1
|
Decoene I, Svitina H, Belal Hamed M, Economou A, Stegen S, Luyten FP, Papantoniou I. Callus organoids reveal distinct cartilage to bone transition mechanisms across donors and a role for biological sex. Bone Res 2025; 13:41. [PMID: 40140357 PMCID: PMC11947321 DOI: 10.1038/s41413-025-00418-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 01/29/2025] [Accepted: 02/20/2025] [Indexed: 03/28/2025] Open
Abstract
Clinical translation of tissue-engineered advanced therapeutic medicinal products is hindered by a lack of patient-dependent and independent in-process biological quality controls that are reflective of in vivo outcomes. Recent insights into the mechanism of native bone repair highlight a robust path dependence. Organoid-based bottom-up developmental engineering mimics this path-dependence to design personalized living implants scaffold-free, with in-build outcome predictability. Yet, adequate (noninvasive) quality metrics of engineered tissues are lacking. Moreover, insufficient insight into the role of donor variability and biological sex as influencing factors for the mechanism toward bone repair hinders the implementation of such protocols for personalized bone implants. Here, male and female bone-forming organoids were compared to non-bone-forming organoids regarding their extracellular matrix composition, transcriptome, and secreted proteome signatures to directly link in vivo outcomes to quality metrics. As a result, donor variability in bone-forming callus organoids pointed towards two distinct pathways to bone, through either a hypertrophic cartilage or a fibrocartilaginous template. The followed pathway was determined early, as a biological sex-dependent activation of distinct progenitor populations. Independent of donor or biological sex, a cartilage-to-bone transition was driven by a common panel of secreted factors that played a role in extracellular matrix remodeling, mineralization, and attraction of vasculature. Hence, the secreted proteome is a source of noninvasive biomarkers that report on biological potency and could be the missing link toward data-driven decision-making in organoid-based bone tissue engineering.
Collapse
Affiliation(s)
- Isaak Decoene
- Skeletal Biology and Engineering Research Center, Department of Development and Regeneration, KU Leuven, O&N1, Herestraat 49, box 813, 3000, Leuven, Belgium
- Prometheus Translational Division of Skeletal Tissue Engineering, KU Leuven, O&N1, Herestraat 49, box 813, 3000, Leuven, Belgium
| | - Hanna Svitina
- Skeletal Biology and Engineering Research Center, Department of Development and Regeneration, KU Leuven, O&N1, Herestraat 49, box 813, 3000, Leuven, Belgium
- Prometheus Translational Division of Skeletal Tissue Engineering, KU Leuven, O&N1, Herestraat 49, box 813, 3000, Leuven, Belgium
| | - Mohamed Belal Hamed
- Laboratory of Molecular Bacteriology, Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Herestraat 49, 3000, Leuven, Belgium
- Molecular Biology Department, National Research Centre, 33 El Buhouth st, Dokii, 12622, Cairo, Egypt
- Department of Neurosciences, Leuven Research Institute for Neuroscience and Disease (LIND), KU Leuven, VIB-KU Leuven Center for Brain & Disease Research, Herestraat, 3000, Leuven, Belgium
| | - Anastassios Economou
- Laboratory of Molecular Bacteriology, Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Steve Stegen
- Prometheus Translational Division of Skeletal Tissue Engineering, KU Leuven, O&N1, Herestraat 49, box 813, 3000, Leuven, Belgium
- Laboratory of Clinical and Experimental Endocrinology, Department of Chronic Diseases and Metabolism (CHROMETA), KU Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Frank P Luyten
- Skeletal Biology and Engineering Research Center, Department of Development and Regeneration, KU Leuven, O&N1, Herestraat 49, box 813, 3000, Leuven, Belgium
- Prometheus Translational Division of Skeletal Tissue Engineering, KU Leuven, O&N1, Herestraat 49, box 813, 3000, Leuven, Belgium
| | - Ioannis Papantoniou
- Skeletal Biology and Engineering Research Center, Department of Development and Regeneration, KU Leuven, O&N1, Herestraat 49, box 813, 3000, Leuven, Belgium.
- Prometheus Translational Division of Skeletal Tissue Engineering, KU Leuven, O&N1, Herestraat 49, box 813, 3000, Leuven, Belgium.
- Institute for Chemical Engineering Sciences, Foundation for Research and Technology-Hellas (FORTH), Stadiou Street, Platani, box 1414, 26504, Patras, Greece.
| |
Collapse
|
2
|
Szarzynski A, Spadiut O, Reisbeck M, Jobst G, Paterson RL, Kamenskaya A, Gateau E, Lesch HP, Henry L, Kozma B. CGT 4.0: a distant dream or inevitable future? Smart process automation is critical to make efficient scalability of CGT manufacturing a reality. Front Bioeng Biotechnol 2025; 13:1563878. [PMID: 40177621 PMCID: PMC11962537 DOI: 10.3389/fbioe.2025.1563878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Accepted: 03/07/2025] [Indexed: 04/05/2025] Open
Affiliation(s)
- Aleksander Szarzynski
- Research Unit of Biochemical Engineering, Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Vienna, Austria
| | - Oliver Spadiut
- Research Unit of Biochemical Engineering, Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Vienna, Austria
| | | | | | - Rachel L. Paterson
- Stemmatters Biotecnologia e Medicina Regenerativa SA, Guimarães, Portugal
| | | | | | | | | | - Bence Kozma
- Research Unit of Biochemical Engineering, Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Vienna, Austria
| |
Collapse
|
3
|
Patel D, Reese Koç J, Otegbeye F. Creating a GMP cell processing program: A focus on quality and regulation. Best Pract Res Clin Haematol 2025; 38:101614. [PMID: 40274340 DOI: 10.1016/j.beha.2025.101614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 03/21/2025] [Accepted: 03/27/2025] [Indexed: 04/26/2025]
Abstract
Implementing current Good Manufacturing Practice (GMP) regulations and principles even in early phases of cell-based therapy studies is crucial for ensuring safety and reproducible quality of these products. This paper outlines the comprehensive steps necessary to establish a robust GMP-compliant cell processing program in academic programs with emphases on adherence to regulatory and quality standards. While there are different regulatory agencies governing practice across the globe, the prevailing quality principles described here incorporate common requirements and guidelines from agencies such as the United States Food and Drug Administration (FDA) and the European Medicines Agency (EMA). The goal of this review is to provide guidance for developing a quality management program (QMP) that addresses all critical factors impacting each step in the cell therapy product lifecycle: from procurement and receipt of starter material, through manufacturing, testing, storage, distribution, and administration. The QMP should be designed to assure quality outcomes by maintaining qualified and trained staff at all levels as applicable to their job functions; establishing clear policies and procedures; ensuring the qualification of facilities and equipment; using qualified materials for human use; and providing a framework for detection of trends and implementing process improvement.
Collapse
Affiliation(s)
- Darshan Patel
- Therapeutic Products Program, Fred Hutchinson Cancer Center, 1100 Fairview Ave. N, Seattle, WA, 98109, USA.
| | - Jane Reese Koç
- Cellular Therapy Service, Seidman Cancer Center Wesley Immunotherapy Center, 2103 Cornell Road, Cleveland, OH, 44106, USA.
| | - Folashade Otegbeye
- Translational Science and Therapeutics Division, Therapeutic Products Program, Fred Hutchinson Cancer Center, 1100 Fairview Ave. N, Seattle, WA, 98109, USA.
| |
Collapse
|
4
|
Kuchemüller KB, Pörtner R, Möller J. Implementation of mDoE-methods to a microcarrier-based expansion processes for mesenchymal stem cells. Biotechnol Prog 2024; 40:e3429. [PMID: 38334218 DOI: 10.1002/btpr.3429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 01/01/2024] [Accepted: 01/03/2024] [Indexed: 02/10/2024]
Abstract
The need for advanced therapy medicinal products (ATMPs) has gained increased attention in recent years. In this respect, a well-designed cell expansion process is needed to efficiently manufacture the required number of cells with the desired product quality. This step is challenging due to the biological complexity of the respective primary cell (e.g., mesenchymal stem cells (MSC)) and the usage of microcarrier-based expansion systems. One accelerating approach for process design is model-assisted Design of Experiments (mDoE) combining mathematical process models and statistical tools. In this study, the mDoE workflow was used for the development of an expansion processes with human immortalized mesenchymal stem cells (hMSC-TERT) and the aim of maximizing cell yield assuming only a limited amount of prior knowledge at a very early stage of development. First, suitable microcarriers for expansion in shake flasks were screened and the differentiation of the cells was proven. Second, initial experiments were performed to generate prior knowledge, which was then used to set up the mathematical model and to estimate the model parameters. Finally, the mDoE was used to determine and evaluate the design space to be performed experimentally. Overall, a cell expansion process using microcarriers in a shake flask culture was successfully implemented and a significant increase in cell yield (up to 6,2-fold) was achieved compared to literature.
Collapse
Affiliation(s)
- Kim B Kuchemüller
- Institute of Bioprocess and Biosystems Engineering, Hamburg University of Technology, Hamburg, Germany
| | - Ralf Pörtner
- Institute of Bioprocess and Biosystems Engineering, Hamburg University of Technology, Hamburg, Germany
| | - Johannes Möller
- Institute of Bioprocess and Biosystems Engineering, Hamburg University of Technology, Hamburg, Germany
| |
Collapse
|
5
|
Teryek M, Jadhav P, Bento R, Parekkadan B. 3D microcapsules for human bone marrow-derived mesenchymal stem cell biomanufacturing in a vertical-wheel bioreactor. BIOTECHNOL BIOPROC E 2024. [DOI: 10.1007/s12257-024-00069-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 05/01/2023] [Accepted: 05/28/2023] [Indexed: 01/06/2025]
|
6
|
Gill JK, Rehsia SK, Verma E, Sareen N, Dhingra S. Stem cell therapy for cardiac regeneration: past, present, and future. Can J Physiol Pharmacol 2024; 102:161-179. [PMID: 38226807 DOI: 10.1139/cjpp-2023-0202] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
Cardiac disorders remain the leading cause of mortality worldwide. Current clinical strategies, including drug therapy, surgical interventions, and organ transplantation offer limited benefits to patients without regenerating the damaged myocardium. Over the past decade, stem cell therapy has generated a keen interest owing to its unique self-renewal and immune privileged characteristics. Furthermore, the ability of stem cells to differentiate into specialized cell types, has made them a popular therapeutic tool against various diseases. This comprehensive review provides an overview of therapeutic potential of different types of stem cells in reference to cardiovascular diseases. Furthermore, it sheds light on the advantages and limitations associated with each cell type. An in-depth analysis of the challenges associated with stem cell research and the hurdles for its clinical translation and their possible solutions have also been elaborated upon. It examines the controversies surrounding embryonic stem cells and the emergence of alternative approaches, such as the use of induced pluripotent stem cells for cardiac therapeutic applications. Overall, this review serves as a valuable resource for researchers, clinicians, and policymakers involved in the field of regenerative medicine, guiding the development of safe and effective stem cell-based therapies to revolutionize patient care.
Collapse
Affiliation(s)
- Jaideep Kaur Gill
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre Regenerative Medicine Program, Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, Biomedical Engineering Program, University of Manitoba, Winnipeg MB, R2H2A6, Canada
| | - Sargun Kaur Rehsia
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre Regenerative Medicine Program, Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, Biomedical Engineering Program, University of Manitoba, Winnipeg MB, R2H2A6, Canada
| | - Elika Verma
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre Regenerative Medicine Program, Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, Biomedical Engineering Program, University of Manitoba, Winnipeg MB, R2H2A6, Canada
| | - Niketa Sareen
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre Regenerative Medicine Program, Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, Biomedical Engineering Program, University of Manitoba, Winnipeg MB, R2H2A6, Canada
| | - Sanjiv Dhingra
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre Regenerative Medicine Program, Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, Biomedical Engineering Program, University of Manitoba, Winnipeg MB, R2H2A6, Canada
| |
Collapse
|
7
|
Roberts EL, Lepage SIM, Koch TG, Kallos MS. Bioprocess development for cord blood mesenchymal stromal cells on microcarriers in Vertical-Wheel bioreactors. Biotechnol Bioeng 2024; 121:192-205. [PMID: 37772415 DOI: 10.1002/bit.28557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 08/30/2023] [Accepted: 09/07/2023] [Indexed: 09/30/2023]
Abstract
Equine mesenchymal stromal cells (MSCs) have been found to be beneficial for the treatment of many ailments, including orthopedic injuries, due to their superior differentiation potential and immunomodulating properties. Cell therapies require large cell numbers, which are not efficiently generated using conventional static expansion methods. Expansion of equine cord blood-derived MSCs (eCB-MSCs) in bioreactors, using microcarriers as an attachment surface, has the potential to generate large numbers of cells with increased reproducibility and homogeneity compared with static T-flask expansion. This study investigated the development of an expansion process using Vertical-Wheel (VW) bioreactors, a single-use bioreactor technology that incorporates a wheel instead of an impeller. Initially, microcarriers were screened at small scale to assess eCB-MSC attachment and growth and then in bioreactors to assess cell expansion and harvesting. The effect of different donors, serial passaging, and batch versus fed batch were all examined in 0.1 L VW bioreactors. The use of VW bioreactors with an appropriate microcarrier was shown to be able to produce cell densities of up to 1E6 cells/mL, while maintaining cell phenotype and functionality, thus demonstrating great potential for the use of these bioreactors to produce large cell numbers for cell therapies.
Collapse
Affiliation(s)
- Erin L Roberts
- Pharmaceutical Production Research Facility, Schulich School of Engineering, University of Calgary, Calgary, Alberta, Canada
- Department of Biomedical Engineering, Schulich School of Engineering, University of Calgary, Calgary, Alberta, Canada
| | - Sarah I M Lepage
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Thomas G Koch
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Michael S Kallos
- Pharmaceutical Production Research Facility, Schulich School of Engineering, University of Calgary, Calgary, Alberta, Canada
- Department of Biomedical Engineering, Schulich School of Engineering, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
8
|
Teryek M, Jadhav P, Bento R, Parekkadan B. High-Throughput Production of Microcapsules for Human Bone Marrow Derived Mesenchymal Stem Cell Biomanufacturing in a Vertical-Wheel Bioreactor. BIOTECHNOL BIOPROC E 2023; 28:528-544. [DOI: 10.1007/s12257-023-0020-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 05/02/2023] [Accepted: 05/28/2023] [Indexed: 01/06/2025]
|
9
|
Park J, Jeong K, Kim M, Kim W, Park JH. Enhanced osteogenesis of human urine-derived stem cells by direct delivery of 30Kc19α-Lin28A protein. Front Bioeng Biotechnol 2023; 11:1215087. [PMID: 37383520 PMCID: PMC10293758 DOI: 10.3389/fbioe.2023.1215087] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 06/05/2023] [Indexed: 06/30/2023] Open
Abstract
Urine-derived stem cells (USCs) are a promising source for regenerative medicine because of their advantages such as easy and non-invasive collection from the human body, stable expansion, and the potential to differentiate into multiple lineages, including osteoblasts. In this study, we propose a strategy to enhance the osteogenic potential of human USCs using Lin28A, a transcription factor that inhibits let-7 miRNA processing. To address concerns regarding the safety of foreign gene integration and potential risk of tumorigenicity, we intracellularly delivered Lin28A as a recombinant protein fused with a cell-penetrating and protein-stabilizing protein, 30Kc19α. 30Kc19α-Lin28A fusion protein exhibited improved thermal stability and was delivered into USCs without significant cytotoxicity. 30Kc19α-Lin28A treatment elevated calcium deposition and upregulated several osteoblast-specific gene expressions in USCs derived from multiple donors. Our results indicate that intracellularly delivered 30Kc19α-Lin28A enhances the osteoblastic differentiation of human USCs by affecting the transcriptional regulatory network involved in metabolic reprogramming and stem cell potency. Therefore, 30Kc19α-Lin28A may provide a technical advancement toward developing clinically feasible strategies for bone regeneration.
Collapse
|
10
|
Teryek M, Jadhav P, Bento R, Parekkadan B. 3D Microcapsules for Human Bone Marrow Derived Mesenchymal Stem Cell Biomanufacturing in a Vertical-Wheel Bioreactor. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.16.528656. [PMID: 36824906 PMCID: PMC9949076 DOI: 10.1101/2023.02.16.528656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Microencapsulation of human mesenchymal stromal cells (MSCs) via electrospraying has been well documented in tissue engineering and regenerative medicine. Herein, we report the use of microencapsulation, via electrospraying, for MSC expansion using a commercially available hydrogel that is durable, optimized to MSC culture, and enzymatically degradable for cell recovery. Critical parameters of the electrospraying encapsulation process such as seeding density, correlation of microcapsule output with hydrogel volume, and applied voltage were characterized to consistently fabricate cell-laden microcapsules of uniform size. Upon encapsulation, we then verified ~ 10x expansion of encapsulated MSCs within a vertical-wheel bioreactor and the preservation of critical quality attributes such as immunophenotype and multipotency after expansion and cell recovery. Finally, we highlight the genetic manipulation of encapsulated MSCs as an example of incorporating bioactive agents in the capsule material to create new compositions of MSCs with altered phenotypes.
Collapse
Affiliation(s)
- Matthew Teryek
- Department of Biomedical Engineering, Rutgers University, Piscataway, New Jersey 08854, USA
| | - Pankaj Jadhav
- Department of Chemical and Biochemical Engineering, Rutgers University, Piscataway, New Jersey 08854, USA
| | - Raphaela Bento
- Department of Biomedical Engineering, Rutgers University, Piscataway, New Jersey 08854, USA
| | - Biju Parekkadan
- Department of Biomedical Engineering, Rutgers University, Piscataway, New Jersey 08854, USA
| |
Collapse
|
11
|
Hohenwallner K, Troppmair N, Panzenboeck L, Kasper C, El Abiead Y, Koellensperger G, Lamp LM, Hartler J, Egger D, Rampler E. Decoding Distinct Ganglioside Patterns of Native and Differentiated Mesenchymal Stem Cells by a Novel Glycolipidomics Profiling Strategy. JACS AU 2022; 2:2466-2480. [PMID: 36465531 PMCID: PMC9709940 DOI: 10.1021/jacsau.2c00230] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 10/01/2022] [Accepted: 10/03/2022] [Indexed: 06/17/2023]
Abstract
Gangliosides are an indispensable glycolipid class concentrated on cell surfaces with a critical role in stem cell differentiation. Nonetheless, owing to the lack of suitable methods for scalable analysis covering the full scope of ganglioside molecular diversity, their mechanistic properties in signaling and differentiation remain undiscovered to a large extent. This work introduces a sensitive and comprehensive ganglioside assay based on liquid chromatography, high-resolution mass spectrometry, and multistage fragmentation. Complemented by an open-source data evaluation workflow, we provide automated in-depth lipid species-level and molecular species-level annotation based on decision rule sets for all major ganglioside classes. Compared to conventional state-of-the-art methods, the presented ganglioside assay offers (1) increased sensitivity, (2) superior structural elucidation, and (3) the possibility to detect novel ganglioside species. A major reason for the highly improved sensitivity is the optimized spectral readout based on the unique capability of two parallelizable mass analyzers for multistage fragmentation. We demonstrated the high-throughput universal capability of our novel analytical strategy by identifying 254 ganglioside species. As a proof of concept, 137 unique gangliosides were annotated in native and differentiated human mesenchymal stem cells including 78 potential cell-state-specific markers and 38 previously unreported gangliosides. A general increase of the ganglioside numbers upon differentiation was observed as well as cell-state-specific clustering based on the ganglioside species patterns. The combination of the developed glycolipidomics assay with the extended automated annotation tool enables comprehensive in-depth ganglioside characterization as shown on biological samples of interest. Our results suggest ganglioside patterns as a promising quality control tool for stem cells and their differentiation products. Additionally, we believe that our analytical workflow paves the way for probing glycolipid-based biochemical processes shedding light on the enigmatic processes of gangliosides and glycolipids in general.
Collapse
Affiliation(s)
- Katharina Hohenwallner
- Department
of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna 1090, Austria
- Vienna
Doctoral School in Chemistry (DoSChem), University of Vienna, Vienna 1090, Austria
| | - Nina Troppmair
- Department
of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna 1090, Austria
- Vienna
Doctoral School in Chemistry (DoSChem), University of Vienna, Vienna 1090, Austria
| | - Lisa Panzenboeck
- Department
of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna 1090, Austria
- Vienna
Doctoral School in Chemistry (DoSChem), University of Vienna, Vienna 1090, Austria
| | - Cornelia Kasper
- Institute
of Cell and Tissue Culture Technologies, University of Natural Resources and Life Sciences, Vienna 1190, Austria
| | - Yasin El Abiead
- Department
of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna 1090, Austria
| | - Gunda Koellensperger
- Department
of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna 1090, Austria
| | - Leonida M. Lamp
- Institute
of Pharmaceutical Sciences, University of
Graz, Graz 8010, Austria
| | - Jürgen Hartler
- Institute
of Pharmaceutical Sciences, University of
Graz, Graz 8010, Austria
- Field
of Excellence BioHealth − University
of Graz, Graz 8010, Austria
| | - Dominik Egger
- Institute
of Cell and Tissue Culture Technologies, University of Natural Resources and Life Sciences, Vienna 1190, Austria
| | - Evelyn Rampler
- Department
of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna 1090, Austria
| |
Collapse
|
12
|
Ochs J, Hanga MP, Shaw G, Duffy N, Kulik M, Tissin N, Reibert D, Biermann F, Moutsatsou P, Ratnayake S, Nienow A, Koenig N, Schmitt R, Rafiq Q, Hewitt CJ, Barry F, Murphy JM. Needle to needle robot-assisted manufacture of cell therapy products. Bioeng Transl Med 2022; 7:e10387. [PMID: 36176619 PMCID: PMC9472012 DOI: 10.1002/btm2.10387] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 04/26/2022] [Accepted: 05/14/2022] [Indexed: 12/20/2022] Open
Abstract
Advanced therapeutic medicinal products (ATMPs) have emerged as novel therapies for untreatable diseases, generating the need for large volumes of high-quality, clinically-compliant GMP cells to replace costly, high-risk and limited scale manual expansion processes. We present the design of a fully automated, robot-assisted platform incorporating the use of multiliter stirred tank bioreactors for scalable production of adherent human stem cells. The design addresses a needle-to-needle closed process incorporating automated bone marrow collection, cell isolation, expansion, and collection into cryovials for patient delivery. AUTOSTEM, a modular, adaptable, fully closed system ensures no direct operator interaction with biological material; all commands are performed through a graphic interface. Seeding of source material, process monitoring, feeding, sampling, harvesting and cryopreservation are automated within the closed platform, comprising two clean room levels enabling both open and closed processes. A bioprocess based on human MSCs expanded on microcarriers was used for proof of concept. Utilizing equivalent culture parameters, the AUTOSTEM robot-assisted platform successfully performed cell expansion at the liter scale, generating results comparable to manual production, while maintaining cell quality postprocessing.
Collapse
Affiliation(s)
- Jelena Ochs
- Fraunhofer Institute for Production Technology (IPT)AachenGermany
| | - Mariana P. Hanga
- School of Biosciences, Life and Health Sciences CollegeAston UniversityBirminghamUK
- Chemical EngineeringUniversity College LondonLondonUK
| | - Georgina Shaw
- Regenerative Medicine Institute, Biomedical Sciences BuildingNational University of Ireland GalwayGalwayIreland
| | - Niamh Duffy
- Regenerative Medicine Institute, Biomedical Sciences BuildingNational University of Ireland GalwayGalwayIreland
| | - Michael Kulik
- Fraunhofer Institute for Production Technology (IPT)AachenGermany
| | - Nokilaj Tissin
- Fraunhofer Institute for Production Technology (IPT)AachenGermany
| | - Daniel Reibert
- Fraunhofer Institute for Production Technology (IPT)AachenGermany
| | | | - Panagiota Moutsatsou
- School of Biosciences, Life and Health Sciences CollegeAston UniversityBirminghamUK
| | - Shibani Ratnayake
- School of Biosciences, Life and Health Sciences CollegeAston UniversityBirminghamUK
| | - Alvin Nienow
- Chemical EngineeringUniversity of BirminghamBirminghamUK
| | - Niels Koenig
- Fraunhofer Institute for Production Technology (IPT)AachenGermany
| | - Robert Schmitt
- Fraunhofer Institute for Production Technology (IPT)AachenGermany
- Faculty of Mechanical EngineeringRWTH Aachen UniversityAachenGermany
| | - Qasim Rafiq
- Biochemical Engineering, Advanced Centre for Biochemical EngineeringUniversity College LondonLondonUK
| | | | - Frank Barry
- Regenerative Medicine Institute, Biomedical Sciences BuildingNational University of Ireland GalwayGalwayIreland
| | - J. Mary Murphy
- Regenerative Medicine Institute, Biomedical Sciences BuildingNational University of Ireland GalwayGalwayIreland
| |
Collapse
|
13
|
Hernández-Pérez OR, Juárez-Navarro KJ, Diaz NF, Padilla-Camberos E, Beltran-Garcia MJ, Cardenas-Castrejon D, Corona-Perez H, Hernández-Jiménez C, Díaz-Martínez NE. Biomolecules resveratrol + coenzyme Q10 recover the cell state of human mesenchymal stem cells after 1-methyl-4-phenylpyridinium-induced damage and improve proliferation and neural differentiation. Front Neurosci 2022; 16:929590. [PMID: 36117620 PMCID: PMC9471188 DOI: 10.3389/fnins.2022.929590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 08/04/2022] [Indexed: 11/20/2022] Open
Abstract
Neurodegenerative disorders are a critical affection with a high incidence around the world. Currently, there are no effective treatments to solve this problem. However, the application of mesenchymal stem cells (MSCs) and antioxidants in neurodegenerative diseases has shown to be a promising tool due to their multiple therapeutic effects. This work aimed to evaluate the effects of a combination of resveratrol (RSV) and coenzyme Q10 (CoQ10) on the proliferation and differentiation of MSC and the protector effects in induced damage. To characterize the MSCs, we performed flow cytometry, protocols of cellular differentiation, and immunocytochemistry analysis. The impact of RSV + CoQ10 in proliferation was evaluated by supplementing 2.5 and 10 μM of RSV + CoQ10 in a cellular kinetic for 14 days. Cell viability and lactate dehydrogenase levels (LDH) were also analyzed. The protective effect of RSV + CoQ10 was assessed by supplementing the treatment to damaged MSCs by 1-methyl-4-phenylpyridinium (MPP+); cellular viability, LDH, and reactive oxygen species (ROS) were evaluated.. MSCs expressed the surface markers CD44, CD73, CD90, and CD105 and showed multipotential ability. The combination of RSV + CoQ10 increased the proliferation potential and cell viability and decreased LDH levels. In addition, it reverted the effect of MPP+-induced damage in MSCs to enhance cell viability and decrease LDH and ROS. Finally, RSV + CoQ10 promoted the differentiation of neural progenitors. The combination of RSV + CoQ10 represents a potential treatment to improve MSCs capacities and protect against neurodegenerative damage.
Collapse
Affiliation(s)
- Oscar R. Hernández-Pérez
- Laboratorio de Reprogramación Celular y Bioingeniería de Tejidos, Biotecnología Médica y Farmacéutica, CONACYT Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), Guadalajara, Mexico
| | - Karen J. Juárez-Navarro
- Laboratorio de Reprogramación Celular y Bioingeniería de Tejidos, Biotecnología Médica y Farmacéutica, CONACYT Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), Guadalajara, Mexico
| | - Nestor F. Diaz
- Instituto Nacional de Perinatología (INPER), Mexico City, Mexico
| | - Eduardo Padilla-Camberos
- Biotecnología Médica y Farmacéutica, CONACYT Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), Guadalajara, Mexico
| | - Miguel J. Beltran-Garcia
- Departamento de Biotecnológicas y Ambientales, Universidad Autónoma de Guadalajara, Zapopan, Mexico
| | | | | | | | - Néstor E. Díaz-Martínez
- Laboratorio de Reprogramación Celular y Bioingeniería de Tejidos, Biotecnología Médica y Farmacéutica, CONACYT Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), Guadalajara, Mexico
- *Correspondence: Néstor E. Díaz-Martínez,
| |
Collapse
|
14
|
Wiese DM, Wood CA, Ford BN, Braid LR. Cytokine Activation Reveals Tissue-Imprinted Gene Profiles of Mesenchymal Stromal Cells. Front Immunol 2022; 13:917790. [PMID: 35924240 PMCID: PMC9341285 DOI: 10.3389/fimmu.2022.917790] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 06/10/2022] [Indexed: 11/30/2022] Open
Abstract
Development of standardized metrics to support manufacturing and regulatory approval of mesenchymal stromal cell (MSC) products is confounded by heterogeneity of MSC populations. Many reports describe fundamental differences between MSCs from various tissues and compare unstimulated and activated counterparts. However, molecular information comparing biological profiles of activated MSCs across different origins and donors is limited. To better understand common and source-specific mechanisms of action, we compared the responses of 3 donor populations each of human umbilical cord (UC) and bone marrow (BM) MSCs to TNF-α, IL-1β or IFN-γ. Transcriptome profiles were analysed by microarray and select secretome profiles were assessed by multiplex immunoassay. Unstimulated (resting) UC and BM-MSCs differentially expressed (DE) 174 genes. Signatures of TNF-α-stimulated BM and UC-MSCs included 45 and 14 new DE genes, respectively, while all but 7 of the initial 174 DE genes were expressed at comparable levels after licensing. After IL-1β activation, only 5 of the 174 DE genes remained significantly different, while 6 new DE genes were identified. IFN-γ elicited a robust transcriptome response from both cell types, yet nearly all differences (171/174) between resting populations were attenuated. Nine DE genes predominantly corresponding to immunogenic cell surface proteins emerged as a BM-MSC signature of IFN-γ activation. Changes in protein synthesis of select analytes correlated modestly with transcript levels. The dynamic responses of licensed MSCs documented herein, which attenuated heterogeneity between unstimulated populations, provide new insight into common and source-imprinted responses to cytokine activation and can inform strategic development of meaningful, standardized assays.
Collapse
Affiliation(s)
| | | | - Barry N. Ford
- Defence Research and Development Canada Suffield Research Centre, Casualty Management Section, Medicine Hat, AB, Canada
| | - Lorena R. Braid
- Aurora BioSolutions Inc., Medicine Hat, AB, Canada
- Simon Fraser University, Department of Molecular Biology and Biochemistry, Burnaby, BC, Canada
- *Correspondence: Lorena R. Braid, ;
| |
Collapse
|
15
|
Soares MBP, Gonçalves RGJ, Vasques JF, da Silva-Junior AJ, Gubert F, Santos GC, de Santana TA, Almeida Sampaio GL, Silva DN, Dominici M, Mendez-Otero R. Current Status of Mesenchymal Stem/Stromal Cells for Treatment of Neurological Diseases. Front Mol Neurosci 2022; 15:883378. [PMID: 35782379 PMCID: PMC9244712 DOI: 10.3389/fnmol.2022.883378] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 05/19/2022] [Indexed: 11/13/2022] Open
Abstract
Neurological disorders include a wide spectrum of clinical conditions affecting the central and peripheral nervous systems. For these conditions, which affect hundreds of millions of people worldwide, generally limited or no treatments are available, and cell-based therapies have been intensively investigated in preclinical and clinical studies. Among the available cell types, mesenchymal stem/stromal cells (MSCs) have been widely studied but as yet no cell-based treatment exists for neurological disease. We review current knowledge of the therapeutic potential of MSC-based therapies for neurological diseases, as well as possible mechanisms of action that may be explored to hasten the development of new and effective treatments. We also discuss the challenges for culture conditions, quality control, and the development of potency tests, aiming to generate more efficient cell therapy products for neurological disorders.
Collapse
Affiliation(s)
- Milena B. P. Soares
- Laboratório de Engenharia Tecidual e Imunofarmacologia, Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (IGM-FIOCRUZ/BA), Salvador, Brazil
- Instituto SENAI de Sistemas Avançados de Saúde (CIMATEC ISI-SAS), Centro Universitário SENAI/CIMATEC, Salvador, Brazil
| | - Renata G. J. Gonçalves
- Laboratório de Neurobiologia Celular e Molecular, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Programa Redes de Pesquisa em Saúde no Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Juliana F. Vasques
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Almir J. da Silva-Junior
- Laboratório de Neurobiologia Celular e Molecular, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Programa Redes de Pesquisa em Nanotecnologia no Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fernanda Gubert
- Programa Redes de Pesquisa em Saúde no Estado do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Girlaine Café Santos
- Laboratório de Engenharia Tecidual e Imunofarmacologia, Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (IGM-FIOCRUZ/BA), Salvador, Brazil
- Instituto SENAI de Sistemas Avançados de Saúde (CIMATEC ISI-SAS), Centro Universitário SENAI/CIMATEC, Salvador, Brazil
| | - Thaís Alves de Santana
- Laboratório de Engenharia Tecidual e Imunofarmacologia, Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (IGM-FIOCRUZ/BA), Salvador, Brazil
- Instituto SENAI de Sistemas Avançados de Saúde (CIMATEC ISI-SAS), Centro Universitário SENAI/CIMATEC, Salvador, Brazil
| | - Gabriela Louise Almeida Sampaio
- Laboratório de Engenharia Tecidual e Imunofarmacologia, Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (IGM-FIOCRUZ/BA), Salvador, Brazil
- Instituto SENAI de Sistemas Avançados de Saúde (CIMATEC ISI-SAS), Centro Universitário SENAI/CIMATEC, Salvador, Brazil
| | | | - Massimo Dominici
- Laboratory of Cellular Therapy, Division of Oncology, University of Modena and Reggio Emilia (UNIMORE), Modena, Italy
| | - Rosalia Mendez-Otero
- Laboratório de Neurobiologia Celular e Molecular, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Programa Redes de Pesquisa em Saúde no Estado do Rio de Janeiro, Rio de Janeiro, Brazil
- Programa Redes de Pesquisa em Nanotecnologia no Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
16
|
Srinivasan A, Sathiyanathan P, Yin L, Liu TM, Lam A, Ravikumar M, Smith RAA, Loh HP, Zhang Y, Ling L, Ng SK, Yang YS, Lezhava A, Hui J, Oh S, Cool SM. Strategies to enhance immunomodulatory properties and reduce heterogeneity in mesenchymal stromal cells during ex vivo expansion. Cytotherapy 2022; 24:456-472. [PMID: 35227601 DOI: 10.1016/j.jcyt.2021.11.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 10/24/2021] [Accepted: 11/08/2021] [Indexed: 02/06/2023]
Abstract
Therapies using mesenchymal stromal cells (MSCs) to treat immune and inflammatory conditions are now at an exciting stage of development, with many MSC-based products progressing to phase II and III clinical trials. However, a major bottleneck in the clinical translation of allogeneic MSC therapies is the variable immunomodulatory properties of MSC products due to differences in their tissue source, donor heterogeneity and processes involved in manufacturing and banking. This variable functionality of MSC products likely contributes to the substantial inconsistency observed in the clinical outcomes of phase III trials of MSC therapies; several trials have failed to reach the primary efficacy endpoint. In this review, we discuss various strategies to consistently maintain or enhance the immunomodulatory potency of MSCs during ex vivo expansion, which will enable the manufacture of allogeneic MSC banks that have high potency and low variability. Biophysical and biochemical priming strategies, the use of culture additives such as heparan sulfates, and genetic modification can substantially enhance the immunomodulatory properties of MSCs during in vitro expansion. Furthermore, robust donor screening, the use of biomarkers to select for potent MSC subpopulations, and rigorous quality testing to improve the release criteria for MSC banks have the potential to reduce batch-to-batch heterogeneity and enhance the clinical efficacy of the final MSC product. Machine learning approaches to develop predictive models of individual patient response can enable personalized therapies and potentially establish correlations between in vitro potency measurements and clinical outcomes in human trials.
Collapse
Affiliation(s)
- Akshaya Srinivasan
- Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | | | - Lu Yin
- Bioprocessing Technology Institute, A*STAR, Singapore
| | - Tong Ming Liu
- Institute of Molecular and Cell Biology, A*STAR, Singapore
| | - Alan Lam
- Bioprocessing Technology Institute, A*STAR, Singapore
| | - Maanasa Ravikumar
- Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Institute of Molecular and Cell Biology, A*STAR, Singapore
| | | | - Han Ping Loh
- Bioprocessing Technology Institute, A*STAR, Singapore
| | - Ying Zhang
- Institute of Molecular and Cell Biology, A*STAR, Singapore
| | - Ling Ling
- Institute of Molecular and Cell Biology, A*STAR, Singapore
| | - Say Kong Ng
- Bioprocessing Technology Institute, A*STAR, Singapore
| | | | - Alexander Lezhava
- Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), Singapore
| | - James Hui
- Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Steve Oh
- Bioprocessing Technology Institute, A*STAR, Singapore.
| | - Simon M Cool
- Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Institute of Molecular and Cell Biology, A*STAR, Singapore.
| |
Collapse
|
17
|
Calcat-i-Cervera S, Sanz-Nogués C, O'Brien T. When Origin Matters: Properties of Mesenchymal Stromal Cells From Different Sources for Clinical Translation in Kidney Disease. Front Med (Lausanne) 2021; 8:728496. [PMID: 34616756 PMCID: PMC8488400 DOI: 10.3389/fmed.2021.728496] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 08/19/2021] [Indexed: 12/14/2022] Open
Abstract
Advanced therapy medicinal products (ATMPs) offer new prospects to improve the treatment of conditions with unmet medical needs. Kidney diseases are a current major health concern with an increasing global prevalence. Chronic renal failure appears after many years of impairment, which opens a temporary window to apply novel therapeutic approaches to delay or halt disease progression. The immunomodulatory, anti-inflammatory, and pro-regenerative properties of mesenchymal stromal cells (MSCs) have sparked interest for their use in cell-based regenerative therapies. Currently, several early-phase clinical trials have been completed and many are ongoing to explore MSC safety and efficacy in a wide range of nephropathies. However, one of the current roadblocks to the clinical translation of MSC therapies relates to the lack of standardization and harmonization of MSC manufacturing protocols, which currently hinders inter-study comparability. Studies have shown that cell culture processing variables can have significant effects on MSC phenotype and functionality, and these are highly variable across laboratories. In addition, heterogeneity within MSC populations is another obstacle. Furthermore, MSCs may be isolated from several sources which adds another variable to the comparative assessment of outcomes. There is now a growing body of literature highlighting unique and distinctive properties of MSCs according to the tissue origin, and that characteristics such as donor, age, sex and underlying medical conditions may alter the therapeutic effect of MSCs. These variables must be taken into consideration when developing a cell therapy product. Having an optimal scale-up strategy for MSC manufacturing is critical for ensuring product quality while minimizing costs and time of production, as well as avoiding potential risks. Ideally, optimal scale-up strategies must be carefully considered and identified during the early stages of development, as making changes later in the bioprocess workflow will require re-optimization and validation, which may have a significant long-term impact on the cost of the therapy. This article provides a summary of important cell culture processing variables to consider in the scale-up of MSC manufacturing as well as giving a comprehensive review of tissue of origin-specific biological characteristics of MSCs and their use in current clinical trials in a range of renal pathologies.
Collapse
Affiliation(s)
| | | | - Timothy O'Brien
- Regenerative Medicine Institute (REMEDI), CÚRAM, Biomedical Science Building, National University of Ireland, Galway, Ireland
| |
Collapse
|
18
|
Rallapalli S, Guhathakurta S, Bishi DK, Subbarayan R, Mathapati S, Korrapati PS. A critical appraisal of humanized alternatives to fetal bovine serum for clinical applications of umbilical cord derived mesenchymal stromal cells. Biotechnol Lett 2021; 43:2067-2083. [PMID: 34499291 DOI: 10.1007/s10529-021-03180-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 08/19/2021] [Indexed: 12/22/2022]
Abstract
OBJECTIVE The study is aimed to verify the possibility of using humanized alternatives to fetal bovine serum (FBS) such as umbilical cord blood plasma (CBP) and AB+ plasma to support the long-term growth of mesenchymal stromal cells (MSCs) derived from the umbilical cord. We hypothesized that umbilical CBP would be a potential substitute to FBS, especially for small scale autologous clinical transplantations. METHODS The MSCs were cultured for six consecutive passages to evaluate xeno-free media's ability to support long-term growth. Cell proliferation rates, colony-forming-unit (CFU) efficiency and population doublings of expanded MSCs, were investigated. Ex vivo expanded MSCs were further characterized using flow cytometry and quantitative PCR. The impact of cryopreservation and composition of cryomedium on phenotype, viability of MSC was also assessed. RESULTS Our results on cell proliferation, colony-forming unit efficiency suggested that the expansion of the cells was successfully carried out in media supplemented with humanized alternatives. MSCs showed lower CFU counts in FBS (~ 25) than humanized alternatives (~ 35). The gene expression analysis revealed that transcripts showed significant differential expression by two to three folds in the FBS group compared with MSCs grown in medium with humanized alternatives (p < 0.05). In addition, MSCs grown in a medium with FBS had more osteogenic activity, a signature of unwanted differentiation. The majority of ex vivo expanded MSCs at early and late passages expressed CD44+, CD73+, CD105+, CD90+, and CD166+ in all the experimental groups tested (~ 90%). In contrast to the other MSC surface markers, expression levels of STRO-1+ (~ 21-10%) and TNAP+ (~ 29-11%) decreased with the increase in passage number for MSCs cultured in a FBS-supplemented medium (p < 0.05). CONCLUSION Our results established that CBP supported culture of umbilical cord tissue-derived MSCs and is a safer Xeno free replacement to FBS. The use of CBP also enables the storage of umbilical cord tissue derived MSCs in patient-specific conditions to minimize adverse events if cells are delivered directly to the patient.
Collapse
Affiliation(s)
- Suneel Rallapalli
- Biological Material Laboratory, CSIR-Central Leather Research Institute, Adyar, Chennai, 600020, India
| | | | - Dillip Kumar Bishi
- Department of Biotechnology, Rama Devi Women's University, Bhubaneswar, India
| | | | - Santosh Mathapati
- Translational Health Science and Technology Institute, Faridabad, India
| | - Purna Sai Korrapati
- Biological Material Laboratory, CSIR-Central Leather Research Institute, Adyar, Chennai, 600020, India.
| |
Collapse
|
19
|
Hanga MP, Nienow AW, Murasiewicz H, Pacek AW, Hewitt CJ, Coopman K. Expansion of human mesenchymal stem/stromal cells on temporary liquid microcarriers. JOURNAL OF CHEMICAL TECHNOLOGY AND BIOTECHNOLOGY (OXFORD, OXFORDSHIRE : 1986) 2021; 96:930-940. [PMID: 33776183 PMCID: PMC7984227 DOI: 10.1002/jctb.6601] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 10/27/2020] [Accepted: 10/30/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND Traditional large-scale culture systems for human mesenchymal stem/stromal cells (hMSCs) use solid microcarriers as attachment substrates. Although the use of such substrates is advantageous because of the high surface-to-volume ratio, cell harvest from the same substrates is a challenge as it requires enzymatic treatment, often combined with agitation. Here, we investigated a two-phase system for expansion and non-enzymatic recovery of hMSCs. Perfluorocarbon droplets were dispersed in a protein-rich growth medium and were used as temporary liquid microcarriers for hMSC culture. RESULTS hMSCs successfully attached to these liquid microcarriers, exhibiting similar morphologies to those cultured on solid ones. Fold increases of 3.03 ± 0.98 (hMSC1) and 3.81 ± 0.29 (hMSC2) were achieved on day 9. However, the maximum expansion folds were recorded on day 4 (4.79 ± 0.47 (hMSC1) and 4.856 ± 0.7 (hMSC2)). This decrease was caused by cell aggregation upon reaching confluency due to the contraction of the interface between the two phases. Cell quality, as assessed by differentiation, cell surface marker expression and clonogenic ability, was retained post expansion on the liquid microcarriers. Cell harvesting was achieved non-enzymatically in two steps: first by inducing droplet coalescence and then aspirating the interface. Quality characteristics of hMSCs continued to be retained even after inducing droplet coalescence. CONCLUSION The prospect of a temporary microcarrier that can be used to expand cells and then 'disappear' for cell release without using proteolytic enzymes is a very exciting one. Here, we have demonstrated that hMSCs can attach and proliferate on these perfluorocarbon liquid microcarriers while, very importantly, retaining their quality.
Collapse
Affiliation(s)
- Mariana P Hanga
- Department of Biosciences, School of Life and Health SciencesAston UniversityBirminghamUK
- Centre for Biological Engineering, School of AACME, Chemical Engineering DepartmentLoughborough UniversityLoughboroughUK
| | - Alvin W Nienow
- Department of Biosciences, School of Life and Health SciencesAston UniversityBirminghamUK
- Centre for Biological Engineering, School of AACME, Chemical Engineering DepartmentLoughborough UniversityLoughboroughUK
- School of Chemical EngineeringUniversity of BirminghamBirminghamUK
| | - Halina Murasiewicz
- School of Chemical EngineeringUniversity of BirminghamBirminghamUK
- Faculty of Chemical Technology and EngineeringWest Pomeranian University of TechnologySzczecinPoland
| | - Andrzej W Pacek
- School of Chemical EngineeringUniversity of BirminghamBirminghamUK
| | - Christopher J Hewitt
- Department of Biosciences, School of Life and Health SciencesAston UniversityBirminghamUK
- Centre for Biological Engineering, School of AACME, Chemical Engineering DepartmentLoughborough UniversityLoughboroughUK
| | - Karen Coopman
- Centre for Biological Engineering, School of AACME, Chemical Engineering DepartmentLoughborough UniversityLoughboroughUK
| |
Collapse
|
20
|
Chemically Defined Xeno- and Serum-Free Cell Culture Medium to Grow Human Adipose Stem Cells. Cells 2021; 10:cells10020466. [PMID: 33671568 PMCID: PMC7926673 DOI: 10.3390/cells10020466] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 02/16/2021] [Accepted: 02/17/2021] [Indexed: 02/07/2023] Open
Abstract
Adipose tissue is an abundant source of stem cells. However, liposuction cannot yield cell quantities sufficient for direct applications in regenerative medicine. Therefore, the development of GMP-compliant ex vivo expansion protocols is required to ensure the production of a "cell drug" that is safe, reproducible, and cost-effective. Thus, we developed our own basal defined xeno- and serum-free cell culture medium (UrSuppe), specifically formulated to grow human adipose stem cells (hASCs). With this medium, we can directly culture the stromal vascular fraction (SVF) cells in defined cell culture conditions to obtain hASCs. Cells proliferate while remaining undifferentiated, as shown by Flow Cytometry (FACS), Quantitative Reverse Transcription PCR (RT-qPCR) assays, and their secretion products. Using the UrSuppe cell culture medium, maximum cell densities between 0.51 and 0.80 × 105 cells/cm2 (=2.55-4.00 × 105 cells/mL) were obtained. As the expansion of hASCs represents only the first step in a cell therapeutic protocol or further basic research studies, we formulated two chemically defined media to differentiate the expanded hASCs in white or beige/brown adipocytes. These new media could help translate research projects into the clinical application of hASCs and study ex vivo the biology in healthy and dysfunctional states of adipocytes and their precursors. Following the cell culture system developers' practice and obvious reasons related to the formulas' patentability, the defined media's composition will not be disclosed in this study.
Collapse
|
21
|
Numerical Methods for the Design and Description of In Vitro Expansion Processes of Human Mesenchymal Stem Cells. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2020; 177:185-228. [PMID: 33090237 DOI: 10.1007/10_2020_147] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
Human mesenchymal stem cells (hMSCs) are a valuable source of cells for clinical applications (e.g., treatment of acute myocardial infarction or inflammatory diseases), especially in the field of regenerative medicine. However, for autologous (patient-specific) and allogeneic (off-the-shelf) hMSC-based therapies, in vitro expansion is necessary prior to the clinical application in order to achieve the required cell numbers. Safe, reproducible, and economic in vitro expansion of hMSCs for autologous and allogeneic therapies can be problematic because the cell material is restricted and the cells are sensitive to environmental changes. It is beneficial to collect detailed information on the hydrodynamic conditions and cell growth behavior in a bioreactor system, in order to develop a so called "Digital Twin" of the cultivation system and expansion process. Numerical methods, such as Computational Fluid Dynamics (CFD) which has become widely used in the biotech industry for studying local characteristics within bioreactors or kinetic growth modelling, provide possible solutions for such tasks.In this review, we will present the current state-of-the-art for the in vitro expansion of hMSCs. Different numerical tools, including numerical fluid flow simulations and cell growth modelling approaches for hMSCs, will be presented. In addition, a case study demonstrating the applicability of CFD and kinetic growth modelling for the development of an microcarrier-based hMSC process will be shown.
Collapse
|
22
|
Bao Y, Wu S, Chu LT, Kwong HK, Hartanto H, Huang Y, Lam ML, Lam RHW, Chen TH. Early Committed Clockwise Cell Chirality Upregulates Adipogenic Differentiation of Mesenchymal Stem Cells. ACTA ACUST UNITED AC 2020; 4:e2000161. [PMID: 32864891 DOI: 10.1002/adbi.202000161] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 08/03/2020] [Indexed: 11/11/2022]
Abstract
Cell chirality is observed with diverse forms and coordinates various left-right (LR) asymmetry in tissue morphogenesis. To give rise to such diversity, cell chirality may be coupled with cell differentiation. Here, using micropatterned human mesenchymal stem cells (hMSCs), an early committed clockwise (CW) cell chirality that can itself upregulate the adipogenic differentiation is reported. hMSC chirality enables a positively tilted chiral orientation on micropatterned stripes. When cultured as single cells on circular micropatterns, an anticlockwise (ACW)-biased nucleus rotation and swirling pattern of actin filament are observed. Interestingly, with adipogenic induction for 3-6 days, such chirality is reversed to negative chiral orientation and CW-biased rotation, which is earlier than the maturation of other differentiation markers, and consistently expressed in terminally differentiated adipocytes. Using latrunculin A (LatA), cytochalasin D (CD), and nocodazole (Noco) that forces a CW-biased actin filament and nucleus rotation resembling the early differentiated chirality upon adipogenic induction, an upregulation of adipogenic differentiation is found. The result demonstrates that the early differentiated chirality may serve as a mechanical precursor to engage the lineage commitment, suggesting a feedback mechanism of chiral actin in regulating cell differentiation and LR morphogenesis.
Collapse
Affiliation(s)
- Yuanye Bao
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong Special Administrative Region
| | - Siying Wu
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong Special Administrative Region
| | - Lok Ting Chu
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong Special Administrative Region
| | - Hoi Kwan Kwong
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong Special Administrative Region
| | - Hogi Hartanto
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong Special Administrative Region
| | - Yaozhun Huang
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong Special Administrative Region
| | - Miu Ling Lam
- School of Creative Media, City University of Hong Kong, Kowloon, Hong Kong Special Administrative Region
| | - Raymond H W Lam
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong Special Administrative Region
| | - Ting-Hsuan Chen
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong Special Administrative Region
| |
Collapse
|
23
|
Johnstone BH, Miller HM, Beck MR, Gu D, Thirumala S, LaFontaine M, Brandacher G, Woods EJ. Identification and characterization of a large source of primary mesenchymal stem cells tightly adhered to bone surfaces of human vertebral body marrow cavities. Cytotherapy 2020; 22:617-628. [PMID: 32873509 PMCID: PMC8919862 DOI: 10.1016/j.jcyt.2020.07.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 05/12/2020] [Accepted: 07/05/2020] [Indexed: 12/13/2022]
Abstract
Background: Therapeutic allogeneic mesenchymal stromal cells (MSCs) are currently in clinical trials to evaluate their effectiveness in treating many different disease indications. Eventual commercialization for broad distribution will require further improvements in manufacturing processes to economically manufacture MSCs at scales sufficient to satisfy projected demands. A key contributor to the present high cost of goods sold for MSC manufacturing is the need to create master cell banks from multiple donors, which leads to variability in large-scale manufacturing runs. Therefore, the availability of large single donor depots of primary MSCs would greatly benefit the cell therapy market by reducing costs associated with manufacturing. Methods: We have discovered that an abundant population of cells possessing all the hallmarks of MSCs is tightly associated with the vertebral body (VB) bone matrix and only liberated by proteolytic digestion. Here we demonstrate that these vertebral bone-adherent (vBA) MSCs possess all the International Society of Cell and Gene Therapy-defined characteristics (e.g., plastic adherence, surface marker expression and trilineage differentiation) of MSCs, and we have therefore termed them vBA-MSCs to distinguish this population from loosely associated MSCs recovered through aspiration or rinsing of the bone marrow compartment. Results: Pilot banking and expansion were performed with vBA-MSCs obtained from 3 deceased donors, and it was demonstrated that bank sizes averaging 2.9 × 108 ± 1.35 × 108 vBA-MSCs at passage 1 were obtainable from only 5 g of digested VB bone fragments. Each bank of cells demonstrated robust proliferation through a total of 9 passages, without significant reduction in population doubling times. The theoretical total cell yield from the entire amount of bone fragments (approximately 300 g) from each donor with limited expansion through 4 passages is 100 trillion (1 × 1014) vBA-MSCs, equating to over 105 doses at 10 × 106 cells/kg for an average 70-kg recipient. Discussion: Thus, we have established a novel and plentiful source of MSCs that will benefit the cell therapy market by overcoming manufacturing and regulatory inefficiencies due to donor-to-donor variability.
Collapse
Affiliation(s)
- Brian H Johnstone
- Ossium Health, Inc, Indianapolis, Indiana, USA; Department of Biomedical Sciences, College of Osteopathic Medicine, Marian University, Indianapolis, Indiana, USA.
| | - Hannah M Miller
- Ossium Health, Inc, Indianapolis, Indiana, USA; Department of Biomedical Sciences, College of Osteopathic Medicine, Marian University, Indianapolis, Indiana, USA
| | - Madelyn R Beck
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Dongsheng Gu
- Ossium Health, Inc, Indianapolis, Indiana, USA; Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Sreedhar Thirumala
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Michael LaFontaine
- Department of Biomedical Sciences, College of Osteopathic Medicine, Marian University, Indianapolis, Indiana, USA
| | - Gerald Brandacher
- Department of Plastic and Reconstructive Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Erik J Woods
- Ossium Health, Inc, Indianapolis, Indiana, USA; Department of Biomedical Sciences, College of Osteopathic Medicine, Marian University, Indianapolis, Indiana, USA; Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana, USA.
| |
Collapse
|
24
|
Mesenchymal Stem/Progenitor Cells: The Prospect of Human Clinical Translation. Stem Cells Int 2020; 2020:8837654. [PMID: 33953753 PMCID: PMC8063852 DOI: 10.1155/2020/8837654] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/19/2020] [Accepted: 07/20/2020] [Indexed: 12/13/2022] Open
Abstract
Mesenchymal stem/progenitor cells (MSCs) are key players in regenerative medicine, relying principally on their differentiation/regeneration potential, immunomodulatory properties, paracrine effects, and potent homing ability with minimal if any ethical concerns. Even though multiple preclinical and clinical studies have demonstrated remarkable properties for MSCs, the clinical applicability of MSC-based therapies is still questionable. Several challenges exist that critically hinder a successful clinical translation of MSC-based therapies, including but not limited to heterogeneity of their populations, variability in their quality and quantity, donor-related factors, discrepancies in protocols for isolation, in vitro expansion and premodification, and variability in methods of cell delivery, dosing, and cell homing. Alterations of MSC viability, proliferation, properties, and/or function are also affected by various drugs and chemicals. Moreover, significant safety concerns exist due to possible teratogenic/neoplastic potential and transmission of infectious diseases. Through the current review, we aim to highlight the major challenges facing MSCs' human clinical translation and shed light on the undergoing strategies to overcome them.
Collapse
|
25
|
Hanga MP, Ali J, Moutsatsou P, de la Raga FA, Hewitt CJ, Nienow A, Wall I. Bioprocess development for scalable production of cultivated meat. Biotechnol Bioeng 2020; 117:3029-3039. [PMID: 32568406 DOI: 10.1002/bit.27469] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 06/12/2020] [Accepted: 06/19/2020] [Indexed: 12/30/2022]
Abstract
Traditional farm-based products based on livestock are one of the main contributors to greenhouse gas emissions. Cultivated meat is an alternative that mimics animal meat, being produced in a bioreactor under controlled conditions rather than through the slaughtering of animals. The first step in the production of cultivated meat is the generation of sufficient reserves of starting cells. In this study, bovine adipose-derived stem cells (bASCs) were used as starting cells due to their ability to differentiate towards both fat and muscle, two cell types found in meat. A bioprocess for the expansion of these cells on microcarriers in spinner flasks was developed. Different cell seeding densities (1,500, 3,000, and 6,000 cells/cm2 ) and feeding strategies (80%, 65%, 50%, and combined 80%/50% medium exchanges) were investigated. Cell characterization was assessed pre- and postbioprocessing to ensure that bioprocessing did not negatively affect bASC quality. The best growth was obtained with the lowest cell seeding density (1,500 cells/cm2 ) with an 80% medium exchange performed (p < .0001) which yielded a 28-fold expansion. The ability to differentiate towards adipogenic, osteogenic, and chondrogenic lineages was retained postbioprocessing and no significant difference (p > .5) was found in clonogenicity pre- or postbioprocessing in any of the feeding regimes tested.
Collapse
Affiliation(s)
- Mariana P Hanga
- Department of Biosciences, School of Life and Health Sciences, Aston University, Birmingham, UK
| | - Junaid Ali
- Department of Biosciences, School of Life and Health Sciences, Aston University, Birmingham, UK
| | - Panagiota Moutsatsou
- Department of Biosciences, School of Life and Health Sciences, Aston University, Birmingham, UK
| | - Fritz A de la Raga
- Department of Biosciences, School of Life and Health Sciences, Aston University, Birmingham, UK
| | - Christopher J Hewitt
- Department of Biosciences, School of Life and Health Sciences, Aston University, Birmingham, UK
| | - Alvin Nienow
- Department of Biosciences, School of Life and Health Sciences, Aston University, Birmingham, UK.,Department of Chemical Engineering, University of Birmingham, Birmingham, UK
| | - Ivan Wall
- Department of Biosciences, School of Life and Health Sciences, Aston University, Birmingham, UK
| |
Collapse
|
26
|
Picken A, Harriman J, Iftimia-Mander A, Johnson L, Prosser A, Quirk R, Thomas R. A Monte Carlo framework for managing biological variability in manufacture of autologous cell therapy from mesenchymal stromal cells therapies. Cytotherapy 2020; 22:227-238. [DOI: 10.1016/j.jcyt.2020.01.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 01/10/2020] [Accepted: 01/11/2020] [Indexed: 12/28/2022]
|
27
|
Mehrian M, Lambrechts T, Marechal M, Luyten FP, Papantoniou I, Geris L. Predicting in vitro human mesenchymal stromal cell expansion based on individual donor characteristics using machine learning. Cytotherapy 2020; 22:82-90. [PMID: 31987754 DOI: 10.1016/j.jcyt.2019.12.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 11/20/2019] [Accepted: 12/08/2019] [Indexed: 12/21/2022]
Abstract
BACKGROUND Human mesenchymal stromal cells (hMSCs) have become attractive candidates for advanced medical cell-based therapies. An in vitro expansion step is routinely used to reach the required clinical quantities. However, this is influenced by many variables including donor characteristics, such as age and gender, and culture conditions, such as cell seeding density and available culture surface area. Computational modeling in general and machine learning in particular could play a significant role in deciphering the relationship between the individual donor characteristics and their growth dynamics. METHODS In this study, hMSCs obtained from 174 male and female donors, between 3 and 64 years of age with passage numbers ranging from 2 to 27, were studied. We applied a Random Forests (RF) technique to model the cell expansion procedure by predicting the population doubling time (PDT) for each passage, taking into account individual donor-related characteristics. RESULTS Using the RF model, the mean absolute error between model predictions and experimental results for the PDT in passage 1 to 4 is significantly lower compared with the errors obtained with theoretical estimates or historical data. Moreover, statistical analysis indicate that the PD and PDT in different age categories are significantly different, especially in the youngest group (younger than 10 years of age) compared with the other age groups. DISCUSSION In summary, we introduce a predictive computational model describing in vitro cell expansion dynamics based on individual donor characteristics, an approach that could greatly assist toward automation of a cell expansion culture process.
Collapse
Affiliation(s)
- Mohammad Mehrian
- Biomechanics Research Unit, GIGA In Silico Medicine, University of Liege, CHU - BAT 34, Quartier Hopital, Liege, Belgium; Prometheus, the Division of Skeletal Tissue Engineering, KU Leuven, Onderwijs en Navorsing 1 (+8), Leuven, Belgium
| | - Toon Lambrechts
- Prometheus, the Division of Skeletal Tissue Engineering, KU Leuven, Onderwijs en Navorsing 1 (+8), Leuven, Belgium; M3-BIORES, KU Leuven, Leuven, Onderwijs en Navorsing 1 (+8), Leuven, Belgium
| | - Marina Marechal
- Prometheus, the Division of Skeletal Tissue Engineering, KU Leuven, Onderwijs en Navorsing 1 (+8), Leuven, Belgium; Skeletal Biology and Engineering Research Center, KU Leuven, Leuven, Onderwijs en Navorsing 1 (+8), Leuven, Belgium
| | - Frank P Luyten
- Prometheus, the Division of Skeletal Tissue Engineering, KU Leuven, Onderwijs en Navorsing 1 (+8), Leuven, Belgium; Skeletal Biology and Engineering Research Center, KU Leuven, Leuven, Onderwijs en Navorsing 1 (+8), Leuven, Belgium
| | - Ioannis Papantoniou
- Prometheus, the Division of Skeletal Tissue Engineering, KU Leuven, Onderwijs en Navorsing 1 (+8), Leuven, Belgium; Skeletal Biology and Engineering Research Center, KU Leuven, Leuven, Onderwijs en Navorsing 1 (+8), Leuven, Belgium; Institute of Chemical Engineering Science, Foundation of Research and Technology - Hellas (FORTH)
| | - Liesbet Geris
- Biomechanics Research Unit, GIGA In Silico Medicine, University of Liege, CHU - BAT 34, Quartier Hopital, Liege, Belgium; Prometheus, the Division of Skeletal Tissue Engineering, KU Leuven, Onderwijs en Navorsing 1 (+8), Leuven, Belgium; Biomechanics Section, KU Leuven, Leuven, Belgium.
| |
Collapse
|
28
|
Yong D, Abdul Rahim AA, Thwin CS, Chen S, Zhai W, Win Naing M. Autofluorescence spectroscopy in redox monitoring across cell confluencies. PLoS One 2019; 14:e0226757. [PMID: 31851724 PMCID: PMC6919590 DOI: 10.1371/journal.pone.0226757] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 12/03/2019] [Indexed: 12/11/2022] Open
Abstract
Patient-specific therapies require that cells be manufactured in multiple batches of small volumes, making it a challenge for conventional modes of quality control. The added complexity of inherent variability (even within batches) necessitates constant monitoring to ensure comparable end products. Hence, it is critical that new non-destructive modalities of cell monitoring be developed. Here, we study, for the first time, the use of optical spectroscopy in the determination of cellular redox across cell confluencies by exploiting the autofluorescence properties of molecules found natively within cells. This was achieved through a simple retrofitting of a standard inverted fluorescence microscope with a spectrometer output and an appropriate fluorescence filter cube. Through spectral decomposition on the acquired autofluorescence spectra, we are able to further discern the relative contributions of the different molecules, namely flavin adenine dinucleotide (FAD) and reduced nicotinamide adenine dinucleotide (NADH). This is then quantifiable as redox ratios (RR) that represent the extent of oxidation to reduction based upon the optically measured quantities of FAD and NADH. Results show that RR decreases with increasing cell confluency, which we attribute to several inter-related cellular processes. We validated the relationship between RR, metabolism and cell confluency through bio-chemical and viability assays. Live-dead and DNA damage studies were further conducted to substantiate that our measurement process had negligible effects on the cells. In this study, we demonstrate that autofluorescence spectroscopy-derived RR can serve as a rapid, non-destructive and label-free surrogate to cell metabolism measurements. This was further used to establish a relationship between cell metabolism and cellular redox across cell confluencies, and could potentially be employed as an indicator of quality in cell therapy manufacturing.
Collapse
Affiliation(s)
- Derrick Yong
- Bio-Manufacturing Group, Singapore Institute of Manufacturing Technology, Singapore, Singapore
| | | | - Chaw Su Thwin
- Bio-Manufacturing Group, Singapore Institute of Manufacturing Technology, Singapore, Singapore
| | - Sixun Chen
- Bio-Manufacturing Group, Singapore Institute of Manufacturing Technology, Singapore, Singapore
| | - Weichao Zhai
- Bio-Manufacturing Group, Singapore Institute of Manufacturing Technology, Singapore, Singapore
| | - May Win Naing
- Bio-Manufacturing Group, Singapore Institute of Manufacturing Technology, Singapore, Singapore
| |
Collapse
|
29
|
Variation in the manufacturing reproducibility of autologous cell-based products depending on raw material shipment conditions. Regen Ther 2019; 12:102-107. [PMID: 31890773 PMCID: PMC6933469 DOI: 10.1016/j.reth.2019.04.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 03/11/2019] [Accepted: 04/10/2019] [Indexed: 11/22/2022] Open
Abstract
To prepare an autologous cell-based product in a cell processing facility, the raw material, which is collected from a patient, must first be shipped from a medical institution to the facility. The quality of this raw material varies depending on the patient, and variations due to transport methods also occur. Because the quality must be uniform and manufacturing processes need to be adjusted to account for these variations, determining the effect of shipment conditions on raw materials is very important for estimating cell manufacturability in the process design. In this study, a group of medical institutions located in different areas requested similar cell-based products processed by the same manufacturing method to a company that is licensed under the Act on the Safety of Regenerative Medicine in Japan. Manufacturing reproducibility was analyzed based on 456 cell batches received from two clinics that were processed used the same manufacturing method. The specific growth rates that were observed in the early growth phase supposed that the proliferative potential of the primary cells in the raw material was influenced by transit time. Simultaneously, the variation of the specific growth rates in the late phase were supposed to be hardly occurred. Thus, this study evaluated shipping conditions of the raw materials for an autologous cell-based product, and a strategy for verifying the influence of transportation on quality in manufacturing was suggested.
Collapse
|
30
|
Determining Conditions for Successful Culture of Multi-Cellular 3D Tumour Spheroids to Investigate the Effect of Mesenchymal Stem Cells on Breast Cancer Cell Invasiveness. Bioengineering (Basel) 2019; 6:bioengineering6040101. [PMID: 31683821 PMCID: PMC6955867 DOI: 10.3390/bioengineering6040101] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 10/29/2019] [Accepted: 10/30/2019] [Indexed: 12/25/2022] Open
Abstract
Mesenchymal stem cells have been widely implicated in tumour development and metastases. Moving from the use of two-dimensional (2D) models to three-dimensional (3D) to investigate this relationship is critical to facilitate more applicable and relevant research on the tumour microenvironment. We investigated the effects of altering glucose concentration and the source of foetal bovine serum (FBS) on the growth of two breast cancer cell lines (T47D and MDA-MB-231) and human bone marrow-derived mesenchymal stem cells (hBM-MSCs) to determine successful conditions to enable their co-culture in 3D tumour spheroid models. Subsequently, these 3D multi-cellular tumour spheroids were used to investigate the effect of hBM-MSCs on breast cancer cell invasiveness. Findings presented herein show that serum source had a statistically significant effect on two thirds of the growth parameters measured across all three cell lines, whereas glucose only had a statistically significant effect on 6%. It was determined that the optimum growth media composition for the co-culture of 3D hBM-MSCs and breast cancer cell line spheroids was 1 g/L glucose DMEM supplemented with 10% FBS from source A. Subsequent results demonstrated that co-culture of hBM-MSCs and MDA-MB-231 cells dramatically reduced invasiveness of both cell lines (F(1,4) = 71.465, p = 0.001) when embedded into a matrix comprising of growth-factor reduced base membrane extract (BME) and collagen.
Collapse
|
31
|
Moutsatsou P, Ochs J, Schmitt RH, Hewitt CJ, Hanga MP. Automation in cell and gene therapy manufacturing: from past to future. Biotechnol Lett 2019; 41:1245-1253. [PMID: 31541330 PMCID: PMC6811377 DOI: 10.1007/s10529-019-02732-z] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 09/12/2019] [Indexed: 01/19/2023]
Abstract
As more and more cell and gene therapies are being developed and with the increasing number of regulatory approvals being obtained, there is an emerging and pressing need for industrial translation. Process efficiency, associated cost drivers and regulatory requirements are issues that need to be addressed before industrialisation of cell and gene therapies can be established. Automation has the potential to address these issues and pave the way towards commercialisation and mass production as it has been the case for 'classical' production industries. This review provides an insight into how automation can help address the manufacturing issues arising from the development of large-scale manufacturing processes for modern cell and gene therapy. The existing automated technologies with applicability in cell and gene therapy manufacturing are summarized and evaluated here.
Collapse
Affiliation(s)
- P Moutsatsou
- School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham, B7 4ET, UK
| | - J Ochs
- Fraunhofer Institut für Produktionstechnologie IPT, Steinbachstrasse 17, 52074, Aachen, Germany
| | - R H Schmitt
- Fraunhofer Institut für Produktionstechnologie IPT, Steinbachstrasse 17, 52074, Aachen, Germany.,Laboratory for Machine Tools and Production Engineering (WZL), RWTH, Aachen, Germany
| | - C J Hewitt
- School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham, B7 4ET, UK
| | - M P Hanga
- School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham, B7 4ET, UK.
| |
Collapse
|
32
|
Zhou Y, Yamamoto Y, Xiao Z, Ochiya T. The Immunomodulatory Functions of Mesenchymal Stromal/Stem Cells Mediated via Paracrine Activity. J Clin Med 2019; 8:jcm8071025. [PMID: 31336889 PMCID: PMC6678920 DOI: 10.3390/jcm8071025] [Citation(s) in RCA: 204] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 07/09/2019] [Accepted: 07/11/2019] [Indexed: 12/13/2022] Open
Abstract
Mesenchymal stromal/stem cells (MSCs) exist in almost all tissues, possessing the potential to differentiate into specialized cell types and exert immunomodulatory functions. Thus, they have attracted much attention as a promising therapeutic candidate. Recent studies have demonstrated that paracrine signaling is mainly responsible for the involvement of MSCs in the modulation of immune responses and the progression of diseases. Through release of secretome consisting of a diverse range of cytokines, chemokines, and extracellular vesicles (EVs), MSCs convey regulatory messages to recipient immune cells in the microenvironment. In this review, we focus on the recent advances in how MSCs contribute to immunomodulation through the secretion of paracrine factors. The further improved understanding of the molecular mechanism underlying the interactions between MSCs and immune cells highlights the paracrine biology of MSCs in the modulation of the immune microenvironment and promotes the clinical application of MSCs in regenerative medicine and immune diseases.
Collapse
Affiliation(s)
- Yueyuan Zhou
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
- Division of Cellular Signaling, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | - Yusuke Yamamoto
- Division of Cellular Signaling, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | - Zhongdang Xiao
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Takahiro Ochiya
- Division of Cellular Signaling, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan.
- Department of Molecular and Cellular Medicine, Institute of Medical Science, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo 160-8402, Japan.
| |
Collapse
|
33
|
de Bournonville S, Lambrechts T, Vanhulst J, Luyten FP, Papantoniou I, Geris L. Towards Self-Regulated Bioprocessing: A Compact Benchtop Bioreactor System for Monitored and Controlled 3D Cell and Tissue Culture. Biotechnol J 2019; 14:e1800545. [PMID: 30964231 DOI: 10.1002/biot.201800545] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 01/23/2019] [Indexed: 11/09/2022]
Abstract
Bioreactors are crucial tools for the manufacturing of living cell-based tissue engineered products. However, to reach the market successfully, higher degrees of automation, as well as a decreased footprint still need to be reached. In this study, the use of a benchtop bioreactor for in vitro perfusion culture of scaffold-based tissue engineering constructs is assessed. A low-footprint benchtop bioreactor system is designed, comprising a single-use fluidic components and a bioreactor housing. The bioreactor is operated using an in-house developed program and the culture environment is monitored by specifically designed sensor ports. A gas-exchange module is incorporated allowing for heat and mass transfers. Titanium-based scaffolds are seeded with human periosteum-derived cells and cultured up to 3 weeks. The benchtop bioreactor constructs are compared to benchmark perfusion systems. Live/Dead stainings, DNA quantifications, glucose consumption, and lactate production assays confirm that the constructs cultured in the benchtop bioreactor grew similarly to the benchmark systems. Manual regulation of the system set points enabled efficient alteration of the culture environment in terms of temperature, pH, and dissolved oxygen. This study provides the necessary basis for the development of low-footprint, automated, benchtop perfusion bioreactors and enables the implementation of active environment control.
Collapse
Affiliation(s)
- Sébastien de Bournonville
- Prometheus, Division of Skeletal Tissue Engineering, Katholieke Universiteit Leuven, Onderwijs & Navorsing 1, Herestraat 49, Box 813, 3000, Leuven, Belgium.,Biomechanics Research Unit, GIGA-In Sillico Medicine, University of Liège, B34 Quartier Hôpital, Avenue de l'Hôpital 1, 4000, Liège, Belgium.,Biomechanics Section, Katholieke Universiteit Leuven, Celestijnenlaan 300C, B-3001, Heverlee, Belgium
| | - Toon Lambrechts
- Prometheus, Division of Skeletal Tissue Engineering, Katholieke Universiteit Leuven, Onderwijs & Navorsing 1, Herestraat 49, Box 813, 3000, Leuven, Belgium.,Measure, Model & Manage Bioresponses, Katholieke Universiteit Leuven, Kasteelpark Arenberg 30, 3001, Leuven, Belgium
| | - Johan Vanhulst
- Department of Materials Engineering, Katholieke Universiteit Leuven, Kasteelpark Arenberg 44, Box 2450, 3001, Leuven, Belgium
| | - Frank P Luyten
- Prometheus, Division of Skeletal Tissue Engineering, Katholieke Universiteit Leuven, Onderwijs & Navorsing 1, Herestraat 49, Box 813, 3000, Leuven, Belgium.,Skeletal Biology and Engineering Research Center, Katholieke Universiteit Leuven, Onderwijs & Navorsing 1, Herestraat 49, Box 813, 3000, Leuven, Belgium
| | - Ioannis Papantoniou
- Prometheus, Division of Skeletal Tissue Engineering, Katholieke Universiteit Leuven, Onderwijs & Navorsing 1, Herestraat 49, Box 813, 3000, Leuven, Belgium.,Skeletal Biology and Engineering Research Center, Katholieke Universiteit Leuven, Onderwijs & Navorsing 1, Herestraat 49, Box 813, 3000, Leuven, Belgium
| | - Liesbet Geris
- Prometheus, Division of Skeletal Tissue Engineering, Katholieke Universiteit Leuven, Onderwijs & Navorsing 1, Herestraat 49, Box 813, 3000, Leuven, Belgium.,Biomechanics Research Unit, GIGA-In Sillico Medicine, University of Liège, B34 Quartier Hôpital, Avenue de l'Hôpital 1, 4000, Liège, Belgium.,Biomechanics Section, Katholieke Universiteit Leuven, Celestijnenlaan 300C, B-3001, Heverlee, Belgium
| |
Collapse
|
34
|
Boland LK, Burand AJ, Boyt DT, Dobroski H, Di L, Liszewski JN, Schrodt MV, Frazer MK, Santillan DA, Ankrum JA. Nature vs. Nurture: Defining the Effects of Mesenchymal Stromal Cell Isolation and Culture Conditions on Resiliency to Palmitate Challenge. Front Immunol 2019; 10:1080. [PMID: 31134100 PMCID: PMC6523025 DOI: 10.3389/fimmu.2019.01080] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 04/29/2019] [Indexed: 12/13/2022] Open
Abstract
As MSC products move from early development to clinical translation, culture conditions shift from xeno- to xeno-free systems. However, the impact of isolation and culture-expansion methods on the long-term resiliency of MSCs within challenging transplant environments is not fully understood. Recent work in our lab has shown that palmitate, a saturated fatty acid elevated in the serum of patients with obesity, causes MSCs to convert from an immunosuppressive to an immunostimulatory state at moderate to high physiological levels. This demonstrated that metabolically-diseased environments, like obesity, alter the immunomodulatory efficacy of healthy donor MSCs. In addition, it highlighted the need to test MSC efficacy not only in ideal conditions, but within challenging metabolic environments. To determine how the choice of xeno- vs. xeno-free media during isolation and expansion would affect future immunosuppressive function, umbilical cord explants from seven donors were subdivided and cultured within xeno- (fetal bovine serum, FBS) or xeno-free (human platelet lysate, PLT) medias, creating 14 distinct MSC preparations. After isolation and primary expansion, umbilical cord MSCs (ucMSC) were evaluated according to the ISCT minimal criteria for MSCs. Following baseline characterization, ucMSC were exposed to physiological doses of palmitate and analyzed for metabolic health, apoptotic induction, and immunomodulatory potency in co-cultures with stimulated human peripheral blood mononuclear cells. The paired experimental design (each ucMSC donor grown in two distinct culture environments) allowed us to delineate the contribution of inherent (nature) vs. environmentally-driven (nurture) donor characteristics to the phenotypic response of ucMSC during palmitate exposure. Culturing MSCs in PLT-media led to more consistent growth characteristics during the isolation and expansion for all donors, resulting in faster doubling times and higher cell yields compared to FBS. Upon palmitate challenge, PLT-ucMSCs showed a higher susceptibility to palmitate-induced metabolic disturbance, but less susceptibility to palmitate-induced apoptosis. Most striking however, was that the PLT-ucMSCs resisted the conversion to an immunostimulatory phenotype better than their FBS counterparts. Interestingly, examining MSC suppression of PBMC proliferation at physiologic doses of palmitate magnified the differences between donors, highlighting the utility of evaluating MSC products in stress-based assays that reflect the challenges MSCs may encounter post-transplantation.
Collapse
Affiliation(s)
- Lauren K Boland
- University of Iowa Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA, United States.,Roy J. Carver Department of Biomedical Engineering, University of Iowa, Iowa City, IA, United States
| | - Anthony J Burand
- University of Iowa Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA, United States.,Roy J. Carver Department of Biomedical Engineering, University of Iowa, Iowa City, IA, United States
| | - Devlin T Boyt
- University of Iowa Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA, United States.,Roy J. Carver Department of Biomedical Engineering, University of Iowa, Iowa City, IA, United States
| | - Hannah Dobroski
- University of Iowa Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA, United States.,Roy J. Carver Department of Biomedical Engineering, University of Iowa, Iowa City, IA, United States
| | - Lin Di
- University of Iowa Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA, United States.,Roy J. Carver Department of Biomedical Engineering, University of Iowa, Iowa City, IA, United States
| | - Jesse N Liszewski
- University of Iowa Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA, United States.,Roy J. Carver Department of Biomedical Engineering, University of Iowa, Iowa City, IA, United States
| | - Michael V Schrodt
- University of Iowa Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA, United States.,Roy J. Carver Department of Biomedical Engineering, University of Iowa, Iowa City, IA, United States
| | - Maria K Frazer
- University of Iowa Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA, United States.,Roy J. Carver Department of Biomedical Engineering, University of Iowa, Iowa City, IA, United States
| | - Donna A Santillan
- Department of Obstetrics and Gynecology, Center for Immunology and Immune Based Diseases, Center for Hypertension Research, University of Iowa, Iowa City, IA, United States
| | - James A Ankrum
- University of Iowa Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA, United States.,Roy J. Carver Department of Biomedical Engineering, University of Iowa, Iowa City, IA, United States
| |
Collapse
|
35
|
Ragni E, De Luca P, Perucca Orfei C, Colombini A, Viganò M, Lugano G, Bollati V, de Girolamo L. Insights into Inflammatory Priming of Adipose-Derived Mesenchymal Stem Cells: Validation of Extracellular Vesicles-Embedded miRNA Reference Genes as A Crucial Step for Donor Selection. Cells 2019; 8:cells8040369. [PMID: 31018576 PMCID: PMC6523846 DOI: 10.3390/cells8040369] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 04/19/2019] [Accepted: 04/21/2019] [Indexed: 12/22/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are promising tools for cell-based therapies due to their homing to injury sites, where they secrete bioactive factors such as cytokines, lipids, and nucleic acids, either free or conveyed within extracellular vesicles (EVs). Depending on the local environment, MSCs’ therapeutic value may be modulated, determining their fate and cell behavior. Inflammatory signals may induce critical changes on both the phenotype and secretory portfolio. Intriguingly, in animal models resembling joint diseases as osteoarthritis (OA), inflammatory priming enhanced the healing capacity of MSC-derived EVs. In this work, we selected miRNA reference genes (RGs) from the literature (let-7a-5p, miR-16-5p, miR-23a-3p, miR-26a-5p, miR-101-3p, miR-103a-3p, miR-221-3p, miR-423-5p, miR-425-5p, U6 snRNA), using EVs isolated from adipose-derived MSCs (ASCs) primed with IFNγ (iASCs). geNorm, NormFinder, BestKeeper, and ΔCt methods identified miR-26a-5p/16-5p as the most stable, while miR-103a-rp/425-5p performed poorly. Our results were validated on miRNAs involved in OA cartilage trophism. Only a proper normalization strategy reliably identified the differences between donors, a critical factor to empower the therapeutic value of future off-the-shelf MSC-EV isolates. In conclusion, the proposed pipeline increases the accuracy of MSC-EVs embedded miRNAs assessment, and help predicting donor variability for precision medicine approaches.
Collapse
Affiliation(s)
- Enrico Ragni
- IRCCS Istituto Ortopedico Galeazzi, Laboratorio di Biotecnologie Applicate all'Ortopedia, I-20161 Milan, Italy.
| | - Paola De Luca
- IRCCS Istituto Ortopedico Galeazzi, Laboratorio di Biotecnologie Applicate all'Ortopedia, I-20161 Milan, Italy.
| | - Carlotta Perucca Orfei
- IRCCS Istituto Ortopedico Galeazzi, Laboratorio di Biotecnologie Applicate all'Ortopedia, I-20161 Milan, Italy.
| | - Alessandra Colombini
- IRCCS Istituto Ortopedico Galeazzi, Laboratorio di Biotecnologie Applicate all'Ortopedia, I-20161 Milan, Italy.
| | - Marco Viganò
- IRCCS Istituto Ortopedico Galeazzi, Laboratorio di Biotecnologie Applicate all'Ortopedia, I-20161 Milan, Italy.
| | - Gaia Lugano
- IRCCS Istituto Ortopedico Galeazzi, Laboratorio di Biotecnologie Applicate all'Ortopedia, I-20161 Milan, Italy.
| | - Valentina Bollati
- University of Milan, EPIGET-Epidemiology, Epigenetics and Toxicology Lab, Department of Clinical Sciences and Community Health, I-20122 Milan, Italy.
| | - Laura de Girolamo
- IRCCS Istituto Ortopedico Galeazzi, Laboratorio di Biotecnologie Applicate all'Ortopedia, I-20161 Milan, Italy.
| |
Collapse
|
36
|
Roberts EL, Dang T, Lepage SIM, Alizadeh AH, Walsh T, Koch TG, Kallos MS. Improved expansion of equine cord blood derived mesenchymal stromal cells by using microcarriers in stirred suspension bioreactors. J Biol Eng 2019; 13:25. [PMID: 30949237 PMCID: PMC6429778 DOI: 10.1186/s13036-019-0153-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 02/22/2019] [Indexed: 12/22/2022] Open
Abstract
Equine mesenchymal stromal cells (MSCs) are increasingly investigated for their clinical therapeutic utility. Such cell-based treatments can require cell numbers in the millions or billions, with conventional expansion methods using static T-flasks typically inefficient in achieving these cell numbers. Equine cord blood-derived MSCs (eCB-MSCs), are promising cell candidates owing to their capacity for chondrogenic differentiation and immunomodulation. Expansion of eCB-MSCs in stirred suspension bioreactors with microcarriers as an attachment surface has the potential to generate clinically relevant numbers of cells while decreasing cost, time and labour requirements and increasing reproducibility and yield when compared to static expansion. As eCB-MSCs have not yet been expanded in stirred suspension bioreactors, a robust protocol was required to expand these cells using this method. This study outlines the development of an expansion bioprocess, detailing the inoculation phase, expansion phase, and harvesting phase, followed by phenotypic and trilineage differentiation characterization of two eCB-MSC donors. The process achieved maximum cell densities up to 75,000 cells/cm2 corresponding to 40 million cells in a 100 mL bioreactor, with a harvesting efficiency of up to 80%, corresponding to a yield of 32 million cells from a 100 mL bioreactor. When compared to cells grown in static T-flasks, bioreactor-expanded eCB-MSC cultures did not change in surface marker expression or trilineage differentiation capacity. This indicates that the bioreactor expansion process yields large quantities of eCB-MSCs with similar characteristics to conventionally grown eCB-MSCs.
Collapse
Affiliation(s)
- Erin L. Roberts
- Pharmaceutical Production Research Facility, Schulich School of Engineering, University of Calgary, 2500 University Dr. NW, Calgary, AB T2N 1N4 Canada
- Biomedical Engineering Graduate Program, University of Calgary, 2500 University Dr. NW, Calgary, AB T2N 1N4 Canada
| | - Tiffany Dang
- Pharmaceutical Production Research Facility, Schulich School of Engineering, University of Calgary, 2500 University Dr. NW, Calgary, AB T2N 1N4 Canada
- Biomedical Engineering Graduate Program, University of Calgary, 2500 University Dr. NW, Calgary, AB T2N 1N4 Canada
| | - Sarah I. M. Lepage
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Gordon St, Guelph, ON N1G 2W1 Canada
| | - Amir Hamed Alizadeh
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Gordon St, Guelph, ON N1G 2W1 Canada
| | - Tylor Walsh
- Pharmaceutical Production Research Facility, Schulich School of Engineering, University of Calgary, 2500 University Dr. NW, Calgary, AB T2N 1N4 Canada
- Biomedical Engineering Graduate Program, University of Calgary, 2500 University Dr. NW, Calgary, AB T2N 1N4 Canada
| | - Thomas G. Koch
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Gordon St, Guelph, ON N1G 2W1 Canada
| | - Michael S. Kallos
- Pharmaceutical Production Research Facility, Schulich School of Engineering, University of Calgary, 2500 University Dr. NW, Calgary, AB T2N 1N4 Canada
- Biomedical Engineering Graduate Program, University of Calgary, 2500 University Dr. NW, Calgary, AB T2N 1N4 Canada
- Department of Chemical and Petroleum Engineering, Schulich School of Engineering, University of Calgary, 2500 University Dr. NW, Calgary, AB T2N 1N4 Canada
| |
Collapse
|
37
|
Attwood SW, Edel MJ. iPS-Cell Technology and the Problem of Genetic Instability-Can It Ever Be Safe for Clinical Use? J Clin Med 2019; 8:E288. [PMID: 30823421 PMCID: PMC6462964 DOI: 10.3390/jcm8030288] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 02/23/2019] [Accepted: 02/25/2019] [Indexed: 12/20/2022] Open
Abstract
The use of induced Pluripotent Stem Cells (iPSC) as a source of autologous tissues shows great promise in regenerative medicine. Nevertheless, several major challenges remain to be addressed before iPSC-derived cells can be used in therapy, and experience of their clinical use is extremely limited. In this review, the factors affecting the safe translation of iPSC to the clinic are considered, together with an account of efforts being made to overcome these issues. The review draws upon experiences with pluripotent stem-cell therapeutics, including clinical trials involving human embryonic stem cells and the widely transplanted mesenchymal stem cells. The discussion covers concerns relating to: (i) the reprogramming process; (ii) the detection and removal of incompletely differentiated and pluripotent cells from the resulting medicinal products; and (iii) genomic and epigenetic changes, and the evolutionary and selective processes occurring during culture expansion, associated with production of iPSC-therapeutics. In addition, (iv) methods for the practical culture-at-scale and standardization required for routine clinical use are considered. Finally, (v) the potential of iPSC in the treatment of human disease is evaluated in the light of what is known about the reprogramming process, the behavior of cells in culture, and the performance of iPSC in pre-clinical studies.
Collapse
Affiliation(s)
- Stephen W Attwood
- Department of Life Sciences, The Natural History Museum, London SW7 5BD, UK.
| | - Michael J Edel
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, UK.
- Control of Pluripotency Laboratory, Department of Physiological Sciences I, Faculty of Medicine, University of Barcelona, Hospital Clinic, Casanova 143, 08036 Barcelona, Spain.
- Victor Chang Cardiac Research Institute, Sydney, NSW 2145, Australia.
- Harry Perkins Research Institute, Fiona Stanley Hospital, University of Western Australia, PO Box 404, Bull Creek, Western Australia 6149, Australia.
| |
Collapse
|
38
|
Development of a process control strategy for the serum-free microcarrier expansion of human mesenchymal stem cells towards cost-effective and commercially viable manufacturing. Biochem Eng J 2019. [DOI: 10.1016/j.bej.2018.10.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
39
|
Kaneko T, Gu B, Sone PP, Zaw SYM, Murano H, Zaw ZCT, Okiji T. Dental Pulp Tissue Engineering Using Mesenchymal Stem Cells: a Review with a Protocol. Stem Cell Rev Rep 2018; 14:668-676. [PMID: 29804171 DOI: 10.1007/s12015-018-9826-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Mesenchymal stem cells (MSCs) are adult stem cells that can be isolated from human and animal sources such as rats. Recently, an in vivo protocol for pulp tissue engineering using implantation of bone marrow MSCs into rat pulpotomized molars was established by our research group. This coronal pulp regeneration model showed almost complete regeneration/healing with dentin bridge formation when the cavity was sealed with mineral trioxide aggregate (MTA) to create a biocompatible seal of the pulp. This method is a powerful tool for elucidating the processes of dental pulp tissue regeneration following implantation of MSCs. In the present review, we discuss the literature in the field of dental pulp tissue engineering using MSCs including dental pulp stem cells and stem cells from exfoliated deciduous teeth. In addition, we present a brief step-by-step protocol of the coronal pulp regeneration model focusing on the implantation of rat bone marrow MSCs, biodegradable scaffolds, and hydrogels in pulpotomized rat molars. The protocol may lay the foundation for studies aiming at defining further histological and molecular mechanism of the rat pulp tissue engineering.
Collapse
Affiliation(s)
- Tomoatsu Kaneko
- Department of Pulp Biology and Endodontics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Yushima 1-5-45, Bunkyo-Ku, Tokyo, 113-8549, Japan.
| | - Bin Gu
- Department of Pulp Biology and Endodontics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Yushima 1-5-45, Bunkyo-Ku, Tokyo, 113-8549, Japan
| | - Phyo Pyai Sone
- Department of Pulp Biology and Endodontics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Yushima 1-5-45, Bunkyo-Ku, Tokyo, 113-8549, Japan
| | - Su Yee Myo Zaw
- Department of Pulp Biology and Endodontics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Yushima 1-5-45, Bunkyo-Ku, Tokyo, 113-8549, Japan
| | - Hiroki Murano
- Department of Pulp Biology and Endodontics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Yushima 1-5-45, Bunkyo-Ku, Tokyo, 113-8549, Japan
| | - Zar Chi Thein Zaw
- Department of Pulp Biology and Endodontics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Yushima 1-5-45, Bunkyo-Ku, Tokyo, 113-8549, Japan
| | - Takashi Okiji
- Department of Pulp Biology and Endodontics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Yushima 1-5-45, Bunkyo-Ku, Tokyo, 113-8549, Japan
| |
Collapse
|
40
|
Ferreira JR, Teixeira GQ, Santos SG, Barbosa MA, Almeida-Porada G, Gonçalves RM. Mesenchymal Stromal Cell Secretome: Influencing Therapeutic Potential by Cellular Pre-conditioning. Front Immunol 2018; 9:2837. [PMID: 30564236 PMCID: PMC6288292 DOI: 10.3389/fimmu.2018.02837] [Citation(s) in RCA: 368] [Impact Index Per Article: 52.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 11/16/2018] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stromal cells (MSCs) are self-renewing, culture-expandable adult stem cells that have been isolated from a variety of tissues, and possess multipotent differentiation capacity, immunomodulatory properties, and are relatively non-immunogenic. Due to this unique set of characteristics, these cells have attracted great interest in the field of regenerative medicine and have been shown to possess pronounced therapeutic potential in many different pathologies. MSCs' mode of action involves a strong paracrine component resulting from the high levels of bioactive molecules they secrete in response to the local microenvironment. For this reason, MSCs' secretome is currently being explored in several clinical contexts, either using MSC-conditioned media (CM) or purified MSC-derived extracellular vesicles (EVs) to modulate tissue response to a wide array of injuries. Rather than being a constant mixture of molecular factors, MSCs' secretome is known to be dependent on the diverse stimuli present in the microenvironment that MSCs encounter. As such, the composition of the MSCs' secretome can be modulated by preconditioning the MSCs during in vitro culture. This manuscript reviews the existent literature on how preconditioning of MSCs affects the therapeutic potential of their secretome, focusing on MSCs' immunomodulatory and regenerative features, thereby providing new insights for the therapeutic use of MSCs' secretome.
Collapse
Affiliation(s)
- Joana R Ferreira
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal.,Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal.,Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Graciosa Q Teixeira
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal.,Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
| | - Susana G Santos
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal.,Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
| | - Mário A Barbosa
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal.,Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal.,Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Graça Almeida-Porada
- Wake Forest Institute for Regenerative Medicine, Winston-Salem, NC, United States
| | - Raquel M Gonçalves
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal.,Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal.,Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| |
Collapse
|
41
|
Yousefi F, Lavi Arab F, Saeidi K, Amiri H, Mahmoudi M. Various strategies to improve efficacy of stem cell transplantation in multiple sclerosis: Focus on mesenchymal stem cells and neuroprotection. J Neuroimmunol 2018; 328:20-34. [PMID: 30557687 DOI: 10.1016/j.jneuroim.2018.11.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Accepted: 11/30/2018] [Indexed: 02/09/2023]
Abstract
Multiple sclerosis (MS) is an inflammatory demyelinating disease of the central nervous system (CNS) which predominantly affect young adults and undergo heavy socioeconomic burdens. Conventional therapeutic modalities for MS mostly downregulate aggressive immune responses and are almost insufficient for management of progressive course of the disease. Mesenchymal stem cells (MSCs), due to both immunomodulatory and neuroprotective properties have been known as practical cells for treatment of neurodegenerative diseases like MS. However, clinical translation of MSCs is associated with some limitations such as short-life engraftment duration, little in vivo trans-differentiation and restricted accessibility into damaged sites. Therefore, laboratory manipulation of MSCs can improve efficacy of MSCs transplantation in MS patients. In this review, we discuss several novel approaches, which can potentially enhance MSCs capabilities for treating MS.
Collapse
Affiliation(s)
- Forouzan Yousefi
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fahimeh Lavi Arab
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Kolsoum Saeidi
- Physiology Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Houshang Amiri
- Neurology Research Center, Kerman University of Medical Sciences, Kerman, Iran; Department of Radiology and Nuclear Medicine, VU University Medical Center, Amsterdam, The Netherlands
| | - Mahmoud Mahmoudi
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Immunology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
42
|
Bandeiras C, Cabral JM, Finkelstein SN, Ferreira FC. Modeling biological and economic uncertainty on cell therapy manufacturing: the choice of culture media supplementation. Regen Med 2018; 13:917-933. [PMID: 30488770 DOI: 10.2217/rme-2018-0034] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
AIM To evaluate the cost-effectiveness of autologous cell therapy manufacturing in xeno-free conditions. MATERIALS & METHODS Published data on the isolation and expansion of mesenchymal stem/stromal cells introduced donor, multipassage and culture media variability on cell yields and process times on adherent culture flasks to drive cost simulation of a scale-out campaign of 1000 doses of 75 million cells each in a 400 square meter Good Manufacturing Practices facility. RESULTS & CONCLUSION Passage numbers in the expansion step are strongly associated with isolation cell yield and drive cost increases per donor of $1970 and 2802 for fetal bovine serum and human platelet lysate. Human platelet lysate decreases passage numbers and process costs in 94.5 and 97% of donors through lower facility and labor costs. Cost savings are maintained with full equipment depreciation and higher numbers of cells per dose, highlighting the number of cells per passage step as the key cost driver.
Collapse
Affiliation(s)
- Cátia Bandeiras
- Department of Bioengineering and iBB - Institute for Bioengineering & Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.,The Discoveries Centre for Regenerative & Precision Medicine, Lisbon Campus, Universidade de Lisboa, Portugal.,Institute for Data, Systems & Society, Massachusetts Institute of Technology, 50 Ames Street, Cambridge MA 02139, USA.,Division of Clinical Informatics, Department of Medicine, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston MA 02215, USA
| | - Joaquim Ms Cabral
- Department of Bioengineering and iBB - Institute for Bioengineering & Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.,The Discoveries Centre for Regenerative & Precision Medicine, Lisbon Campus, Universidade de Lisboa, Portugal
| | - Stan N Finkelstein
- Institute for Data, Systems & Society, Massachusetts Institute of Technology, 50 Ames Street, Cambridge MA 02139, USA.,Division of Clinical Informatics, Department of Medicine, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston MA 02215, USA
| | - Frederico Castelo Ferreira
- Department of Bioengineering and iBB - Institute for Bioengineering & Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.,The Discoveries Centre for Regenerative & Precision Medicine, Lisbon Campus, Universidade de Lisboa, Portugal
| |
Collapse
|
43
|
Phelps J, Sanati-Nezhad A, Ungrin M, Duncan NA, Sen A. Bioprocessing of Mesenchymal Stem Cells and Their Derivatives: Toward Cell-Free Therapeutics. Stem Cells Int 2018; 2018:9415367. [PMID: 30275839 PMCID: PMC6157150 DOI: 10.1155/2018/9415367] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 04/30/2018] [Indexed: 02/08/2023] Open
Abstract
Mesenchymal stem cells (MSCs) have attracted tremendous research interest due to their ability to repair tissues and reduce inflammation when implanted into a damaged or diseased site. These therapeutic effects have been largely attributed to the collection of biomolecules they secrete (i.e., their secretome). Recent studies have provided evidence that similar effects may be produced by utilizing only the secretome fraction containing extracellular vesicles (EVs). EVs are cell-derived, membrane-bound vesicles that contain various biomolecules. Due to their small size and relative mobility, they provide a stable mechanism to deliver biomolecules (i.e., biological signals) throughout an organism. The use of the MSC secretome, or its components, has advantages over the implantation of the MSCs themselves: (i) signals can be bioengineered and scaled to specific dosages, and (ii) the nonliving nature of the secretome enables it to be efficiently stored and transported. However, since the composition and therapeutic benefit of the secretome can be influenced by cell source, culture conditions, isolation methods, and storage conditions, there is a need for standardization of bioprocessing parameters. This review focuses on key parameters within the MSC culture environment that affect the nature and functionality of the secretome. This information is pertinent to the development of bioprocesses aimed at scaling up the production of secretome-derived products for their use as therapeutics.
Collapse
Affiliation(s)
- Jolene Phelps
- Pharmaceutical Production Research Facility, Department of Chemical and Petroleum Engineering, Schulich School of Engineering, University of Calgary, 2500 University Drive N.W., Calgary, AB, Canada T2N 1N4
- Biomedical Engineering Graduate Program, University of Calgary, 2500 University Drive N.W., Calgary, AB, Canada T2N 1N4
| | - Amir Sanati-Nezhad
- Biomedical Engineering Graduate Program, University of Calgary, 2500 University Drive N.W., Calgary, AB, Canada T2N 1N4
- BioMEMS and Bioinspired Microfluidic Laboratory, Department of Mechanical and Manufacturing Engineering, Schulich School of Engineering, University of Calgary, 2500 University Drive N.W., Calgary, AB, Canada T2N 1N4
- Center for Bioengineering Research and Education, Schulich School of Engineering, University of Calgary, 2500 University Drive N.W., Calgary, AB, Canada T2N 1N4
| | - Mark Ungrin
- Biomedical Engineering Graduate Program, University of Calgary, 2500 University Drive N.W., Calgary, AB, Canada T2N 1N4
- Center for Bioengineering Research and Education, Schulich School of Engineering, University of Calgary, 2500 University Drive N.W., Calgary, AB, Canada T2N 1N4
- Faculty of Veterinary Medicine, Heritage Medical Research Building, University of Calgary, 3330 Hospital Drive N.W., Calgary, AB, Canada T2N 4N1
| | - Neil A. Duncan
- Biomedical Engineering Graduate Program, University of Calgary, 2500 University Drive N.W., Calgary, AB, Canada T2N 1N4
- Center for Bioengineering Research and Education, Schulich School of Engineering, University of Calgary, 2500 University Drive N.W., Calgary, AB, Canada T2N 1N4
- Musculoskeletal Mechanobiology and Multiscale Mechanics Bioengineering Lab, Department of Civil Engineering, Schulich School of Engineering, University of Calgary, 2500 University Drive N.W., Calgary, AB, Canada T2N 1N4
| | - Arindom Sen
- Pharmaceutical Production Research Facility, Department of Chemical and Petroleum Engineering, Schulich School of Engineering, University of Calgary, 2500 University Drive N.W., Calgary, AB, Canada T2N 1N4
- Biomedical Engineering Graduate Program, University of Calgary, 2500 University Drive N.W., Calgary, AB, Canada T2N 1N4
- Center for Bioengineering Research and Education, Schulich School of Engineering, University of Calgary, 2500 University Drive N.W., Calgary, AB, Canada T2N 1N4
| |
Collapse
|
44
|
Heathman TR, Nienow AW, Rafiq QA, Coopman K, Kara B, Hewitt CJ. Agitation and aeration of stirred-bioreactors for the microcarrier culture of human mesenchymal stem cells and potential implications for large-scale bioprocess development. Biochem Eng J 2018. [DOI: 10.1016/j.bej.2018.04.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
45
|
Colunga T, Dalton S. Building Blood Vessels with Vascular Progenitor Cells. Trends Mol Med 2018; 24:630-641. [PMID: 29802036 PMCID: PMC6050017 DOI: 10.1016/j.molmed.2018.05.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 05/02/2018] [Accepted: 05/03/2018] [Indexed: 12/20/2022]
Abstract
Vascular progenitor cells have been identified from perivascular cell fractions and peripheral blood and bone marrow mononuclear fractions. These vascular progenitors share the ability to generate some of the vascular lineages, including endothelial cells, smooth muscle cells, and pericytes. The potential therapeutic uses for vascular progenitor cells are broad and relate to stroke, ischemic disease, and to the engineering of whole organs and tissues that require a vascular component. This review summarizes the best-characterized sources of vascular progenitor cells and discusses advances in 3D printing and electrospinning using blended polymers for the creation of biomimetic vascular grafts. These advances are pushing the field of regenerative medicine closer to the creation of small-diameter vascular grafts with long-term clinical utility.
Collapse
Affiliation(s)
- Thomas Colunga
- Center for Molecular Medicine, University of Georgia, 325 Riverbend Road, Athens, GA 30605, USA; Department of Biochemistry and Molecular Biology, University of Georgia, 325 Riverbend Road, Athens, GA 30605, USA
| | - Stephen Dalton
- Center for Molecular Medicine, University of Georgia, 325 Riverbend Road, Athens, GA 30605, USA; Department of Biochemistry and Molecular Biology, University of Georgia, 325 Riverbend Road, Athens, GA 30605, USA.
| |
Collapse
|
46
|
Paim A, Braghirolli DI, Cardozo NSM, Pranke P, Tessaro IC. Human dental pulp stem cell adhesion and detachment in polycaprolactone electrospun scaffolds under direct perfusion. ACTA ACUST UNITED AC 2018; 51:e6754. [PMID: 29590258 PMCID: PMC5886556 DOI: 10.1590/1414-431x20186754] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 01/11/2018] [Indexed: 11/22/2022]
Abstract
Cell adhesion in three-dimensional scaffolds plays a key role in tissue development. However, stem cell behavior in electrospun scaffolds under perfusion is not fully understood. Thus, an investigation was made on the effect of flow rate and shear stress, adhesion time, and seeding density under direct perfusion in polycaprolactone electrospun scaffolds on human dental pulp stem cell detachment. Polycaprolactone scaffolds were electrospun using a solvent mixture of chloroform and methanol. The viable cell number was determined at each tested condition. Cell morphology was analyzed by confocal microscopy after various incubation times for static cell adhesion with a high seeding density. Scanning electron microscopy images were obtained before and after perfusion for the highest flow rate tested. The wall pore shear stress was calculated for all tested flow rates (0.005–3 mL/min). An inversely proportional relationship between adhesion time with cell detachment under perfusion was observed. Lower flow rates and lower seeding densities reduced the drag of cells by shear stress. However, there was an operational limit for the lowest flow rate that can be used without compromising cell viability, indicating that a flow rate of 0.05 mL/min might be more suitable for the tested cell culture in electrospun scaffolds under direct perfusion.
Collapse
Affiliation(s)
- A Paim
- Laboratório de Separação por Membranas, Departamento de Engenharia Química, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil.,Laboratório de Simulação, Departamento de Engenharia Química, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil.,Laboratório de Hematologia e Células-Tronco, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil
| | - D I Braghirolli
- Laboratório de Hematologia e Células-Tronco, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil
| | - N S M Cardozo
- Laboratório de Simulação, Departamento de Engenharia Química, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil
| | - P Pranke
- Laboratório de Hematologia e Células-Tronco, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil.,Instituto de Pesquisa com Células-Tronco, Porto Alegre, RS, Brasil
| | - I C Tessaro
- Laboratório de Separação por Membranas, Departamento de Engenharia Química, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil
| |
Collapse
|
47
|
Harrison RP, Medcalf N, Rafiq QA. Cell therapy-processing economics: small-scale microfactories as a stepping stone toward large-scale macrofactories. Regen Med 2018; 13:159-173. [PMID: 29509065 DOI: 10.2217/rme-2017-0103] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
AIM Manufacturing methods for cell-based therapies differ markedly from those established for noncellular pharmaceuticals and biologics. Attempts to 'shoehorn' these into existing frameworks have yielded poor outcomes. Some excellent clinical results have been realized, yet emergence of a 'blockbuster' cell-based therapy has so far proved elusive. MATERIALS & METHODS The pressure to provide these innovative therapies, even at a smaller scale, remains. In this process, economics research paper, we utilize cell expansion research data combined with operational cost modeling in a case study to demonstrate the alternative ways in which a novel mesenchymal stem cell-based therapy could be provided at small scale. RESULTS & CONCLUSIONS This research outlines the feasibility of cell microfactories but highlighted that there is a strong pressure to automate processes and split the quality control cost-burden over larger production batches. The study explores one potential paradigm of cell-based therapy provisioning as a potential exemplar on which to base manufacturing strategy.
Collapse
Affiliation(s)
- Richard P Harrison
- Centre for Biological Engineering, Holywell Park, Loughborough University, Loughborough, LE11 3TU, UK.,Wolfson Centre for Stem cells, Tissue Engineering & Modelling (STEM), The University of Nottingham, Centre for Biomolecular Sciences, University Park, Nottingham, NG7 2RD, UK.,Department for Biochemical Engineering, School of Life & Health Sciences, Aston University, Aston Triangle, Birmingham, B4 7ET, UK
| | - Nicholas Medcalf
- Centre for Biological Engineering, Holywell Park, Loughborough University, Loughborough, LE11 3TU, UK
| | - Qasim A Rafiq
- Department of Biochemical Engineering, Faculty of Engineering Science, University College London, Gower Street, London, WC1E 6BT, UK.,Department for Biochemical Engineering, School of Life & Health Sciences, Aston University, Aston Triangle, Birmingham, B4 7ET, UK
| |
Collapse
|
48
|
Corrêa NCR, Kuligovski C, Paschoal ACC, Abud APR, Rebelatto CLK, Leite LMB, Senegaglia AC, Dallagiovanna B, Aguiar AMD. Human adipose-derived stem cells (ADSC) and human periodontal ligament stem cells (PDLSC) as cellular substrates of a toxicity prediction assay. Regul Toxicol Pharmacol 2018; 92:75-82. [DOI: 10.1016/j.yrtph.2017.11.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 11/07/2017] [Accepted: 11/08/2017] [Indexed: 01/08/2023]
|
49
|
Balikov DA, Crowder SW, Lee JB, Lee Y, Ko UH, Kang ML, Kim WS, Shin JH, Sung HJ. Aging Donor-Derived Human Mesenchymal Stem Cells Exhibit Reduced Reactive Oxygen Species Loads and Increased Differentiation Potential Following Serial Expansion on a PEG-PCL Copolymer Substrate. Int J Mol Sci 2018; 19:ijms19020359. [PMID: 29370101 PMCID: PMC5855581 DOI: 10.3390/ijms19020359] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 01/22/2018] [Accepted: 01/23/2018] [Indexed: 12/13/2022] Open
Abstract
Human mesenchymal stem cells (hMSCs) have been widely studied for therapeutic development in tissue engineering and regenerative medicine. They can be harvested from human donors via tissue biopsies, such as bone marrow aspiration, and cultured to reach clinically relevant cell numbers. However, an unmet issue lies in the fact that the hMSC donors for regenerative therapies are more likely to be of advanced age. Their stem cells are not as potent compared to those of young donors, and continue to lose healthy, stemness-related activities when the hMSCs are serially passaged in tissue culture plates. Here, we have developed a cheap, scalable, and effective copolymer film to culture hMSCs obtained from aged human donors over several passages without loss of reactive oxygen species (ROS) handling or differentiation capacity. Assays of cell morphology, reactive oxygen species load, and differentiation potential demonstrate the effectiveness of copolymer culture on reduction in senescence-related activities of aging donor-derived hMSCs that could hinder the therapeutic potential of autologous stem cell therapies.
Collapse
Affiliation(s)
- Daniel A Balikov
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA.
| | - Spencer W Crowder
- Department of Materials and Department of Bioengineering, Imperial College London, London SW7 2AZ, UK.
| | - Jung Bok Lee
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA.
- Severance Biomedical Science Institute, College of Medicine, Yonsei University, Seoul 03722, Korea.
| | - Yunki Lee
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA.
- Department of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| | - Ung Hyun Ko
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea.
| | - Mi-Lan Kang
- Severance Biomedical Science Institute, College of Medicine, Yonsei University, Seoul 03722, Korea.
| | - Won Shik Kim
- Department of Otorhinolaryngology, College of Medicine, Yonsei University, Seoul 03722, Korea.
| | - Jennifer H Shin
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea.
| | - Hak-Joon Sung
- Severance Biomedical Science Institute, College of Medicine, Yonsei University, Seoul 03722, Korea.
- Department of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| |
Collapse
|
50
|
Čamernik K, Marc J, Zupan J. Human Skeletal Muscle-Derived Mesenchymal Stem/Stromal Cell Isolation and Growth Kinetics Analysis. Methods Mol Biol 2018; 2045:119-129. [PMID: 30499023 DOI: 10.1007/7651_2018_201] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The most studied sources of mesenchymal stem/stromal cells (MSCs) are bone marrow and adipose tissue. However skeletal muscle represents an interesting source of diverse subpopulations of MSCs, such as paired box 7 (Pax-7)-positive satellite cells, fibro-/adipogenic progenitors, PW1-positive interstitial cells and others. The specific properties of some of these muscle-derived cells have encouraged the development of cell therapies for muscle regeneration. However, the identity and multilineage potential of the diverse muscle-resident cells should first be evaluated in vitro, followed by in vivo clinical trials to predict their regenerative capacity. Here, we present protocols for the isolation of MSCs from skeletal muscle using enzymatic digestion and mechanical trituration. We also provide a method to determine their specific growth rate, a feature that is of particular interest when designing cell therapies.
Collapse
Affiliation(s)
- Klemen Čamernik
- Faculty of Pharmacy, Department of Clinical Biochemistry, University of Ljubljana, Ljubljana, Slovenia
| | - Janja Marc
- Faculty of Pharmacy, Department of Clinical Biochemistry, University of Ljubljana, Ljubljana, Slovenia
| | - Janja Zupan
- Faculty of Pharmacy, Department of Clinical Biochemistry, University of Ljubljana, Ljubljana, Slovenia.
| |
Collapse
|