1
|
Lüchtrath C, Forsten E, Polis R, Hoffmann M, Genis AS, Kuhn AL, Hövels M, Deppenmeier U, Magnus J, Büchs J. Small-scale fed-batch cultivations of Vibrio natriegens: overcoming challenges for early process development. Bioprocess Biosyst Eng 2025; 48:1007-1024. [PMID: 40249449 PMCID: PMC12089209 DOI: 10.1007/s00449-025-03159-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 03/18/2025] [Indexed: 04/19/2025]
Abstract
Vibrio natriegens is a fast-growing microbial workhorse with high potential for biotechnological applications. However, handling the bacterium in batch processes is challenging due to its high overflow metabolism and mixed acid formation under microaerobic conditions. For early process development, technologies enabling small-scale fed-batch cultivation of V. natriegens Vmax are needed. In this study, fed-batch cultivations in 96-well microtiter plates were successfully online-monitored for the first time with a µTOM device. Using the online-monitored oxygen transfer rate, a scale up to membrane-based fed-batch shake flasks was performed. The overflow metabolism was efficiently minimized by choosing suitable feed rates, and mixed acid formation was prevented. A glucose soft sensor using the oxygen transfer rate provided accurate estimates of glucose consumption throughout the fermentation, eliminating the need for offline sampling. Analyzing the impact of the inducer IPTG on the recombinant production of the enzyme inulosucrase revealed concentration-dependent effects in batch processes. In contrast, fed-batch operating mode resulted in high inulosucrase activity even without induction. Overall, an inulosucrase titer of 80 U/mL was achieved. In conclusion, the advantages of small-scale fed-batch technologies supported by a glucose soft sensor have been demonstrated for early process development for V. natriegens Vmax.
Collapse
Affiliation(s)
- Clara Lüchtrath
- AVT- Biochemical Engineering, RWTH Aachen University, Aachen, Germany
| | - Eva Forsten
- AVT- Biochemical Engineering, RWTH Aachen University, Aachen, Germany
| | - Romeos Polis
- AVT- Biochemical Engineering, RWTH Aachen University, Aachen, Germany
| | | | - Aylin Sara Genis
- Institute for Microbiology and Biotechnology, University of Bonn, Bonn, Germany
| | - Anna-Lena Kuhn
- AVT- Biochemical Engineering, RWTH Aachen University, Aachen, Germany
| | - Marcel Hövels
- Institute for Microbiology and Biotechnology, University of Bonn, Bonn, Germany
| | - Uwe Deppenmeier
- Institute for Microbiology and Biotechnology, University of Bonn, Bonn, Germany
| | - Jørgen Magnus
- AVT- Biochemical Engineering, RWTH Aachen University, Aachen, Germany
| | - Jochen Büchs
- AVT- Biochemical Engineering, RWTH Aachen University, Aachen, Germany.
| |
Collapse
|
2
|
Lüchtrath C, Lamping F, Hansen S, Finger M, Magnus J, Büchs J. Diffusion-driven fed-batch fermentation in perforated ring flasks. Biotechnol Lett 2024; 46:571-582. [PMID: 38758336 PMCID: PMC11217090 DOI: 10.1007/s10529-024-03493-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/05/2024] [Accepted: 04/14/2024] [Indexed: 05/18/2024]
Abstract
PURPOSE Simultaneous membrane-based feeding and monitoring of the oxygen transfer rate shall be introduced to the newly established perforated ring flask, which consists of a cylindrical glass flask with an additional perforated inner glass ring, for rapid bioprocess development. METHODS A 3D-printed adapter was constructed to enable monitoring of the oxygen transfer rate in the perforated ring flasks. Escherichia coli experiments in batch were performed to validate the adapter. Fed-batch experiments with different diffusion rates and feed solutions were performed. RESULTS The adapter and the performed experiments allowed a direct comparison of the perforated ring flasks with Erlenmeyer flasks. In batch cultivations, maximum oxygen transfer capacities of 80 mmol L-1 h-1 were reached with perforated ring flasks, corresponding to a 3.5 times higher capacity than in Erlenmeyer flasks. Fed-batch experiments with a feed reservoir concentration of 500 g glucose L-1 were successfully conducted. Based on the oxygen transfer rate, an ammonium limitation could be observed. By adding 40 g ammonium sulfate L-1 to the feed reservoir, the limitation could be prevented. CONCLUSION The membrane-based feeding, an online monitoring technique, and the perforated ring flask were successfully combined and offer a new and promising tool for screening and process development in biotechnology.
Collapse
Affiliation(s)
- Clara Lüchtrath
- AVT-Biochemical Engineering, RWTH Aachen University, Forckenbeckstraße 51, 52074, Aachen, Germany
| | - Felix Lamping
- AVT-Biochemical Engineering, RWTH Aachen University, Forckenbeckstraße 51, 52074, Aachen, Germany
| | - Sven Hansen
- Evonik Operations GmbH, Paul-Baumann-Straße 1, 45772, Marl, Germany
| | - Maurice Finger
- AVT-Biochemical Engineering, RWTH Aachen University, Forckenbeckstraße 51, 52074, Aachen, Germany
| | - Jørgen Magnus
- AVT-Biochemical Engineering, RWTH Aachen University, Forckenbeckstraße 51, 52074, Aachen, Germany
| | - Jochen Büchs
- AVT-Biochemical Engineering, RWTH Aachen University, Forckenbeckstraße 51, 52074, Aachen, Germany.
| |
Collapse
|
3
|
Kemmer A, Cai L, Born S, Cruz Bournazou MN, Neubauer P. Enzyme-Mediated Exponential Glucose Release: A Model-Based Strategy for Continuous Defined Fed-Batch in Small-Scale Cultivations. Bioengineering (Basel) 2024; 11:107. [PMID: 38391593 PMCID: PMC10886149 DOI: 10.3390/bioengineering11020107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/05/2024] [Accepted: 01/18/2024] [Indexed: 02/24/2024] Open
Abstract
Miniaturized cultivation systems offer the potential to enhance experimental throughput in bioprocess development. However, they usually lack the miniaturized pumps necessary for fed-batch mode, which is commonly employed in industrial bioprocesses. An alternative are enzyme-mediated glucose release systems from starch-derived polymers, facilitating continuous glucose supply. Nevertheless, while the glucose release, and thus the feed rate, is controlled by the enzyme concentration, it also strongly depends on the type of starch derivative, and the culture conditions as well as pH and temperature. So far it was not possible to implement controlled feeding strategies (e.g., exponential feeding). In this context, we propose a model-based approach to achieve precise control over enzyme-mediated glucose release in cultivations. To this aim, an existing mathematical model was integrated into a computational framework to calculate setpoints for enzyme additions. We demonstrate the ability of the tool to maintain different pre-defined exponential growth rates during Escherichia coli cultivations in parallel mini-bioreactors integrated into a robotic facility. Although in this case study, the intermittent additions of enzyme and dextrin were performed by a liquid handler, the approach is adaptable to manual applications. Thus, we present a straightforward and robust approach for implementing defined continuous fed-batch processes in small-scale systems, where continuous feeding was only possible with low accuracy or high technical efforts until now.
Collapse
Affiliation(s)
- Annina Kemmer
- Institute of Biotechnology, Chair of Bioprocess Engineering, Technische Universität Berlin, 13355 Berlin, Germany
| | - Linda Cai
- Institute of Biotechnology, Chair of Bioprocess Engineering, Technische Universität Berlin, 13355 Berlin, Germany
| | - Stefan Born
- Institute of Biotechnology, Chair of Bioprocess Engineering, Technische Universität Berlin, 13355 Berlin, Germany
| | - M Nicolas Cruz Bournazou
- Institute of Biotechnology, Chair of Bioprocess Engineering, Technische Universität Berlin, 13355 Berlin, Germany
| | - Peter Neubauer
- Institute of Biotechnology, Chair of Bioprocess Engineering, Technische Universität Berlin, 13355 Berlin, Germany
| |
Collapse
|
4
|
Wahjudi SMW, Petrzik T, Oudenne F, Lera Calvo C, Büchs J. Unraveling the potential and constraints associated with corn steep liquor as a nutrient source for industrial fermentations. Biotechnol Prog 2023; 39:e3386. [PMID: 37634939 DOI: 10.1002/btpr.3386] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 08/02/2023] [Accepted: 08/09/2023] [Indexed: 08/29/2023]
Abstract
Costly complex media components such as yeast extract and peptone are still widely used in industrial bioprocesses, despite their ill-defined composition. Side stream products such as corn steep liquor (CSL) present a compelling economical alternative that contains valuable nutrients required for microbial growth, that is, nitrogen and amino acids, but also vitamins, trace elements, and other minerals. However, as a side stream product, CSL may be subject to batch-to-batch variations and compositional heterogeneity. In this study, the Respiration Activity MOnitoring System designed for shake flasks (RAMOS) and 96-well microtiter plates (μTOM) were applied to investigate the potential and constraints of CSL utilization for two model microorganisms: E. coli and B. subtilis. Considering the dry substance content of complex nutrients involved, CSL-based media are more efficient in biomass production than the common lysogeny broth (LB) medium, containing 5 g/L yeast extract, 10 g/L peptone, and 5 g/L NaCl. At a glucose to CSL (glucose/CSL, g/g) ratio of 1/1 (g/g) and 2/1 (g/g), a secondary substrate limitation occurred in E. coli and B. subtilis cultivations, respectively. The study sheds light on differences in the metabolic activity of the two applied model organisms between varying CSL batches, which relate to CSL origin and production process, as well as the effect of targeted nutrient supplementation. Through a targeted nutrient supplementation, the most limiting component of the CSL-glucose medium used for these applied model microorganisms was identified to be ammonium nitrogen. This study proves the suitability of CSL as an alternative nutrient source for E. coli and B. subtilis. The RAMOS and μTOM technique detected differences between CSL batches, allowing easy and early identification of varying batches. A consistent performance of the CSL batches in E. coli and B. subtilis cultivations was demonstrated.
Collapse
Affiliation(s)
| | - Thomas Petrzik
- AVT-Biochemical Engineering, RWTH Aachen University, Aachen, Germany
| | | | | | - Jochen Büchs
- AVT-Biochemical Engineering, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
5
|
Sparviero S, Barth L, Keil T, Dinter C, Berg C, Lattermann C, Büchs J. Black glucose-releasing silicon elastomer rings for fed-batch operation allow measurement of the oxygen transfer rate from the top and optical signals from the bottom for each well of a microtiter plate. BMC Biotechnol 2023; 23:5. [PMID: 36864427 PMCID: PMC9983259 DOI: 10.1186/s12896-023-00775-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 02/22/2023] [Indexed: 03/04/2023] Open
Abstract
BACKGROUND In industrial microbial biotechnology, fed-batch processes are frequently used to avoid undesirable biological phenomena, such as substrate inhibition or overflow metabolism. For targeted process development, fed-batch options for small scale and high throughput are needed. One commercially available fed-batch fermentation system is the FeedPlate®, a microtiter plate (MTP) with a polymer-based controlled release system. Despite standardisation and easy incorporation into existing MTP handling systems, FeedPlates® cannot be used with online monitoring systems that measure optically through the transparent bottom of the plate. One such system that is broadly used in biotechnological laboratories, is the commercial BioLector. To allow for BioLector measurements, while applying the polymer-based feeding technology, positioning of polymer rings instead of polymer disks at the bottom of the well has been proposed. This strategy has a drawback: measurement requires an adjustment of the software settings of the BioLector device. This adjustment modifies the measuring position relative to the wells, so that the light path is no longer blocked by the polymer ring, but, traverses through the inner hole of the ring. This study aimed at overcoming that obstacle and allowing for measurement of fed-batch cultivations using a commercial BioLector without adjustment of the relative measurement position within each well. RESULTS Different polymer ring heights, colours and positions in the wells were investigated for their influence on maximum oxygen transfer capacity, mixing time and scattered light measurement. Several configurations of black polymer rings were identified that allow measurement in an unmodified, commercial BioLector, comparable to wells without rings. Fed-batch experiments with black polymer rings with two model organisms, E. coli and H. polymorpha, were conducted. The identified ring configurations allowed for successful cultivations, measuring the oxygen transfer rate and dissolved oxygen tension, pH, scattered light and fluorescence. Using the obtained online data, glucose release rates of 0.36 to 0.44 mg/h could be determined. They are comparable to formerly published data of the polymer matrix. CONCLUSION The final ring configurations allow for measurements of microbial fed-batch cultivations using a commercial BioLector without requiring adjustments of the instrumental measurement setup. Different ring configurations achieve similar glucose release rates. Measurements from above and below the plate are possible and comparable to measurements of wells without polymer rings. This technology enables the generation of a comprehensive process understanding and target-oriented process development for industrial fed-batch processes.
Collapse
Affiliation(s)
- Sarah Sparviero
- Aachener Verfahrenstechnik - Biochemical Engineering, RWTH Aachen University, Forckenbeckstr. 51, 52074, Aachen, Germany
| | - Laura Barth
- Aachener Verfahrenstechnik - Biochemical Engineering, RWTH Aachen University, Forckenbeckstr. 51, 52074, Aachen, Germany
| | - Timm Keil
- Aachener Verfahrenstechnik - Biochemical Engineering, RWTH Aachen University, Forckenbeckstr. 51, 52074, Aachen, Germany
| | - Carl Dinter
- Aachener Verfahrenstechnik - Biochemical Engineering, RWTH Aachen University, Forckenbeckstr. 51, 52074, Aachen, Germany
| | - Christoph Berg
- Aachener Verfahrenstechnik - Biochemical Engineering, RWTH Aachen University, Forckenbeckstr. 51, 52074, Aachen, Germany
| | | | - Jochen Büchs
- Aachener Verfahrenstechnik - Biochemical Engineering, RWTH Aachen University, Forckenbeckstr. 51, 52074, Aachen, Germany.
| |
Collapse
|
6
|
Lu Y, Xing S, He L, Li C, Wang X, Zeng X, Dai Y. Characterization, High-Density Fermentation, and the Production of a Directed Vat Set Starter of Lactobacilli Used in the Food Industry: A Review. Foods 2022; 11:3063. [PMID: 36230139 PMCID: PMC9563398 DOI: 10.3390/foods11193063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/15/2022] [Accepted: 09/29/2022] [Indexed: 11/16/2022] Open
Abstract
Lactobacilli have been widely concerned for decades. Bacteria of the genus Lactobacillus have been commonly employed in fermented food to improve the appearance, smell, and taste of food or prolong its shelf-life. They comprise 261 species (by March 2020) that are highly diverse at the phenotypic, ecological, and genotypic levels. Some Lactobacilli strains have been documented to be essential probiotics, which are defined as a group of living microorganisms that are beneficial to the health of the host when ingested in sufficiency. However, the characterization, high-density fermentation, and the production of a directed vat set (DVS) starter of Lactobacilli strains used in the food industry have not been systematically reported. This paper mainly focuses on reviewing Lactobacilli as functional starter cultures in the food industry, including different molecular techniques for identification at the species and strain levels, methods for evaluating Lactobacilli properties, enhancing their performance and improving the cell density of Lactobacilli, and the production techniques of DVS starter of Lactobacilli strains. Moreover, this review further discussed the existing problems and future development prospects of Lactobacilli in the food industry. The viability and stability of Lactobacilli in the food industry and gastrointestinal environment are critical challenges at the industrial scale. The new production equipment and technology of DVS starter of Lactobacilli strains will have the potential for large-scale application, for example, developing low-temperature spray drying, freezing granulation drying, and spray freeze-drying.
Collapse
Affiliation(s)
- Yun Lu
- Key Laboratory of Agricultural and Animal Products Storage & Processing of Guizhou Province, Guizhou University, Guiyang 550025, China
- Department of Brewing Engineering, Moutai University, Renhuai 564507, China
| | - Shuqi Xing
- Key Laboratory of Agricultural and Animal Products Storage & Processing of Guizhou Province, Guizhou University, Guiyang 550025, China
- College of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
| | - Laping He
- Key Laboratory of Agricultural and Animal Products Storage & Processing of Guizhou Province, Guizhou University, Guiyang 550025, China
- College of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
| | - Cuiqin Li
- Key Laboratory of Agricultural and Animal Products Storage & Processing of Guizhou Province, Guizhou University, Guiyang 550025, China
- College of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
- School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, China
| | - Xiao Wang
- Key Laboratory of Agricultural and Animal Products Storage & Processing of Guizhou Province, Guizhou University, Guiyang 550025, China
- College of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
| | - Xuefeng Zeng
- Key Laboratory of Agricultural and Animal Products Storage & Processing of Guizhou Province, Guizhou University, Guiyang 550025, China
- College of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
| | - Yifeng Dai
- Key Laboratory of Agricultural and Animal Products Storage & Processing of Guizhou Province, Guizhou University, Guiyang 550025, China
- College of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
| |
Collapse
|
7
|
Velazquez D, Sigala JC, Martínez LM, Gaytán P, Gosset G, Lara AR. Glucose transport engineering allows mimicking fed-batch performance in batch mode and selection of superior producer strains. Microb Cell Fact 2022; 21:183. [PMID: 36071458 PMCID: PMC9450411 DOI: 10.1186/s12934-022-01906-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 08/09/2022] [Indexed: 11/26/2022] Open
Abstract
Background Fed-batch mode is the standard culture technology for industrial bioprocesses. Nevertheless, most of the early-stage cell and process development is carried out in batch cultures, which can bias the initial selection of expression systems. Cell engineering can provide an alternative to fed-batch cultures for high-throughput screening and host selection. We have previously reported a library of Escherichia coli strains with single and multiple deletions of genes involved in glucose transport. Compared to their wild type (W3110), the mutant strains displayed lower glucose uptake, growth and aerobic acetate production rates. Therefore, when cultured in batch mode, such mutants may perform similar to W3110 cultured in fed-batch mode. To test that hypothesis, we evaluated the constitutive expression of the green fluorescence protein (GFP) in batch cultures in microbioreactors using a semi defined medium supplemented with 10 or 20 g/L glucose + 0.4 g yeast extract/g glucose. Results The mutant strains cultured in batch mode displayed a fast-growth phase (growth rate between 0.40 and 0.60 h−1) followed by a slow-growth phase (growth rate between 0.05 and 0.15 h−1), similar to typical fed-batch cultures. The phase of slow growth is most probably caused by depletion of key amino acids. Three mutants attained the highest GFP fluorescence. Particularly, a mutant named WHIC (ΔptsHIcrr, ΔmglABC), reached a GFP fluorescence up to 14-fold greater than that of W3110. Strain WHIC was cultured in 2 L bioreactors in batch mode with 100 g/L glucose + 50 g/L yeast extract. These cultures were compared with exponentially fed-batch cultures of W3110 maintaining the same slow-growth of WHIC (0.05 h−1) and using the same total amount of glucose and yeast extract than in WHIC cultures. The WHIC strain produced approx. 450 mg/L GFP, while W3110 only 220 mg/L. Conclusion The combination of cell engineering and high throughput screening allowed the selection of a particular mutant that mimics fed-batch behavior in batch cultures. Moreover, the amount of GFP produced by the strain WHIC was substantially higher than that of W3110 under both, batch and fed-batch schemes. Therefore, our results represent a valuable technology for accelerated bioprocess development. Supplementary Information The online version contains supplementary material available at 10.1186/s12934-022-01906-1.
Collapse
Affiliation(s)
- Daniela Velazquez
- Departamento de Procesos y Tecnología, Universidad Autónoma Metropolitana, Vasco de Quiroga 4871, 05348, Mexico City, Mexico
| | - Juan-Carlos Sigala
- Departamento de Procesos y Tecnología, Universidad Autónoma Metropolitana, Vasco de Quiroga 4871, 05348, Mexico City, Mexico
| | - Luz María Martínez
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Col. Chamilpa, 62210, Cuernavaca, MOR, Mexico
| | - Paul Gaytán
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Col. Chamilpa, 62210, Cuernavaca, MOR, Mexico
| | - Guillermo Gosset
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Col. Chamilpa, 62210, Cuernavaca, MOR, Mexico
| | - Alvaro R Lara
- Departamento de Procesos y Tecnología, Universidad Autónoma Metropolitana, Vasco de Quiroga 4871, 05348, Mexico City, Mexico.
| |
Collapse
|
8
|
Hansen S, Gumprecht A, Micheel L, Hennemann HG, Enzmann F, Blümke W. Implementation of Perforated Concentric Ring Walls Considerably Improves Gas-Liquid Mass Transfer of Shaken Bioreactors. Front Bioeng Biotechnol 2022; 10:894295. [PMID: 35646878 PMCID: PMC9135409 DOI: 10.3389/fbioe.2022.894295] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 04/14/2022] [Indexed: 11/25/2022] Open
Abstract
Since their first use in the 1930s, shake flasks have been a widely used bioreactor type for screening and process development due to a number of advantages. However, the limited gas-liquid mass transfer capacities—resulting from practical operation limits regarding shaking frequency and filling volumes—are a major drawback. The common way to increase the gas-liquid mass transfer in shake flasks with the implementation of baffles is generally not recommended as it comes along with several severe disadvantages. Thus, a new design principle for shaken bioreactors that aims for improving the gas-liquid mass transfer without losing the positive characteristics of unbaffled shake flasks is introduced. The flasks consist of cylindrical glass vessels with implemented perforated concentric ring walls. The ring walls improve the gas-liquid mass transfer via the formation of additional liquid films on both of its sides, whereas the perforations allow for mixing between the compartments. Sulfite oxidation experiments revealed over 200% higher maximum oxygen transfer capacities (OTRmax) compared to conventional shake flasks. In batch cultivations of Escherichia coli BL21 in mineral media, unlimited growth until glucose depletion and oxygen transfer rates (OTR) of up to 138 mmol/L/h instead of an oxygen limitation at 57 mmol/L/h as in normal shake flasks under comparable conditions could be achieved. Even overflow metabolism could be prevented due to sufficient oxygen supply without the use of unconventional shaking conditions or oxygen enrichment. Therefore, we believe that the new perforated ring flask principle has a high potential to considerably improve biotechnological screening and process development steps.
Collapse
Affiliation(s)
- Sven Hansen
- Evonik Operations GmbH, Marl, Germany
- *Correspondence: Sven Hansen,
| | | | | | | | | | | |
Collapse
|
9
|
Ganjave SD, Dodia H, Sunder AV, Madhu S, Wangikar PP. High cell density cultivation of E. coli in shake flasks for the production of recombinant proteins. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2022; 33:e00694. [PMID: 35004235 PMCID: PMC8718739 DOI: 10.1016/j.btre.2021.e00694] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/24/2021] [Accepted: 12/15/2021] [Indexed: 12/05/2022]
Abstract
True fed-batch strategy for high cell density cultivation of E. coli in shake flask. Cybernetic model-based optimization of the feeding recipe. Biomass of 19.9–21.5 g DCW/L, in agreement with the model prediction. Volumetric productivity for tested proteins increased 8–34-fold compared to batch. Scale up of fed-batch recipe to bioreactor resulted in further 2.8-fold increase.
Batch cultivation of recombinant bacteria in shake flasks typically results in low cell density due to nutrient depletion. Previous studies on high cell density cultivation in shake flasks have relied mainly on controlled release mechanisms. Here, we report a true fed-batch strategy to achieve high cell density of recombinant E. coli in shake flasks in 24 h by feeding a mixture of glycerol and yeast extract with a syringe pump. Feed composition and feed rate were obtained by cybernetic model-based, multi-objective optimization. Model parameters were estimated from time-course measurement of substrate, biomass, and dissolved oxygen levels. The optimized process yielded 20.7 g dry cell weight/L, in agreement with the model prediction. Volumetric protein productivity improved by 10–34-fold compared to batch cultivation with 2.8-fold further improvement when the fed-batch process was replicated in a 3 L bioreactor. The process has significance in the routine laboratory cultivations and in scaleup studies.
Collapse
Affiliation(s)
- Snehal D Ganjave
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Hardik Dodia
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Avinash Vellore Sunder
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Swati Madhu
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Pramod P Wangikar
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.,DBT-Pan IIT Center for Bioenergy, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.,Wadhwani Research Center for Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
10
|
Teworte S, Malcı K, Walls LE, Halim M, Rios-Solis L. Recent advances in fed-batch microscale bioreactor design. Biotechnol Adv 2021; 55:107888. [PMID: 34923075 DOI: 10.1016/j.biotechadv.2021.107888] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/25/2021] [Accepted: 12/11/2021] [Indexed: 12/17/2022]
Abstract
Advanced fed-batch microbioreactors mitigate scale up risks and more closely mimic industrial cultivation practices. Recently, high throughput microscale feeding strategies have been developed which improve the accessibility of microscale fed-batch cultivation irrespective of experimental budget. This review explores such technologies and their role in accelerating bioprocess development. Diffusion- and enzyme-controlled feeding achieve a continuous supply of substrate while being simple and affordable. More complex feed profiles and greater process control require additional hardware. Automated liquid handling robots may be programmed to predefined feed profiles and have the sensitivity to respond to deviations in process parameters. Microfluidic technologies have been shown to facilitate both continuous and precise feeding. Holistic approaches, which integrate automated high-throughput fed-batch cultivation with strategic design of experiments and model-based optimisation, dramatically enhance process understanding whilst minimising experimental burden. The incorporation of real-time data for online optimisation of feed conditions can further refine screening. Although the technologies discussed in this review hold promise for efficient, low-risk bioprocess development, the expense and complexity of automated cultivation platforms limit their widespread application. Future attention should be directed towards the development of open-source software and reducing the exclusivity of hardware.
Collapse
Affiliation(s)
- Sarah Teworte
- Institute for Bioengineering, School of Engineering, University of Edinburgh, The King's Buildings, Edinburgh EH9 3DW, Scotland, United Kingdom
| | - Koray Malcı
- Institute for Bioengineering, School of Engineering, University of Edinburgh, The King's Buildings, Edinburgh EH9 3DW, Scotland, United Kingdom; Centre for Synthetic and Systems Biology, University of Edinburgh, The King's Buildings, Edinburgh EH9 3DW, Scotland, United Kingdom
| | - Laura E Walls
- Institute for Bioengineering, School of Engineering, University of Edinburgh, The King's Buildings, Edinburgh EH9 3DW, Scotland, United Kingdom; Centre for Synthetic and Systems Biology, University of Edinburgh, The King's Buildings, Edinburgh EH9 3DW, Scotland, United Kingdom
| | - Murni Halim
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia
| | - Leonardo Rios-Solis
- Institute for Bioengineering, School of Engineering, University of Edinburgh, The King's Buildings, Edinburgh EH9 3DW, Scotland, United Kingdom; Centre for Synthetic and Systems Biology, University of Edinburgh, The King's Buildings, Edinburgh EH9 3DW, Scotland, United Kingdom.
| |
Collapse
|
11
|
Morschett H, Jansen R, Neuendorf C, Moch M, Wiechert W, Oldiges M. Parallelized microscale fed-batch cultivation in online-monitored microtiter plates: implications of media composition and feed strategies for process design and performance. J Ind Microbiol Biotechnol 2020; 47:35-47. [PMID: 31673873 PMCID: PMC6971147 DOI: 10.1007/s10295-019-02243-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 10/15/2019] [Indexed: 01/10/2023]
Abstract
Limited throughput represents a substantial drawback during bioprocess development. In recent years, several commercial microbioreactor systems have emerged featuring parallelized experimentation with optical monitoring. However, many devices remain limited to batch mode and do not represent the fed-batch strategy typically applied on an industrial scale. A workflow for 32-fold parallelized microscale cultivation of protein secreting Corynebacterium glutamicum in microtiter plates incorporating online monitoring, pH control and feeding was developed and validated. Critical interference of the essential media component protocatechuic acid with pH measurement was revealed, but was effectively resolved by 80% concentration reduction without affecting biological performance. Microfluidic pH control and feeding (pulsed, constant and exponential) were successfully implemented: Whereas pH control improved performance only slightly, feeding revealed a much higher optimization potential. Exponential feeding with µ = 0.1 h-1 resulted in the highest product titers. In contrast, other performance indicators such as biomass-specific or volumetric productivity resulted in different optimal feeding regimes.
Collapse
Affiliation(s)
- Holger Morschett
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Roman Jansen
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich, Germany
- Institute of Biotechnology, RWTH Aachen University, Aachen, Germany
| | - Christian Neuendorf
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Matthias Moch
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Wolfgang Wiechert
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich, Germany
- Computational Systems Biotechnology, RWTH Aachen University, Aachen, Germany
| | - Marco Oldiges
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich, Germany.
- Institute of Biotechnology, RWTH Aachen University, Aachen, Germany.
| |
Collapse
|
12
|
Keil T, Dittrich B, Rührer J, Morschett H, Lattermann C, Möller M, Büchs J. Polymer-based ammonium-limited fed-batch cultivation in shake flasks improves lipid productivity of the microalga Chlorella vulgaris. BIORESOURCE TECHNOLOGY 2019; 291:121821. [PMID: 31352167 DOI: 10.1016/j.biortech.2019.121821] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 07/12/2019] [Accepted: 07/15/2019] [Indexed: 06/10/2023]
Abstract
The aim of this work was to study ammonium-limited fed-batch conditions in heterotrophic C. vulgaris shake flask cultivations. Therefore, an innovative polymer-based ammonium release technique (polymer beads) was developed. Using these beads in shake flasks, C. vulgaris cultivations resulted in simultaneous growth and lipid accumulation. Lipid productivity was increased by 43% compared to batch cultivations. Furthermore, by online monitoring of the metabolic activity (RAMOS technique), unlimited growth and depletion of nutrients could be identified. A previously unknown sulfur limitation was detected in the applied Bold's Basal Medium. Combining the ammonium release beads with the RAMOS technique proved to be an efficient method for microalgae process development.
Collapse
Affiliation(s)
- T Keil
- AVT - Biochemical Engineering, RWTH Aachen University, Forckenbeckstraße 51, 52074 Aachen, Germany
| | - B Dittrich
- DWI - Leibniz Institute for Interactive Materials, RWTH Aachen University Forckenbeckstraße 50, 52074 Aachen, Germany
| | - J Rührer
- AVT - Biochemical Engineering, RWTH Aachen University, Forckenbeckstraße 51, 52074 Aachen, Germany
| | - H Morschett
- Institute of Bio- and Geosciences: IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Straße, 52428 Jülich, Germany
| | - C Lattermann
- Kuhner Shaker GmbH, Kaiserstraße 100, 52134 Herzogenrath, Germany
| | - M Möller
- DWI - Leibniz Institute for Interactive Materials, RWTH Aachen University Forckenbeckstraße 50, 52074 Aachen, Germany; Textile and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - J Büchs
- AVT - Biochemical Engineering, RWTH Aachen University, Forckenbeckstraße 51, 52074 Aachen, Germany.
| |
Collapse
|
13
|
Habicher T, Rauls EKA, Egidi F, Keil T, Klein T, Daub A, Büchs J. Establishing a Fed-Batch Process for Protease Expression with Bacillus licheniformis in Polymer-Based Controlled-Release Microtiter Plates. Biotechnol J 2019; 15:e1900088. [PMID: 31471944 DOI: 10.1002/biot.201900088] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 08/06/2019] [Indexed: 12/19/2022]
Abstract
Introducing fed-batch mode in early stages of development projects is crucial for establishing comparable conditions to industrial fed-batch fermentation processes. Therefore, cost efficient and easy to use small-scale fed-batch systems that can be integrated into existing laboratory equipment and workflows are required. Recently, a novel polymer-based controlled-release fed-batch microtiter plate is described. In this work, the polymer-based controlled-release fed-batch microtiter plate is used to investigate fed-batch cultivations of a protease producing Bacillus licheniformis culture. Therefore, the oxygen transfer rate (OTR) is online-monitored within each well of the polymer-based controlled-release fed-batch microtiter plate using a µRAMOS device. Cultivations in five individual polymer-based controlled-release fed-batch microtiter plates of two production lots show good reproducibility with a mean coefficient of variation of 9.2%. Decreasing initial biomass concentrations prolongs batch phase while simultaneously postponing the fed-batch phase. The initial liquid filling volume affects the volumetric release rate, which is directly translated in different OTR levels of the fed-batch phase. An increasing initial osmotic pressure within the mineral medium decreases both glucose release and protease yield. With the volumetric glucose release rate as scale-up criterion, microtiter plate- and shake flask-based fed-batch cultivations are highly comparable. On basis of the small-scale fed-batch cultivations, a mechanistic model is established and validated. Model-based simulations coincide well with the experimentally acquired data.
Collapse
Affiliation(s)
- Tobias Habicher
- AVT-Biochemical Engineering, RWTH Aachen University, Aachen, 52074, Germany
| | - Edward K A Rauls
- AVT-Biochemical Engineering, RWTH Aachen University, Aachen, 52074, Germany
| | - Franziska Egidi
- AVT-Biochemical Engineering, RWTH Aachen University, Aachen, 52074, Germany
| | - Timm Keil
- AVT-Biochemical Engineering, RWTH Aachen University, Aachen, 52074, Germany
| | - Tobias Klein
- White Biotechnology Research Unit, BASF SE, Ludwigshafen am Rhein, 67063, Germany
| | - Andreas Daub
- Chemical Engineering Industrial Biotechnology, BASF SE, Ludwigshafen am Rhein, 67063, Germany
| | - Jochen Büchs
- AVT-Biochemical Engineering, RWTH Aachen University, Aachen, 52074, Germany
| |
Collapse
|
14
|
Habicher T, Czotscher V, Klein T, Daub A, Keil T, Büchs J. Glucose‐containing polymer rings enable fed‐batch operation in microtiter plates with parallel online measurement of scattered light, fluorescence, dissolved oxygen tension, and pH. Biotechnol Bioeng 2019; 116:2250-2262. [DOI: 10.1002/bit.27077] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 05/20/2019] [Accepted: 05/28/2019] [Indexed: 12/21/2022]
Affiliation(s)
- Tobias Habicher
- AVT—Biochemical EngineeringRWTH Aachen UniversityAachen Germany
| | - Vroni Czotscher
- AVT—Biochemical EngineeringRWTH Aachen UniversityAachen Germany
| | - Tobias Klein
- White Biotechnology Research UnitBASF SELudwigshafen am Rhein Germany
| | - Andreas Daub
- Chemical Engineering Industrial BiotechnologyBASF SELudwigshafen am Rhein Germany
| | - Timm Keil
- AVT—Biochemical EngineeringRWTH Aachen UniversityAachen Germany
| | - Jochen Büchs
- AVT—Biochemical EngineeringRWTH Aachen UniversityAachen Germany
| |
Collapse
|
15
|
Wagner SG, Mähler C, Polte I, von Poschinger J, Löwe H, Kremling A, Pflüger-Grau K. An automated and parallelised DIY-dosing unit for individual and complex feeding profiles: Construction, validation and applications. PLoS One 2019; 14:e0217268. [PMID: 31216302 PMCID: PMC6583958 DOI: 10.1371/journal.pone.0217268] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 05/07/2019] [Indexed: 11/18/2022] Open
Abstract
Since biotechnological research becomes more and more important for industrial applications, there is an increasing need for scalable and controllable laboratory procedures. A widely used approach in biotechnological research to improve the performance of a process is to vary the growth rates in order to find the right balance between growth and the production. This can be achieved by the application of a suitable feeding strategy. During this initial bioprocess development, it is beneficial to have at hand cheap and easy setups that work in parallel (e.g. in shaking flasks). Unfortunately, there is a gap between these easy setups and defined and controllable processes, which are necessary for up-scaling to an industrial relevant volume. One prerequisite to test and evaluate different process strategies apart from batch-mode is the availability of pump systems that allow for defined feeding profiles in shaking flasks. To our knowledge, there is no suitable dosing device on the market which fulfils the requirements of being cheap, precise, programmable, and parallelizable. Commercially available dosing units are either already integrated in bioreactors and therefore inflexible, or not programmable, or expensive, or a combination of those. Here, we present a LEGO-MINDSTORMS-based syringe pump, which has the potential of being widely used in daily laboratory routine due to its low price, programmability, and parallelisability. The acquisition costs do not exceed 350 € for up to four dosing units, that are independently controllable with one EV3 block. The system covers flow rates ranging from 0.7 μL min-1 up to 210 mL min-1 with a reliable flux. One dosing unit can convey at maximum a volume of 20 mL (using all 4 units even up to 80 mL in total) over the whole process time. The design of the dosing unit enables the user to perform experiments with up to four different growth rates in parallel (each measured in triplicates) per EV3-block used. We estimate, that the LEGO-MINDSTORMS-based dosing unit with 12 syringes in parallel is reducing the costs up to 50-fold compared to a trivial version of a commercial pump system (~1500 €) which fits the same requirements. Using the pump, we set the growth rates of a E. coli HMS174/DE3 culture to values between 0.1 and 0.4 h-1 with a standard deviation of at best 0.35% and an average discrepancy of 13.2%. Additionally, we determined the energy demand of a culture for the maintenance of the pTRA-51hd plasmid by quantifying the changes in biomass yield with different growth rates set. Around 25% of total substrate taken up is used for plasmid maintenance. To present possible applications and show the flexibility of the system, we applied a constant feed to perform microencapsulation of Pseudomonas putida and an individual dosing profile for the purification of a his-tagged eGFP via IMAC. This smart and versatile dosing unit, which is ready-to-use without any prior knowledge in electronics and control, is affordable for everyone and due to its flexibility and broad application range a valuable addition to the laboratory routine.
Collapse
Affiliation(s)
- Sabine G. Wagner
- TU Munich, Systems Biotechnology, Faculty of Mechanical Engineering, Garching, Germany
| | - Christoph Mähler
- TU Munich, Biochemical Engineering, Faculty of Mechanical Engineering, Garching, Germany
| | - Ingmar Polte
- TU Munich, Biochemical Engineering, Faculty of Mechanical Engineering, Garching, Germany
| | - Jeremy von Poschinger
- TU Munich, Systems Biotechnology, Faculty of Mechanical Engineering, Garching, Germany
| | - Hannes Löwe
- TU Munich, Systems Biotechnology, Faculty of Mechanical Engineering, Garching, Germany
| | - Andreas Kremling
- TU Munich, Systems Biotechnology, Faculty of Mechanical Engineering, Garching, Germany
- * E-mail:
| | | |
Collapse
|
16
|
Müller J, Hütterott A, Habicher T, Mußmann N, Büchs J. Validation of the transferability of membrane-based fed-batch shake flask cultivations to stirred-tank reactor using three different protease producing Bacillus strains. J Biosci Bioeng 2019; 128:599-605. [PMID: 31151898 DOI: 10.1016/j.jbiosc.2019.05.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 05/09/2019] [Accepted: 05/09/2019] [Indexed: 10/26/2022]
Abstract
Most industrial fermentation processes are operated in fed-batch mode to overcome catabolite repression, undesired by-product formation and oxygen limitation. To maintain comparable process conditions during screening of optimal production strains, the implementation of a fed-batch mode at small scale is crucial. In this study, three different protease producing Bacillus species, Bacillus aeolius, B. licheniformis and B. pumilus, were cultivated using the previously described membrane-based fed-batch shake flasks. Under carbon-limited conditions, catabolite repression was avoided, so that proteases were produced in all strains. Protease yields of B. aeolius and B. licheniformis increased 1.5-fold relative to batch cultivations. To validate process scalability between shake flasks and stirred tank reactors, membrane-based fed-batch shake flask cultivations were transferred to laboratory-scale stirred tank reactors with equal feeding rates. Despite inevitable differences between the scales such as pH control, feed supply and feed start, comparable results were achieved. Oxygen transfer rates of B. licheniformis and B. pumilus measured with the respiration activity monitoring system (RAMOS) in shake flasks and in stirred tank reactor with an off-gas analyzer were almost identical in both cultivation systems. The protease activities referring to the total consumed glucose were also mostly comparable. A slight decrease from shake flask to stirred tank reactor could be observed, which is presumably due to differences in pH control. This study successfully demonstrates the transferability of membrane-based fed-batch shake flask cultivations to laboratory-scale stirred tank reactors.
Collapse
Affiliation(s)
- Janina Müller
- AVT - Biochemical Engineering, RWTH Aachen University, Forckenbeckstraße 51, Aachen 52074, Germany.
| | - Anne Hütterott
- AVT - Biochemical Engineering, RWTH Aachen University, Forckenbeckstraße 51, Aachen 52074, Germany.
| | - Tobias Habicher
- AVT - Biochemical Engineering, RWTH Aachen University, Forckenbeckstraße 51, Aachen 52074, Germany.
| | - Nina Mußmann
- International R&D Laundry and Homecare, Henkel AG & Co KGaA, Henkelstr. 67, Düsseldorf 40589, Germany.
| | - Jochen Büchs
- AVT - Biochemical Engineering, RWTH Aachen University, Forckenbeckstraße 51, Aachen 52074, Germany.
| |
Collapse
|
17
|
Habicher T, John A, Scholl N, Daub A, Klein T, Philip P, Büchs J. Introducing substrate limitations to overcome catabolite repression in a protease producing Bacillus licheniformis strain using membrane-based fed-batch shake flasks. Biotechnol Bioeng 2019; 116:1326-1340. [PMID: 30712275 DOI: 10.1002/bit.26948] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 01/22/2019] [Accepted: 01/30/2019] [Indexed: 11/11/2022]
Abstract
To overcome catabolite repression, industrial fermentation processes are usually operated in substrate-limited fed-batch mode. Therefore, the implementation of such an operating mode at small scale is crucial to maintain comparable process conditions. In this study, Bacillus licheniformis, a well-known producer of proteases, was cultivated with carbon (glucose)- and nitrogen (ammonium)-limited fed-batch conditions using the previously introduced membrane-based fed-batch shake flasks. A repression of protease production by glucose and ammonium was thus avoided and yields increased 1.5- and 2.1-fold relative to batch, respectively. An elevated feeding rate of glucose caused depletion of ammonium, which was recognizable within the oxygen transfer rate (OTR) signal measured with the Respiration Activity MOnitoring System (RAMOS). Ammonium limitation was prevented by feeding ammonium simultaneously with glucose. The OTR signal clearly indicated the initiation of the fed-batch phase and gave direct feedback on the nutrient release kinetics. Increased feeding rates of glucose and ammonium led to an elevated protease activity without affecting the protease yield (YP/Glu ). In addition to YP/Glu , protease yields were determined based on the metabolized amount of oxygen ( Y P / O 2 ) . The results showed that the protease production correlated with the amount of consumed glucose as well as with the amount of consumed oxygen. The membrane-based fed-batch shake flask in combination with the RAMOS device is a powerful combination to investigate the effect of substrate-limited fed-batch conditions.
Collapse
Affiliation(s)
- Tobias Habicher
- AVT - Biochemical Engineering, RWTH Aachen University, Aachen, Germany
| | - Arian John
- AVT - Biochemical Engineering, RWTH Aachen University, Aachen, Germany
| | - Niklas Scholl
- AVT - Biochemical Engineering, RWTH Aachen University, Aachen, Germany
| | - Andreas Daub
- Chemical Engineering Industrial Biotechnology, BASF SE, Ludwigshafen am Rhein, Germany
| | - Tobias Klein
- White Biotechnology Research Unit, BASF SE, Ludwigshafen am Rhein, Germany
| | - Priya Philip
- AVT - Biochemical Engineering, RWTH Aachen University, Aachen, Germany
| | - Jochen Büchs
- AVT - Biochemical Engineering, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
18
|
Keil T, Dittrich B, Lattermann C, Habicher T, Büchs J. Polymer-based controlled-release fed-batch microtiter plate - diminishing the gap between early process development and production conditions. J Biol Eng 2019; 13:18. [PMID: 30833982 PMCID: PMC6387502 DOI: 10.1186/s13036-019-0147-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 02/11/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Fed-batch conditions are advantageous for industrial cultivations as they avoid unfavorable phenomena appearing in batch cultivations. Those are for example the formation of overflow metabolites, catabolite repression, oxygen limitation or inhibition due to elevated osmotic concentrations. For both, the early bioprocess development and the optimization of existing bioprocesses, small-scale reaction vessels are applied to ensure high throughput, low costs and prompt results. However, most conventional small-scale procedures work in batch operation mode, which stands in contrast to fed-batch conditions in large-scale bioprocesses. Extensive expenditure for installations and operation accompany almost all cultivation systems in the market allowing fed-batch conditions in small-scale. An alternative, more cost efficient enzymatic glucose release system is strongly influenced by environmental conditions. To overcome these issues, this study investigates a polymer-based fed-batch system for controlled substrate release in microtiter plates. RESULTS Immobilizing a solid silicone matrix with embedded glucose crystals at the bottom of each well of a microtiter plate is a suitable technique for implementing fed-batch conditions in microtiter plates. The results showed that the glucose release rate depends on the osmotic concentration, the pH and the temperature of the medium. Moreover, the applied nitrogen source proved to influence the glucose release rate. A new developed mathematical tool predicts the glucose release for various media conditions. The two model organisms E. coli and H. polymorpha were cultivated in the fed-batch microtiter plate to investigate the general applicability for microbial systems. Online monitoring of the oxygen transfer rate and offline analysis of substrate, product, biomass and pH confirmed that fed-batch conditions are comparable to large-scale cultivations. Furthermore, due to fed-batch conditions in microtiter plates, product formation could be enhanced by the factor 245 compared to batch cultivations. CONCLUSIONS The polymer-based fed-batch microtiter plate represents a sophisticated and cost efficient system to mimic typical industrial fed-batch conditions in small-scale. Thus, a more reliable strain screening and early process development can be performed. A systematical scale-down with low expenditure of work, time and money is possible.
Collapse
Affiliation(s)
- T. Keil
- AVT - Biochemical Engineering, RWTH Aachen University, Forckenbeckstraße 51, 52074 Aachen, Germany
| | - B. Dittrich
- DWI – Leibniz Institute for Interactive Materials, RWTH Aachen University, Forckenbeckstraße 50, 52074 Aachen, Germany
| | - C. Lattermann
- Kuhner Shaker GmbH, Kaiserstraße 100, 52134 Herzogenrath, Germany
| | - T. Habicher
- AVT - Biochemical Engineering, RWTH Aachen University, Forckenbeckstraße 51, 52074 Aachen, Germany
| | - J. Büchs
- AVT - Biochemical Engineering, RWTH Aachen University, Forckenbeckstraße 51, 52074 Aachen, Germany
| |
Collapse
|
19
|
Aschenbrenner J, Marx P, Pietruszka J, Marienhagen J. Microbial Production of Natural and Unnatural Monolignols with
Escherichia coli. Chembiochem 2019; 20:949-954. [DOI: 10.1002/cbic.201800673] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Indexed: 12/25/2022]
Affiliation(s)
- Jennifer Aschenbrenner
- Institute of Bio- and GeosciencesIBG-1: BiotechnologyForschungszentrum Jülich GmbH 52425 Jülich Germany
| | - Patrick Marx
- Institute of Bio- and GeosciencesIBG-1: BiotechnologyForschungszentrum Jülich GmbH 52425 Jülich Germany
| | - Jörg Pietruszka
- Institute of Bio- and GeosciencesIBG-1: BiotechnologyForschungszentrum Jülich GmbH 52425 Jülich Germany
- Institute of Bioorganic ChemistryHeinrich Heine University of Düsseldorf at Forschungszentrum Jülich GmbH 52425 Jülich Germany
| | - Jan Marienhagen
- Institute of Bio- and GeosciencesIBG-1: BiotechnologyForschungszentrum Jülich GmbH 52425 Jülich Germany
| |
Collapse
|
20
|
Philip P, Kern D, Goldmanns J, Seiler F, Schulte A, Habicher T, Büchs J. Parallel substrate supply and pH stabilization for optimal screening of E. coli with the membrane-based fed-batch shake flask. Microb Cell Fact 2018; 17:69. [PMID: 29743073 PMCID: PMC5941677 DOI: 10.1186/s12934-018-0917-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Accepted: 05/03/2018] [Indexed: 11/16/2022] Open
Abstract
Background Screening in the fed-batch operation mode is essential for biological cultivations facing challenges as oxygen limitation, osmotic inhibition, catabolite repression, substrate inhibition or overflow metabolism. As a screening tool on shake flask level, the membrane-based fed-batch shake flask was developed. While a controlled supply of a substrate was realized with the in-built membrane tip, the possibilities for replenishing nutrients and stabilizing pH values was not yet exploited. High buffer concentrations were initially used, shifting the medium osmolality out of the biological optimum. As the growth rate is predefined by the glucose release kinetics from the reservoir, the resulting medium acidification can be compensated with a controlled continuous supply of an alkaline compound. The focus of this research is to establish a simultaneous multi-component release of glucose and an alkaline compound from the reservoir to enable cultivations within the optimal physiological range of Escherichia coli. Results In combination with the Respiratory Activity MOnitoring System, the membrane-based fed-batch shake flask enabled the detection of an ammonium limitation. The multi-component release of ammonium carbonate along with glucose from the reservoir resulted not only in the replenishment of the nitrogen source but also in the stabilization of the pH value in the culture medium. A biomass concentration up to 25 g/L was achieved, which is one of the highest values obtained so far to the best of the author’s knowledge with the utilization of a shake flask and a defined synthetic medium. Going a step further, the pH stabilization allowed the decrease of the required buffer amount to one-fourth establishing an optimal osmolality range for cultivation. As optimal physiological conditions were implemented with the multi-component release fed-batch cultivation, the supply of 0.2 g glucose in a 10 mL initial culture medium volume with 50 mM MOPS buffer resulted in a twofold higher biomass concentration than in a comparable batch cultivation. Conclusions The newly introduced multi-component release with the membrane-based fed-batch shake flask serves a threefold purpose of replenishing depleted substrates in the culture medium, stabilizing the pH throughout the entire cultivation time and minimizing the necessary amount of buffer to maintain an optimal osmolality range. In comparison to a batch cultivation, these settings enable to achieve higher biomass and product concentrations.![]() Electronic supplementary material The online version of this article (10.1186/s12934-018-0917-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- P Philip
- AVT-Biochemical Engineering, RWTH Aachen University, Forckenbeckstraße 51, 52074, Aachen, Germany
| | - D Kern
- AVT-Biochemical Engineering, RWTH Aachen University, Forckenbeckstraße 51, 52074, Aachen, Germany
| | - J Goldmanns
- AVT-Biochemical Engineering, RWTH Aachen University, Forckenbeckstraße 51, 52074, Aachen, Germany
| | - F Seiler
- AVT-Biochemical Engineering, RWTH Aachen University, Forckenbeckstraße 51, 52074, Aachen, Germany
| | - A Schulte
- AVT-Biochemical Engineering, RWTH Aachen University, Forckenbeckstraße 51, 52074, Aachen, Germany
| | - T Habicher
- AVT-Biochemical Engineering, RWTH Aachen University, Forckenbeckstraße 51, 52074, Aachen, Germany
| | - J Büchs
- AVT-Biochemical Engineering, RWTH Aachen University, Forckenbeckstraße 51, 52074, Aachen, Germany.
| |
Collapse
|
21
|
Fast automated online xylanase activity assay using HPAEC-PAD. Anal Bioanal Chem 2017; 410:57-69. [DOI: 10.1007/s00216-017-0712-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 10/08/2017] [Accepted: 10/16/2017] [Indexed: 10/18/2022]
|
22
|
Raddatz L, de Vries I, Austerjost J, Lavrentieva A, Geier D, Becker T, Beutel S, Scheper T. Additive manufactured customizable labware for biotechnological purposes. Eng Life Sci 2017; 17:931-939. [PMID: 32624842 DOI: 10.1002/elsc.201700055] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 05/09/2017] [Accepted: 07/13/2017] [Indexed: 12/29/2022] Open
Abstract
Yet already developed in the 1980s, the rise of 3D printing technology did not start until the beginning of this millennium as important patents expired, which opened the technology to a whole new group of potential users. One of the first who used this manufacturing tool in biotechnology was Lücking et al. in 2012, demonstrating potential uses 1, 2. This study shows applications of custom-built 3D-printed parts for biotechnological experiments. It gives an overview about the objects' computer-aided design (CAD) followed by its manufacturing process and basic studies on the used printing material in terms of biocompatibility and manageability. Using the stereolithographic (SLA) 3D-printing technology, a customizable shake flask lid was developed, which was successfully used to perform a bacterial fed-batch shake flask cultivation. The lid provides Luer connectors and tube adapters, allowing both sampling and feeding without interrupting the process. In addition, the digital blueprint the lid is based on, is designed for a modular use and can be modified to fit specific needs. All connectors can be changed and substituted in this CAD software-based file. Hence, the lid can be used for other applications, as well. The used printing material was tested for biocompatibility and showed no toxic effects neither on mammalian, nor on bacteria cells. Furthermore an SDS-PAGE-comb was drawn and printed and its usability evaluated to demonstrate the usefulness of 3D printing for everyday labware. The used manufacturing technique for the comb (multi jet printing, MJP) generates highly smooth surfaces, allowing this application.
Collapse
Affiliation(s)
- Lukas Raddatz
- Institute of Technical Chemistry Gottfried-Wilhelm-Leibniz Universität Hannover Germany.,Institute of Brewing and Beverage Technology, Forschungszentrum Weihenstephan Technische Universität München Germany
| | - Ingo de Vries
- Institute of Technical Chemistry Gottfried-Wilhelm-Leibniz Universität Hannover Germany
| | - Jonas Austerjost
- Institute of Technical Chemistry Gottfried-Wilhelm-Leibniz Universität Hannover Germany.,Institute of Brewing and Beverage Technology, Forschungszentrum Weihenstephan Technische Universität München Germany
| | - Antonina Lavrentieva
- Institute of Technical Chemistry Gottfried-Wilhelm-Leibniz Universität Hannover Germany
| | - Dominik Geier
- Institute of Brewing and Beverage Technology, Forschungszentrum Weihenstephan Technische Universität München Germany
| | - Thomas Becker
- Institute of Brewing and Beverage Technology, Forschungszentrum Weihenstephan Technische Universität München Germany
| | - Sascha Beutel
- Institute of Technical Chemistry Gottfried-Wilhelm-Leibniz Universität Hannover Germany
| | - Thomas Scheper
- Institute of Technical Chemistry Gottfried-Wilhelm-Leibniz Universität Hannover Germany
| |
Collapse
|
23
|
Philip P, Meier K, Kern D, Goldmanns J, Stockmeier F, Bähr C, Büchs J. Systematic evaluation of characteristics of the membrane-based fed-batch shake flask. Microb Cell Fact 2017; 16:122. [PMID: 28716035 PMCID: PMC5514527 DOI: 10.1186/s12934-017-0741-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 07/11/2017] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND The initial part of process development involves extensive screening programs to identify optimal biological systems and cultivation conditions. For a successful scale-up, the operation mode on screening and production scale must be as close as possible. To enable screening under fed-batch conditions, the membrane-based fed-batch shake flask was developed. It is a shake flask mounted with a central feed reservoir with an integrated rotating membrane tip for a controlled substrate release. Building on the previously provided proof of principle for this tool, this work extends its application by constructive modifications and improved methodology to ensure reproducible performance. RESULTS The previously limited operation window was expanded by a systematic analysis of reservoir set-up variations for cultivations with the fast-growing organism Escherichia coli. Modifying the initial glucose concentration in the reservoir as well as interchanging the built-in membrane, resulted in glucose release rates and oxygen transfer rate levels during the fed-batch phase varying up to a factor of five. The range of utilizable membranes was extended from dialysis membranes to porous microfiltration membranes with the design of an appropriate membrane tip. The alteration of the membrane area, molecular weight cut-off and liquid volume in the reservoir offered additional parameters to fine-tune the duration of the initial batch phase, the oxygen transfer rate level of the fed-batch phase and the duration of feeding. It was shown that a homogeneous composition of the reservoir without a concentration gradient is ensured up to an initial glucose concentration of 750 g/L. Finally, the experimental validity of fed-batch shake flask cultivations was verified with comparable results obtained in a parallel fed-batch cultivation in a laboratory-scale stirred tank reactor. CONCLUSIONS The membrane-based fed-batch shake flask is a reliable tool for small-scale screening under fed-batch conditions filling the gap between microtiter plates and scaled-down stirred tank reactors. The implemented reservoir system offers various set-up possibilities, which provide a wide range of process settings for diverse biological systems. As a screening tool, it accurately reflects the cultivation conditions in a fed-batch stirred tank reactor and enables a more efficient bioprocess development.
Collapse
Affiliation(s)
- P. Philip
- AVT-Biochemical Engineering, RWTH Aachen University, Forckenbeckstraße 51, 52074 Aachen, Germany
| | - K. Meier
- AVT-Biochemical Engineering, RWTH Aachen University, Forckenbeckstraße 51, 52074 Aachen, Germany
| | - D. Kern
- AVT-Biochemical Engineering, RWTH Aachen University, Forckenbeckstraße 51, 52074 Aachen, Germany
| | - J. Goldmanns
- AVT-Biochemical Engineering, RWTH Aachen University, Forckenbeckstraße 51, 52074 Aachen, Germany
| | - F. Stockmeier
- AVT-Biochemical Engineering, RWTH Aachen University, Forckenbeckstraße 51, 52074 Aachen, Germany
| | - C. Bähr
- AVT-Biochemical Engineering, RWTH Aachen University, Forckenbeckstraße 51, 52074 Aachen, Germany
| | - J. Büchs
- AVT-Biochemical Engineering, RWTH Aachen University, Forckenbeckstraße 51, 52074 Aachen, Germany
| |
Collapse
|
24
|
Philip E, Büchs J. Innovative Membrane-Based Fed-Batch Shake Flask. CHEM-ING-TECH 2016. [DOI: 10.1002/cite.201650092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
25
|
Flitsch D, Ladner T, Lukacs M, Büchs J. Easy to use and reliable technique for online dissolved oxygen tension measurement in shake flasks using infrared fluorescent oxygen-sensitive nanoparticles. Microb Cell Fact 2016; 15:45. [PMID: 26912130 PMCID: PMC4765216 DOI: 10.1186/s12934-016-0444-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 02/15/2016] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Despite the progressive miniaturization of bioreactors for screening purposes, shake flasks are still widespread in biotechnological laboratories and industry as cultivation vessels. Shake flasks are often applied as the first or second step in applications such as strain screening or media optimization. Thus, there are ongoing efforts to develop online measurement techniques for shake flasks, to gain as much information as possible about the cultured microbial system. Since dissolved oxygen tension (DOT) is a key experimental parameter, its accurate determination during the course of experiment is critical. Some of the available DOT measurement techniques can lead to erroneous measurements or are very difficult to handle. A reliable and easy to use DOT measurement system, based on suspended oxygen-sensitive nanoparticles, is presented in this work. RESULTS In a cultivation of Kluyveromyces lactis, a new DOT measurement technique via suspended oxygen-sensitive nanoparticles was compared with the conventional DOT measurement via fixed sensor spots. These experiments revealed the main disadvantage of applying sensor spots. With further cultivations of Escherichia coli and Hansenula polymorpha, the new measurement technique was successfully validated. In combination with a RAMOS device, kLa values were determined during the presented cultivations. The determined kLa values are in good agreement with a correlation recently found in the literature. CONCLUSIONS The presented DOT measurement technique via suspended oxygen-sensitive nanoparticles in shake flasks turned out to be easy to use, robust and reliable under all applied combinations of shaking frequencies and filling volumes. Its applicability as an online monitoring system for cultivations was shown by means of four examples. Additionally, in combination with a RAMOS device, the possibility of experimental kLa determination was successfully demonstrated.
Collapse
Affiliation(s)
- David Flitsch
- Biochemical Engineering, AVT-Aachener Verfahrenstechnik, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany.
| | - Tobias Ladner
- Biochemical Engineering, AVT-Aachener Verfahrenstechnik, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany.
| | - Mihaly Lukacs
- Biochemical Engineering, AVT-Aachener Verfahrenstechnik, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany.
| | - Jochen Büchs
- Biochemical Engineering, AVT-Aachener Verfahrenstechnik, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany.
| |
Collapse
|
26
|
Wewetzer SJ, Kunze M, Ladner T, Luchterhand B, Roth S, Rahmen N, Kloß R, Costa e Silva A, Regestein L, Büchs J. Parallel use of shake flask and microtiter plate online measuring devices (RAMOS and BioLector) reduces the number of experiments in laboratory-scale stirred tank bioreactors. J Biol Eng 2015; 9:9. [PMID: 26265936 PMCID: PMC4531433 DOI: 10.1186/s13036-015-0005-0] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 05/12/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Conventional experiments in small scale are often performed in a 'Black Box' fashion, analyzing only the product concentration in the final sample. Online monitoring of relevant process characteristics and parameters such as substrate limitation, product inhibition and oxygen supply is lacking. Therefore, fully equipped laboratory-scale stirred tank bioreactors are hitherto required for detailed studies of new microbial systems. However, they are too spacious, laborious and expensive to be operated in larger number in parallel. Thus, the aim of this study is to present a new experimental approach to obtain dense quantitative process information by parallel use of two small-scale culture systems with online monitoring capabilities: Respiration Activity MOnitoring System (RAMOS) and the BioLector device. RESULTS The same 'mastermix' (medium plus microorganisms) was distributed to the different small-scale culture systems: 1) RAMOS device; 2) 48-well microtiter plate for BioLector device; and 3) separate shake flasks or microtiter plates for offline sampling. By adjusting the same maximum oxygen transfer capacity (OTRmax), the results from the RAMOS and BioLector online monitoring systems supplemented each other very well for all studied microbial systems (E. coli, G. oxydans, K. lactis) and culture conditions (oxygen limitation, diauxic growth, auto-induction, buffer effects). CONCLUSIONS The parallel use of RAMOS and BioLector devices is a suitable and fast approach to gain comprehensive quantitative data about growth and production behavior of the evaluated microorganisms. These acquired data largely reduce the necessary number of experiments in laboratory-scale stirred tank bioreactors for basic process development. Thus, much more quantitative information is obtained in parallel in shorter time.
Collapse
Affiliation(s)
- S. J. Wewetzer
- />RWTH Aachen University, AVT - Biochemical Engineering, Worringer Weg 1, 52074 Aachen, Germany
| | - M. Kunze
- />RWTH Aachen University, AVT - Biochemical Engineering, Worringer Weg 1, 52074 Aachen, Germany
| | - T. Ladner
- />RWTH Aachen University, AVT - Biochemical Engineering, Worringer Weg 1, 52074 Aachen, Germany
| | - B. Luchterhand
- />RWTH Aachen University, AVT - Biochemical Engineering, Worringer Weg 1, 52074 Aachen, Germany
| | - S. Roth
- />RWTH Aachen University, AVT - Biochemical Engineering, Worringer Weg 1, 52074 Aachen, Germany
| | - N. Rahmen
- />RWTH Aachen University, AVT - Biochemical Engineering, Worringer Weg 1, 52074 Aachen, Germany
| | - R. Kloß
- />RWTH Aachen University, AVT - Biochemical Engineering, Worringer Weg 1, 52074 Aachen, Germany
| | - A. Costa e Silva
- />University of Minho, CEB - Centre of Biological Engineering, Campus de Gualtar, 4700-057 Braga, Portugal
| | - L. Regestein
- />RWTH Aachen University, AVT - Biochemical Engineering, Worringer Weg 1, 52074 Aachen, Germany
| | - J. Büchs
- />RWTH Aachen University, AVT - Biochemical Engineering, Worringer Weg 1, 52074 Aachen, Germany
| |
Collapse
|
27
|
Microscale and miniscale fermentation and screening. Curr Opin Biotechnol 2014; 35:1-6. [PMID: 25544012 DOI: 10.1016/j.copbio.2014.12.005] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 12/07/2014] [Accepted: 12/09/2014] [Indexed: 12/12/2022]
Abstract
Small-scale bioreactors in the microliter and milliliter range gained more importance in recent years. For the characterization of mass transfer, the volumetric mass transfer coefficient kLa and the oxygen transfer rate OTRmax are considered. kLa values up to 1440 hour(-1) are reported for small-scale bioreactors. The OTRmax is strongly influenced by the liquid film thickness and, finally, by the liquid viscosity. Optical on-line methods, such as fluorescence and scattered light measurements, are applied to monitor pH, dissolved oxygen tension (DOT), product formation and biomass. Recently, single cell microfluidics are used to obtain new insights into microbial behavior at changing operating conditions. Finally, novel fed-batch techniques are applied to assimilate the cultivation conditions between screening and production scale.
Collapse
|
28
|
Wilming A, Bähr C, Kamerke C, Büchs J. Fed-batch operation in special microtiter plates: a new method for screening under production conditions. ACTA ACUST UNITED AC 2014; 41:513-25. [DOI: 10.1007/s10295-013-1396-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Accepted: 12/22/2013] [Indexed: 10/25/2022]
Abstract
Abstract
Batch and fed-batch operation result in completely different physiological conditions for cultivated microorganisms or cells. To close the gap between screening, which is hitherto exclusively performed in batch mode, and fed-batch production processes, a special microtiter plate was developed that allows screening in fed-batch mode. The fed-batch microtiter plate (FB-MTP) enables 44 parallel fed-batch experiments at small scale. A small channel filled with a hydrogel connects a reservoir well with a culture well. The nutrient compound diffuses from the reservoir well through the hydrogel into the culture well. Hence, the feed rate can easily be adjusted to the needs of the cultured microorganisms by changing the geometry of the hydrogel channel and the driving concentration gradient. Any desired compound including liquid nutrients like glycerol can be fed to the culture. In combination with an optical measuring device (BioLector), online monitoring of these 44 fed-batch cultures is possible. Two Escherichia coli strains and a Hansenula polymorpha strain were successfully cultivated in the new FB-MTP. As a positive impact of the fed-batch mode on the used strains, a fourfold increase in product formation was observed for E. coli. For H. polymorpha, the use of fed-batch mode resulted in a strong increase in product formation, whereas no measurable product formation was observed in batch mode. In conclusion, the newly developed fed-batch microtiter plate is a versatile, easy-to-use, disposable system to perform fed-batch cultivations at small scale. Screening cultures in high-throughput under online monitoring are possible similar to cultivations under production conditions.
Collapse
Affiliation(s)
- Anja Wilming
- grid.1957.a 000000010728696X AVT-Biochemical Engineering RWTH Aachen University Sammelbau Biologie, Worringerweg 1 52074 Aachen Germany
| | - Cornelia Bähr
- grid.1957.a 000000010728696X AVT-Biochemical Engineering RWTH Aachen University Sammelbau Biologie, Worringerweg 1 52074 Aachen Germany
| | - Claudia Kamerke
- grid.1957.a 000000010728696X AVT-Biochemical Engineering RWTH Aachen University Sammelbau Biologie, Worringerweg 1 52074 Aachen Germany
| | - Jochen Büchs
- grid.1957.a 000000010728696X AVT-Biochemical Engineering RWTH Aachen University Sammelbau Biologie, Worringerweg 1 52074 Aachen Germany
| |
Collapse
|
29
|
Ukkonen K, Mayer S, Vasala A, Neubauer P. Use of slow glucose feeding as supporting carbon source in lactose autoinduction medium improves the robustness of protein expression at different aeration conditions. Protein Expr Purif 2013; 91:147-54. [DOI: 10.1016/j.pep.2013.07.016] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Revised: 07/26/2013] [Accepted: 07/31/2013] [Indexed: 11/16/2022]
|