1
|
Kang X, Wang Y, Liang Q, Luo W. Enhancing Ergothioneine Production by Combined Protein and Metabolic Engineering Strategies. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:9234-9245. [PMID: 40181711 DOI: 10.1021/acs.jafc.5c01267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
Ergothioneine (ERG), a sulfur-containing histidine derivative recognized for its high stability, is of significant value across multiple sectors, including food, cosmetics, and medicine. In comparison to chemical synthesis, the establishment of microbial cell factories for ERG production represents a more efficient, environmentally friendly, and sustainable strategy. In this study, we achieved de novo synthesis of ERG in Escherichia coli by introducing genes from Trichoderma reesei. Protein engineering was subsequently employed to enable the soluble expression of the key genes Tr1 and Tr2, which resulted in a 198.1% increase in ERG production. Furthermore, strain modifications, including the knockout of competing pathways and optimization of key gene copies, were used to enhance ERG production. Following strategic combinations and medium optimization, strain E25 produced 430.9 mg/L ERG in an Erlenmeyer flask and 2331.58 mg/L via fed-batch fermentation in a 5 L bioreactor. This study not only establishes a solid foundation for the efficient and sustainable scale-up production of ERG and its derivatives but also provides valuable insights and references for its industrial production.
Collapse
Affiliation(s)
- Xiyue Kang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Yi Wang
- Department of Biological and Agricultural Engineering, University of California, Davis, 1 Shields Ave, Davis, California 95616, United States
| | - Quanfeng Liang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, PR China
| | - Wei Luo
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| |
Collapse
|
2
|
Guo M, Ling X, He L, Gou Y, Li Z, Li W. NapR Regulates the Expression of Phosphoserine Aminotransferase SerC to Modulate Biofilm Formation and Resistance to Serine Stress of Mycobacteria. Int J Mol Sci 2025; 26:2181. [PMID: 40076802 PMCID: PMC11899882 DOI: 10.3390/ijms26052181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Revised: 02/26/2025] [Accepted: 02/26/2025] [Indexed: 03/14/2025] Open
Abstract
Mycobacterium tuberculosis is a formidable pathogen capable of establishing persistent infections within macrophages. To survive and thrive within the host environment, it has evolved intricate regulatory networks, including a diverse array of transcription factors that enable adaptation to various stresses encountered within the host. However, the mechanisms by which transcription factors regulate biofilm formation in M. tuberculosis remain incompletely understood. This study aimed to investigate the role of serC, encoding phosphoserine aminotransferase, and its regulation by NapR, a transcription factor, in mycobacterial physiology. NapR regulates serC through directly binding to its promoter. Notably, the regulatory effect and corresponding phenotypes vary due to distinct binding affinities of NapR for the serC promoter in different mycobacterial species. In Mycobacterium smegmatis, NapRMsm positively regulates biofilm formation, growth on solid media, and the transition from microcolonies to microcolonies by activating serCMsm. In the BCG vaccine, on the contrary, NapRBCG represses serCBCG, thus negatively regulating colony size and alleviating the growth inhibition caused by high concentrations of serine. Furthermore, proteomic analysis suggested NapR serves as a global transcriptional regulator in BCG vaccine strains by simultaneously modulating four metabolic pathways. These findings underscore the complex and strain-specific regulatory mechanisms governing serine metabolism in mycobacteria and provide valuable insights into the interplay between metabolism, gene regulation, and bacterial physiology.
Collapse
Affiliation(s)
| | | | | | | | | | - Weihui Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| |
Collapse
|
3
|
Xu G, Zhang X, Xiao W, Shi J, Xu Z. Production of L-serine and its derivative L-cysteine from renewable feedstocks using Corynebacterium glutamicum: advances and perspectives. Crit Rev Biotechnol 2024; 44:448-461. [PMID: 36944486 DOI: 10.1080/07388551.2023.2170863] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 01/05/2023] [Indexed: 03/23/2023]
Abstract
L-serine and its derivative L-cysteine have broad industrial applications, and their direct fermentative production from renewable biomass is gaining increasing attention. Corynebacterium glutamicum is an extensively studied and well-established industrial microorganism, which is a predominant microbial host for producing amino acids. In this review, updated information on the genetics and molecular mechanisms underlying L-serine and L-cysteine production using C. glutamicum is presented, including their synthesis and degradation pathways, and other intracellular processes related to their production, as well as the mechanisms underlying substrate import and product export are also analyzed. Furthermore, metabolic strategies for strain improvement are systematically discussed, and conclusions and future perspectives for bio-based L-serine and L-cysteine production using C. glutamicum are presented. This review can provide a thorough understanding of L-serine and L-cysteine metabolic pathways to facilitate metabolic engineering modifications of C. glutamicum and development of more efficient industrial fermentation processes for L-serine and L-cysteine production.
Collapse
Affiliation(s)
- Guoqiang Xu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, China
- Yixing Institute of Food and Biotechnology Co., Ltd, Yixing, China
| | - Xiaomei Zhang
- Yixing Institute of Food and Biotechnology Co., Ltd, Yixing, China
- Laboratory of Pharmaceutical Engineering, School of Life Science and Health Engineering, Jiangnan University, Jiangnan University, Wuxi, China
| | - Wenhan Xiao
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, China
- Yixing Institute of Food and Biotechnology Co., Ltd, Yixing, China
| | - Jinsong Shi
- Yixing Institute of Food and Biotechnology Co., Ltd, Yixing, China
- Laboratory of Pharmaceutical Engineering, School of Life Science and Health Engineering, Jiangnan University, Jiangnan University, Wuxi, China
| | - Zhenghong Xu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, China
- Yixing Institute of Food and Biotechnology Co., Ltd, Yixing, China
| |
Collapse
|
4
|
Chen Z, Li Q, Zhou P, Li B, Zhao Z. Transcriptome sequencing reveals key metabolic pathways for the synthesis of L-serine from glycerol and glucose in Escherichia coli. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
5
|
Kim M, Jeong DW, Oh JW, Jeong HJ, Ko YJ, Park SE, Han SO. Efficient Synthesis of Food-Derived Antioxidant l-Ergothioneine by Engineered Corynebacterium glutamicum. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:1516-1524. [PMID: 35088592 DOI: 10.1021/acs.jafc.1c07541] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
l-Ergothioneine (EGT) is a strong antioxidant used in industry, and it is commonly extracted from mushrooms; however, its production is limited. As an alternative, we developed metabolically engineered Corynebacterium glutamicum with reinforced sulfur assimilation and pentose phosphate pathways, which led to the accumulation of 45.0 and 63.2 mg/L EGT, respectively. Additionally, the overexpression of cysEKR resulted in further promoted EGT production in ET4 (66.5 mg/L) and ET7 (85.0 mg/L). Based on this result, we developed the strain ET11, in which all sulfur assimilatory, PP, and l-cysteine synthetic pathways were reinforced, and it synthesized 264.4 mg/L EGT. This study presents the first strategy for EGT synthesis that does not require precursor addition in C. glutamicum, and the production time was shortened. In addition, the synthesized EGT showed high radical scavenging activity (70.7%), thus confirming its antioxidant function. Consequently, this study showed the possibility of EGT commercialization by overcoming the limitations of industrial processes.
Collapse
Affiliation(s)
- Minhye Kim
- Department of Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Da Woon Jeong
- Department of Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Jun Won Oh
- Department of Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Hyun Jin Jeong
- Department of Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Young Jin Ko
- Department of Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Sung Eun Park
- Department of Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Sung Ok Han
- Department of Biotechnology, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|
6
|
Shimizu K, Matsuoka Y. Feedback regulation and coordination of the main metabolism for bacterial growth and metabolic engineering for amino acid fermentation. Biotechnol Adv 2021; 55:107887. [PMID: 34921951 DOI: 10.1016/j.biotechadv.2021.107887] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 12/05/2021] [Accepted: 12/09/2021] [Indexed: 12/28/2022]
Abstract
Living organisms such as bacteria are often exposed to continuous changes in the nutrient availability in nature. Therefore, bacteria must constantly monitor the environmental condition, and adjust the metabolism quickly adapting to the change in the growth condition. For this, bacteria must orchestrate (coordinate and integrate) the complex and dynamically changing information on the environmental condition. In particular, the central carbon metabolism (CCM), monomer synthesis, and macromolecular synthesis must be coordinately regulated for the efficient growth. It is a grand challenge in bioscience, biotechnology, and synthetic biology to understand how living organisms coordinate the metabolic regulation systems. Here, we consider the integrated sensing of carbon sources by the phosphotransferase system (PTS), and the feed-forward/feedback regulation systems incorporated in the CCM in relation to the pool sizes of flux-sensing metabolites and αketoacids. We also consider the metabolic regulation of amino acid biosynthesis (as well as purine and pyrimidine biosyntheses) paying attention to the feedback control systems consisting of (fast) enzyme level regulation with (slow) transcriptional regulation. The metabolic engineering for the efficient amino acid production by bacteria such as Escherichia coli and Corynebacterium glutamicum is also discussed (in relation to the regulation mechanisms). The amino acid synthesis is important for determining the rate of ribosome biosynthesis. Thus, the growth rate control (growth law) is further discussed on the relationship between (p)ppGpp level and the ribosomal protein synthesis.
Collapse
Affiliation(s)
- Kazuyuki Shimizu
- Kyushu institute of Technology, Iizuka, Fukuoka 820-8502, Japan; Institute of Advanced Biosciences, Keio University, Tsuruoka, Yamagata 997-0017, Japan.
| | - Yu Matsuoka
- Department of Fisheries Distribution and Management, National Fisheries University, Shimonoseki, Yamaguchi 759-6595, Japan
| |
Collapse
|
7
|
Tong Q, Li Y, Wang S, Yan S. High-Throughput Screening of Streptomyces virginiae Strains Using Microtiter Plates for the High-Titer Production of Virginiamycin. ANAL LETT 2019. [DOI: 10.1080/00032719.2019.1700516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Qianqian Tong
- Bioengineering School, Huainan Normal University, Huainan, China
- Key Laboratory of Bioresource and Environmental Biotechnology of Anhui Higher Education Institutes, Huainan Normal University, Huainan, China
| | - Yaliang Li
- Bioengineering School, Huainan Normal University, Huainan, China
- Key Laboratory of Bioresource and Environmental Biotechnology of Anhui Higher Education Institutes, Huainan Normal University, Huainan, China
| | - Shunchang Wang
- Bioengineering School, Huainan Normal University, Huainan, China
- Key Laboratory of Bioresource and Environmental Biotechnology of Anhui Higher Education Institutes, Huainan Normal University, Huainan, China
| | - Shoubao Yan
- Bioengineering School, Huainan Normal University, Huainan, China
- Key Laboratory of Bioresource and Environmental Biotechnology of Anhui Higher Education Institutes, Huainan Normal University, Huainan, China
| |
Collapse
|
8
|
Xu G, Zha J, Cheng H, Ibrahim MHA, Yang F, Dalton H, Cao R, Zhu Y, Fang J, Chi K, Zheng P, Zhang X, Shi J, Xu Z, Gross RA, Koffas MAG. Engineering Corynebacterium glutamicum for the de novo biosynthesis of tailored poly-γ-glutamic acid. Metab Eng 2019; 56:39-49. [PMID: 31449877 DOI: 10.1016/j.ymben.2019.08.011] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 08/15/2019] [Accepted: 08/17/2019] [Indexed: 11/17/2022]
Abstract
γ-Polyglutamic acid (γ-PGA) is a biodegradable polymer naturally produced by Bacillus spp. that has wide applications. Fermentation of γ-PGA using Bacillus species often requires the supplementation of L-glutamic acid, which greatly increases the overall cost. Here, we report a metabolically engineered Corynebacterium glutamicum capable of producing γ-PGA from glucose. The genes encoding γ-PGA synthase complex from B. subtilis (pgsB, C, and A) or B. licheniformis (capB, C, and A) were expressed under inducible promoter Ptac in a L-glutamic acid producer C. glutamicum ATCC 13032, which led to low levels of γ-PGA production. Subsequently, C. glutamicum F343 with a strong L-glutamic acid production capability was tested. C. glutamicum F343 carrying capBCA produced γ-PGA up to 11.4 g/L, showing a higher titer compared with C. glutamicum F343 expressing pgsBCA. By introducing B. subtilis glutamate racemase gene racE under Ptac promoter mutants with different expression strength, the percentage of L-glutamic acid units in γ-PGA could be adjusted from 97.1% to 36.9%, and stayed constant during the fermentation process, while the γ-PGA titer reached 21.3 g/L under optimal initial glucose concentrations. The molecular weight (Mw) of γ-PGA in the engineered strains ranged from 2000 to 4000 kDa. This work provides a foundation for the development of sustainable and cost-effective de novo production of γ-PGA from glucose with customized ratios of L-glutamic acid in C. glutamicum.
Collapse
Affiliation(s)
- Guoqiang Xu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, Jiangsu, 214122, China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China; Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, United States; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, China
| | - Jian Zha
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, United States
| | - Hui Cheng
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, Jiangsu, 214122, China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, China
| | - Mohammad H A Ibrahim
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, United States; Chemistry of Natural and Microbial Products Department, National Research Centre, Al-Bohoos St., Cairo, 12622, Egypt
| | - Fan Yang
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, United States
| | - Hunter Dalton
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, United States
| | - Rong Cao
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, Jiangsu, 214122, China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, China
| | - Yaxin Zhu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, Jiangsu, 214122, China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, China
| | - Jiahua Fang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, Jiangsu, 214122, China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, China
| | - Kaijun Chi
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, Jiangsu, 214122, China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, China
| | - Pu Zheng
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Xiaomei Zhang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, Jiangsu, 214122, China; Laboratory of Pharmaceutical Engineering, School of Pharmaceutics, Jiangnan University, Wuxi, 214122, China
| | - Jinsong Shi
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, Jiangsu, 214122, China; Laboratory of Pharmaceutical Engineering, School of Pharmaceutics, Jiangnan University, Wuxi, 214122, China
| | - Zhenghong Xu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, Jiangsu, 214122, China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, China; Laboratory of Pharmaceutical Engineering, School of Pharmaceutics, Jiangnan University, Wuxi, 214122, China.
| | - Richard A Gross
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, United States; Chemistry of Natural and Microbial Products Department, National Research Centre, Al-Bohoos St., Cairo, 12622, Egypt; Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA.
| | - Mattheos A G Koffas
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, Jiangsu, 214122, China; Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, United States; Chemistry of Natural and Microbial Products Department, National Research Centre, Al-Bohoos St., Cairo, 12622, Egypt; Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA; Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY, USA.
| |
Collapse
|
9
|
Tran KNT, Eom GT, Hong SH. Improving L-serine production in Escherichia coli via synthetic protein scaffold of SerB, SerC, and EamA. Biochem Eng J 2019. [DOI: 10.1016/j.bej.2019.05.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
10
|
Zhang X, Zhang D, Zhu J, Liu W, Xu G, Zhang X, Shi J, Xu Z. High-yield production of L-serine from glycerol by engineered Escherichia coli. J Ind Microbiol Biotechnol 2019; 46:221-230. [PMID: 30600411 DOI: 10.1007/s10295-018-2113-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 11/20/2018] [Indexed: 01/19/2023]
Abstract
L-Serine is widely used in pharmaceutical, food and cosmetic industries, and the direct fermentation to produce L-serine from cheap carbon sources such as glycerol is greatly desired. The production of L-serine by engineered Escherichia coli from glycerol has not been achieved so far. In this study, E. coli was engineered to efficiently produce L-serine from glycerol. To this end, three L-serine deaminase genes were deleted in turn, and all of the deletions caused the maximal accumulation of L-serine at 0.06 g/L. Furthermore, removal of feedback inhibition by L-serine resulted in a titer of 1.1 g/L. Additionally, adaptive laboratory evolution was employed to improve glycerol utilization in combination with the overexpression of the cysteine/acetyl serine transporter gene eamA, leading to 2.36 g/L L-serine (23.6% of the theoretical yield). In 5-L bioreactor, L-serine titer could reach up to 7.53 g/L from glycerol, demonstrating the potential of the established strain and bioprocess.
Collapse
Affiliation(s)
- Xiaomei Zhang
- Laboratory of Pharmaceutical Engineering, School of Pharmaceutics Science, Jiangnan University, Wuxi, People's Republic of China
| | - Dong Zhang
- Laboratory of Pharmaceutical Engineering, School of Pharmaceutics Science, Jiangnan University, Wuxi, People's Republic of China
| | - Jiafen Zhu
- Laboratory of Pharmaceutical Engineering, School of Pharmaceutics Science, Jiangnan University, Wuxi, People's Republic of China
| | - Wang Liu
- Laboratory of Pharmaceutical Engineering, School of Pharmaceutics Science, Jiangnan University, Wuxi, People's Republic of China
| | - Guoqiang Xu
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, 214122, People's Republic of China.,The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, People's Republic of China
| | - Xiaojuan Zhang
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, 214122, People's Republic of China.,The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, People's Republic of China
| | - Jinsong Shi
- Laboratory of Pharmaceutical Engineering, School of Pharmaceutics Science, Jiangnan University, Wuxi, People's Republic of China
| | - Zhenghong Xu
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, 214122, People's Republic of China. .,The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, People's Republic of China.
| |
Collapse
|
11
|
Microbial Production of l-Serine from Renewable Feedstocks. Trends Biotechnol 2018; 36:700-712. [DOI: 10.1016/j.tibtech.2018.02.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 01/30/2018] [Accepted: 02/01/2018] [Indexed: 11/21/2022]
|
12
|
Zhang X, Zhang X, Xu G, Zhang X, Shi J, Xu Z. Integration of ARTP mutagenesis with biosensor-mediated high-throughput screening to improve l-serine yield in Corynebacterium glutamicum. Appl Microbiol Biotechnol 2018; 102:5939-5951. [DOI: 10.1007/s00253-018-9025-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 03/31/2018] [Accepted: 04/14/2018] [Indexed: 12/31/2022]
|
13
|
Zou Y, Chen T, Feng L, Zhang S, Xing D, Wang Z. Enhancement of 5-aminolevulinic acid production by metabolic engineering of the glycine biosynthesis pathway in Corynebacterium glutamicum. Biotechnol Lett 2017; 39:1369-1374. [DOI: 10.1007/s10529-017-2362-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 05/18/2017] [Indexed: 11/30/2022]
|
14
|
Zhang X, Lai L, Xu G, Zhang X, Shi J, Xu Z. Effects of pyruvate kinase on the growth of Corynebacterium glutamicum and L-serine accumulation. Process Biochem 2017. [DOI: 10.1016/j.procbio.2017.01.028] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
15
|
Enhancement of fructose utilization from sucrose in the cell for improved l-serine production in engineered Corynebacterium glutamicum. Biochem Eng J 2017. [DOI: 10.1016/j.bej.2016.11.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
16
|
Yang J, Yang S. Comparative analysis of Corynebacterium glutamicum genomes: a new perspective for the industrial production of amino acids. BMC Genomics 2017; 18:940. [PMID: 28198668 PMCID: PMC5310272 DOI: 10.1186/s12864-016-3255-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background Corynebacterium glutamicum is a non-pathogenic bacterium widely used in industrial amino acid production and metabolic engineering research. Although the genome sequences of some C. glutamicum strains are available, comprehensive comparative genome analyses of these species have not been done. Six wild type C. glutamicum strains were sequenced using next-generation sequencing technology in our study. Together with 20 previously reported strains, we present a comprehensive comparative analysis of C. glutamicum genomes. Results By average nucleotide identity (ANI) analysis, we show that 10 strains, which were previously classified either in the genus Brevibacterium, or as some other species within the genus Corynebacterium, should be reclassified as members of the species C. glutamicum. C. glutamicum has an open pan-genome with 2359 core genes. An additional NAD+/NADP+ specific glutamate dehydrogenase (GDH) gene (gdh) was identified in the glutamate synthesis pathway of some C. glutamicum strains. For analyzing variations related to amino acid production, we have developed an efficient pipeline that includes three major steps: multi locus sequence typing (MLST), phylogenomic analysis based on single nucleotide polymorphisms (SNPs), and a thorough comparison of all genomic variation amongst ancestral or closely related wild type strains. This combined approach can provide new perspectives on the industrial use of C. glutamicum. Conclusions This is the first comprehensive comparative analysis of C. glutamicum genomes at the pan-genomic level. Whole genome comparison provides definitive evidence for classifying the members of this species. Identifying an aditional gdh gene in some C. glutamicum strains may accelerate further research on glutamate synthesis. Our proposed pipeline can provide a clear perspective, including the presumed ancestor, the strain breeding trajectory, and the genomic variations necessary to increase amino acid production in C. glutamicum. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-3255-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Junjie Yang
- Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032, China.,Shanghai Research Center of Industrial Biotechnology, Shanghai, 201201, China.,Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing, 211816, China
| | - Sheng Yang
- Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032, China. .,Shanghai Research Center of Industrial Biotechnology, Shanghai, 201201, China. .,Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing, 211816, China.
| |
Collapse
|
17
|
Guo W, Chen Z, Zhang X, Xu G, Zhang X, Shi J, Xu Z. A novel aceE mutation leading to a better growth profile and a higher l-serine production in a high-yield l-serine-producing Corynebacterium glutamicum strain. ACTA ACUST UNITED AC 2016; 43:1293-301. [DOI: 10.1007/s10295-016-1801-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 06/20/2016] [Indexed: 10/21/2022]
Abstract
Abstract
A comparative genomic analysis was performed to study the genetic variations between the l-serine-producing strain Corynebacterium glutamicum SYPS-062 and the mutant strain SYPS-062-33a, which was derived from SYPS-062 by random mutagenesis with enhanced l-serine production. Some variant genes between the two strains were reversely mutated or deleted in the genome of SYPS-062-33a to verify the influences of the gene mutations introduced by random mutagenesis. It was found that a His-594 → Tyr mutation in aceE was responsible for the more accumulation of by-products, such as l-alanine and l-valine, in SYPS-062-33a. Furthermore, the influence of this point mutation on the l-serine production was investigated, and the results suggested that this point mutation led to a better growth profile and a higher l-serine production in the high-yield strain 33a∆SSAAI, which was derived from SYPS-062-33a by metabolic engineering with the highest l-serine production to date.
Collapse
Affiliation(s)
- Wen Guo
- grid.258151.a 0000000107081323 Laboratory of Pharmaceutical Engineering, School of Pharmaceutics Science Jiangnan University 214122 Wuxi People’s Republic of China
- grid.258151.a 0000000107081323 The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology Jiangnan University 214122 Wuxi People’s Republic of China
| | - Ziwei Chen
- grid.258151.a 0000000107081323 Laboratory of Pharmaceutical Engineering, School of Pharmaceutics Science Jiangnan University 214122 Wuxi People’s Republic of China
- grid.258151.a 0000000107081323 The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology Jiangnan University 214122 Wuxi People’s Republic of China
| | - Xiaomei Zhang
- grid.258151.a 0000000107081323 Laboratory of Pharmaceutical Engineering, School of Pharmaceutics Science Jiangnan University 214122 Wuxi People’s Republic of China
- grid.258151.a 0000000107081323 The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology Jiangnan University 214122 Wuxi People’s Republic of China
| | - Guoqiang Xu
- grid.258151.a 0000000107081323 Laboratory of Pharmaceutical Engineering, School of Pharmaceutics Science Jiangnan University 214122 Wuxi People’s Republic of China
- grid.258151.a 0000000107081323 National Engineering Laboratory for Cereal Fermentation Technology Jiangnan University 214122 Wuxi People’s Republic of China
| | - Xiaojuan Zhang
- grid.258151.a 0000000107081323 Laboratory of Pharmaceutical Engineering, School of Pharmaceutics Science Jiangnan University 214122 Wuxi People’s Republic of China
| | - Jinsong Shi
- grid.258151.a 0000000107081323 Laboratory of Pharmaceutical Engineering, School of Pharmaceutics Science Jiangnan University 214122 Wuxi People’s Republic of China
- grid.258151.a 0000000107081323 The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology Jiangnan University 214122 Wuxi People’s Republic of China
| | - Zhenghong Xu
- grid.258151.a 0000000107081323 Laboratory of Pharmaceutical Engineering, School of Pharmaceutics Science Jiangnan University 214122 Wuxi People’s Republic of China
- grid.258151.a 0000000107081323 The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology Jiangnan University 214122 Wuxi People’s Republic of China
| |
Collapse
|