesium normalized, as did her CaSR antibody titre and antibody-mediated stimulation of ERK1/2 phosphorylation and IP accumulation. CONCLUSION This is the first demonstration of CaSR antibody-mediated hypoparathyroidism responsive to immunosuppressive therapy, adding to the evidence that autoimmune hypoparathyroidism can be, in some cases, reversible and not the result of autoimmune parathyroid destruction.
Collapse
Affiliation(s)
| | - E Helen Kemp
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, UK
| | - Anthony P Weetman
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, UK
| | | | - Edward M Brown
- Division of Endocrinology, Diabetes, and Hypertension, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
19
|
Hannan FM, Kallay E, Chang W, Brandi ML, Thakker RV. The calcium-sensing receptor in physiology and in calcitropic and noncalcitropic diseases. Nat Rev Endocrinol 2018; 15:33-51. [PMID: 30443043 PMCID: PMC6535143 DOI: 10.1038/s41574-018-0115-0] [Citation(s) in RCA: 236] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The Ca2+-sensing receptor (CaSR) is a dimeric family C G protein-coupled receptor that is expressed in calcitropic tissues such as the parathyroid glands and the kidneys and signals via G proteins and β-arrestin. The CaSR has a pivotal role in bone and mineral metabolism, as it regulates parathyroid hormone secretion, urinary Ca2+ excretion, skeletal development and lactation. The importance of the CaSR for these calcitropic processes is highlighted by loss-of-function and gain-of-function CaSR mutations that cause familial hypocalciuric hypercalcaemia and autosomal dominant hypocalcaemia, respectively, and also by the fact that alterations in parathyroid CaSR expression contribute to the pathogenesis of primary and secondary hyperparathyroidism. Moreover, the CaSR is an established therapeutic target for hyperparathyroid disorders. The CaSR is also expressed in organs not involved in Ca2+ homeostasis: it has noncalcitropic roles in lung and neuronal development, vascular tone, gastrointestinal nutrient sensing, wound healing and secretion of insulin and enteroendocrine hormones. Furthermore, the abnormal expression or function of the CaSR is implicated in cardiovascular and neurological diseases, as well as in asthma, and the CaSR is reported to protect against colorectal cancer and neuroblastoma but increase the malignant potential of prostate and breast cancers.
Collapse
Affiliation(s)
- Fadil M Hannan
- Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, UK
- Academic Endocrine Unit, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Enikö Kallay
- Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | - Wenhan Chang
- Endocrine Research Unit, Veterans Affairs Medical Center, University of California, San Francisco, San Francisco, CA, USA
| | - Maria Luisa Brandi
- Metabolic Bone Diseases Unit, Department of Surgery and Translational Medicine, University of Florence, Florence, Italy.
| | - Rajesh V Thakker
- Academic Endocrine Unit, Radcliffe Department of Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|
20
|
Nemeth EF, Van Wagenen BC, Balandrin MF. Discovery and Development of Calcimimetic and Calcilytic Compounds. PROGRESS IN MEDICINAL CHEMISTRY 2018; 57:1-86. [PMID: 29680147 DOI: 10.1016/bs.pmch.2017.12.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The extracellular calcium receptor (CaR) is a G protein-coupled receptor (GPCR) and the pivotal molecule regulating systemic Ca2+ homeostasis. The CaR was a challenging target for drug discovery because its physiological ligand is an inorganic ion (Ca2+) rather than a molecule so there was no structural template to guide medicinal chemistry. Nonetheless, small molecules targeting this receptor were discovered. Calcimimetics are agonists or positive allosteric modulators of the CaR, while calcilytics are antagonists and all to date are negative allosteric modulators. The calcimimetic cinacalcet was the first allosteric modulator of a GPCR to achieve regulatory approval and is a first-in-class treatment for secondary hyperparathyroidism in patients on dialysis, and for hypercalcemia in some forms of primary hyperparathyroidism. It is also useful in treating some rare genetic diseases that cause hypercalcemia. Two other calcimimetics are now on the market (etelcalcetide) or under regulatory review (evocalcet). Calcilytics stimulate the secretion of parathyroid hormone and were initially developed as treatments for osteoporosis. Three different calcilytics of two different chemotypes failed in clinical trials due to lack of efficacy. Calcilytics are now being repurposed and might be useful in treating hypoparathyroidism and several rare genetic diseases causing hypocalcemia. The challenges ahead for medicinal chemists are to design compounds that select conformations of the CaR that preferentially target a particular signalling pathway and/or that affect the CaR in a tissue-selective manner.
Collapse
|
21
|
Yang Y, Wang B. PTH1R-CaSR Cross Talk: New Treatment Options for Breast Cancer Osteolytic Bone Metastases. Int J Endocrinol 2018; 2018:7120979. [PMID: 30151009 PMCID: PMC6087585 DOI: 10.1155/2018/7120979] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 07/14/2018] [Indexed: 12/11/2022] Open
Abstract
Metastatic breast cancer (BrCa) is currently incurable despite great improvements in treatment of primary BrCa. The incidence of skeletal metastases in advanced BrCa occurs up to 70%. Recent findings have established that the distribution of BrCa metastases to the skeleton is not a random process but due to the favorable microenvironment for tumor invasion and growth. The complex interplay among BrCa cells, stromal/osteoblastic cells, and osteoclasts in the osseous microenvironment creates a bone-tumor vicious cycle (a feed-forward loop) that results in excessive bone destruction and progressive tumor growth. Both the type 1 PTH receptor (PTH1R) and extracellular calcium-sensing receptor (CaSR) participate in the vicious cycle and influence the skeletal metastatic niche. Thus, this review focuses on how the PTH1R and CaSR signaling pathways interact and contribute to the pathogenesis of BrCa bone metastases. The effects of intermittent PTH and allosteric modulators of CaSR for the use of bone-anabolic agents and prevention of BrCa bone metastases constitute a proof of principle for therapeutic consideration. Understanding the interplay between PTH1R and CaSR signaling in the development of BrCa bone metastases could lead to a novel therapeutic approach to control both osteolysis and tumor burden in the bone.
Collapse
Affiliation(s)
- Yanmei Yang
- Center for Translational Medicine, Department of Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Bin Wang
- Center for Translational Medicine, Department of Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
22
|
Diepenhorst N, Rueda P, Cook AE, Pastoureau P, Sabatini M, Langmead CJ. G protein-coupled receptors as anabolic drug targets in osteoporosis. Pharmacol Ther 2017; 184:1-12. [PMID: 29080701 DOI: 10.1016/j.pharmthera.2017.10.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Osteoporosis is a progressive bone disorder characterised by imbalance between bone building (anabolism) and resorption (catabolism). Most therapeutics target inhibition of osteoclast-mediated bone resorption, but more recent attention in early drug discovery has focussed on anabolic targets in osteoblasts or their precursors. Two marketed agents that display anabolic properties, strontium ranelate and teriparatide, mediate their actions via the G protein-coupled calcium-sensing and parathyroid hormone-1 receptors, respectively. This review explores their activity, the potential for improved therapeutics targeting these receptors and other putative anabolic GPCR targets, including Smoothened, Wnt/Frizzled, relaxin family peptide, adenosine, cannabinoid, prostaglandin and sphingosine-1-phosphate receptors.
Collapse
Affiliation(s)
- Natalie Diepenhorst
- Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, VIC 3052, Australia
| | - Patricia Rueda
- Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, VIC 3052, Australia
| | - Anna E Cook
- Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, VIC 3052, Australia
| | - Philippe Pastoureau
- Therapeutic Innovation Pole of Immuno-Inflammatory Diseases, Institut de Recherches Servier, Suresnes, France
| | - Massimo Sabatini
- Therapeutic Innovation Pole of Immuno-Inflammatory Diseases, Institut de Recherches Servier, Suresnes, France
| | - Christopher J Langmead
- Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, VIC 3052, Australia.
| |
Collapse
|
23
|
Valdes-Socin H, Almanza MR, Fernández-Ladreda MT, Daele DV, Polus M, Chavez M, Beckers A. Use of cinacalcet and sunitinib to treat hypercalcaemia due to a pancreatic neuroendocrine tumor. ARCHIVES OF ENDOCRINOLOGY AND METABOLISM 2017; 61:506-509. [PMID: 28977163 PMCID: PMC10522250 DOI: 10.1590/2359-3997000000291] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2016] [Accepted: 06/20/2016] [Indexed: 11/22/2022]
Abstract
Neuroendocrine tumors (NETs) can secrete hormones, including ectopic secretions, but they have been rarely associated with malignant hypercalcemia. A 52-year-old man with a history of diabetes mellitus was diagnosed with a pancreatic tumor. A pancreatic biopsy confirmed a well-differentiated pancreatic NET (pNET). The patient subsequently developed liver metastasis and hypercalcemia with high 1,25 OH vitamin D and suppressed parathyroid hormone (PTH) levels. Hypercalcemia was refractory to chemotherapy, intravenous saline fluids, diuretics, calcitonin and zoledronate. Cinacalcet administration (120 mg/day) resulted in a significant calcium reduction. Hypocalcemia was observed when sunitinib was added three months later and cinacalcet was stopped. Subsequently, the calcium and PTH levels normalized. After six months, we observed 20% shrinkage of the pancreatic tumor and necrosis of a liver metastasis. Cinacalcet is an allosteric activator of the calcium receptor agonist, and it is used for severe hypercalcemia in patients with primary (benign and malignant) hyperparathyroidism. In this patient, cinacalcet demonstrated a calcium lowering effect, normalized hypophosphatemia, and improved the clinical condition of the patient. The mechanism through which cinacalcet improved PTH-rp mediated hypercalcemia is still unclear, but studies have suggested that a potential mechanism is the activation of calcitonin secretion. Sunitinib is an oral multi-targeted tyrosine kinase inhibitor used to treat advanced pNETs. The hypocalcemic effects of sunitinib have not been previously described in a patient with pNET. Here, we report for the first time the successful combination of cinacalcet and sunitinib in the treatment of a pNET patient presenting with malignant hypercalcemia.
Collapse
Affiliation(s)
- Hernan Valdes-Socin
- Service d’ EndocrinologieCHU de LiègeBelgiumService d’ Endocrinologie. CHU de Liège, Belgium
| | - Matilde Rubio Almanza
- Servicio de Endocrinología y NutriciónHospital Universitari i Politècnic La FeValenciaSpainServicio de Endocrinología y Nutrición, Hospital Universitari i Politècnic La Fe, Valencia, Spain
| | - Mariana Tomé Fernández-Ladreda
- Unidad de Gestión Clínica de Endocrinología y NutriciónHospital Universitario de Valme, Área de Gestión Sanitaria Sur de SevillaSpainUnidad de Gestión Clínica de Endocrinología y Nutrición, Hospital Universitario de Valme, Área de Gestión Sanitaria Sur de Sevilla, Spain
| | - Daniel Van Daele
- Service de GastroentérologieCHU de LiègeBelgiumService de Gastroentérologie, CHU de Liège, Belgium
| | - Marc Polus
- Service de GastroentérologieCHU de LiègeBelgiumService de Gastroentérologie, CHU de Liège, Belgium
| | - Marcela Chavez
- Department of Medicine, Division of HematologyCHU de LiègeLiègeBelgiumDepartment of Medicine, Division of Hematology, CHU de Liège, Liège, Belgium
| | - Albert Beckers
- Service d’ EndocrinologieCHU de LiègeBelgiumService d’ Endocrinologie. CHU de Liège, Belgium
| |
Collapse
|
24
|
Akıncı A, Dündar İ, Kıvılcım M. The Effectiveness of Cinacalcet as an Adjunctive Therapy for Hereditary 1,25 Dihydroxyvitamin D3-Resistant Rickets. J Clin Res Pediatr Endocrinol 2017; 9:172-178. [PMID: 27796266 PMCID: PMC5463292 DOI: 10.4274/jcrpe.3486] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
High doses of oral calcium or long-term calcium infusions are recommended to correct the hypocalcemia and secondary hyperparathyroidism in patients with hereditary 1,25 dihydroxyvitamin D3-resistant rickets (HVDRR). Preliminary studies revealed that calcimimetics may be a safe and effective therapeutic choice in children with secondary hyperparathyroidism. Our aim was to observe the efficacy of cinacalcet in the normalization of secondary hyperparathyroidism and hypophosphatemia in two siblings aged 2.5 years and 6 months with HVDRR who did not respond to traditional treatment regimes. Both patients were admitted to the hospital with severe hypocalcemia. They were treated with high doses of calcitriol and calcium infusions intravenously. Secondary hyperparathyroidism was normalized temporarily, but did not improve completely. Cinacalcet (0.25 mg/kg) once a day along with the high doses of oral calcium and calcitriol was added to the treatment schedule. After 3 months, biochemical and radiologic findings reverted to normal. Our findings indicate that cinacalcet is effective in normalizing the hyperparathyroidism and hypophosphatemia in these cases and in improving the bone pathology.
Collapse
Affiliation(s)
- Ayşehan Akıncı
- İnönü University Faculty of Medicine, Department of Pediatric Endocrinology, Malatya, Turkey, E-mail:
| | - İsmail Dündar
- Inönü University Faculty of Medicine, Department of Pediatric Endocrinology, Malatya, Turkey
| | - Meltem Kıvılcım
- İnönü University Faculty of Medicine, Department of Developmental and Behavioral, Malatya, Turkey
| |
Collapse
|
25
|
Harpsøe K, Boesgaard MW, Munk C, Bräuner-Osborne H, Gloriam DE. Structural insight to mutation effects uncover a common allosteric site in class C GPCRs. Bioinformatics 2017; 33:1116-1120. [PMID: 28011766 PMCID: PMC5408886 DOI: 10.1093/bioinformatics/btw784] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 12/07/2016] [Indexed: 01/08/2023] Open
Abstract
Motivation Class C G protein-coupled receptors (GPCRs) regulate important physiological functions and allosteric modulators binding to the transmembrane domain constitute an attractive and, due to a lack of structural insight, a virtually unexplored potential for therapeutics and the food industry. Combining pharmacological site-directed mutagenesis data with the recent class C GPCR experimental structures will provide a foundation for rational design of new therapeutics. Results We uncover one common site for both positive and negative modulators with different amino acid layouts that can be utilized to obtain selectivity. Additionally, we show a large potential for structure-based modulator design, especially for four orphan receptors with high similarity to the crystal structures. Availability and Implementation All collated mutagenesis data is available in the GPCRdb mutation browser at http://gpcrdb.org/mutations/ and can be analyzed online or downloaded in excel format. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Kasper Harpsøe
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Michael W Boesgaard
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Christian Munk
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Hans Bräuner-Osborne
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - David E Gloriam
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- To whom correspondence should be addressed.
| |
Collapse
|
26
|
Balenga N, Azimzadeh P, Hogue JA, Staats PN, Shi Y, Koh J, Dressman H, Olson JA. Orphan Adhesion GPCR GPR64/ADGRG2 Is Overexpressed in Parathyroid Tumors and Attenuates Calcium-Sensing Receptor-Mediated Signaling. J Bone Miner Res 2017; 32:654-666. [PMID: 27760455 PMCID: PMC7211037 DOI: 10.1002/jbmr.3023] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 09/30/2016] [Accepted: 10/17/2016] [Indexed: 12/19/2022]
Abstract
Abnormal feedback of serum calcium to parathyroid hormone (PTH) secretion is the hallmark of primary hyperparathyroidism (PHPT). Although the molecular pathogenesis of parathyroid neoplasia in PHPT has been linked to abnormal expression of genes involved in cell growth (e.g., cyclin D1, retinoblastoma, and β-catenin), the molecular basis of abnormal calcium sensing by calcium-sensing receptor (CaSR) and PTH hypersecretion in PHPT are incompletely understood. Through gene expression profiling, we discovered that an orphan adhesion G protein-coupled receptor (GPCR), GPR64/ADGRG2, is expressed in human normal parathyroid glands and is overexpressed in parathyroid tumors from patients with PHPT. Using immunohistochemistry, Western blotting, and coimmunoprecipitation, we found that GPR64 is expressed on the cell surface of parathyroid cells, is overexpressed in parathyroid tumors, and physically interacts with the CaSR. By using reporter gene assay and GPCR second messenger readouts we identified Gαs, 3',5'-cyclic adenosine monophosphate (cAMP), protein kinase A, and cAMP response element binding protein (CREB) as the signaling cascade downstream of GPR64. Furthermore, we found that an N-terminally truncated human GPR64 is constitutively active and a 15-amino acid-long peptide C-terminal to the GPCR proteolysis site (GPS) of GPR64 activates this receptor. Functional characterization of GPR64 demonstrated its ability to increase PTH release from human parathyroid cells at a range of calcium concentrations. We discovered that the truncated constitutively active, but not the full-length GPR64 physically interacts with CaSR and attenuates the CaSR-mediated intracellular Ca2+ signaling and cAMP suppression in HEK293 cells. Our results indicate that GPR64 may be a physiologic regulator of PTH release that is dysregulated in parathyroid tumors, and suggest a role for GPR64 in pathologic calcium sensing in PHPT. © 2016 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Nariman Balenga
- Division of General & Oncologic Surgery, Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Pedram Azimzadeh
- Division of General & Oncologic Surgery, Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Joyce A Hogue
- Department of Surgery, Duke University Medical Center, Durham, NC, USA
| | - Paul N Staats
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Yuhong Shi
- Division of General & Oncologic Surgery, Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | - James Koh
- Department of Surgery, Duke University Medical Center, Durham, NC, USA
| | - Holly Dressman
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, USA
| | - John A Olson
- Division of General & Oncologic Surgery, Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
27
|
Gorvin CM, Hannan FM, Howles SA, Babinsky VN, Piret SE, Rogers A, Freidin AJ, Stewart M, Paudyal A, Hough TA, Nesbit MA, Wells S, Vincent TL, Brown SD, Cox RD, Thakker RV. G α11 mutation in mice causes hypocalcemia rectifiable by calcilytic therapy. JCI Insight 2017; 2:e91103. [PMID: 28194447 PMCID: PMC5291742 DOI: 10.1172/jci.insight.91103] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 01/03/2017] [Indexed: 12/11/2022] Open
Abstract
Heterozygous germline gain-of-function mutations of G-protein subunit α11 (Gα11), a signaling partner for the calcium-sensing receptor (CaSR), result in autosomal dominant hypocalcemia type 2 (ADH2). ADH2 may cause symptomatic hypocalcemia with low circulating parathyroid hormone (PTH) concentrations. Effective therapies for ADH2 are currently not available, and a mouse model for ADH2 would help in assessment of potential therapies. We hypothesized that a previously reported dark skin mouse mutant (Dsk7) - which has a germline hypermorphic Gα11 mutation, Ile62Val - may be a model for ADH2 and allow evaluation of calcilytics, which are CaSR negative allosteric modulators, as a targeted therapy for this disorder. Mutant Dsk7/+ and Dsk7/Dsk7 mice were shown to have hypocalcemia and reduced plasma PTH concentrations, similar to ADH2 patients. In vitro studies showed the mutant Val62 Gα11 to upregulate CaSR-mediated intracellular calcium and MAPK signaling, consistent with a gain of function. Treatment with NPS-2143, a calcilytic compound, normalized these signaling responses. In vivo, NPS-2143 induced a rapid and marked rise in plasma PTH and calcium concentrations in Dsk7/Dsk7 and Dsk7/+ mice, which became normocalcemic. Thus, these studies have established Dsk7 mice, which harbor a germline gain-of-function Gα11 mutation, as a model for ADH2 and have demonstrated calcilytics as a potential targeted therapy.
Collapse
Affiliation(s)
- Caroline M. Gorvin
- Academic Endocrine Unit, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Fadil M. Hannan
- Academic Endocrine Unit, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
- Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, United Kingdom
| | - Sarah A. Howles
- Academic Endocrine Unit, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Valerie N. Babinsky
- Academic Endocrine Unit, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Sian E. Piret
- Academic Endocrine Unit, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Angela Rogers
- Academic Endocrine Unit, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Andrew J. Freidin
- ARUK Centre for Osteoarthritis Pathogenesis, The Kennedy Institute of Rheumatology, University of Oxford, Oxford, United Kingdom
| | - Michelle Stewart
- Medical Research Council (MRC) Mammalian Genetics Unit and Mary Lyon Centre, MRC Harwell Institute, Harwell Science and Innovation Campus, United Kingdom
| | - Anju Paudyal
- Medical Research Council (MRC) Mammalian Genetics Unit and Mary Lyon Centre, MRC Harwell Institute, Harwell Science and Innovation Campus, United Kingdom
| | - Tertius A. Hough
- Medical Research Council (MRC) Mammalian Genetics Unit and Mary Lyon Centre, MRC Harwell Institute, Harwell Science and Innovation Campus, United Kingdom
| | - M. Andrew Nesbit
- Academic Endocrine Unit, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
- Biomedical Sciences Research Institute, Ulster University, Coleraine, United Kingdom
| | - Sara Wells
- Medical Research Council (MRC) Mammalian Genetics Unit and Mary Lyon Centre, MRC Harwell Institute, Harwell Science and Innovation Campus, United Kingdom
| | - Tonia L. Vincent
- ARUK Centre for Osteoarthritis Pathogenesis, The Kennedy Institute of Rheumatology, University of Oxford, Oxford, United Kingdom
| | - Stephen D.M. Brown
- Medical Research Council (MRC) Mammalian Genetics Unit and Mary Lyon Centre, MRC Harwell Institute, Harwell Science and Innovation Campus, United Kingdom
| | - Roger D. Cox
- Medical Research Council (MRC) Mammalian Genetics Unit and Mary Lyon Centre, MRC Harwell Institute, Harwell Science and Innovation Campus, United Kingdom
| | - Rajesh V. Thakker
- Academic Endocrine Unit, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
28
|
Conigrave AD. The Calcium-Sensing Receptor and the Parathyroid: Past, Present, Future. Front Physiol 2016; 7:563. [PMID: 28018229 PMCID: PMC5156698 DOI: 10.3389/fphys.2016.00563] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2016] [Accepted: 11/07/2016] [Indexed: 12/13/2022] Open
Abstract
Parathyroid hormone (PTH) defends the extracellular fluid from hypocalcemia and has powerful and well-documented actions on the skeleton and renal tubular system. To achieve a satisfactory stable plasma calcium level, the secretion of PTH, and the resulting serum PTH level, is titrated carefully to the prevailing plasma ionized Ca2+ concentration via a Ca2+ sensing mechanism that mediates feedback inhibition of PTH secretion. Herein, I consider the properties of the parathyroid Ca2+ sensing mechanism, the identity of the Ca2+ sensor, the intracellular biochemical mechanisms that it controls, the manner of its integration with other components of the PTH secretion control mechanism, and its modulation by other nutrients. Together the well-established, recently elucidated, and yet-to-be discovered elements of the story constitute the past, present, and future of the parathyroid and its calcium-sensing receptor (CaSR).
Collapse
Affiliation(s)
- Arthur D Conigrave
- Faculties of Science and Medicine, School of Life and Environmental Sciences, Charles Perkins Centre, University of Sydney Sydney, NSW, Australia
| |
Collapse
|
29
|
Hannan FM, Babinsky VN, Thakker RV. Disorders of the calcium-sensing receptor and partner proteins: insights into the molecular basis of calcium homeostasis. J Mol Endocrinol 2016; 57:R127-42. [PMID: 27647839 PMCID: PMC5064759 DOI: 10.1530/jme-16-0124] [Citation(s) in RCA: 119] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 08/08/2016] [Indexed: 12/20/2022]
Abstract
The extracellular calcium (Ca(2+) o)-sensing receptor (CaSR) is a family C G protein-coupled receptor, which detects alterations in Ca(2+) o concentrations and modulates parathyroid hormone secretion and urinary calcium excretion. The central role of the CaSR in Ca(2+) o homeostasis has been highlighted by the identification of mutations affecting the CASR gene on chromosome 3q21.1. Loss-of-function CASR mutations cause familial hypocalciuric hypercalcaemia (FHH), whereas gain-of-function mutations lead to autosomal dominant hypocalcaemia (ADH). However, CASR mutations are only detected in ≤70% of FHH and ADH cases, referred to as FHH type 1 and ADH type 1, respectively, and studies in other FHH and ADH kindreds have revealed these disorders to be genetically heterogeneous. Thus, loss- and gain-of-function mutations of the GNA11 gene on chromosome 19p13.3, which encodes the G-protein α-11 (Gα11) subunit, lead to FHH type 2 and ADH type 2, respectively; whilst loss-of-function mutations of AP2S1 on chromosome 19q13.3, which encodes the adaptor-related protein complex 2 sigma (AP2σ) subunit, cause FHH type 3. These studies have demonstrated Gα11 to be a key mediator of downstream CaSR signal transduction, and also revealed a role for AP2σ, which is involved in clathrin-mediated endocytosis, in CaSR signalling and trafficking. Moreover, FHH type 3 has been demonstrated to represent a more severe FHH variant that may lead to symptomatic hypercalcaemia, low bone mineral density and cognitive dysfunction. In addition, calcimimetic and calcilytic drugs, which are positive and negative CaSR allosteric modulators, respectively, have been shown to be of potential benefit for these FHH and ADH disorders.
Collapse
Affiliation(s)
- Fadil M Hannan
- Academic Endocrine UnitRadcliffe Department of Medicine, University of Oxford, Oxford, UK Department of Musculoskeletal BiologyInstitute of Ageing and Chronic Disease, University of Liverpool, Liverpool, UK
| | - Valerie N Babinsky
- Academic Endocrine UnitRadcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Rajesh V Thakker
- Academic Endocrine UnitRadcliffe Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
30
|
Sista SK, Arum SM. Management of adynamic bone disease in chronic kidney disease: A brief review. J Clin Transl Endocrinol 2016; 5:32-35. [PMID: 29067232 PMCID: PMC5644430 DOI: 10.1016/j.jcte.2016.07.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 07/07/2016] [Accepted: 07/12/2016] [Indexed: 12/17/2022] Open
Abstract
The Kidney Disease: Improving Global Outcomes (KDIGO) work group released recommendations in 2006 to define the bone-related pathology associated with chronic kidney disease as renal osteodystrophy. In 2009, KDIGO released revised clinical practice guidelines which redefined systemic disorders of bone and mineral metabolism due to chronic kidney disease as chronic kidney disease-mineral and bone disorders. Conditions under this overarching term include osteitis fibrosa cystica, osteomalacia, and adynamic bone disease. We aim to provide a brief review of the histopathology, pathophysiology, epidemiology, and diagnostic features of adynamic bone disease, focusing on current trends in the management of this complex bone disorder.
Collapse
Affiliation(s)
| | - Seth M. Arum
- Division of Endocrinology, Diabetes, and Metabolism, University of Massachusetts, 55 Lake Avenue North, Worcester, MA 01655, USA
| |
Collapse
|
31
|
Pazianas M, Abrahamsen B. Osteoporosis treatment: bisphosphonates reign to continue for a few more years, at least? Ann N Y Acad Sci 2016; 1376:5-13. [PMID: 27525578 DOI: 10.1111/nyas.13166] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 06/02/2016] [Accepted: 06/03/2016] [Indexed: 01/09/2023]
Abstract
The findings of the Women's Health Initiative study in 2002 marginalized the use of hormone replacement therapy and established bisphosphonates as the first line of treatment for osteoporosis. Denosumab could be used in selected patients. Although bisphosphonates only maintain the structure of bone complete with any accumulated structural or material faults, their bone selectivity and effectiveness in reducing the risk of fractures, together with their low cost, have left little room for improvement for new antiresorptives. The osteoanabolic teriparatide increases new bone formation, but it is administered for up to 2 years only and the cost remains a consideration. Similar restrictions are expected to apply to an anti-sclerostin antibody, which could be evaluated by the U.S. Food and Drug Administration in the near future. Cathepsin K-inhibiting antibody could be an alternative if approved; although an antiresorptive, it maintains bone formation, in contrast with bisphosphonates, and can be probably used for long-term treatment. Rare adverse effects of bisphosphonates, namely osteonecrosis of the jaws and atypical femoral fractures, have been disproportionally emphasized relative to their benefits/harm ratio. Treatment of osteoporosis is a long process, and many patients will require treatment with more than one type of drug over their lifetime.
Collapse
Affiliation(s)
- Michael Pazianas
- Oxford University Institute of Musculoskeletal Sciences, Oxford, United Kingdom.
| | - Bo Abrahamsen
- Odense Patient Data Explorative Network, University of Southern Denmark and Odense University Hospital, Odense, Denmark.,Department of Medicine, Holbaek Hospital, Holbaek, Denmark
| |
Collapse
|
32
|
Díaz-Soto G, Rocher A, García-Rodríguez C, Núñez L, Villalobos C. The Calcium-Sensing Receptor in Health and Disease. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2016; 327:321-369. [PMID: 27692178 DOI: 10.1016/bs.ircmb.2016.05.004] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The extracellular calcium-sensing receptor (CaSR) is a unique G protein-coupled receptor (GPCR) activated by extracellular Ca2+ and by other physiological cations including Mg2+, amino acids, and polyamines. CaSR is the most important master controller of the extracellular Ca2+ homeostatic system being expressed at high levels in the parathyroid gland, kidney, gut and bone, where it regulates parathyroid hormone (PTH) secretion, vitamin D synthesis, and Ca2+ absorption and resorption, respectively. Gain and loss of function mutations in the CaSR are responsible for severe disturbances in extracellular Ca2+ metabolism. CaSR agonists (calcimimetics) and antagonists (calcilytics) are in use or under intense research for treatment of hyperparathyroidism secondary to kidney failure and hypocalcemia with hypercalciuria, respectively. Expression of the CaSR extends to other tissues and systems beyond the extracellular Ca2+ homeostatic system including the cardiovascular system, the airways, and the nervous system where it may play physiological functions yet to be fully understood. As a consequence, CaSR has been recently involved in different pathologies including uncontrolled blood pressure, vascular calcification, asthma, and Alzheimer's disease. Finally, the CaSR has been shown to play a critical role in cancer either contributing to bone metastasis and/or acting as a tumor suppressor in some forms of cancer (parathyroid cancer, colon cancer, and neuroblastoma) and as oncogene in others (breast and prostate cancers). Here we review the role of CaSR in health and disease in calciotropic tissues and others beyond the extracellular calcium homeostatic system.
Collapse
Affiliation(s)
- G Díaz-Soto
- Endocrinology and Nutrition, Valladolid University Hospital, Valladolid, Spain
| | - A Rocher
- Department of Biochemistry and Molecular Biology and Physiology, University of Valladolid, Valladolid, Spain; Institute of Molecular Biology and Genetics (IBGM), University of Valladolid and National Research Council (CSIC), Valladolid, Spain
| | - C García-Rodríguez
- Institute of Molecular Biology and Genetics (IBGM), University of Valladolid and National Research Council (CSIC), Valladolid, Spain
| | - L Núñez
- Department of Biochemistry and Molecular Biology and Physiology, University of Valladolid, Valladolid, Spain; Institute of Molecular Biology and Genetics (IBGM), University of Valladolid and National Research Council (CSIC), Valladolid, Spain
| | - C Villalobos
- Institute of Molecular Biology and Genetics (IBGM), University of Valladolid and National Research Council (CSIC), Valladolid, Spain.
| |
Collapse
|
33
|
The calcium-sensing receptor and the hallmarks of cancer. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:1398-407. [DOI: 10.1016/j.bbamcr.2015.11.017] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 11/17/2015] [Accepted: 11/18/2015] [Indexed: 02/07/2023]
|
34
|
Mayr B, Schnabel D, Dörr HG, Schöfl C. GENETICS IN ENDOCRINOLOGY: Gain and loss of function mutations of the calcium-sensing receptor and associated proteins: current treatment concepts. Eur J Endocrinol 2016; 174:R189-208. [PMID: 26646938 DOI: 10.1530/eje-15-1028] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 12/08/2015] [Indexed: 12/26/2022]
Abstract
The calcium-sensing receptor (CASR) is the main calcium sensor in the maintenance of calcium metabolism. Mutations of the CASR, the G protein alpha 11 (GNA11) and the adaptor-related protein complex 2 sigma 1 subunit (AP2S1) genes can shift the set point for calcium sensing causing hyper- or hypo-calcemic disorders. Therapeutic concepts for these rare diseases range from general therapies of hyper- and hypo-calcemic conditions to more pathophysiology oriented approaches such as parathyroid hormone (PTH) substitution and allosteric CASR modulators. Cinacalcet is a calcimimetic that enhances receptor function and has gained approval for the treatment of hyperparathyroidism. Calcilytics in turn attenuate CASR activity and are currently under investigation for the treatment of various diseases. We conducted a literature search for reports about treatment of patients harboring inactivating or activating CASR, GNA11 or AP2S1 mutants and about in vitro effects of allosteric CASR modulators on mutated CASR. The therapeutic concepts for patients with familial hypocalciuric hypercalcemia (FHH), neonatal hyperparathyroidism (NHPT), neonatal severe hyperparathyroidism (NSHPT) and autosomal dominant hypocalcemia (ADH) are reviewed. FHH is usually benign, but symptomatic patients benefit from cinacalcet. In NSHPT patients pamidronate effectively lowers serum calcium, but most patients require parathyroidectomy. In some patients cinacalcet can obviate the need for surgery, particularly in heterozygous NHPT. Symptomatic ADH patients respond to vitamin D and calcium supplementation but this may increase calciuria and renal complications. PTH treatment can reduce relative hypercalciuria. None of the currently available therapies for ADH, however, prevent tissue calcifications and complications, which may become possible with calcilytics that correct the underlying pathophysiologic defect.
Collapse
Affiliation(s)
- Bernhard Mayr
- Division of Endocrinology and DiabetesDepartment of Medicine I, Universitätsklinikum Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Ulmenweg 18, 91054 Erlangen, GermanyCenter for Chronic Sick ChildrenPediatric Endocrinology and Diabetes, Charité University Medicine Berlin, Berlin, GermanyDivision of Paediatric Endocrinology and DiabetesDepartment of Paediatrics, Universitätsklinikum Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Dirk Schnabel
- Division of Endocrinology and DiabetesDepartment of Medicine I, Universitätsklinikum Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Ulmenweg 18, 91054 Erlangen, GermanyCenter for Chronic Sick ChildrenPediatric Endocrinology and Diabetes, Charité University Medicine Berlin, Berlin, GermanyDivision of Paediatric Endocrinology and DiabetesDepartment of Paediatrics, Universitätsklinikum Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Helmuth-Günther Dörr
- Division of Endocrinology and DiabetesDepartment of Medicine I, Universitätsklinikum Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Ulmenweg 18, 91054 Erlangen, GermanyCenter for Chronic Sick ChildrenPediatric Endocrinology and Diabetes, Charité University Medicine Berlin, Berlin, GermanyDivision of Paediatric Endocrinology and DiabetesDepartment of Paediatrics, Universitätsklinikum Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Christof Schöfl
- Division of Endocrinology and DiabetesDepartment of Medicine I, Universitätsklinikum Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Ulmenweg 18, 91054 Erlangen, GermanyCenter for Chronic Sick ChildrenPediatric Endocrinology and Diabetes, Charité University Medicine Berlin, Berlin, GermanyDivision of Paediatric Endocrinology and DiabetesDepartment of Paediatrics, Universitätsklinikum Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| |
Collapse
|
35
|
Chiarini A, Armato U, Liu D, Dal Prà I. Calcium-Sensing Receptors of Human Neural Cells Play Crucial Roles in Alzheimer's Disease. Front Physiol 2016; 7:134. [PMID: 27199760 PMCID: PMC4844916 DOI: 10.3389/fphys.2016.00134] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 03/28/2016] [Indexed: 12/21/2022] Open
Abstract
In aged subjects, late-onset Alzheimer's disease (LOAD) starts in the lateral entorhinal allocortex where a failure of clearance mechanisms triggers an accumulation of neurotoxic amyloid-β42 oligomers (Aβ42-os). In neurons and astrocytes, Aβ42-os enhance the transcription of Aβ precursor protein (APP) and β-secretase/BACE1 genes. Thus, by acting together with γ-secretase, the surpluses of APP and BACE1 amplify the endogenous production of Aβ42-os which pile up, damage mitochondria, and are oversecreted. At the plasmalemma, exogenous Aβ42-os bind neurons' and astrocytes' calcium-sensing receptors (CaSRs) activating a set of intracellular signaling pathways which upkeep Aβ42-os intracellular accumulation and oversecretion by hindering Aβ42-os proteolysis. In addition, Aβ42-os accumulating in the extracellular milieu spread and reach mounting numbers of adjacent and remoter teams of neurons and astrocytes which in turn are recruited, again via Aβ42-os•CaSR-governed mechanisms, to produce and release additional Aβ42-os amounts. This relentless self-sustaining mechanism drives AD progression toward upper cortical areas. Later on accumulating Aβ42-os elicit the advent of hyperphosphorylated (p)-Tau oligomers which acting together with Aβ42-os and other glial neurotoxins cooperatively destroy wider and wider cognition-related cortical areas. In parallel, Aβ42-os•CaSR signals also elicit an excess production and secretion of nitric oxide and vascular endothelial growth factor-A from astrocytes, of Aβ42-os and myelin basic protein from oligodendrocytes, and of proinflammatory cytokines, nitric oxide and (likely) Aβ42-os from microglia. Activated astrocytes and microglia survive the toxic onslaught, whereas neurons and oligodendrocytes increasingly die. However, we have shown that highly selective allosteric CaSR antagonists (calcilytics), like NPS 2143 and NPS 89626, efficiently suppress all the neurotoxic effects Aβ42-os•CaSR signaling drives in cultured cortical untransformed human neurons and astrocytes. In fact, calcilytics increase Aβ42 proteolysis and discontinue the oversecretion of Aβ42-os, nitric oxide, and vascular endothelial growth factor-A from both astrocytes and neurons. Seemingly, calcilytics would also benefit the other types of glial cells and cerebrovascular cells otherwise damaged by the effects of Aβ42-os•CaSR signaling. Thus, given at amnestic minor cognitive impairment (aMCI) or initial symptomatic stages, calcilytics could prevent or terminate the propagation of LOAD neuropathology and preserve human neurons' viability and hence patients' cognitive abilities.
Collapse
Affiliation(s)
- Anna Chiarini
- Human Histology and Embryology Unit, University of Verona Medical SchoolVerona, Italy
| | - Ubaldo Armato
- Human Histology and Embryology Unit, University of Verona Medical SchoolVerona, Italy
| | - Daisong Liu
- Human Histology and Embryology Unit, University of Verona Medical SchoolVerona, Italy
- Proteomics Laboratory, Institute for Burn Research, Third Military Medical UniversityChongqing, China
| | - Ilaria Dal Prà
- Human Histology and Embryology Unit, University of Verona Medical SchoolVerona, Italy
| |
Collapse
|
36
|
Howles SA, Hannan FM, Babinsky VN, Rogers A, Gorvin CM, Rust N, Richardson T, McKenna MJ, Nesbit MA, Thakker RV. Cinacalcet for Symptomatic Hypercalcemia Caused by AP2S1 Mutations. N Engl J Med 2016; 374:1396-1398. [PMID: 27050234 PMCID: PMC4972445 DOI: 10.1056/nejmc1511646] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
| | | | | | | | | | - Nigel Rust
- University of Oxford Oxford, United Kingdom
| | | | | | | | | |
Collapse
|
37
|
Nemeth EF, Goodman WG. Calcimimetic and Calcilytic Drugs: Feats, Flops, and Futures. Calcif Tissue Int 2016; 98:341-58. [PMID: 26319799 DOI: 10.1007/s00223-015-0052-z] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 08/10/2015] [Indexed: 01/28/2023]
Abstract
The actions of extracellular Ca(2+) in regulating parathyroid gland and kidney functions are mediated by the extracellular calcium receptor (CaR), a G protein-coupled receptor. The CaR is one of the essential molecules maintaining systemic Ca(2+) homeostasis and is a molecular target for drugs useful in treating bone and mineral disorders. Ligands that activate the CaR are termed calcimimetics and are classified as either agonists (type I) or positive allosteric modulators (type II); calcimimetics inhibit the secretion of parathyroid hormone (PTH). Cinacalcet is a type II calcimimetic that is used to treat secondary hyperparathyroidism in patients receiving dialysis and to treat hypercalcemia in some forms of primary hyperparathyroidism. The use of cinacalcet among patients with secondary hyperparathyroidism who are managed with dialysis effectively lowers circulating PTH levels, reduces serum phosphorus and FGF23 concentrations, improves bone histopathology, and may diminish skeletal fracture rates and the need for parathyroidectomy. A second generation type II calcimimetic (AMG 416) is currently under regulatory review. Calcilytics are CaR antagonists that stimulate the secretion of PTH. Several calcilytic compounds have been evaluated as orally active anabolic therapies for postmenopausal osteoporosis but clinical development of all of them has been abandoned because they lacked clinical efficacy. Calcilytics might be repurposed for new indications like autosomal dominant hypocalcemia or other disorders beyond those involving systemic Ca(2+) homeostasis.
Collapse
Affiliation(s)
- E F Nemeth
- MetisMedica, 13 Poplar Plains Road, Toronto, ON, M4V 2M7, Canada.
| | - W G Goodman
- , 22102 Palais Place, Calabasas, CA, 91302, USA
| |
Collapse
|
38
|
Santa Maria C, Cheng Z, Li A, Wang J, Shoback D, Tu CL, Chang W. Interplay between CaSR and PTH1R signaling in skeletal development and osteoanabolism. Semin Cell Dev Biol 2016; 49:11-23. [PMID: 26688334 PMCID: PMC4761456 DOI: 10.1016/j.semcdb.2015.12.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 12/05/2015] [Indexed: 12/01/2022]
Abstract
Parathyroid hormone (PTH)-related peptide (PTHrP) controls the pace of pre- and post-natal growth plate development by activating the PTH1R in chondrocytes, while PTH maintains mineral and skeletal homeostasis by modulating calciotropic activities in kidneys, gut, and bone. The extracellular calcium-sensing receptor (CaSR) is a member of family C, G protein-coupled receptor, which regulates mineral and skeletal homeostasis by controlling PTH secretion in parathyroid glands and Ca(2+) excretion in kidneys. Recent studies showed the expression of CaSR in chondrocytes, osteoblasts, and osteoclasts and confirmed its non-redundant roles in modulating the recruitment, proliferation, survival, and differentiation of the cells. This review emphasizes the actions of CaSR and PTH1R signaling responses in cartilage and bone and discusses how these two signaling cascades interact to control growth plate development and maintain skeletal metabolism in physiological and pathological conditions. Lastly, novel therapeutic regimens that exploit interrelationship between the CaSR and PTH1R are proposed to produce more robust osteoanabolism.
Collapse
Affiliation(s)
- Christian Santa Maria
- Endocrine Research Unit, University of California, San Francisco, Veterans Affairs Medical Center, San Francisco, CA, USA
| | - Zhiqiang Cheng
- Endocrine Research Unit, University of California, San Francisco, Veterans Affairs Medical Center, San Francisco, CA, USA
| | - Alfred Li
- Endocrine Research Unit, University of California, San Francisco, Veterans Affairs Medical Center, San Francisco, CA, USA
| | - Jiali Wang
- Endocrine Research Unit, University of California, San Francisco, Veterans Affairs Medical Center, San Francisco, CA, USA
| | - Dolores Shoback
- Endocrine Research Unit, University of California, San Francisco, Veterans Affairs Medical Center, San Francisco, CA, USA
| | - Chia-Ling Tu
- Endocrine Research Unit, University of California, San Francisco, Veterans Affairs Medical Center, San Francisco, CA, USA
| | - Wenhan Chang
- Endocrine Research Unit, University of California, San Francisco, Veterans Affairs Medical Center, San Francisco, CA, USA.
| |
Collapse
|
39
|
Isaia G, Marchese L, Marchetti M, D’Amelio P, Fornelli G. Parathyroid Hormone Secretion and Action. Updates Surg 2016. [DOI: 10.1007/978-88-470-5758-6_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
40
|
Graca JAZ, Schepelmann M, Brennan SC, Reens J, Chang W, Yan P, Toka H, Riccardi D, Price SA. Comparative expression of the extracellular calcium-sensing receptor in the mouse, rat, and human kidney. Am J Physiol Renal Physiol 2015; 310:F518-33. [PMID: 26661650 DOI: 10.1152/ajprenal.00208.2015] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 11/30/2015] [Indexed: 11/22/2022] Open
Abstract
The calcium-sensing receptor (CaSR) was cloned over 20 years ago and functionally demonstrated to regulate circulating levels of parathyroid hormone by maintaining physiological serum ionized calcium concentration ([Ca(2+)]). The receptor is highly expressed in the kidney; however, intrarenal and intraspecies distribution remains controversial. Recently, additional functions of the CaSR receptor in the kidney have emerged, including parathyroid hormone-independent effects. It is therefore critical to establish unequivocally the localization of the CaSR in the kidney to relate this to its proposed physiological roles. In this study, we determined CaSR expression in mouse, rat, and human kidneys using in situ hybridization, immunohistochemistry (using 8 different commercially available and custom-made antibodies), and proximity ligation assays. Negative results in mice with kidney-specific CaSR ablation confirmed the specificity of the immunohistochemistry signal. Both in situ hybridization and immunohistochemistry showed CaSR expression in the thick ascending limb, distal tubule, and collecting duct of all species, with the thick ascending limb showing the highest levels. Within the collecting ducts, there was significant heterogeneity of expression between cell types. In the proximal tubule, lower levels of immunoreactivity were detected by immunohistochemistry and proximity ligation assays. Proximity ligation assays were the only technique to demonstrate expression within glomeruli. This study demonstrated CaSR expression throughout the kidney with minimal discrepancy between species but with significant variation in the levels of expression between cell and tubule types. These findings clarify the intrarenal distribution of the CaSR and enable elucidation of the full physiological roles of the receptor within this organ.
Collapse
Affiliation(s)
- J A Z Graca
- Pathology Sciences, AstraZeneca R&D, Macclesfield, United Kingdom; School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - M Schepelmann
- School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - S C Brennan
- School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - J Reens
- Pathology Sciences, AstraZeneca R&D, Macclesfield, United Kingdom
| | - W Chang
- Department of Medicine, UCSF School of Medicine, San Francisco, California
| | - P Yan
- Division of Nephrology, Beth Israel Deaconess Medical Center, Boston, Massachusetts; and
| | - H Toka
- Division of Nephrology and Hyperension, Eastern Virginia Medical School, Norfolk, Virginia
| | - D Riccardi
- School of Biosciences, Cardiff University, Cardiff, United Kingdom;
| | - S A Price
- Pathology Sciences, AstraZeneca R&D, Macclesfield, United Kingdom
| |
Collapse
|
41
|
Makras P, Delaroudis S, Anastasilakis AD. Novel therapies for osteoporosis. Metabolism 2015; 64:1199-214. [PMID: 26277199 DOI: 10.1016/j.metabol.2015.07.011] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2015] [Revised: 07/02/2015] [Accepted: 07/06/2015] [Indexed: 12/28/2022]
Abstract
Since the identification of osteoporosis as a major health issue in aging populations and the subsequent development of the first treatment modalities for its management, considerable progress has been made in our understanding of the mechanisms controlling bone turnover and disease pathophysiology, thus enabling the pinpointing of new targets for intervention. This progress, along with advances in biotechnology, has rendered possible the development of ever more sophisticated treatments employing novel mechanisms of action. Denosumab, a monoclonal antibody against RANKL, approved for the treatment of postmenopausal and male osteoporosis, significantly and continuously increases bone mineral density (BMD) and maintains a low risk of vertebral, non-vertebral, and hip fractures for up to 8 years. Currently available combinations of estrogens with selective estrogen receptor modulators moderately increase BMD without causing the extra-skeletal adverse effects of each compound alone. The cathepsin K inhibitor odanacatib has recently been shown to decrease vertebral, non-vertebral, and hip fracture rates and is nearing approval. Romosozumab, an anti-sclerosin antibody, and abaloparatide, a PTH-related peptide analog, are at present in advanced stages of clinical evaluation, so far demonstrating efficaciousness together with a favorable safety profile. Several other agents are currently in earlier clinical and preclinical phases of development, including dickkopf-1 antagonists, activin A antagonists, β-arrestin analogs, calcilytics, and Src tyrosine kinase inhibitors.
Collapse
Affiliation(s)
- Polyzois Makras
- Department of Endocrinology and Diabetes, 251 Hellenic Air Force & VA General Hospital, Athens, Greece
| | - Sideris Delaroudis
- Department of Endocrinology, 424 General Military Hospital, Thessaloniki, Greece
| | | |
Collapse
|
42
|
D'Amelio P, Isaia GC. Male Osteoporosis in the Elderly. Int J Endocrinol 2015; 2015:907689. [PMID: 26457082 PMCID: PMC4592737 DOI: 10.1155/2015/907689] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 09/02/2015] [Indexed: 01/02/2023] Open
Abstract
Osteoporosis is now recognized as an important public health problem in elderly men as fragility fractures are complicated by increased morbidity, mortality, and social costs. This review comprises an overview of recent findings in pathophysiology, diagnosis, and treatment of male osteoporosis, with particular regard to the old population.
Collapse
Affiliation(s)
- Patrizia D'Amelio
- Department of Medical Science, University of Torino, 10126 Torino, Italy
| | | |
Collapse
|
43
|
Hannan FM, Walls GV, Babinsky VN, Nesbit MA, Kallay E, Hough TA, Fraser WD, Cox RD, Hu J, Spiegel AM, Thakker RV. The Calcilytic Agent NPS 2143 Rectifies Hypocalcemia in a Mouse Model With an Activating Calcium-Sensing Receptor (CaSR) Mutation: Relevance to Autosomal Dominant Hypocalcemia Type 1 (ADH1). Endocrinology 2015; 156:3114-21. [PMID: 26052899 PMCID: PMC4541614 DOI: 10.1210/en.2015-1269] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Autosomal dominant hypocalcemia type 1 (ADH1) is caused by germline gain-of-function mutations of the calcium-sensing receptor (CaSR) and may lead to symptomatic hypocalcemia, inappropriately low serum PTH concentrations and hypercalciuria. Negative allosteric CaSR modulators, known as calcilytics, have been shown to normalize the gain-of-function associated with ADH-causing CaSR mutations in vitro and represent a potential targeted therapy for ADH1. However, the effectiveness of calcilytic drugs for the treatment of ADH1-associated hypocalcemia remains to be established. We have investigated NPS 2143, a calcilytic compound, for the treatment of ADH1 by in vitro and in vivo studies involving a mouse model, known as Nuf, which harbors a gain-of-function CaSR mutation, Leu723Gln. Wild-type (Leu723) and Nuf mutant (Gln723) CaSRs were expressed in HEK293 cells, and the effect of NPS 2143 on their intracellular calcium responses was determined by flow cytometry. NPS 2143 was also administered as a single ip bolus to wild-type and Nuf mice and plasma concentrations of calcium and PTH, and urinary calcium excretion measured. In vitro administration of NPS 2143 decreased the intracellular calcium responses of HEK293 cells expressing the mutant Gln723 CaSR in a dose-dependent manner, thereby rectifying the gain-of-function associated with the Nuf mouse CaSR mutation. Intraperitoneal injection of NPS 2143 in Nuf mice led to significant increases in plasma calcium and PTH without elevating urinary calcium excretion. These studies of a mouse model with an activating CaSR mutation demonstrate NPS 2143 to normalize the gain-of-function causing ADH1 and improve the hypocalcemia associated with this disorder.
Collapse
Affiliation(s)
- Fadil M Hannan
- Academic Endocrine Unit (F.M.H., G.V.W., V.N.B., M.A.N., E.K., R.V.T.), Radcliffe Department of Medicine, Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, OX3 7LJ, United Kingdom; Medical Research Council (MRC) Mammalian Genetics Unit and Mary Lyon Centre (T.A.H., R.D.C.), MRC Harwell, Harwell Science and Innovation Campus, Oxfordshire, OX11 0RD, United Kingdom; Department of Medicine (W.D.F.), Norwich Medical School, University of East Anglia, Norwich, NR4 7TJ, United Kingdom; Laboratory of Bioorganic Chemistry (J.H.), National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland 20892; and Albert Einstein College of Medicine (A.M.S.), Bronx, New York 10461
| | - Gerard V Walls
- Academic Endocrine Unit (F.M.H., G.V.W., V.N.B., M.A.N., E.K., R.V.T.), Radcliffe Department of Medicine, Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, OX3 7LJ, United Kingdom; Medical Research Council (MRC) Mammalian Genetics Unit and Mary Lyon Centre (T.A.H., R.D.C.), MRC Harwell, Harwell Science and Innovation Campus, Oxfordshire, OX11 0RD, United Kingdom; Department of Medicine (W.D.F.), Norwich Medical School, University of East Anglia, Norwich, NR4 7TJ, United Kingdom; Laboratory of Bioorganic Chemistry (J.H.), National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland 20892; and Albert Einstein College of Medicine (A.M.S.), Bronx, New York 10461
| | - Valerie N Babinsky
- Academic Endocrine Unit (F.M.H., G.V.W., V.N.B., M.A.N., E.K., R.V.T.), Radcliffe Department of Medicine, Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, OX3 7LJ, United Kingdom; Medical Research Council (MRC) Mammalian Genetics Unit and Mary Lyon Centre (T.A.H., R.D.C.), MRC Harwell, Harwell Science and Innovation Campus, Oxfordshire, OX11 0RD, United Kingdom; Department of Medicine (W.D.F.), Norwich Medical School, University of East Anglia, Norwich, NR4 7TJ, United Kingdom; Laboratory of Bioorganic Chemistry (J.H.), National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland 20892; and Albert Einstein College of Medicine (A.M.S.), Bronx, New York 10461
| | - M Andrew Nesbit
- Academic Endocrine Unit (F.M.H., G.V.W., V.N.B., M.A.N., E.K., R.V.T.), Radcliffe Department of Medicine, Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, OX3 7LJ, United Kingdom; Medical Research Council (MRC) Mammalian Genetics Unit and Mary Lyon Centre (T.A.H., R.D.C.), MRC Harwell, Harwell Science and Innovation Campus, Oxfordshire, OX11 0RD, United Kingdom; Department of Medicine (W.D.F.), Norwich Medical School, University of East Anglia, Norwich, NR4 7TJ, United Kingdom; Laboratory of Bioorganic Chemistry (J.H.), National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland 20892; and Albert Einstein College of Medicine (A.M.S.), Bronx, New York 10461
| | - Enikö Kallay
- Academic Endocrine Unit (F.M.H., G.V.W., V.N.B., M.A.N., E.K., R.V.T.), Radcliffe Department of Medicine, Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, OX3 7LJ, United Kingdom; Medical Research Council (MRC) Mammalian Genetics Unit and Mary Lyon Centre (T.A.H., R.D.C.), MRC Harwell, Harwell Science and Innovation Campus, Oxfordshire, OX11 0RD, United Kingdom; Department of Medicine (W.D.F.), Norwich Medical School, University of East Anglia, Norwich, NR4 7TJ, United Kingdom; Laboratory of Bioorganic Chemistry (J.H.), National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland 20892; and Albert Einstein College of Medicine (A.M.S.), Bronx, New York 10461
| | - Tertius A Hough
- Academic Endocrine Unit (F.M.H., G.V.W., V.N.B., M.A.N., E.K., R.V.T.), Radcliffe Department of Medicine, Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, OX3 7LJ, United Kingdom; Medical Research Council (MRC) Mammalian Genetics Unit and Mary Lyon Centre (T.A.H., R.D.C.), MRC Harwell, Harwell Science and Innovation Campus, Oxfordshire, OX11 0RD, United Kingdom; Department of Medicine (W.D.F.), Norwich Medical School, University of East Anglia, Norwich, NR4 7TJ, United Kingdom; Laboratory of Bioorganic Chemistry (J.H.), National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland 20892; and Albert Einstein College of Medicine (A.M.S.), Bronx, New York 10461
| | - William D Fraser
- Academic Endocrine Unit (F.M.H., G.V.W., V.N.B., M.A.N., E.K., R.V.T.), Radcliffe Department of Medicine, Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, OX3 7LJ, United Kingdom; Medical Research Council (MRC) Mammalian Genetics Unit and Mary Lyon Centre (T.A.H., R.D.C.), MRC Harwell, Harwell Science and Innovation Campus, Oxfordshire, OX11 0RD, United Kingdom; Department of Medicine (W.D.F.), Norwich Medical School, University of East Anglia, Norwich, NR4 7TJ, United Kingdom; Laboratory of Bioorganic Chemistry (J.H.), National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland 20892; and Albert Einstein College of Medicine (A.M.S.), Bronx, New York 10461
| | - Roger D Cox
- Academic Endocrine Unit (F.M.H., G.V.W., V.N.B., M.A.N., E.K., R.V.T.), Radcliffe Department of Medicine, Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, OX3 7LJ, United Kingdom; Medical Research Council (MRC) Mammalian Genetics Unit and Mary Lyon Centre (T.A.H., R.D.C.), MRC Harwell, Harwell Science and Innovation Campus, Oxfordshire, OX11 0RD, United Kingdom; Department of Medicine (W.D.F.), Norwich Medical School, University of East Anglia, Norwich, NR4 7TJ, United Kingdom; Laboratory of Bioorganic Chemistry (J.H.), National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland 20892; and Albert Einstein College of Medicine (A.M.S.), Bronx, New York 10461
| | - Jianxin Hu
- Academic Endocrine Unit (F.M.H., G.V.W., V.N.B., M.A.N., E.K., R.V.T.), Radcliffe Department of Medicine, Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, OX3 7LJ, United Kingdom; Medical Research Council (MRC) Mammalian Genetics Unit and Mary Lyon Centre (T.A.H., R.D.C.), MRC Harwell, Harwell Science and Innovation Campus, Oxfordshire, OX11 0RD, United Kingdom; Department of Medicine (W.D.F.), Norwich Medical School, University of East Anglia, Norwich, NR4 7TJ, United Kingdom; Laboratory of Bioorganic Chemistry (J.H.), National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland 20892; and Albert Einstein College of Medicine (A.M.S.), Bronx, New York 10461
| | - Allen M Spiegel
- Academic Endocrine Unit (F.M.H., G.V.W., V.N.B., M.A.N., E.K., R.V.T.), Radcliffe Department of Medicine, Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, OX3 7LJ, United Kingdom; Medical Research Council (MRC) Mammalian Genetics Unit and Mary Lyon Centre (T.A.H., R.D.C.), MRC Harwell, Harwell Science and Innovation Campus, Oxfordshire, OX11 0RD, United Kingdom; Department of Medicine (W.D.F.), Norwich Medical School, University of East Anglia, Norwich, NR4 7TJ, United Kingdom; Laboratory of Bioorganic Chemistry (J.H.), National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland 20892; and Albert Einstein College of Medicine (A.M.S.), Bronx, New York 10461
| | - Rajesh V Thakker
- Academic Endocrine Unit (F.M.H., G.V.W., V.N.B., M.A.N., E.K., R.V.T.), Radcliffe Department of Medicine, Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, OX3 7LJ, United Kingdom; Medical Research Council (MRC) Mammalian Genetics Unit and Mary Lyon Centre (T.A.H., R.D.C.), MRC Harwell, Harwell Science and Innovation Campus, Oxfordshire, OX11 0RD, United Kingdom; Department of Medicine (W.D.F.), Norwich Medical School, University of East Anglia, Norwich, NR4 7TJ, United Kingdom; Laboratory of Bioorganic Chemistry (J.H.), National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland 20892; and Albert Einstein College of Medicine (A.M.S.), Bronx, New York 10461
| |
Collapse
|
44
|
Cianferotti L, Gomes AR, Fabbri S, Tanini A, Brandi ML. The calcium-sensing receptor in bone metabolism: from bench to bedside and back. Osteoporos Int 2015; 26:2055-71. [PMID: 26100412 DOI: 10.1007/s00198-015-3203-1] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Accepted: 06/08/2015] [Indexed: 12/11/2022]
Abstract
UNLABELLED The calcium-sensing receptor (CaSR), a key player in the maintenance of calcium homeostasis, can influence bone modeling and remodeling by directly acting on bone cells, as demonstrated by in vivo and in vitro evidence. The modulation of CaSR signaling can play a role in bone anabolism. INTRODUCTION The calcium-sensing receptor (CaSR) is a key player in the maintenance of calcium homeostasis through the regulation of PTH secretion and calcium homeostasis, thus indirectly influencing bone metabolism. In addition to this role, in vitro and in vivo evidence points to direct effects of CaSR in bone modeling and remodeling. In addition, the activation of the CaSR is one of the anabolic mechanisms implicated in the action of strontium ranelate, to reduce fracture risk. METHODS This review is based upon the acquisition of data from a PubMed enquiry using the terms "calcium sensing receptor," "CaSR" AND "bone remodeling," "bone modeling," "bone turnover," "osteoblast," "osteoclast," "osteocyte," "chondrocyte," "bone marrow," "calcilytics," "calcimimetics," "strontium," "osteoporosis," "skeletal homeostasis," and "bone metabolism." RESULTS A fully functional CaSR is expressed in osteoblasts and osteoclasts, so that these cells are able to sense changes in the extracellular calcium and as a result modulate their behavior. CaSR agonists (calcimimetics) or antagonists (calcilytics) have the potential to indirectly influence skeletal homeostasis through the modulation of PTH secretion by the parathyroid glands. The bone anabolic effect of strontium ranelate, a divalent cation used as a treatment for postmenopausal and male osteoporosis, might be explained, at least in part, by the activation of CaSR in bone cells. CONCLUSIONS Calcium released in the bone microenvironment during remodeling is a major factor in regulating bone cells. Osteoblast and osteoclast proliferation, differentiation, and apoptosis are influenced by local extracellular calcium concentration. Thus, the calcium-sensing properties of skeletal cells can be exploited in order to modulate bone turnover and can explain the bone anabolic effects of agents developed and employed to revert osteoporosis.
Collapse
Affiliation(s)
- L Cianferotti
- Metabolic Bone Diseases Unit, Department of Surgery and Translational Medicine, University of Florence, 50134, Florence, Italy
| | | | | | | | | |
Collapse
|
45
|
Lopez-Fernandez I, Schepelmann M, Brennan SC, Yarova PL, Riccardi D. The calcium-sensing receptor: one of a kind. Exp Physiol 2015; 100:1392-9. [PMID: 26105576 DOI: 10.1113/ep085137] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 06/19/2015] [Indexed: 12/16/2022]
Affiliation(s)
| | | | - Sarah C Brennan
- School of Biosciences, Museum Avenue, Cardiff University, Cardiff, UK
| | - Polina L Yarova
- School of Biosciences, Museum Avenue, Cardiff University, Cardiff, UK
| | - Daniela Riccardi
- School of Biosciences, Museum Avenue, Cardiff University, Cardiff, UK
| |
Collapse
|
46
|
Henriksen K, Thudium CS, Christiansen C, Karsdal MA. Novel targets for the prevention of osteoporosis - lessons learned from studies of metabolic bone disorders. Expert Opin Ther Targets 2015; 19:1575-84. [PMID: 25960169 DOI: 10.1517/14728222.2015.1045415] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Osteoporosis is a major health care problem, and whereas efficacious treatments for vertebral fracture reduction are available for osteoporosis patients, these therapies are still limited with respect to capacity for restoration of bone loss, as well as efficacy on non-vertebral fractures, such as hip fractures, which are the source of morbidity and mortality. AREAS COVERED Studies of rare bone diseases in humans, such as osteopetrosis, sclerosteosis, pycnodysostosis and more, have shed light on a series of drug targets in bone that have the potential to result in therapies for osteoporosis with novel mechanisms of action, and the potential to improve the standard of care substantially. We focus on how they are separated from classic treatments for osteoporosis, in terms of novel modes of action, additional beneficial effects on bone turnover and importantly also safety. We focus on the status of anti-sclerostin antibodies, novel parathyroid hormone-related protein analogs, inhibitors of cathepsin K and ClC-7 in osteoclasts, all of which are currently in development. EXPERT OPINION There is a good possibility that the treatment of osteoporosis will be greatly improved within the coming years; however, with numerous effective and safe drugs already available careful attention to the safety of these novel candidates is crucial.
Collapse
Affiliation(s)
- Kim Henriksen
- a Department of Musculoskeletal Diseases, Nordic Bioscience Biomarkers and Research , Herlev Hovedgade 207, DK-2730 Herlev, Denmark
| | - Christian Schneider Thudium
- a Department of Musculoskeletal Diseases, Nordic Bioscience Biomarkers and Research , Herlev Hovedgade 207, DK-2730 Herlev, Denmark
| | - Claus Christiansen
- a Department of Musculoskeletal Diseases, Nordic Bioscience Biomarkers and Research , Herlev Hovedgade 207, DK-2730 Herlev, Denmark
| | - Morten Asser Karsdal
- a Department of Musculoskeletal Diseases, Nordic Bioscience Biomarkers and Research , Herlev Hovedgade 207, DK-2730 Herlev, Denmark
| |
Collapse
|
47
|
Abstract
The extracellular calcium-sensing receptor, CaSR, is a member of the G protein-coupled receptor superfamily and has a critical role in modulating Ca(2+) homeostasis via its role in the parathyroid glands and kidneys. New evidence suggests that CaSR expression in cartilage and bone also directly regulates skeletal homeostasis. This Review discusses the role of CaSR in chondrocytes, through which CaSR contributes to the development of the cartilaginous growth plate, as well as in osteoblasts and osteoclasts, through which CaSR has effects on skeletal development and bone turnover in young and mature animals. The interaction of skeletal CaSR activation with parathyroid hormone (PTH), which is secreted by the parathyroid gland, can lead to net bone formation in trabecular bone or net bone resorption in cortical bone. Allosteric modulators of CaSR are beneficial in some clinical conditions, with effects that are mediated by the ability of these agents to alter levels of PTH and improve Ca(2+) homeostasis. However, further insights into the action of CaSR in bone cells might lead to CaSR-based drugs that maximize not only the effects of the receptor on the parathyroid glands and kidneys but also on bone.
Collapse
Affiliation(s)
- David Goltzman
- Department of Medicine, McGill University, 687 Pine Avenue West, Montreal, QC H3A 1A1, Canada
| | - Geoffrey N Hendy
- Department of Medicine, McGill University, 687 Pine Avenue West, Montreal, QC H3A 1A1, Canada
| |
Collapse
|
48
|
Yarova PL, Stewart AL, Sathish V, Britt RD, Thompson MA, P Lowe AP, Freeman M, Aravamudan B, Kita H, Brennan SC, Schepelmann M, Davies T, Yung S, Cholisoh Z, Kidd EJ, Ford WR, Broadley KJ, Rietdorf K, Chang W, Bin Khayat ME, Ward DT, Corrigan CJ, T Ward JP, Kemp PJ, Pabelick CM, Prakash YS, Riccardi D. Calcium-sensing receptor antagonists abrogate airway hyperresponsiveness and inflammation in allergic asthma. Sci Transl Med 2015; 7:284ra60. [PMID: 25904744 DOI: 10.1126/scitranslmed.aaa0282] [Citation(s) in RCA: 130] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 02/24/2015] [Indexed: 12/27/2022]
Abstract
Airway hyperresponsiveness and inflammation are fundamental hallmarks of allergic asthma that are accompanied by increases in certain polycations, such as eosinophil cationic protein. Levels of these cations in body fluids correlate with asthma severity. We show that polycations and elevated extracellular calcium activate the human recombinant and native calcium-sensing receptor (CaSR), leading to intracellular calcium mobilization, cyclic adenosine monophosphate breakdown, and p38 mitogen-activated protein kinase phosphorylation in airway smooth muscle (ASM) cells. These effects can be prevented by CaSR antagonists, termed calcilytics. Moreover, asthmatic patients and allergen-sensitized mice expressed more CaSR in ASMs than did their healthy counterparts. Indeed, polycations induced hyperreactivity in mouse bronchi, and this effect was prevented by calcilytics and absent in mice with CaSR ablation from ASM. Calcilytics also reduced airway hyperresponsiveness and inflammation in allergen-sensitized mice in vivo. These data show that a functional CaSR is up-regulated in asthmatic ASM and targeted by locally produced polycations to induce hyperresponsiveness and inflammation. Thus, calcilytics may represent effective asthma therapeutics.
Collapse
Affiliation(s)
- Polina L Yarova
- School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK
| | - Alecia L Stewart
- Department of Anesthesiology, Mayo Clinic, Rochester, MN 55905, USA
| | | | - Rodney D Britt
- Department of Anesthesiology, Mayo Clinic, Rochester, MN 55905, USA
| | | | - Alexander P P Lowe
- Division of Pharmacology, Cardiff University, School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff CF10 3XF, UK
| | - Michelle Freeman
- Department of Anesthesiology, Mayo Clinic, Rochester, MN 55905, USA
| | | | - Hirohito Kita
- Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Sarah C Brennan
- School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK
| | | | - Thomas Davies
- School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK
| | - Sun Yung
- School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK
| | - Zakky Cholisoh
- Division of Pharmacology, Cardiff University, School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff CF10 3XF, UK
| | - Emma J Kidd
- Division of Pharmacology, Cardiff University, School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff CF10 3XF, UK
| | - William R Ford
- Division of Pharmacology, Cardiff University, School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff CF10 3XF, UK
| | - Kenneth J Broadley
- Division of Pharmacology, Cardiff University, School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff CF10 3XF, UK
| | - Katja Rietdorf
- Department of Life, Health and Chemical Sciences, The Open University, Milton Keynes MK7 6AA, UK
| | - Wenhan Chang
- Department of Medicine, UCSF School of Medicine, San Francisco, CA 94143, USA
| | - Mohd E Bin Khayat
- Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, UK
| | - Donald T Ward
- Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, UK
| | | | - Jeremy P T Ward
- Division of Asthma, Allergy and Lung Biology, King's College London, London SE1 9RT, UK
| | - Paul J Kemp
- School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK
| | | | - Y S Prakash
- Department of Anesthesiology, Mayo Clinic, Rochester, MN 55905, USA.
| | - Daniela Riccardi
- School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK.
| |
Collapse
|
49
|
Abstract
One in three osteoporotic fractures occur in men and the consequences of a fracture in men tend to be more severe than in women. Still, only a small minority of men with high risk of fracture are detected and treated. Although there are gender differences in the pathophysiology of osteoporosis, such as in the pattern of bone loss, similarities predominate, which is also the case for clinical risk factors. It seems appropriate to consider treatment for men and women with a similar 10 year fracture risk. Drugs now approved for treatment of osteoporosis in men include the anti-resorptive bisphosphonates alendronate, residronate and zoledronic acid, the anti-resorptive drug denosumab, the bone-forming agent teriparatide, and (not in the US) strontium ranelate with mild opposite effects on resorption and formation. Although the evidence level for efficacy and safety of these drugs in men is still relatively limited, available data indicate that treatment effects in men are very similar to what has been observed in the treatment of postmenopausal osteoporosis. Denosumab is also approved for treatment in men receiving androgen deprivation therapy for non-metastatic prostate cancer; bisphosphonates and teriparatide are also available to clinicians for treatment of glucocorticoid-induced osteoporosis in men. Testosterone treatment may be indicated in men with documented symptomatic hypogonadism, but osteoporosis is neither a sufficient nor a specific indication for testosterone treatment. New compounds with well advanced clinical development include odanacatib, a selective inhibitor of the cysteine protease cathepsin-K, and romosozumab, a monoclonal antibody against sclerostin.
Collapse
Affiliation(s)
- Jean-Marc Kaufman
- Department of Endocrinology and Unit for Osteoporosis and Metabolic Bone Diseases, Ghent University Hospital, Ghent, Belgium.
| | - Bruno Lapauw
- Department of Endocrinology and Unit for Osteoporosis and Metabolic Bone Diseases, Ghent University Hospital, Ghent, Belgium
| | - Stefan Goemaere
- Department of Endocrinology and Unit for Osteoporosis and Metabolic Bone Diseases, Ghent University Hospital, Ghent, Belgium
| |
Collapse
|
50
|
Crouzeix G, Kerlan V. Hyperparathyroïdie primaire : nouveaux concepts, nouvelles recommandations. ANNALES D'ENDOCRINOLOGIE 2014; 75 Suppl 1:S21-36. [DOI: 10.1016/s0003-4266(14)70024-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|