1
|
Zhang Y, Shi H, Dai X, Shen J, Yin J, Xu T, Yue G, Guo H, Liang R, Chen Q, Gao S, Wang L, Zhang D. Semaphorin 3A on Osteoporosis: An Overreview of the Literature. Calcif Tissue Int 2025; 116:43. [PMID: 39985619 DOI: 10.1007/s00223-025-01350-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 01/31/2025] [Indexed: 02/24/2025]
Abstract
Semaphorin 3A (Sema3A) is a signaling protein that has attracted increasing attention in recent years for its important role in regulating bone metabolism. In this review, we searched different databases with various combinations of keywords to analyze the effects of Sema3A on osteoporosis. Sema3A promotes bone formation and inhibits bone resorption by directly affecting the osteoblast and osteoclast or indirectly targeting the nervous system. The sympathetic nervous system may be the main link between the central nervous system and bone metabolism for Sema3A. In the peripheral nervous system, Sema3A may improve bone quality via sensory nervous innervation. In addition, estrogen is found to regulate Sema3A levels to improve bone homeostasis. Lots of Sema3A agonists have been documented to exhibit anti-osteoporotic potential in preclinical investigations. Therefore, Sema3A can be considered a novel therapeutic target for preserving bone mass, highlighting an alternative strategy for the development of anti-osteoporosis drugs.
Collapse
Affiliation(s)
- Yueyi Zhang
- Traditional Chinese Medicine School, Diabetes Research Center, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Hanfen Shi
- Traditional Chinese Medicine School, Diabetes Research Center, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Xuan Dai
- Traditional Chinese Medicine School, Diabetes Research Center, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Jin Shen
- Traditional Chinese Medicine School, Diabetes Research Center, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Jiyuan Yin
- Traditional Chinese Medicine School, Diabetes Research Center, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Tianshu Xu
- Traditional Chinese Medicine School, Diabetes Research Center, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Gaiyue Yue
- Traditional Chinese Medicine School, Diabetes Research Center, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Haochen Guo
- Traditional Chinese Medicine School, Diabetes Research Center, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Ruiqiong Liang
- Traditional Chinese Medicine School, Diabetes Research Center, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Qishuang Chen
- Traditional Chinese Medicine School, Diabetes Research Center, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Sihua Gao
- Traditional Chinese Medicine School, Diabetes Research Center, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Lili Wang
- Department of TCM Pharmacology, Chinese Material Medica School, Beijing University of Chinese Medicine, Beijing, 102488, China.
| | - Dongwei Zhang
- Traditional Chinese Medicine School, Diabetes Research Center, Beijing University of Chinese Medicine, Beijing, 100029, China.
| |
Collapse
|
2
|
Sharan K, Brandt C, Yusuf MA, Singh P, Halder N, Edwards ME, Mangu SVVSR, Das A, Mishra A, Kumar SS, Sharma A, Gupta A, Liu XS, Guo EX, Monani UR, Ponnalagu D, Ivanov II, Lal G, Clare S, Dougan G, Yadav VK. Rapid and relaying deleterious effects of a gastrointestinal pathogen, Citrobacter rodentium, on bone, an extra-intestinal organ. iScience 2025; 28:111802. [PMID: 39967874 PMCID: PMC11834125 DOI: 10.1016/j.isci.2025.111802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 08/04/2024] [Accepted: 01/10/2025] [Indexed: 02/20/2025] Open
Abstract
Enteropathogenic infections cause pathophysiological changes in the host but their effects beyond the gastrointestinal tract are undefined. Here, using Citrobacter rodentium infection in mouse, which mimics human diarrheal enteropathogenic Escherichia coli, we show that gastrointestinal infection negatively affects bone remodeling, leading to compromised bone architecture. Transmission of infection through fecal-oral route from Citrobacter rodentium-infected to non-infected mice caused bone loss in non-infected cage mates. Mice with B cell deficiency (Igh6-/- mice) failed to clear C. rodentium infection and exhibited more severe and long-term bone loss compared to WT mice. Unbiased cytokine profiling showed an increase in circulating tumor necrosis factor α (TNFα) levels following Citrobacter rodentium infection, and immunoneutralization of TNFα prevented infection-induced bone loss completely in WT and immunocompromised mice. These findings reveal rapid, relaying, and modifiable effects of enteropathogenic infections on an extraintestinal organ-bone, and provide insights into the mechanism(s) through which these infections affect extraintestinal organ homeostasis.
Collapse
Affiliation(s)
- Kunal Sharan
- Mouse Genetics Project, Wellcome Sanger Institute, Hinxton, Saffron Walden, UK
- Department of Molecular Nutrition, CSIR-CFTRI, Mysore, Karnataka, India
| | - Cordelia Brandt
- Host-Pathogen Interaction Group, Wellcome Sanger Institute, Hinxton, Saffron Walden, UK
| | - Mohd Aslam Yusuf
- Department of Bioengineering, Integral University, Lucknow, Uttar Pradesh, India
| | - Parminder Singh
- National Institute of Immunology, New Delhi, New Delhi, India
| | - Namrita Halder
- National Centre for Cell Science, Pune, Maharastra, India
| | - Madeline E. Edwards
- Department of Microbiology and Immunology, Columbia University, New York, NY, USA
| | - SVVS Ravi Mangu
- Department of Molecular Nutrition, CSIR-CFTRI, Mysore, Karnataka, India
| | - Abhilipsa Das
- Department of Molecular Nutrition, CSIR-CFTRI, Mysore, Karnataka, India
| | - Amrita Mishra
- National Centre for Cell Science, Pune, Maharastra, India
| | - Shashi S. Kumar
- Center for Motor Neuron Biology & Disease, Columbia University, New York, NY, USA
- Department of Neurology, Columbia University, New York, NY, USA
| | - Amita Sharma
- Pediatric Kidney Foundation, New Delhi, New Delhi, India
| | - Alka Gupta
- Reproductive Biology Laboratory, National Institute of Immunology, New Delhi, New Delhi, India
| | - Xiaowei S. Liu
- Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA, USA
| | - Edward X. Guo
- Bone Biomechanics Laboratory, Columbia University, New York, NY, USA
| | - Umrao R. Monani
- Center for Motor Neuron Biology & Disease, Columbia University, New York, NY, USA
- Department of Neurology, Columbia University, New York, NY, USA
- Department of Pathology & Cell Biology, Columbia University, New York, NY, USA
| | | | - Ivaylo I. Ivanov
- Department of Microbiology and Immunology, Columbia University, New York, NY, USA
| | - Girdhari Lal
- National Centre for Cell Science, Pune, Maharastra, India
| | - Simon Clare
- Host-Pathogen Interaction Group, Wellcome Sanger Institute, Hinxton, Saffron Walden, UK
| | - Gordon Dougan
- Host-Pathogen Interaction Group, Wellcome Sanger Institute, Hinxton, Saffron Walden, UK
- Department of Medicine, University of Cambridge, Cambridge, Cambridgeshire, UK
- Centre for Translational Stem Cell Biology, Hong Kong, China
| | - Vijay K. Yadav
- Mouse Genetics Project, Wellcome Sanger Institute, Hinxton, Saffron Walden, UK
- National Institute of Immunology, New Delhi, New Delhi, India
- Department of Genetics and Development, Columbia University, New York, NY, USA
- Healthy Longevity Program, Department of Pathology, Immunology and Laboratory Medicine, Rutgers University, Newark, NJ, USA
- Center for Cell Signaling, Rutgers University, Newark, NJ, USA
- Center for Immunity and Inflammation, Rutgers University, Newark, NJ, USA
| |
Collapse
|
3
|
Mehta M, Hodgson E, Reimer RA, Gabel L. Gut microbiome-targeted therapies and bone health across the lifespan: a scoping review. Crit Rev Food Sci Nutr 2024:1-14. [PMID: 39216013 DOI: 10.1080/10408398.2024.2397459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Emerging evidence suggests that bone turnover is influenced by the gut microbiome through critical bone signaling pathways. The purpose of this scoping review is to examine prebiotic, probiotic, and synbiotic interventions on bone outcomes in humans across the lifespan. PubMed, Scopus, and EBSCOhost were searched until January 2023 to identify clinical trials examining bone mineral density (BMD) or bone mineral content (BMC) with gut microbiome interventions. Of three prebiotic interventions, one reported higher areal BMD (aBMD) in adolescents. In two studies in postmenopausal women, no changes in aBMD were observed despite decreased biomarkers of bone resorption. Probiotic interventions in perimenopausal or postmenopausal women demonstrated increased aBMD or attenuated bone loss in various bone regions. All studies observed attenuated bone loss (n = 4) or increased aBMD (n = 1). One study assessed a synbiotic intervention on aBMD and observed decreased biomarkers of bone resorption but no changes in aBMD. Results suggest potential for microbiome-targeted therapies (prebiotics, probiotics and synbiotics) to attenuate bone loss. However, changes in biomarkers of bone turnover were not always accompanied by changes in bone mineralization. Future studies should utilize longer duration interventions to investigate the influence of prebiotic, probiotic, and synbiotic interventions across diverse age, sex, and ethnic cohorts.
Collapse
Affiliation(s)
- Maahika Mehta
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Canada
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Canada
| | - Erin Hodgson
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Canada
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Canada
| | - Raylene A Reimer
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Canada
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Leigh Gabel
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Canada
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Canada
| |
Collapse
|
4
|
Nowicki JK, Jakubowska-Pietkiewicz E. Osteocalcin: Beyond Bones. Endocrinol Metab (Seoul) 2024; 39:399-406. [PMID: 38803289 PMCID: PMC11220208 DOI: 10.3803/enm.2023.1895] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/23/2024] [Accepted: 01/31/2024] [Indexed: 05/29/2024] Open
Abstract
Apart from basic roles such as supporting the body, protecting internal organs, and storing calcium, the skeletal system also performs hormonal functions. In recent years, several reports have been published on proteins secreted by bones and their impact on the homeostasis of the entire body. These proteins include fibroblast growth factor 23, sclerostin, lipocalin 2, and osteocalcin. Osteocalcin, the most abundant non-collagenous protein in bone tissue, is routinely measured as a clinical marker for diagnosing bone metabolism disorders. Its molecule undergoes numerous transformations, with decarboxylation being the critical process. Decarboxylation occurs in the acidic environment typical of bone resorption, facilitating the release of the molecule into the bloodstream and enabling its hormonal action. Decarboxylated osteocalcin promotes insulin secretion and stimulates the proliferation of pancreatic islet β-cells. It also plays a role in reducing the accumulation of visceral fat and decreasing fat storage in the liver. Furthermore, decarboxylated osteocalcin levels are inversely correlated with fasting serum glucose levels, total body fat, visceral fat area, and body mass index. Apart from its role in energy metabolism, osteocalcin affects testosterone production and the synthesis of glucagon-like peptide-1. It is also actively involved in muscle-bone crosstalk and influences cognitive function.
Collapse
Affiliation(s)
- Jakub Krzysztof Nowicki
- Department of Pediatrics, Neonatal Pathology and Metabolic Bone Diseases, Medical University of Lodz, Lodz, Poland
| | | |
Collapse
|
5
|
Chen Z, Lv M, Liang J, Yang K, Li F, Zhou Z, Qiu M, Chen H, Cai Z, Cui W, Li Z. Neuropeptide Y-Mediated Gut Microbiota Alterations Aggravate Postmenopausal Osteoporosis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303015. [PMID: 37857552 PMCID: PMC10667841 DOI: 10.1002/advs.202303015] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 08/15/2023] [Indexed: 10/21/2023]
Abstract
Postmenopausal osteoporosis (PMO) is often accompanied by neuroendocrine changes in the hypothalamus, which closely associates with the microbial diversity, community composition, and intestinal metabolites of gut microbiota (GM). With the emerging role of GM in bone metabolism, a potential neuroendocrine signal neuropeptide Y (NPY) mediated brain-gut-bone axis has come to light. Herein, it is reported that exogenous overexpression of NPY reduced bone formation, damaged bone microstructure, and up-regulated the expressions of pyroptosis-related proteins in subchondral cancellous bone in ovariectomized (OVX) rats, but Y1 receptor antagonist (Y1Ra) reversed these changes. In addition, it is found that exogenous overexpression of NPY aggravated colonic inflammation, impaired intestinal barrier integrity, enhanced intestinal permeability, and increased serum lipopolysaccharide (LPS) in OVX rats, and Y1Ra also reversed these changes. Most importantly, NPY and Y1Ra modulated the microbial diversity and changed the community composition of GM in OVX rats, and thereby affecting the metabolites of GM (e.g., LPS) entering the blood circulation. Moreover, fecal microbiota transplantation further testified the effect of NPY-mediated GM changes on bone. In vitro, LPS induced pyroptosis, reduced viability, and inhibited differentiation of osteoblasts. The study demonstrated the existence of NPY-mediated brain-gut-bone axis and it might be a novel emerging target to treat PMO.
Collapse
Affiliation(s)
- Zhijie Chen
- Department of Orthopaedic SurgeryRenji HospitalSchool of Medicine, Shanghai Jiao Tong University200127ShanghaiP. R. China
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of Medicine197 Ruijin 2nd RoadShanghai200025P. R. China
| | - Mengyuan Lv
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of Medicine197 Ruijin 2nd RoadShanghai200025P. R. China
| | - Jing Liang
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of Medicine197 Ruijin 2nd RoadShanghai200025P. R. China
| | - Kai Yang
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of Medicine197 Ruijin 2nd RoadShanghai200025P. R. China
| | - Fan Li
- Department of Orthopaedic SurgeryRenji HospitalSchool of Medicine, Shanghai Jiao Tong University200127ShanghaiP. R. China
| | - Zhi Zhou
- Department of Orthopaedic SurgeryRenji HospitalSchool of Medicine, Shanghai Jiao Tong University200127ShanghaiP. R. China
| | - Minglong Qiu
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of Medicine197 Ruijin 2nd RoadShanghai200025P. R. China
| | - Haoyi Chen
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of Medicine197 Ruijin 2nd RoadShanghai200025P. R. China
| | - Zhengwei Cai
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of Medicine197 Ruijin 2nd RoadShanghai200025P. R. China
| | - Wenguo Cui
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of Medicine197 Ruijin 2nd RoadShanghai200025P. R. China
| | - Zhanchun Li
- Department of Orthopaedic SurgeryRenji HospitalSchool of Medicine, Shanghai Jiao Tong University200127ShanghaiP. R. China
| |
Collapse
|
6
|
Xiao Y, Han C, Wang Y, Zhang X, Bao R, Li Y, Chen H, Hu B, Liu S. Interoceptive regulation of skeletal tissue homeostasis and repair. Bone Res 2023; 11:48. [PMID: 37669953 PMCID: PMC10480189 DOI: 10.1038/s41413-023-00285-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 05/08/2023] [Accepted: 06/22/2023] [Indexed: 09/07/2023] Open
Abstract
Recent studies have determined that the nervous system can sense and respond to signals from skeletal tissue, a process known as skeletal interoception, which is crucial for maintaining bone homeostasis. The hypothalamus, located in the central nervous system (CNS), plays a key role in processing interoceptive signals and regulating bone homeostasis through the autonomic nervous system, neuropeptide release, and neuroendocrine mechanisms. These mechanisms control the differentiation of mesenchymal stem cells into osteoblasts (OBs), the activation of osteoclasts (OCs), and the functional activities of bone cells. Sensory nerves extensively innervate skeletal tissues, facilitating the transmission of interoceptive signals to the CNS. This review provides a comprehensive overview of current research on the generation and coordination of skeletal interoceptive signals by the CNS to maintain bone homeostasis and their potential role in pathological conditions. The findings expand our understanding of intersystem communication in bone biology and may have implications for developing novel therapeutic strategies for bone diseases.
Collapse
Affiliation(s)
- Yao Xiao
- Department of Orthopaedics, Shanghai Jiao Tong University School of Medicine Affiliated Sixth People's Hospital, 600 Yishan Rd, Shanghai, 200233, PR China
| | - Changhao Han
- Department of Orthopaedics, Shanghai Jiao Tong University School of Medicine Affiliated Sixth People's Hospital, 600 Yishan Rd, Shanghai, 200233, PR China
| | - Yunhao Wang
- Spine Center, Department of Orthopedics, Changzheng Hospital, Naval Medical University, Shanghai, 200003, PR China
| | - Xinshu Zhang
- Department of Orthopaedics, Shanghai Jiao Tong University School of Medicine Affiliated Sixth People's Hospital, 600 Yishan Rd, Shanghai, 200233, PR China
| | - Rong Bao
- Department of Orthopaedics, Shanghai Jiao Tong University School of Medicine Affiliated Sixth People's Hospital, 600 Yishan Rd, Shanghai, 200233, PR China
| | - Yuange Li
- Department of Orthopaedics, Shanghai Jiao Tong University School of Medicine Affiliated Sixth People's Hospital, 600 Yishan Rd, Shanghai, 200233, PR China
| | - Huajiang Chen
- Spine Center, Department of Orthopedics, Changzheng Hospital, Naval Medical University, Shanghai, 200003, PR China
| | - Bo Hu
- Spine Center, Department of Orthopedics, Changzheng Hospital, Naval Medical University, Shanghai, 200003, PR China.
| | - Shen Liu
- Department of Orthopaedics, Shanghai Jiao Tong University School of Medicine Affiliated Sixth People's Hospital, 600 Yishan Rd, Shanghai, 200233, PR China.
| |
Collapse
|
7
|
Cho HW, Jin HS, Eom YB. Genetic variants of FGFR family associated with height, hypertension, and osteoporosis. Ann Hum Biol 2023:1-26. [PMID: 36876654 DOI: 10.1080/03014460.2023.2187457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Abstract
BACKGROUND Hypertension and osteoporosis are the most common types of health problems. A recent study suggested that the fibroblast growth factor receptor-like protein 1 (FGFRL1) gene in giraffes is the most promising candidate gene that may have direct effects on both the skeleton and the cardiovascular system. AIM Our study purposed to replicate the finding that the FGFR5 gene is related to giraffe-related characteristics (height, hypertension, and osteoporosis), and to assess the associations between genetic variants of the FGFR family and three phenotypes. SUBJECTS AND METHODS An association study was performed to confirm the connections between hypertension, osteoporosis, and height and the FGFR family proteins (FGFR1 to FGFR5). RESULTS We identified a total of 192 genetic variants in the FGFR family and found six SNVs in the FGFR2, FGFR3, and FGFR4 genes that were associated with two phenotypes simultaneously. Also, the FGFR family was found to be involved in calcium signalling, and three genetic variants of the FGFR3 gene showed significant signals in the pituitary and hypothalamus. CONCLUSION Taken together, these findings suggest that FGFR genes are associated with hypertension, height, and osteoporosis. In particular, the present study highlights the FGFR3 gene, which influences two fundamental regulators of bone remodelling.
Collapse
Affiliation(s)
- Hye-Won Cho
- Department of Medical Sciences, Graduate School, Soonchunhyang University, Asan, Chungnam 31538, Republic of Korea
| | - Hyun-Seok Jin
- Department of Biomedical Laboratory Science, College of Life and Health Sciences, Hoseo University, Asan, Chungnam 31499, Republic of Korea
| | - Yong-Bin Eom
- Department of Medical Sciences, Graduate School, Soonchunhyang University, Asan, Chungnam 31538, Republic of Korea.,Department of Biomedical Laboratory Science, College of Medical Sciences, Soonchunhyang University, Asan, Chungnam 31538, Republic of Korea
| |
Collapse
|
8
|
Nguyen HD, Jo WH, Hoang NHM, Kim MS. Risperidone ameliorated 1,2-Diacetylbenzene-induced cognitive impairments in mice via activating prolactin signaling pathways. Int Immunopharmacol 2023; 115:109726. [PMID: 36641890 DOI: 10.1016/j.intimp.2023.109726] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 12/26/2022] [Accepted: 01/09/2023] [Indexed: 01/15/2023]
Abstract
Cognitive impairment and organic solvent exposure have been becoming public health concerns due to an increasingly aging population, increased life expectancy, urbanization, and industrialization. Converging evidence indicates the link between 1,2-diacetylbenzene (DAB), prolactin (PRL), risperidone, and cognitive impairment. However, these relationships remain unclear. We investigated the therapeutic properties of risperidone in DAB-induced cognitive impairment using both in vivo and in silico methods. Risperidone alleviated DAB-induced cognitive impairment in hippocampal mice, possibly by inhibiting GSK-3β, β-amyloid, CDK5, BACE, and tau hyperphosphorylation. Risperidone also attenuated the activation of TREM-1/DAP12/NLRP3/caspase-1/IL-1β, and TLR4/NF-κB pathways caused by DAB. Furthermore, risperidone inhibited DAB-induced oxidative stress, advanced glycation end products, and proinflammatory cytokines, as well as increased the expression of Nrf2, IL-10, Stat3, MDM2, and catalase activity. On the other hand, risperidone activated the expression of IRS1, PI3K, AKT, BDNF, Drd2, Scna5, and Trt as well as reduced the Bax/Bcl2 ratio and Caspase-3 levels. In silico analyses identified the prolactin signaling pathway, miR-155-5p, miR-34a-5p, and CEBPB as the main molecular mechanisms involved in the pathophysiology of DAB-induced cognitive impairment and targeted by risperidone. Our results suggest that risperidone could be used to treat cognitive impairment caused by organic solvents, especially DAB.
Collapse
Affiliation(s)
- Hai Duc Nguyen
- Department of Pharmacy, College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Suncheon 57922, Republic of Korea
| | - Won Hee Jo
- Department of Pharmacy, College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Suncheon 57922, Republic of Korea
| | - Ngoc Hong Minh Hoang
- Department of Pharmacy, College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Suncheon 57922, Republic of Korea
| | - Min-Sun Kim
- Department of Pharmacy, College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Suncheon 57922, Republic of Korea.
| |
Collapse
|
9
|
Neural regulation of alveolar bone remodeling and periodontal ligament metabolism during orthodontic tooth movement in response to therapeutic loading. J World Fed Orthod 2022; 11:139-145. [DOI: 10.1016/j.ejwf.2022.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 08/25/2022] [Indexed: 11/24/2022]
|
10
|
Wang X, Xu J, Kang Q. Neuromodulation of bone: Role of different peptides and their interactions (Review). Mol Med Rep 2020; 23:32. [PMID: 33179112 PMCID: PMC7684869 DOI: 10.3892/mmr.2020.11670] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 09/18/2020] [Indexed: 12/17/2022] Open
Abstract
Our understanding of the skeletal system has been expanded upon the recognition of several neural pathways that serve important roles in bone metabolism and skeletal homeostasis, as bone tissue is richly innervated. Considerable evidence provided by in vitro, animal and human studies have further elucidated the importance of a host of hormones and local factors, including neurotransmitters, in modulating bone metabolism and osteo-chondrogenic differentiation, both peripherally and centrally. Various cells of the musculoskeletal system not only express receptors for these neurotransmitters, but also influence their endogenous levels in the skeleton. As with a number of physiological systems in nature, a neuronal pathway regulating bone turnover will be neutralized by another pathway exerting an opposite effect. These neuropeptides are also critically involved in articular cartilage homeostasis and pathogenesis of degenerative joint disorders, such as osteoarthritis. In the present Review, data on the role of several neuronal populations in nerve-dependent skeletal metabolism is examined, and the molecular events involved are explored, which may reveal broader relationships between two apparently unrelated organs.
Collapse
Affiliation(s)
- Xiaoyu Wang
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| | - Jia Xu
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| | - Qinglin Kang
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| |
Collapse
|
11
|
González-Naranjo P, Pérez C, Girón R, Sánchez-Robles EM, Martín-Fontelles MI, Carrillo-López N, Martín-Vírgala J, Naves M, Campillo NE, Páez JA. New cannabinoid receptor antagonists as pharmacological tool. Bioorg Med Chem 2020; 28:115672. [PMID: 32912440 DOI: 10.1016/j.bmc.2020.115672] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 07/15/2020] [Accepted: 07/18/2020] [Indexed: 11/27/2022]
Abstract
Synthesis and pharmacological evaluation of a new series of cannabinoid receptor antagonists of indazole ether derivatives have been performed. Pharmacological evaluation includes radioligand binding assays with [3H]-CP55940 for CB1 and CB2 receptors and functional activity for cannabinoid receptors on isolated tissue. In addition, functional activity of the two synthetic cannabinoids antagonists 18 (PGN36) and 17 (PGN38) were carried out in the osteoblastic cell line MC3T3-E1 that is able to express CB2R upon osteogenic conditions. Both antagonists abolished the increase in collagen type I gene expression by the well-known inducer of bone activity, the HU308 agonist. The results of pharmacological tests have revealed that four of these derivatives behave as CB2R cannabinoid antagonists. In particular, the compounds 17 (PGN38) and 18 (PGN36) highlight as promising candidates as pharmacological tools.
Collapse
Affiliation(s)
| | - Concepción Pérez
- Instituto de Química Médica (CSIC), Juan de la Cierva 3, 28006 Madrid, Spain
| | - Rocío Girón
- Área de Farmacología, Nutrición y Bromatología, Unidad Asociada al IQM y al CIAL (CSIC), Departamento de C.C. Básicas de la Salud, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, Avda. Atenas s/n, 28922 Alcorcón, Spain
| | - Eva M Sánchez-Robles
- Área de Farmacología, Nutrición y Bromatología, Unidad Asociada al IQM y al CIAL (CSIC), Departamento de C.C. Básicas de la Salud, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, Avda. Atenas s/n, 28922 Alcorcón, Spain
| | - María I Martín-Fontelles
- Área de Farmacología, Nutrición y Bromatología, Unidad Asociada al IQM y al CIAL (CSIC), Departamento de C.C. Básicas de la Salud, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, Avda. Atenas s/n, 28922 Alcorcón, Spain
| | - Natalia Carrillo-López
- U.G.C de Metabolismo Óseo, RedinREN del ISC III, Hospital Universitario Central de Asturias, Instituto de Investigaciones Sanitarias del Principado de Asturias, Edificio FINBA, Planta primera F1.1 (Aula 14), Avenida de Roma s/n, 33011 Oviedo, Spain
| | - Julia Martín-Vírgala
- U.G.C de Metabolismo Óseo, RedinREN del ISC III, Hospital Universitario Central de Asturias, Instituto de Investigaciones Sanitarias del Principado de Asturias, Edificio FINBA, Planta primera F1.1 (Aula 14), Avenida de Roma s/n, 33011 Oviedo, Spain
| | - Manuel Naves
- U.G.C de Metabolismo Óseo, RedinREN del ISC III, Hospital Universitario Central de Asturias, Instituto de Investigaciones Sanitarias del Principado de Asturias, Edificio FINBA, Planta primera F1.1 (Aula 14), Avenida de Roma s/n, 33011 Oviedo, Spain
| | - Nuria E Campillo
- Centro de Investigaciones Biológicas Margarita Salas (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain.
| | - Juan A Páez
- Instituto de Química Médica (CSIC), Juan de la Cierva 3, 28006 Madrid, Spain.
| |
Collapse
|
12
|
Goldstein ER, Fukuda DH. Connecting Energy Availability and Iron Deficiency with Bone Health: Implications for the Female Athlete. Strength Cond J 2020. [DOI: 10.1519/ssc.0000000000000474] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
13
|
Jensen EA, Young JA, Mathes SC, List EO, Carroll RK, Kuhn J, Onusko M, Kopchick JJ, Murphy ER, Berryman DE. Crosstalk between the growth hormone/insulin-like growth factor-1 axis and the gut microbiome: A new frontier for microbial endocrinology. Growth Horm IGF Res 2020; 53-54:101333. [PMID: 32717585 PMCID: PMC7938704 DOI: 10.1016/j.ghir.2020.101333] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 06/11/2020] [Accepted: 06/12/2020] [Indexed: 12/16/2022]
Abstract
Both the GH/IGF-1 axis and the gut microbiota independently play an important role in host growth, metabolism, and intestinal homeostasis. Inversely, abnormalities in GH action and microbial dysbiosis (or a lack of diversity) in the gut have been implicated in restricted growth, metabolic disorders (such as chronic undernutrition, anorexia nervosa, obesity, and diabetes), and intestinal dysfunction (such as pediatric Crohn's disease, colonic polyps, and colon cancer). Over the last decade, studies have demonstrated that the microbial impact on growth may be mediated through the GH/IGF-1 axis, pointing toward a potential relationship between GH and the gut microbiota. This review covers current research on the GH/IGF-1 axis and the gut microbiome and its influence on overall host growth, metabolism, and intestinal health, proposing a bidirectional relationship between GH and the gut microbiome.
Collapse
Affiliation(s)
- Elizabeth A Jensen
- Translational Biomedical Sciences Graduate Program, Graduate College, Ohio University, Athens, OH, United States of America; Ohio University Heritage College of Osteopathic Medicine, Athens, OH, United States of America
| | - Jonathan A Young
- Ohio University Heritage College of Osteopathic Medicine, Athens, OH, United States of America; Edison Biotechnology Institute, Konneker Research Labs, Athens, OH, United States of America
| | - Samuel C Mathes
- Edison Biotechnology Institute, Konneker Research Labs, Athens, OH, United States of America
| | - Edward O List
- Translational Biomedical Sciences Graduate Program, Graduate College, Ohio University, Athens, OH, United States of America; Edison Biotechnology Institute, Konneker Research Labs, Athens, OH, United States of America; The Diabetes Institute, Parks Hall Suite 142, Ohio University, Athens, OH, United States of America
| | - Ronan K Carroll
- Department of Biological Sciences, College of Arts and Sciences, Ohio University, Athens, OH, United States of America; Molecular and Cellular Biology Program, Ohio University, Athens, OH, United States of America
| | - Jaycie Kuhn
- Edison Biotechnology Institute, Konneker Research Labs, Athens, OH, United States of America
| | - Maria Onusko
- The Diabetes Institute, Parks Hall Suite 142, Ohio University, Athens, OH, United States of America; Department of Biological Sciences, College of Arts and Sciences, Ohio University, Athens, OH, United States of America
| | - John J Kopchick
- Translational Biomedical Sciences Graduate Program, Graduate College, Ohio University, Athens, OH, United States of America; Edison Biotechnology Institute, Konneker Research Labs, Athens, OH, United States of America; The Diabetes Institute, Parks Hall Suite 142, Ohio University, Athens, OH, United States of America; Molecular and Cellular Biology Program, Ohio University, Athens, OH, United States of America; Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, United States of America
| | - Erin R Murphy
- Translational Biomedical Sciences Graduate Program, Graduate College, Ohio University, Athens, OH, United States of America; Molecular and Cellular Biology Program, Ohio University, Athens, OH, United States of America; Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, United States of America; Infectious and Tropical Diseases Institute, Irvine Hall, Ohio University, Athens, OH, United States of America
| | - Darlene E Berryman
- Translational Biomedical Sciences Graduate Program, Graduate College, Ohio University, Athens, OH, United States of America; Edison Biotechnology Institute, Konneker Research Labs, Athens, OH, United States of America; The Diabetes Institute, Parks Hall Suite 142, Ohio University, Athens, OH, United States of America; Molecular and Cellular Biology Program, Ohio University, Athens, OH, United States of America; Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, United States of America.
| |
Collapse
|
14
|
Pu Z, Tang X, Fei Y, Hou Q, Lin Y, Zha X. Bone metabolic biomarkers and bone mineral density in male patients with early-stage Alzheimer's disease. Eur Geriatr Med 2020; 11:403-408. [PMID: 32297255 DOI: 10.1007/s41999-020-00289-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Accepted: 01/07/2020] [Indexed: 02/01/2023]
Abstract
PURPOSE Alzheimer's disease (AD), osteoporosis, and osteopenia are the most common diseases in older individuals and share some similar pathophysiological processes of degeneration. The aim of this study is to investigate the association between bone metabolic biomarkers, bone mineral density (BMD), and early-stage AD in men. METHODS Forty-two male early-stage AD patients and 40 age-matched healthy older volunteers were enrolled. Serum calcium, osteocalcin, 1,25(OH)2D3, urine deoxypyridinoline/creatinine (DPD/Cr) ratio, urine calcium/creatinine (Ca/Cr) ratio, and BMD were measured. The correlation between early-stage AD and bone quality was evaluated. RESULTS The urine DPD/Cr, urine Ca/Cr, and serum osteocalcin levels in the early-stage AD patients were significantly higher than those in the healthy control (HC) group (P < 0.05). The BMD data showed that the cortical and total BMD at 38% of the tibial length in the early-stage AD patients were lower than those in the HC group (P < 0.05). Furthermore, there was a negative correlation between the Montreal Cognitive Assessment score and serum osteocalcin or urine DPD/Cr levels. Abnormal urine DPD/Cr, urine Ca/Cr, and cortical BMD levels were independent risk factors in male patients with early-stage AD. CONCLUSION Bone metabolic biomarkers and BMD are closely associated with early-stage AD in male patients. Our data indicated that the measurement of bone metabolic biomarkers and BMD may provide an alternative approach for screening AD patients at the early stage.
Collapse
Affiliation(s)
- Zhengping Pu
- Department of Psychogeriatrics, Kangci Hospital of Jiaxing, No. 3118 Huancheng North Road, Tongxiang, 314500, Zhejiang, China
| | - Xiaoqing Tang
- Orthopedics Department, Tongxiang Hospital of Traditional Chinese Medicine, Tongxiang, 314500, Zhejiang, China
| | - Yu'e Fei
- Department of Psychogeriatrics, Kangci Hospital of Jiaxing, No. 3118 Huancheng North Road, Tongxiang, 314500, Zhejiang, China.
| | - Qingmei Hou
- Department of Clinical Psychology, The 2nd Specialized Hospital of Hegang, Hegang, 154102, Heilongjiang, China
| | - Yong Lin
- Department of Psychogeriatrics, Kangci Hospital of Jiaxing, No. 3118 Huancheng North Road, Tongxiang, 314500, Zhejiang, China
| | - Xianyou Zha
- Department of Psychogeriatrics, Kangci Hospital of Jiaxing, No. 3118 Huancheng North Road, Tongxiang, 314500, Zhejiang, China
| |
Collapse
|
15
|
de Quadros VP, Tobar N, Viana LR, Dos Santos RW, Kiyataka PHM, Gomes-Marcondes MCC. The 17β-oestradiol treatment minimizes the adverse effects of protein restriction on bone parameters in ovariectomized Wistar rats: Relevance to osteoporosis and the menopause. Bone Joint Res 2020; 8:573-581. [PMID: 31934328 PMCID: PMC6946913 DOI: 10.1302/2046-3758.812.bjr-2018-0259.r2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Objectives Insufficient protein ingestion may affect muscle and bone mass, increasing the risk of osteoporotic fractures in the elderly, and especially in postmenopausal women. We evaluated how a low-protein diet affects bone parameters under gonadal hormone deficiency and the improvement led by hormone replacement therapy (HRT) with 17β-oestradiol. Methods Female Wistar rats were divided into control (C), ovariectomized (OVX), and 17β-oestradiol-treated ovariectomized (OVX-HRT) groups, which were fed a control or an isocaloric low-protein diet (LP; 6.6% protein; seven animals per group). Morphometric, serum, and body composition parameters were assessed, as well as bone parameters, mechanical resistance, and mineralogy. Results The results showed that protein restriction negatively affected body chemical composition and bone metabolism by the sex hormone deficiency condition in the OVX group. The association between undernutrition and hormone deficiency led to bone and muscle mass loss and increased the fragility of the bone (as well as decreasing relative femoral weight, bone mineral density, femoral elasticity, peak stress, and stress at offset yield). Although protein restriction induced more severe adverse effects compared with the controls, the combination with HRT showed an improvement in minimizing these damaging effects, as it was seen that HRT had some efficacy in maintaining muscle and bone mass, preserving the bone resistance and minimizing some deleterious processes during the menopause. Conclusion Protein restriction has adverse effects on metabolism, leading to more severe menopausal symptoms, and HRT could minimize these effects. Therefore, special attention should be given to a balanced diet during menopause and HRT.Cite this article: Bone Joint Res 2019;8:573-581.
Collapse
Affiliation(s)
- Victoria P de Quadros
- Laboratory of Nutrition and Cancer, Department of Structural and Functional Biology, Biology Institute, University of Campinas (UNICAMP), Campinas, Brazil
| | - Natalia Tobar
- Nuclear Medicine Service, the Clinical Hospital of UNICAMP, Campinas, Brazil
| | - Lais R Viana
- Laboratory of Nutrition and Cancer, Department of Structural and Functional Biology, Biology Institute, University of Campinas (UNICAMP), Campinas, Brazil
| | - Rogerio W Dos Santos
- Laboratory of Nutrition and Cancer, Department of Structural and Functional Biology, Biology Institute, University of Campinas (UNICAMP), Campinas, Brazil
| | - Paulo H M Kiyataka
- Packaging Technology Centre (Cetea) from the Institute of Food Technology (ITAL) of Campinas, Campinas, Brazil
| | - Maria C C Gomes-Marcondes
- Laboratory of Nutrition and Cancer, Department of Structural and Functional Biology, Biology Institute, University of Campinas (UNICAMP), Campinas, Brazil
| |
Collapse
|
16
|
Zhu XX, Weng LJ, Qian XW, Huang CY, Yao WF, Lu YL. Decreased Pituitary Adenylate Cyclase-Activating Polypeptide (PACAP) Levels Were Linked with Disease Severity of Postmenopausal Osteoporosis. Int J Pept Res Ther 2019. [DOI: 10.1007/s10989-019-09937-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
17
|
Chlorpyrifos Exposure Induces Parkinsonian Symptoms and Associated Bone Loss in Adult Swiss Albino Mice. Neurotox Res 2019; 36:700-711. [PMID: 31367921 DOI: 10.1007/s12640-019-00092-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 07/15/2019] [Accepted: 07/18/2019] [Indexed: 12/14/2022]
Abstract
Prenatal and early life exposure of chlorpyrifos (CPF), a widely used pesticide, is known to cause neuronal deficits and Parkinson's disease (PD). However, data about the effect of its exposure at adult stages on PD-like symptoms and associated bone loss is scanty. In the present study, we investigated the impact of CPF on the behavioral alterations seen in PD using adult Swiss albino mice. PD is often associated with bone loss. Hence, skeletal changes were also evaluated using micro-computed tomography and histology. MPTP was used as a positive control. Cell culture studies using MC3T3E-1, SHSY5Y, and primary osteoclast cultures were done to understand the cellular mechanism for the behavioral and skeletal changes. Our results showed that CPF treatment leads to PD-like symptoms due to the loss of dopaminergic neurons. Moreover, CPF has a deleterious effect on the trabecular bone through both indirect changes in circulating factors and direct stimulation of multinucleate osteoclast cell formation. The impact on the bone mass was even stronger than MPTP. In conclusion, this is the first report demonstrating that CPF induces parkinsonian features in adult Swiss albino mice and it is accompanied by loss of trabecular bone.
Collapse
|
18
|
Endocrine parameters in association with bone mineral accrual in young female vocational ballet dancers. Arch Osteoporos 2019; 14:46. [PMID: 30968227 DOI: 10.1007/s11657-019-0596-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 03/25/2019] [Indexed: 02/03/2023]
Abstract
UNLABELLED Less is known on bone mass gains in dancers involved in vocational dance training. The present study found that, as young vocational dancers progress on their professional training, their bone health remains consistently lower compared to non-exercising controls. Endocrine mechanisms do not seem to explain these findings. PURPOSE Little is known on bone mass development in dancers involved in vocational training. The aim of the present study was to model bone mineral content (BMC) accruals and to determine whether circulating levels of oestrogens, growth hormone (GH), and insulin-like growth factor I (IGF-1) explain differences in bone mass gains between vocational dance students and matched controls. METHODS The total of 67 vocational female dancers (VFDs) and 68 aged-matched controls (12.1 ± 1.9 years and 12.7 ± 2.0 years at baseline, respectively) were followed for two consecutive years (34 VFD and 31 controls remained in the study for the full duration). BMC was evaluated annually at impact [femoral neck (FN); lumbar spine (LS)] and non-impact sites (forearm) using DXA. Anthropometry, age at menarche (questionnaire), and hormone serum concentrations (immunoradiometric assays) were also assessed for the same period. RESULTS VFD demonstrated consistently reduced body weight (p < 0.001) and BMC at all three anatomical sites (p < 0.001) compared to controls throughout the study period. Menarche, body weight, GH, and IGF-1 were significantly associated with bone mass changes over time (p < 0.05) but did not explain group differences in BMC gains at impact sites (p > 0.05). However, body weight did explain the differences between groups in terms of BMC gains at the forearm (non-impact site). CONCLUSION Two consecutive years of vocational dance training revealed that young female dancers demonstrate consistently lower bone mass compared to controls at both impact and non-impact sites. The studied endocrine parameters do not seem to explain group differences in terms of bone mass gains at impact sites.
Collapse
|
19
|
Loskutova N, Watts AS, Burns JM. The cause-effect relationship between bone loss and Alzheimer's disease using statistical modeling. Med Hypotheses 2019; 122:92-97. [PMID: 30593432 PMCID: PMC6318806 DOI: 10.1016/j.mehy.2018.10.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 08/29/2018] [Accepted: 10/21/2018] [Indexed: 12/25/2022]
Abstract
BACKGROUND Animal studies provide strong evidence that the CNS directly regulates bone remodeling through the actions of the hypothalamus via two distinct pathways, the neural (mediated by leptin) arm and neurohumoral (mediated by neurohormones and growth factors) arm. The impact of AD on central regulatory mechanisms of bone mass is not known. OBJECTIVES To test a model that assesses the relationship between hypothalamic atrophy and bone loss in Alzheimer's disease (AD) and potential mediation through neural (leptin) and neurohumoral (insulin-like growth factor -1, IGF-1) mechanisms. HYPOTHESES AD-related hypothalamic structural change alters neural and neurohumoral regulatory systems of bone remodeling and contributes to bone loss in early AD. DESIGN A secondary data analysis of data obtained in a two-year longitudinal study with path analysis and longitudinal mediation modeling. PARTICIPANTS The data were collected as a part of the University of Kansas Brain Aging Project, a two-year observational study of 71 older adults with early stage AD and 69 non-demented controls. MEASUREMENTS Demographic characteristics and measures of bone density, body composition, and hypothalamic volume, serum levels of leptin, growth hormone, and IGF-1 were collected. RESULTS Hypothalamic atrophy and bone loss were observed in AD group and were associated. Data modeling suggests that bone loss may precede measurable changes in the brain. Leptin increased over two years in AD and the increase in leptin was associated with hypothalamic atrophy. However, changes in leptin or IGF-1 levels did not mediate the relationship between hypothalamic atrophy and bone loss. CONCLUSIONS This study extends previous findings by suggesting that bone loss in AD may be related to neurodegenerative changes (atrophy) in the hypothalamus. Further studies are needed to explore the role of brain atrophy and mediating mechanisms in bone loss. Further exploring temporal relationship between bone loss and AD may have an important diagnostic value.
Collapse
Affiliation(s)
- Natalia Loskutova
- American Academy of Family Physicians National Research Network, USA.
| | | | - Jeffrey M Burns
- University of Kansas School of Medicine, Kansas City, KS, USA
| |
Collapse
|
20
|
Huang S, Li Z, Liu Y, Gao D, Zhang X, Hao J, Yang F. Neural regulation of bone remodeling: Identifying novel neural molecules and pathways between brain and bone. J Cell Physiol 2018; 234:5466-5477. [PMID: 29377116 DOI: 10.1002/jcp.26502] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 01/20/2018] [Indexed: 02/05/2023]
Affiliation(s)
- Shishu Huang
- Department of Orthopaedic Surgery West China Hospital, Sichuan University Chengdu China
| | - Zhenxia Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics West China Hospital of Stomatology, Sichuan University Chengdu China
| | - Yunhui Liu
- The Brain Cognition & Brain Disease Institute, Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Shenzhen China
| | - Dashuang Gao
- The Brain Cognition & Brain Disease Institute, Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Shenzhen China
| | - Xinzhou Zhang
- Department of Nephrology Shenzhen People's Hospital, Second Clinical Medical College, Jinan University Shenzhen China
| | - Jin Hao
- Program in Biological Sciences in Dental Medicine, Harvard School of Dental Medicine Boston Massachusetts
| | - Fan Yang
- The Brain Cognition & Brain Disease Institute, Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Shenzhen China
| |
Collapse
|
21
|
Ali SJ, Ellur G, Khan MT, Sharan K. Bone loss in MPTP mouse model of Parkinson's disease is triggered by decreased osteoblastogenesis and increased osteoclastogenesis. Toxicol Appl Pharmacol 2018; 363:154-163. [PMID: 30529163 DOI: 10.1016/j.taap.2018.12.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 11/16/2018] [Accepted: 12/04/2018] [Indexed: 12/21/2022]
Abstract
Bone loss is a non-motor symptom of Parkinson's disease (PD). It is unclear whether a patient's immobility or the endocrine changes in the body causes bone deterioration. To address this issue, we used an animal model of the disease where Swiss albino mice were injected with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) on day 1 and were left untreated for eight weeks. Behavioral phenotypes of PD, and striatal acetylcholinesterase and dopamine levels were measured. Cortical and trabecular bones were assessed by μ-CT and histology. Gene expression studies were done through quantitative real-time PCR. Effect of MPP+ and MPTP-treated mice serum on MC3T3E-1, SH-SY5Y, and primary osteoclast cells were also studied. Our results demonstrated that MPTP treatment leads to PD like symptoms. It shows a loss of trabecular bone mass and quality by decreasing osteoblast and increased osteoclast number and activity. This effect was accompanied by reduced osteogenic and elevated osteoclastogenic genes expression. While MPP+ had a cytotoxic effect on dopaminergic neurons, it did not affect bone cells. However, ex-vivo treatment of the serum from MPTP-treated mice decreased osteoblastogenesis and increased osteoclastogenesis in cell culture. In conclusion, our study suggests that MPTP-induced parkinsonian features in mice leads to trabecular bone loss by decreased bone formation and increased bone resorption due to changes in the serum circulating factors. This study characterizes the microarchitectural and cellular changes in the skeleton of a mouse model of PD that can be further utilized to investigate therapeutic avenues to treat bone loss in PD patients.
Collapse
Affiliation(s)
- Shaheen Jafri Ali
- Department of Molecular Nutrition, CSIR-Central Food Technological Research Institute, Mysuru, India
| | - Govindraj Ellur
- Department of Molecular Nutrition, CSIR-Central Food Technological Research Institute, Mysuru, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Md Touseef Khan
- Department of Molecular Nutrition, CSIR-Central Food Technological Research Institute, Mysuru, India
| | - Kunal Sharan
- Department of Molecular Nutrition, CSIR-Central Food Technological Research Institute, Mysuru, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
22
|
Quach D, Britton RA. Gut Microbiota and Bone Health. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1033:47-58. [PMID: 29101651 DOI: 10.1007/978-3-319-66653-2_4] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The past decade has seen an explosion of research in the area of how the bacteria that inhabit the human body impact health and disease. One of the more surprising concepts to emerge from this work is the ability of the intestinal microbiota to impact virtually all systems in the body. Recently, the role of gut bacteria in bone health and disease has received more significant attention. In this chapter, we review what has been learned about how the gut microbiome impacts bone health and discuss possible mechanisms of how the gut-bone axis may be connected. We also discuss the use of therapeutic microbes in the modulation of bone health. Finally, we propose an emerging field of the gut-brain-bone axis, in which the gut drives bone physiology via regulation of key hormones that are originally synthesized in the brain.
Collapse
Affiliation(s)
- Darin Quach
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, USA
| | - Robert A Britton
- Baylor College of Medicine, Department of Molecular Virology and Microbiology, Alkek Center for Metagenomics and Microbiome Research, Houston, TX, USA.
| |
Collapse
|
23
|
Chen SM, Peng YJ, Wang CC, Su SL, Salter DM, Lee HS. Dexamethasone Down-regulates Osteocalcin in Bone Cells through Leptin Pathway. Int J Med Sci 2018; 15:507-516. [PMID: 29559840 PMCID: PMC5859774 DOI: 10.7150/ijms.21881] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 01/05/2018] [Indexed: 01/26/2023] Open
Abstract
Glucocorticoid therapy, especially at higher doses, is associated with significant adverse side effects including osteoporosis. Leptin, secreted from adipose tissue, has diverse effects on bone tissue regulation. As glucocorticoids stimulate leptin synthesis and secretion directly in adipose tissue we hypothesised that dexamethasone (DEX) induced osteoporosis may, in part, be mediated by an osteoblast dependent leptin-leptin receptor pathway. Human bone cells expressed leptin and leptin receptors (Ob-Ra and Ob-Rb). DEX increased leptin, Ob-Ra and Ob-Rb expression in a dose-dependent manner while decreasing expression of osteocalcin. In the presence of leptin, Cbfa1 and osteonectin expression showed no significant change, whereas osteocalcin expression was decreased. Recombinant human quadruple antagonist leptin suppressed DEX-induced osteocalcin downregulation. The signaling pathway involved up-regulation of JAK2. In conclusion, upregulation of leptin and Ob-Rb in human bone cells by DEX is associated with down-regulation of osteocalcin expression. The down regulation of osteocalcin by DEX was partially through a leptin autocrine/paracrine loop. Adverse effects of DEX on the skeleton may be modified by targeting leptin signaling pathways.
Collapse
Affiliation(s)
- Shu-Mei Chen
- Department of Pathology and Laboratory Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan, ROC.,Division of Nephrology, Department of Internal Medicine, Tri-Service General Hospital, Taipei, Taiwan, ROC
| | - Yi-Jen Peng
- Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Chih-Chien Wang
- Department of Orthopedics, Taipei Medical University Hospital, Taipei, Taiwan, ROC
| | - Sui-Lung Su
- School of Public Health, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Donald M Salter
- Centre for Genomic and Molecular Medicine, IGMM, University of Edinburgh, Edinburgh, UK
| | - Herng-Sheng Lee
- Department of Pathology and Laboratory Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan, ROC
| |
Collapse
|
24
|
Stimulation of liver IGF-1 expression promotes peak bone mass achievement in growing rats: a study with pomegranate seed oil. J Nutr Biochem 2017; 52:18-26. [PMID: 29121593 DOI: 10.1016/j.jnutbio.2017.09.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 08/14/2017] [Accepted: 09/28/2017] [Indexed: 01/08/2023]
Abstract
Peak bone mass (PBM) achieved at adulthood is a strong determinant of future onset of osteoporosis, and maximizing it is one of the strategies to combat the disease. Recently, pomegranate seed oil (PSO) has been shown to have bone-sparing effect in ovariectomized mice. However, its effect on growing skeleton and its molecular mechanism remain unclear. In the present study, we evaluated the effect of PSO on PBM in growing rats and associated mechanism of action. PSO was given at various doses to 21-day-old growing rats for 90 days by oral gavage. The changes in bone parameters were assessed by micro-computed tomography and histology. Enzyme-linked immunosorbent assay was performed to analyze the levels of serum insulin-like growth factor type 1 (IGF-1). Western blotting from bone and liver tissues was done. Chromatin immunoprecipitation assay was performed to study the histone acetylation levels at IGF-1 gene. The results of the study show that PSO treatment significantly increases bone length, bone formation rate, biomechanical parameters, bone mineral density and bone microarchitecture along with enhancing muscle and brown fat mass. This effect was due to the increased serum levels of IGF-1 and stimulation of its signaling in the bones. Studies focusing on acetylation of histones in the liver, the major site of IGF-1 synthesis, showed enrichment of acetylated H3K9 and H3K14 at IGF-1 gene promoter and body. Further, the increased acetylation at H3K9 and H3K14 was associated with a reduced HDAC1 protein level. Together, our data suggest that PSO promotes the PBM achievement via increased IGF-1 expression in liver and IGF-1 signaling in bone.
Collapse
|
25
|
Sharan K, Lewis K, Furukawa T, Yadav VK. Regulation of bone mass through pineal-derived melatonin-MT2 receptor pathway. J Pineal Res 2017; 63:e12423. [PMID: 28512916 PMCID: PMC5575491 DOI: 10.1111/jpi.12423] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 05/12/2017] [Indexed: 12/15/2022]
Abstract
Tryptophan, an essential amino acid through a series of enzymatic reactions gives rise to various metabolites, viz. serotonin and melatonin, that regulate distinct biological functions. We show here that tryptophan metabolism in the pineal gland favors bone mass accrual through production of melatonin, a pineal-derived neurohormone. Pineal gland-specific deletion of Tph1, the enzyme that catalyzes the first step in the melatonin biosynthesis lead to a decrease in melatonin levels and a low bone mass due to an isolated decrease in bone formation while bone resorption parameters remained unaffected. Skeletal analysis of the mice deficient in MT1 or MT2 melatonin receptors showed a low bone mass in MT2-/- mice while MT1-/- mice had a normal bone mass compared to the WT mice. This low bone mass in the MT2-/- mice was due to an isolated decrease in osteoblast numbers and bone formation. In vitro assays of the osteoblast cultures derived from the MT1-/- and MT2-/- mice showed a cell intrinsic defect in the proliferation, differentiation and mineralization abilities of MT2-/- osteoblasts compared to WT counterparts, and the mutant cells did not respond to melatonin addition. Finally, we demonstrate that daily oral administration of melatonin can increase bone accrual during growth and can cure ovariectomy-induced structural and functional degeneration of bone by specifically increasing bone formation. By identifying pineal-derived melatonin as a regulator of bone mass through MT2 receptors, this study expands the role played by tryptophan derivatives in the regulation of bone mass and underscores its therapeutic relevance in postmenopausal osteoporosis.
Collapse
MESH Headings
- Animals
- Bone and Bones/metabolism
- Bone and Bones/pathology
- Calcification, Physiologic/drug effects
- Female
- Humans
- Melatonin/metabolism
- Melatonin/pharmacology
- Mice
- Mice, Knockout
- Organ Size/drug effects
- Osteoblasts/metabolism
- Osteoblasts/pathology
- Osteoporosis, Postmenopausal/drug therapy
- Osteoporosis, Postmenopausal/genetics
- Osteoporosis, Postmenopausal/metabolism
- Osteoporosis, Postmenopausal/pathology
- Pineal Gland/metabolism
- Pineal Gland/pathology
- Receptor, Melatonin, MT1/genetics
- Receptor, Melatonin, MT1/metabolism
- Receptor, Melatonin, MT2/genetics
- Receptor, Melatonin, MT2/metabolism
- Signal Transduction/drug effects
- Signal Transduction/genetics
Collapse
Affiliation(s)
- Kunal Sharan
- Systems Biology of BoneDepartment of Mouse and Zebrafish GeneticsWellcome Trust Sanger InstituteCambridgeUK
- Present address:
Department of Molecular NutritionCSIR‐Central Food Technological Research InstituteMysoreIndia
| | - Kirsty Lewis
- Systems Biology of BoneDepartment of Mouse and Zebrafish GeneticsWellcome Trust Sanger InstituteCambridgeUK
| | | | - Vijay K. Yadav
- Systems Biology of BoneDepartment of Mouse and Zebrafish GeneticsWellcome Trust Sanger InstituteCambridgeUK
- Metabolic Research LaboratoryNational Institute of ImmunologyNew DelhiIndia
| |
Collapse
|
26
|
The central mechanism of risperidone-induced hyperprolactinemia. Prog Neuropsychopharmacol Biol Psychiatry 2017; 76:134-139. [PMID: 28336493 DOI: 10.1016/j.pnpbp.2017.03.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 03/10/2017] [Accepted: 03/19/2017] [Indexed: 11/20/2022]
Abstract
Risperidone is known to increase prolactin secretion in treating mental illness patients. This side-effect is thought to be mediated via central signaling pathway. However, the exact pathway involved between risperidone and hyperprolactinemia are still unknown. Therefore, we have treated mice with risperidone and investigated the central mechanisms. The present study showed that in risperidone treated group, the level of the serum prolactin significantly increased, which was consistent with increased positive prolactin staining in pituitary gland. Elevated c-fos expression was observed in the arcuate hypothalamic nucleus (Arc) where we found 65% c-fos positive neurons co-localised with neuropeptide Y (NPY) in mice treated with risperidone. In addition, the results from in situ hybridization showed that the NPY mRNA in the Arc was significantly increased, whereas the tyrosine hydroxylase (TH) mRNA dramatically decreased compared with control group in the paraventricular hypothalamic nucleus (PVN). These findings revealed that risperidone may mediate the transcriptional regulation of Arc NPY and TH in the PVN. Furthermore, risperidone induced a decreased dopamine synthesis in the PVN and thus reduced the dopamine-induced inhibition of prolactin release, ultimately lead to hyperprolactinemia. Therefore, insights into these neuronal mechanisms open up potential new ways to treat schizophrenia patients in order to ameliorate hyperprolactinemia.
Collapse
|
27
|
Kalaska B, Pawlak K, Oksztulska-Kolanek E, Domaniewski T, Znorko B, Karbowska M, Citkowska A, Rogalska J, Roszczenko A, Brzoska MM, Pawlak D. A link between central kynurenine metabolism and bone strength in rats with chronic kidney disease. PeerJ 2017; 5:e3199. [PMID: 28439468 PMCID: PMC5401623 DOI: 10.7717/peerj.3199] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 03/18/2017] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Disturbances in mineral and bone metabolism represent one of the most complex complications of chronic kidney disease (CKD). Serotonin, a monoamine synthesized from tryptophan, may play a potential role in bone metabolism. Brain-derived serotonin exerts a positive effect on the bone structure by limiting bone resorption and enhancing bone formation. Tryptophan is the precursor not only to the serotonin but also and primarily to kynurenine metabolites. The ultimate aim of the present study was to determine the association between central kynurenine metabolism and biomechanical as well as geometrical properties of bone in the experimental model of the early stage of CKD. METHODS Thirty-three Wistar rats were randomly divided into two groups (sham-operated and subtotal nephrectomized animals). Three months after surgery, serum samples were obtained for the determination of biochemical parameters, bone turnover biomarkers, and kynurenine pathway metabolites; tibias were collected for bone biomechanical, bone geometrical, and bone mass density analysis; brains were removed and divided into five regions for the determination of kynurenine pathway metabolites. RESULTS Subtotal nephrectomized rats presented higher serum concentrations of creatinine, urea nitrogen, and parathyroid hormone, and developed hypocalcemia. Several biomechanical and geometrical parameters were significantly elevated in rats with experimentally induced CKD. Subtotal nephrectomized rats presented significantly higher kynurenine concentrations and kynurenine/tryptophan ratio and significantly lower tryptophan levels in all studied parts of the brain. Kynurenine in the frontal cortex and tryptophan in the hypothalamus and striatum correlated positively with the main parameters of bone biomechanics and bone geometry. DISCUSSION In addition to the complex mineral, hormone, and metabolite changes, intensified central kynurenine turnover may play an important role in the development of bone changes in the course of CKD.
Collapse
Affiliation(s)
- Bartlomiej Kalaska
- Department of Pharmacodynamics, Medical University of Bialystok, Bialystok, Poland
| | - Krystyna Pawlak
- Department of Monitored Pharmacotherapy, Medical University of Bialystok, Bialystok, Poland
| | - Ewa Oksztulska-Kolanek
- Department of Monitored Pharmacotherapy, Medical University of Bialystok, Bialystok, Poland
| | - Tomasz Domaniewski
- Department of Monitored Pharmacotherapy, Medical University of Bialystok, Bialystok, Poland
| | - Beata Znorko
- Department of Monitored Pharmacotherapy, Medical University of Bialystok, Bialystok, Poland
| | - Malgorzata Karbowska
- Department of Pharmacodynamics, Medical University of Bialystok, Bialystok, Poland
| | - Aleksandra Citkowska
- Department of Pharmacodynamics, Medical University of Bialystok, Bialystok, Poland
| | - Joanna Rogalska
- Department of Toxicology, Medical University of Bialystok, Bialystok, Poland
| | - Alicja Roszczenko
- Department of Toxicology, Medical University of Bialystok, Bialystok, Poland
| | | | - Dariusz Pawlak
- Department of Pharmacodynamics, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
28
|
Adrenocorticotropic hormone at pathophysiological concentration modulates the proliferation and differentiation of bone cells. J Dent Sci 2015. [DOI: 10.1016/j.jds.2015.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
29
|
Ishii M, Iadecola C. Metabolic and Non-Cognitive Manifestations of Alzheimer's Disease: The Hypothalamus as Both Culprit and Target of Pathology. Cell Metab 2015; 22:761-76. [PMID: 26365177 PMCID: PMC4654127 DOI: 10.1016/j.cmet.2015.08.016] [Citation(s) in RCA: 167] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Alzheimer's disease (AD) is increasingly recognized as a complex neurodegenerative disease beginning decades prior to the cognitive decline. While cognitive deficits remain the cardinal manifestation of AD, metabolic and non-cognitive abnormalities, such as alterations in body weight and neuroendocrine functions, are also present, often preceding the cognitive decline. Furthermore, hypothalamic dysfunction can also be a driver of AD pathology. Here we offer a brief appraisal of hypothalamic dysfunction in AD and provide insight into an underappreciated dual role of the hypothalamus as both a culprit and target of AD pathology, as well as into new opportunities for therapeutic interventions and biomarker development.
Collapse
Affiliation(s)
- Makoto Ishii
- Feil Family Brain and Mind Research Institute, Joan and Sanford I. Weill Medical College of Cornell University, New York, NY 10065, USA.
| | - Costantino Iadecola
- Feil Family Brain and Mind Research Institute, Joan and Sanford I. Weill Medical College of Cornell University, New York, NY 10065, USA
| |
Collapse
|