1
|
Civzele A, Mezule L. Fungal - assisted microalgae flocculation and simultaneous lignocellulolytic enzyme production in wastewater treatment systems. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2025; 45:e00875. [PMID: 39906408 PMCID: PMC11791311 DOI: 10.1016/j.btre.2025.e00875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 10/31/2024] [Accepted: 01/10/2025] [Indexed: 02/06/2025]
Abstract
The study investigates the application of white rot fungi for reactor-scale microalgae harvesting and explores the mechanisms underlying the algal-fungal interactions and their impact on biomass composition. Enzymatic analysis and microscopy revealed that the formation of algal-fungal complexes and successful harvesting are coupled with fungal cellulose-degrading enzyme production and hydrolytic processes of microalgae cells. Fluorescence intensity decreased by over 80 % in cells stained with Calcofluor-white after interaction with white rot fungi, indicating the reduction in cellulose content in microalgal cells caused by fungal enzymatic activity. These enzymes also caused significant cell damage and more than 50 % decrease in microalgae cell size. The presence of cellulolytic enzymes broadens the potential application of the resulting biomass in various biotechnological applications. Moreover, reactor-scale bioflocculation resulted in over 95 % T. obliquus and almost 85 % C. vulgaris harvesting efficiency from secondary wastewater within less than 24 h, demonstrating the method's scalability and industrial applicability.
Collapse
Affiliation(s)
- Anna Civzele
- Water Systems and Biotechnology Institute, Riga Technical University, Latvia
| | - Linda Mezule
- Water Systems and Biotechnology Institute, Riga Technical University, Latvia
| |
Collapse
|
2
|
Díaz-Maneh A, Pérez-Rubio P, Granes CR, Bosch-Molist L, Lavado-García J, Gòdia F, Cervera L. Targeted knockdown of ATM, ATR, and PDEδ increases Gag HIV-1 VLP production in HEK293 cells. Appl Microbiol Biotechnol 2025; 109:1. [PMID: 39747723 PMCID: PMC11695449 DOI: 10.1007/s00253-024-13389-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 12/16/2024] [Accepted: 12/18/2024] [Indexed: 01/04/2025]
Abstract
Several strategies have been developed in recent years to improve virus-like particle (VLP)-based vaccine production processes. Among these, the metabolic engineering of cell lines has been one of the most promising approaches. Based on previous work and a proteomic analysis of HEK293 cells producing Human Immunodeficiency Virus-1 (HIV-1) Gag VLPs under transient transfection, four proteins susceptible of enhancing VLP production were identified: ataxia telangiectasia mutated (ATM), ataxia telangiectasia and rad3-related (ATR), DNA-dependent protein kinase catalytic subunit (DNA-PKcs), and retinal rod rhodopsin-sensitive cGMP 3',5'-cyclic phosphodiesterase subunit delta (PDEδ). The knockdown of ATM, ATR, and PDEδ in HEK293 cells increased HIV-1 VLP titers in the supernatant by 3.4-, 2.1-, and 2.2-fold, respectively. Also, possible metabolic synergies between plasmids were investigated by statistical design of experiments (DoE), enabling us to identify the optimal production strategy, that was further demonstrated at lab-scale stirred tank bioreactor operated in perfusion, significantly increasing both VLPs specific and volumetric productivities to 8.3 × 103 VLPs/cellxday and 7.5 × 1012 VLPs/Lxday, respectively. KEY POINTS: • ATM, ATR, and PDEδ knockdowns increased VLP production in HEK293 cells. • Knockdown of ATM increased budding efficiency and extracellular vesicle concentration. • ATM knockdown could be intensified to bioreactor scale operated in perfusion.
Collapse
Affiliation(s)
- Andy Díaz-Maneh
- Grup d'Enginyeria de Bioprocessos i Biocatàlisi Aplicada, ENG4BIO, Escola d'Enginyeria, Universitat Autònoma de Barcelona, Campus de Bellaterra, Cerdanyola del Vallès, 08193, Barcelona, Spain.
- Aglaris Cell, C/ Santiago Grisolía, 2, Tres Cantos, 28760, Madrid, Spain.
| | - Pol Pérez-Rubio
- Grup d'Enginyeria de Bioprocessos i Biocatàlisi Aplicada, ENG4BIO, Escola d'Enginyeria, Universitat Autònoma de Barcelona, Campus de Bellaterra, Cerdanyola del Vallès, 08193, Barcelona, Spain
| | - Cristina Rigau Granes
- Grup d'Enginyeria de Bioprocessos i Biocatàlisi Aplicada, ENG4BIO, Escola d'Enginyeria, Universitat Autònoma de Barcelona, Campus de Bellaterra, Cerdanyola del Vallès, 08193, Barcelona, Spain
- Asklepios Biopharmaceutical, Inc, 20 TW Alexander Dr #110, Research Triangle Park, Chapel Hill, NC, 27709, USA
| | - Laia Bosch-Molist
- Grup d'Enginyeria de Bioprocessos i Biocatàlisi Aplicada, ENG4BIO, Escola d'Enginyeria, Universitat Autònoma de Barcelona, Campus de Bellaterra, Cerdanyola del Vallès, 08193, Barcelona, Spain
| | - Jesús Lavado-García
- Grup d'Enginyeria de Bioprocessos i Biocatàlisi Aplicada, ENG4BIO, Escola d'Enginyeria, Universitat Autònoma de Barcelona, Campus de Bellaterra, Cerdanyola del Vallès, 08193, Barcelona, Spain
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kgs. Lyngby, Denmark
| | - Francesc Gòdia
- Grup d'Enginyeria de Bioprocessos i Biocatàlisi Aplicada, ENG4BIO, Escola d'Enginyeria, Universitat Autònoma de Barcelona, Campus de Bellaterra, Cerdanyola del Vallès, 08193, Barcelona, Spain
| | - Laura Cervera
- Grup d'Enginyeria de Bioprocessos i Biocatàlisi Aplicada, ENG4BIO, Escola d'Enginyeria, Universitat Autònoma de Barcelona, Campus de Bellaterra, Cerdanyola del Vallès, 08193, Barcelona, Spain
- Serra Hunter, Catalonia, Barcelona, Spain
| |
Collapse
|
3
|
Iannacci F, Medeiros Garcia Alcântara J, Marani M, Camesasca P, Chen M, Sousa F, Morbidelli M, Sponchioni M. High-density perfusion cultures of the marine bacterium Rhodovulum sulfidophilum for the biomanufacturing of oligonucleotides. J Biotechnol 2024; 392:152-160. [PMID: 39025367 DOI: 10.1016/j.jbiotec.2024.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/14/2024] [Accepted: 07/12/2024] [Indexed: 07/20/2024]
Abstract
Therapeutic oligonucleotides (ONs) are typically manufactured via solid-phase synthesis, characterized by limited scalability and huge environmental footprint, limiting their availability. Biomanufactured ONs have the potential to reduce the immunogenic side-effects, and to improve the sustainability of their chemical counterparts. Rhodovulum sulfidophilum was demonstrated a valuable host for the extracellular production of recombinant ONs. However, low viable cell densities and product titer were reported so far. In this work, perfusion cell cultures were established for the intensification of ON biomanufacturing. First, the perfusion conditions were simulated in 50 mL spin tubes, selected as a scale-down model of the process, with the aim of optimizing the medium composition and process parameters. This optimization stage led to an increase in the cell density by 44 % compared to the reference medium formulation. In addition, tests at increasing perfusion rates were conducted until achieving the maximum viable cell density (VCDmax), allowing the determination of the minimum cell-specific perfusion rate (CSPRmin) required to sustain the cell culture. Intriguingly, we discovered in this system also a maximum CSPR, above which growth inhibition starts. By leveraging this process optimization, we show for the first time the conduction of perfusion cultures of R. sulfidophilum in bench-scale bioreactors. This process development pipeline allowed stable cultures for more than 20 days and the continuous biomanufacturing of ONs, testifying the great potential of perfusion processes.
Collapse
Affiliation(s)
- Francesco Iannacci
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, via Mancinelli 7, Milano 20131, Italy
| | - João Medeiros Garcia Alcântara
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, via Mancinelli 7, Milano 20131, Italy
| | - Martina Marani
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, via Mancinelli 7, Milano 20131, Italy
| | - Paolo Camesasca
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, via Mancinelli 7, Milano 20131, Italy
| | - Michele Chen
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, via Mancinelli 7, Milano 20131, Italy
| | - Fani Sousa
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, Covilhã 6200-506, Portugal
| | - Massimo Morbidelli
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, via Mancinelli 7, Milano 20131, Italy
| | - Mattia Sponchioni
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, via Mancinelli 7, Milano 20131, Italy.
| |
Collapse
|
4
|
Rahimzadeh A, Ein-Mozaffari F, Lohi A. Analyzing of hydrodynamic stress and mass transfer requirements of a fermentation process carried out in a coaxial bioreactor: a scale-up study. Bioprocess Biosyst Eng 2024; 47:633-649. [PMID: 38557906 DOI: 10.1007/s00449-024-02990-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 03/04/2024] [Indexed: 04/04/2024]
Abstract
Fluid hydrodynamic stress has a deterministic effect on the morphology of filamentous fungi. Although the coaxial mixer has been recognized as a suitable gas dispersion system for minimizing inhomogeneities within a bioreactor, its performance for achieving enhanced oxygen transfer while operating at a reduced shear environment has not been investigated yet, specifically upon scale-up. Therefore, the influence of the impeller type, aeration rate, and central impeller retrofitting on the efficacy of an abiotic coaxial system containing a shear-thinning fluid was examined. The aim was to assess the hydrodynamic parameters, including stress, mass transfer, bubble size, and gas hold-up, upon conducting a scale-up study. The investigation was conducted through dynamic gassing-in, tomography, and computational fluid dynamics combined with population balance methods. It was observed that the coaxial bioreactor performance was strongly influenced by the agitator type. In addition, coaxial bioreactors are scalable in terms of shear environment and oxygen transfer rate.
Collapse
Affiliation(s)
- Ali Rahimzadeh
- Department of Chemical Engineering, Toronto Metropolitan University, 350 Victoria Street, Toronto, ON, M5B 2K3, Canada
| | - Farhad Ein-Mozaffari
- Department of Chemical Engineering, Toronto Metropolitan University, 350 Victoria Street, Toronto, ON, M5B 2K3, Canada.
| | - Ali Lohi
- Department of Chemical Engineering, Toronto Metropolitan University, 350 Victoria Street, Toronto, ON, M5B 2K3, Canada
| |
Collapse
|
5
|
Schrader M, Schrinner K, Polomsky L, Ivanov D, Kampen I, Schilde C, Krull R, Kwade A. Quantification and modeling of macroparticle-induced mechanical stress for varying shake flask cultivation conditions. Front Bioeng Biotechnol 2023; 11:1254136. [PMID: 37731767 PMCID: PMC10507416 DOI: 10.3389/fbioe.2023.1254136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 08/08/2023] [Indexed: 09/22/2023] Open
Abstract
In biotechnological processes, filamentous microorganisms are known for their broad product spectrum and complex cellular morphology. Product formation and cellular morphology are often closely linked, requiring a well-defined level of mechanical stress to achieve high product concentrations. Macroparticles were added to shake flask cultures of the filamentous actinomycete Lentzea aerocolonigenes to find these optimal cultivation conditions. However, there is currently no model concept for the dependence of the strength and frequency of the bead-induced stress on the process parameters. Therefore, shake flask simulations were performed for combinations of bead size, bead concentration, bead density and shaking frequency. Contact analysis showed that the highest shear stresses were caused by bead-bottom contacts. Based on this, a newly generated characteristic parameter, the stress area ratio (SAR), was defined, which relates the bead wall shear and normal stresses to the total shear area. Comparison of the SAR with previous cultivation results revealed an optimum pattern for product concentration and mean product-to-biomass related yield coefficient. Thus, this model is a suitable tool for future optimization, comparison and scaling up of shear-sensitive microorganism cultivation. Finally, the simulation results were validated using high-speed recordings of the bead motion on the bottom of the shake flask.
Collapse
Affiliation(s)
- Marcel Schrader
- Institute for Particle Technology, Technische Universität Braunschweig, Braunschweig, Germany
- Center of Pharmaceutical Engineering, Technische Universität Braunschweig, Braunschweig, Germany
| | - Kathrin Schrinner
- Center of Pharmaceutical Engineering, Technische Universität Braunschweig, Braunschweig, Germany
- Institute of Biochemical Engineering, Technische Universität Braunschweig, Braunschweig, Germany
| | - Laura Polomsky
- Institute for Particle Technology, Technische Universität Braunschweig, Braunschweig, Germany
- Center of Pharmaceutical Engineering, Technische Universität Braunschweig, Braunschweig, Germany
| | - Dimitri Ivanov
- Institute for Particle Technology, Technische Universität Braunschweig, Braunschweig, Germany
- Center of Pharmaceutical Engineering, Technische Universität Braunschweig, Braunschweig, Germany
| | - Ingo Kampen
- Institute for Particle Technology, Technische Universität Braunschweig, Braunschweig, Germany
- Center of Pharmaceutical Engineering, Technische Universität Braunschweig, Braunschweig, Germany
| | - Carsten Schilde
- Institute for Particle Technology, Technische Universität Braunschweig, Braunschweig, Germany
- Center of Pharmaceutical Engineering, Technische Universität Braunschweig, Braunschweig, Germany
| | - Rainer Krull
- Center of Pharmaceutical Engineering, Technische Universität Braunschweig, Braunschweig, Germany
- Institute of Biochemical Engineering, Technische Universität Braunschweig, Braunschweig, Germany
| | - Arno Kwade
- Institute for Particle Technology, Technische Universität Braunschweig, Braunschweig, Germany
- Center of Pharmaceutical Engineering, Technische Universität Braunschweig, Braunschweig, Germany
| |
Collapse
|
6
|
Li J, Wu Y, Yao X, Tian Y, Sun X, Liu Z, Ye X, Wu C. Preclinical Research of Stem Cells: Challenges and Progress. Stem Cell Rev Rep 2023:10.1007/s12015-023-10528-y. [PMID: 37097496 DOI: 10.1007/s12015-023-10528-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/06/2023] [Indexed: 04/26/2023]
Abstract
In recent years, great breakthroughs have been made in basic research and clinical applications of stem cells in regenerative medicine and other fields, which continue to inspire people to explore the field of stem cells. With nearly unlimited self-renewal ability, stem cells can generate at least one type of highly differentiated daughter cell, which provides broad development prospects for the treatment of human organ damage and other diseases. In the field of stem cell research, related technologies for inducing or isolating stem cells are relatively mature, and a variety of stable stem cell lines have been successfully constructed. To realize the full clinical application of stem cells as soon as possible, it is more and more important to further optimize each stage of stem cell research while conforming to Current Good Manufacture Practices (cGMP) standards. Here, we synthesized recent developments in stem cell research and focus on the introduction of xenogenicity in the preclinical research process and the remaining problems of various cell bioreactors. Our goal is to promote the development of technologies for xeno-free culture and clinical expansion of stem cells through in-depth discussion of current research. This review will provide new insight into stem cell research protocols and will contribute to the creation of efficient and stable stem cell expansion systems.
Collapse
Affiliation(s)
- Jinhu Li
- School of Pharmacy, School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yurou Wu
- School of Pharmacy, School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiang Yao
- School of Pharmacy, School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yao Tian
- School of Pharmacy, School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xue Sun
- School of Pharmacy, School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zibo Liu
- School of Pharmacy, School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xun Ye
- School of Pharmacy, School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chunjie Wu
- Innovative Institute of Chinese Medicine and Pharmacy/Academy for Interdiscipline, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| |
Collapse
|
7
|
Wang S, Xiong X, Liu P, Zhang Q, Zhang Q, Tao C, Wang Y, Liu Z. CFD simulation of hydrodynamics and mixing performance in dual shaft eccentric mixers. Chin J Chem Eng 2023. [DOI: 10.1016/j.cjche.2023.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
8
|
Picão BW, Gonçalves DO, Ribeiro RMMGP, Esperança MN, Peixoto G, Cerri MO. Oxygen transfer and gas holdup in airlift bioreactors assembled with helical flow promoters. Bioprocess Biosyst Eng 2023; 46:681-692. [PMID: 36806976 DOI: 10.1007/s00449-023-02853-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 02/08/2023] [Indexed: 02/23/2023]
Abstract
Bioreactors can perform biochemical conversions mediated by biocatalysts, such as enzymes, animal cells, plants, and microorganisms. Among several existing models, airlift bioreactors are devices with the low shear environment and good mass transfer with low energy consumption, employed in several biochemical processes. The fluid flow is enabled through air injection by the sparger located at the bioreactor base. Despite its simple geometry compared with the conventional bioreactors, airlift performance can be optimized via geometrical modifications. Therefore, the objective of this work was to evaluate the effects of the addition of helical flow promoters, positioned in the riser and/or downcomer regions of an airlift of concentric tubes measuring the volumetric oxygen coefficient (kLa) and gas holdup. The results obtained by varying the gas flow rate from 1.0 to 4.0 vvm allowed the system evaluation of oxygen transfer and gas holdup. The inclusion of helical flow promoters increased the kLa, reaching up to 23% in oxygen transfer compared to tests without helicoids and up to 14% increase in the gas holdup. The inclusion of helical flow promotors was beneficial for all gas flow rates. Thus, including these flow promoters is an effective strategy to increase the oxygen transfer rate for bioprocess optimization.
Collapse
Affiliation(s)
- Bruno W Picão
- Department of Bioprocesses Engineering and Biotechnology, Faculty of Pharmaceutical Sciences, University Estadual Paulista "Júlio de Mesquita Filho", Araraquara, SP, CEP 14801-902, Brazil
| | - Daniele O Gonçalves
- Department of Bioprocesses Engineering and Biotechnology, Faculty of Pharmaceutical Sciences, University Estadual Paulista "Júlio de Mesquita Filho", Araraquara, SP, CEP 14801-902, Brazil
| | - Renata M M G P Ribeiro
- School of Chemical Engineering, Department of Materials and Engineering Bioprocesses, State University of Campinas, Campinas, SP, Brazil
| | - Mateus N Esperança
- Federal Institute of Education, Science and Technology of São Paulo, Campus Capivari, Capivari, SP, 13360-000, Brazil
| | - Guilherme Peixoto
- Department of Bioprocesses Engineering and Biotechnology, Faculty of Pharmaceutical Sciences, University Estadual Paulista "Júlio de Mesquita Filho", Araraquara, SP, CEP 14801-902, Brazil
| | - Marcel O Cerri
- Department of Bioprocesses Engineering and Biotechnology, Faculty of Pharmaceutical Sciences, University Estadual Paulista "Júlio de Mesquita Filho", Araraquara, SP, CEP 14801-902, Brazil.
| |
Collapse
|
9
|
Nucleation–Oxidation coupled technology for High-Nickel ternary cathode recycling of spent Lithium-ion batteries. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121569] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
10
|
Barros PL, Ein-Mozaffari F, Lohi A. Power Consumption Characterization of Energy-Efficient Aerated Coaxial Mixers Containing Yield-Stress Biopolymer Solutions. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c02008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Paloma L. Barros
- Department of Chemical Engineering, Toronto Metropolitan University, 350 Victoria Street, Toronto, Ontario M5B 2K3, Canada
| | - Farhad Ein-Mozaffari
- Department of Chemical Engineering, Toronto Metropolitan University, 350 Victoria Street, Toronto, Ontario M5B 2K3, Canada
| | - Ali Lohi
- Department of Chemical Engineering, Toronto Metropolitan University, 350 Victoria Street, Toronto, Ontario M5B 2K3, Canada
| |
Collapse
|
11
|
Scale-up study of aerated coaxial mixing reactors containing non-newtonian power-law fluids: Analysis of gas holdup, cavity size, and power consumption. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
12
|
Wu Y, You P, Luo P. Effect of pitched short blades on the flow characteristics in a stirred tank with long-short blades impeller. Chin J Chem Eng 2022. [DOI: 10.1016/j.cjche.2021.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
13
|
Ruiz J, Wijffels RH, Dominguez M, Barbosa MJ. Heterotrophic vs autotrophic production of microalgae: Bringing some light into the everlasting cost controversy. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102698] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
14
|
Boix-Besora A, Lorenzo E, Lavado-García J, Gòdia F, Cervera L. Optimization, Production, Purification and Characterization of HIV-1 GAG-Based Virus-like Particles Functionalized with SARS-CoV-2. Vaccines (Basel) 2022; 10:vaccines10020250. [PMID: 35214708 PMCID: PMC8874421 DOI: 10.3390/vaccines10020250] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/02/2022] [Accepted: 02/04/2022] [Indexed: 01/27/2023] Open
Abstract
Virus-like particles (VLPs) constitute a promising approach to recombinant vaccine development. They are robust, safe, versatile and highly immunogenic supra-molecular structures that closely mimic the native conformation of viruses without carrying their genetic material. HIV-1 Gag VLPs share similar characteristics with wild-type severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus, making them a suitable platform for the expression of its spike membrane protein to generate a potential vaccine candidate for COVID-19. This work proposes a methodology for the generation of SARS-CoV-2 VLPs by their co-expression with HIV-1 Gag protein. We achieved VLP functionalization with coronavirus spike protein, optimized its expression using a design of experiments (DoE). We also performed the bioprocess at a bioreactor scale followed by a scalable downstream purification process consisting of two clarifications, an ion exchange and size-exclusion chromatography. The whole production process is conceived to enhance its transferability at current good manufacturing practice (cGMP) industrial scale manufacturing. Moreover, the approach proposed could be expanded to produce additional Gag-based VLPs against different diseases or COVID-19 variants.
Collapse
|
15
|
Gas Dispersion in Non-Newtonian Fluids with Mechanically Agitated Systems: A Review. Processes (Basel) 2022. [DOI: 10.3390/pr10020275] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Gas dispersion in non-Newtonian fluids is encountered in a broad range of chemical, biochemical, and food industries. Mechanically agitated vessels are commonly employed in these processes because they promote high degree of contact between the phases. However, mixing non-Newtonian fluids is a challenging task that requires comprehensive knowledge of the mixing flow to accurately design stirred vessels. Therefore, this review presents the developments accomplished by researchers in this field. The present work describes mixing and mass transfer variables, namely volumetric mass transfer coefficient, power consumption, gas holdup, bubble diameter, and cavern size. It presents empirical correlations for the mixing variables and discusses the effects of operating and design parameters on the mixing and mass transfer process. Furthermore, this paper demonstrates the advantages of employing computational fluid dynamics tools to shed light on the hydrodynamics of this complex flow. The literature review shows that knowledge gaps remain for gas dispersion in yield stress fluids and non-Newtonian fluids with viscoelastic effects. In addition, comprehensive studies accounting for the scale-up of these mixing processes still need to be accomplished. Hence, further investigation of the flow patterns under different process and design conditions are valuable to have an appropriate insight into this complex system.
Collapse
|
16
|
Esperança MN, Buffo MM, Mendes CE, Rodriguez GY, Béttega R, Badino AC, Cerri MO. Linking maximal shear rate and energy dissipation/circulation function in airlift bioreactors. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2021.108308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
17
|
Local Distribution of Oxygen Mass Transfer Coefficient in CMC Solutions in Bioreactors Furnished with Different Types of Coaxial Mixers. Chem Eng Res Des 2021. [DOI: 10.1016/j.cherd.2021.08.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
18
|
Shen B, Zhan X, He Y, Sun Z, Long J, Yang Y, Li X. Computational fluid dynamic analysis of mass transfer and hydrodynamics in a planetary centrifugal bioreactor. KOREAN J CHEM ENG 2021. [DOI: 10.1007/s11814-021-0817-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
19
|
Buffo MM, Ferreira ALZ, Almeida RMRG, Farinas CS, Badino AC, Ximenes EA, Ladisch MR. Cellulolytic enzymes production guided by morphology engineering. Enzyme Microb Technol 2021; 149:109833. [PMID: 34311878 DOI: 10.1016/j.enzmictec.2021.109833] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/11/2021] [Accepted: 05/19/2021] [Indexed: 11/26/2022]
Abstract
Endoglucanase and xylanase are critical enzymes for liquefaction and enzyme hydrolysis of high solids lignocellulosic biomass to facilitate its transport and production of desired derived products. Here is reported how combinations of different spore concentrations and pH influence microbial morphology, and how this may be used to direct expression and secretion of enzymes by Aspergillus niger. While xylanase production is not affected by A. niger morphology changes, endoglucanase production is enhanced under conditions of lower stress and by morphology that results in pellets. β-glucosidase production is enhanced under dispersed morphology, which results in up to fourfold increase of this enzyme production under the tested experimental conditions. A morphologic scale (Y) is proposed based on a form factor that considers the size and frequency of each morphology class, and that points to conditions that result in high selectivity for either endoglucanase or β-glucosidase production. An equation proposed to relate enzyme activity to morphology provides a useful tool for tuning enzyme production of A. niger, where morphology is a first indication of relative enzyme activities in a fermentation broth.
Collapse
Affiliation(s)
- Mariane M Buffo
- Federal University of São Carlos, São Carlos, SP, 13565-905, Brazil
| | | | | | - Cristiane S Farinas
- Federal University of São Carlos, São Carlos, SP, 13565-905, Brazil; Embrapa Instrumentation, Rua XV de Novembro 1452, São Carlos, SP, 13560-970, Brazil
| | - Alberto C Badino
- Federal University of São Carlos, São Carlos, SP, 13565-905, Brazil.
| | | | | |
Collapse
|
20
|
Individual effect of shear rate and oxygen transfer on clavulanic acid production by Streptomyces clavuligerus. Bioprocess Biosyst Eng 2021; 44:1721-1732. [PMID: 33821325 DOI: 10.1007/s00449-021-02555-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 03/17/2021] [Indexed: 10/21/2022]
Abstract
The production of biocompounds through the cultivation of filamentous microorganisms is mainly affected by Oxygen Transfer Rate (OTR) and shear rate ([Formula: see text]) conditions. Despite efforts have been made to evaluate the effect of operating variables (impeller speed, N; and airflow rate, ϕair) on clavulanic acid production, no analysis regarding the effect of OTR and [Formula: see text] was made. Then, the aim of this study was to evaluate the dissociated effect of physical phenomena such as oxygen transfer and shear rate in the production of clavulanic acid from Streptomyces clavuligerus using a stirred tank bioreactor. Streptomyces clavuligerus cultivations were performed at five different OTR and [Formula: see text] conditions by manipulating the operating conditions (N, ϕair, and gas inlet composition). Cultivations performed at equal impeller speed (600 rpm, similar [Formula: see text]) using oxygen enrichment, showed that CA productivity (ProdCA) was positively affected by OTR increase. Subsequently, the different shear conditions (achieved by varying the impeller speed) lead to an increase in CA production levels. Despite both OTR and shear rate positively enhanced CA productivity, [Formula: see text] exhibited the highest impact: an increase of 145% in OTRinitial enhanced the clavulanic acid productivity of about 29%, while an increment in the shear rate of 134% raised the ProdCA in 53%.
Collapse
|
21
|
An overview of drive systems and sealing types in stirred bioreactors used in biotechnological processes. Appl Microbiol Biotechnol 2021; 105:2225-2242. [PMID: 33649923 PMCID: PMC7954712 DOI: 10.1007/s00253-021-11180-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 02/05/2021] [Accepted: 02/14/2021] [Indexed: 12/27/2022]
Abstract
No matter the scale, stirred tank bioreactors are the most commonly used systems in biotechnological production processes. Single-use and reusable systems are supplied by several manufacturers. The type, size, and number of impellers used in these systems have a significant influence on the characteristics and designs of bioreactors. Depending on the desired application, classic shaft-driven systems, bearing-mounted drives, or stirring elements that levitate freely in the vessel may be employed. In systems with drive shafts, process hygiene requirements also affect the type of seal used. For sensitive processes with high hygienic requirements, magnetic-driven stirring systems, which have been the focus of much research in recent years, are recommended. This review provides the reader with an overview of the most common agitation and seal types implemented in stirred bioreactor systems, highlights their advantages and disadvantages, and explains their possible fields of application. Special attention is paid to the development of magnetically driven agitators, which are widely used in reusable systems and are also becoming more and more important in their single-use counterparts. Key Points • Basic design of the most frequently used bioreactor type: the stirred tank bioreactor • Differences in most common seal types in stirred systems and fields of application • Comprehensive overview of commercially available bioreactor seal types • Increased use of magnetically driven agitation systems in single-use bioreactors
Collapse
|
22
|
García-Salas S, Gómez-Montes EO, Ramírez-Sotelo MG, Oliver-Salvador MDC. Shear rate as scale-up criterion of the protein production with enhanced proteolytic activity by phosphate addition in the Jacaratia mexicana cell culture. BIOTECHNOL BIOTEC EQ 2021. [DOI: 10.1080/13102818.2021.1944317] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Affiliation(s)
- Sergio García-Salas
- Departamento de Bioingeniería, Unidad Profesional Interdisciplinaria de Biotecnología del Instituto Politécnico Nacional (UPIBI-IPN), Ciudad de México, México
| | - Elías Octavio Gómez-Montes
- Departamento de Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de México, México
- Departamento de Bioingeniería, Escuela de Ingeniería y Ciencias, Instituto Tecnológico y de Estudios Superiores de Monterrey (ITESM-CEM), Estado de México, México
| | - María Guadalupe Ramírez-Sotelo
- Departamento de Bioingeniería, Unidad Profesional Interdisciplinaria de Biotecnología del Instituto Politécnico Nacional (UPIBI-IPN), Ciudad de México, México
| | - María del Carmen Oliver-Salvador
- Departamento de Bioprocesos, Unidad Profesional Interdisciplinaria de Biotecnología del Instituto Politécnico Nacional (UPIBI-IPN), Ciudad de México, México
| |
Collapse
|
23
|
Buffo MM, Esperança MN, Farinas CS, Badino AC. Relation between pellet fragmentation kinetics and cellulolytic enzymes production by Aspergillus niger in conventional bioreactor with different impellers. Enzyme Microb Technol 2020; 139:109587. [DOI: 10.1016/j.enzmictec.2020.109587] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 04/07/2020] [Accepted: 04/24/2020] [Indexed: 10/24/2022]
|
24
|
CFD and Experimental Characterization of a Bioreactor: Analysis via Power Curve, Flow Patterns and
k
L
a
. Processes (Basel) 2020. [DOI: 10.3390/pr8070878] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Mixing operations in biological processes is of utmost importance due to its effect on scaling-up and heat and mass transfer. This paper presents the characterization of a bench-top bioreactor with different impeller configurations, agitation and oxygen transfer rates, using CFD simulations and experimental procedures. Here, it is demonstrated that factors such as the type of impeller and the flow regime can drastically vary the operation as in the preparation of cultures. It was observed that the bioreactor equipped with a Rushton generates a k L a of 0.0056 s−1 for an agitation velocity and airflow rate of 250 RPM and 5 L/min, respectively. It is suitable result for the dissolved oxygen (DO) but requires a considerable amount of power consumption. It is here where the importance of the agitator’s diameter can be observed, since, in the case of the two propeller types studied, lower energy consumption can be achieved with a smaller diameter, as well as a much smaller shear cup 2.376 against 0.723 s−1 by decreasing by 4 cm the standard diameter of an agitated tank (10 cm). Finally, the k L a values obtained for the different configurations are compared with the maximum shear rate values of different cell cultures to highlight the impact of this study and its applicability to different industries that use agitation processes for cell growth.
Collapse
|
25
|
Lavado-García J, Cervera L, Gòdia F. An Alternative Perfusion Approach for the Intensification of Virus-Like Particle Production in HEK293 Cultures. Front Bioeng Biotechnol 2020; 8:617. [PMID: 32637402 PMCID: PMC7318772 DOI: 10.3389/fbioe.2020.00617] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 05/20/2020] [Indexed: 01/11/2023] Open
Abstract
Virus-like particles (VLPs) have gained interest over the last years as recombinant vaccine formats, as they generate a strong immune response and present storage and distribution advantages compared to conventional vaccines. Therefore, VLPs are being regarded as potential vaccine candidates for several diseases. One requirement for their further clinical testing is the development of scalable processes and production platforms for cell-based viral particles. In this work, the extended gene expression (EGE) method, which consists in consecutive media replacements combined with cell retransfections, was successfully optimized and transferred to a bioreactor operating in perfusion. A process optimization using design of experiments (DoE) was carried out to obtain optimal values for the time of retransfection, the cell specific perfusion rate (CSPR) and transfected DNA concentration, improving 86.7% the previously reported EGE protocol in HEK293. Moreover, it was successfully implemented at 1.5L bioreactor using an ATF as cell retention system achieving concentrations of 6.8·1010 VLP/mL. VLP interaction with the ATF hollow fibers was studied via confocal microscopy, field emission scanning electron microscopy, and nanoparticle tracking analysis to design a bioprocess capable of separating unassembled Gag monomers and concentrate VLPs in one step.
Collapse
Affiliation(s)
- Jesús Lavado-García
- Grup d'Enginyeria Cellular i Bioprocés, Escola d'Enginyeria, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Laura Cervera
- Grup d'Enginyeria Cellular i Bioprocés, Escola d'Enginyeria, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Francesc Gòdia
- Grup d'Enginyeria Cellular i Bioprocés, Escola d'Enginyeria, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
26
|
Insights from Mathematical Modelling into Process Control of Oxygen Transfer in Batch Stirred Tank Bioreactors for Reducing Energy Requirement. CHEMENGINEERING 2020. [DOI: 10.3390/chemengineering4020034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Significant energy savings can be made in aerobic stirred tank batch bioreactors by the manipulation of agitator power (Pag) and air flowrate per unit working volume (vvm). Control is often implemented to maintain the oxygen concentration in the bioreaction liquid (COL) at a constant value. This work used model simulations to show that controlling the Pag and vvm continuously over time, such that it is operated at or near the impeller flooding constraint results in the minimum energy requirement for oxygen transfer (strategy Cmin); however, this might prove impractical to control and operate in practice. As an alternative, the work shows that dividing the bioreaction time into a small number of constant Pag time segments (5–10), where a PID controller is used to control vvm to maintain COL constant in each segment, can achieve much of the energy saving that is associated with Cmin. During each time segment, vvm is increased and a sudden decrease in COL is used to detect the onset of flooding, after which there is a step increase in Pag. This sequence of Pag step increases continues until the bioreaction is completed. This practical control approach was shown to save most of the energy that is associated with Cmin.
Collapse
|
27
|
Brondi MG, Elias AM, Furlan FF, Giordano RC, Farinas CS. Performance targets defined by retro-techno-economic analysis for the use of soybean protein as saccharification additive in an integrated biorefinery. Sci Rep 2020; 10:7367. [PMID: 32355315 PMCID: PMC7192929 DOI: 10.1038/s41598-020-64316-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 04/13/2020] [Indexed: 01/19/2023] Open
Abstract
The use of additives in the enzymatic saccharification of lignocellulosic biomass can have positive effects, decreasing the unproductive adsorption of cellulases on lignin and reducing the loss of enzyme activity. Soybean protein stands out as a potential lignin-blocking additive, but the economic impact of its use has not previously been investigated. Here, a systematic evaluation was performed of the process conditions, together with a techno-economic analysis, for the use of soybean protein in the saccharification of hydrothermally pretreated sugarcane bagasse in the context of an integrated 1G-2G ethanol biorefinery. Statistical experimental design methodology was firstly applied as a tool to select the process variable solids loading at 15% (w/w) and soybean protein concentration at 12% (w/w), followed by determination of enzyme dosage at 10 FPU/g and hydrolysis time of 24 h. The saccharification of sugarcane bagasse under these conditions enabled an increase of 26% in the amount of glucose released, compared to the control without additive. The retro-techno-economic analysis (RTEA) technique showed that to make the biorefinery economically feasible, some performance targets should be reached experimentally such as increasing biomass conversion to ideally 80% and reducing enzyme loading to 5.6 FPU/g in the presence of low-cost soybean protein.
Collapse
Affiliation(s)
- Mariana G Brondi
- Embrapa Instrumentation, Rua XV de Novembro 1452, 13560-970, São Carlos, SP, Brazil
- Graduate Program of Chemical Engineering, Federal University of São Carlos, 13565-905, Sao Carlos, SP, Brazil
| | - Andrew M Elias
- Graduate Program of Chemical Engineering, Federal University of São Carlos, 13565-905, Sao Carlos, SP, Brazil
| | - Felipe F Furlan
- Graduate Program of Chemical Engineering, Federal University of São Carlos, 13565-905, Sao Carlos, SP, Brazil
| | - Roberto C Giordano
- Graduate Program of Chemical Engineering, Federal University of São Carlos, 13565-905, Sao Carlos, SP, Brazil
| | - Cristiane S Farinas
- Embrapa Instrumentation, Rua XV de Novembro 1452, 13560-970, São Carlos, SP, Brazil.
- Graduate Program of Chemical Engineering, Federal University of São Carlos, 13565-905, Sao Carlos, SP, Brazil.
| |
Collapse
|
28
|
Buffo MM, Esperança MN, Béttega R, Farinas CS, Badino AC. Oxygen Transfer and Fragmentation of Aspergillus niger Pellets in Stirred Tank and Concentric-Duct Airlift Bioreactors. Ind Biotechnol (New Rochelle N Y) 2020. [DOI: 10.1089/ind.2020.29199.mmb] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Affiliation(s)
- Mariane M. Buffo
- Graduate Program of Chemical Engineering, Federal University of São Carlos, São Carlos, Brazil
| | - Mateus N. Esperança
- Federal Institute of Education, Science and Technology of São Paulo, Campus Capivari, Capivari, Brazil
| | - Rodrigo Béttega
- Graduate Program of Chemical Engineering, Federal University of São Carlos, São Carlos, Brazil
| | - Cristiane S. Farinas
- Graduate Program of Chemical Engineering, Federal University of São Carlos, São Carlos, Brazil
- Embrapa Instrumentation, São Carlos, Brazil
| | - Alberto C. Badino
- Graduate Program of Chemical Engineering, Federal University of São Carlos, São Carlos, Brazil
| |
Collapse
|
29
|
Esperança MN, Mendes CE, Rodriguez GY, Cerri MO, Béttega R, Badino AC. Sparger design as key parameter to define shear conditions in pneumatic bioreactors. Biochem Eng J 2020. [DOI: 10.1016/j.bej.2020.107529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
30
|
Chen Y. SIMULATION AND EXPERIMENTAL INVESTIGATION OF POWER CONSUMPTION, GAS DISPERSION AND MASS TRANSFER COEFFICIENT IN A MULTI-PHASE STIRRED BIOREACTOR. BRAZILIAN JOURNAL OF CHEMICAL ENGINEERING 2019. [DOI: 10.1590/0104-6632.20190364s20180450] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Yuanfeng Chen
- Fujian Provincial Academy of Environmental Science, China
| |
Collapse
|
31
|
Böhm L, Hohl L, Bliatsiou C, Kraume M. Multiphase Stirred Tank Bioreactors – New Geometrical Concepts and Scale‐up Approaches. CHEM-ING-TECH 2019. [DOI: 10.1002/cite.201900165] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Lutz Böhm
- Technische Universität BerlinChair of Chemical and Process Engineering, FH6-1 Straße des 17. Juni 135 10623 Berlin Germany
| | - Lena Hohl
- Technische Universität BerlinChair of Chemical and Process Engineering, FH6-1 Straße des 17. Juni 135 10623 Berlin Germany
| | - Chrysoula Bliatsiou
- Technische Universität BerlinChair of Chemical and Process Engineering, FH6-1 Straße des 17. Juni 135 10623 Berlin Germany
| | - Matthias Kraume
- Technische Universität BerlinChair of Chemical and Process Engineering, FH6-1 Straße des 17. Juni 135 10623 Berlin Germany
| |
Collapse
|
32
|
Gómez-Ríos D, Junne S, Neubauer P, Ochoa S, Ríos-Estepa R, Ramírez-Malule H. Characterization of the Metabolic Response of Streptomyces clavuligerus to Shear Stress in Stirred Tanks and Single-Use 2D Rocking Motion Bioreactors for Clavulanic Acid Production. Antibiotics (Basel) 2019; 8:antibiotics8040168. [PMID: 31569725 PMCID: PMC6963652 DOI: 10.3390/antibiotics8040168] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 09/22/2019] [Accepted: 09/25/2019] [Indexed: 12/16/2022] Open
Abstract
Streptomyces clavuligerus is a gram-positive filamentous bacterium notable for producing clavulanic acid (CA), an inhibitor of β-lactamase enzymes, which confers resistance to bacteria against several antibiotics. Here we present a comparative analysis of the morphological and metabolic response of S. clavuligerus linked to the CA production under low and high shear stress conditions in a 2D rocking-motion single-use bioreactor (CELL-tainer ®) and stirred tank bioreactor (STR), respectively. The CELL-tainer® guarantees high turbulence and enhanced volumetric mass transfer at low shear stress, which (in contrast to bubble columns) allows the investigation of the impact of shear stress without oxygen limitation. The results indicate that high shear forces do not compromise the viability of S. clavuligerus cells; even higher specific growth rate, biomass, and specific CA production rate were observed in the STR. Under low shear forces in the CELL-tainer® the mycelial diameter increased considerably (average diameter 2.27 in CELL-tainer® vs. 1.44 µm in STR). This suggests that CA production may be affected by a lower surface-to-volume ratio which would lead to lower diffusion and transport of nutrients, oxygen, and product. The present study shows that there is a strong correlation between macromorphology and CA production, which should be an important aspect to consider in industrial production of CA.
Collapse
Affiliation(s)
- David Gómez-Ríos
- Grupo de Investigación en Simulación, Diseño, Control y Optimización de Procesos (SIDCOP), Departamento de Ingeniería Química, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín 050010, Colombia.
| | - Stefan Junne
- Bioprocess Engineering, Institute of Biotechnology, Technische Universität Berlin, D-13355 Berlin, Germany.
| | - Peter Neubauer
- Bioprocess Engineering, Institute of Biotechnology, Technische Universität Berlin, D-13355 Berlin, Germany.
| | - Silvia Ochoa
- Grupo de Investigación en Simulación, Diseño, Control y Optimización de Procesos (SIDCOP), Departamento de Ingeniería Química, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín 050010, Colombia.
| | - Rigoberto Ríos-Estepa
- Grupo de Bioprocesos, Departamento de Ingeniería Química, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín 050010, Colombia.
| | | |
Collapse
|
33
|
Zheng C, Guo J, Wang C, Chen Y, Zheng H, Yan Z, Chen Q. Experimental study and simulation of a three-phase flow stirred bioreactor. Chin J Chem Eng 2019. [DOI: 10.1016/j.cjche.2018.06.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
34
|
Li G, Li H, Wei G, He X, Xu S, Chen K, Ouyang P, Ji X. Hydrodynamics, mass transfer and cell growth characteristics in a novel microbubble stirred bioreactor employing sintered porous metal plate impeller as gas sparger. Chem Eng Sci 2018. [DOI: 10.1016/j.ces.2018.08.025] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
35
|
Longati AA, Lino ARA, Giordano RC, Furlan FF, Cruz AJG. Defining research & development process targets through retro-techno-economic analysis: The sugarcane biorefinery case. BIORESOURCE TECHNOLOGY 2018; 263:1-9. [PMID: 29723843 DOI: 10.1016/j.biortech.2018.04.102] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 04/24/2018] [Accepted: 04/25/2018] [Indexed: 06/08/2023]
Abstract
A new approach is reported for techno-economic analysis of lignocellulosic ethanol production. With this methodology, general targets for key process variables can be draw, a valuable feedback for Research & Development teams. An integrated first- and second-generation ethanol from sugarcane biorefinery is presented as a case study for the methodology, with the biomass pretreated by liquid hot water, followed by enzymatic hydrolysis of the cellulose fraction. The hemicellulose fraction may be either fermented or biodigested. The methodology was able to identify the main variables that affect the process global economic performance: enzyme load in the cellulose hydrolysis reactor, cellulose-to-glucose, and xylose-to-ethanol yields. Windows of feasible operation are the graphical output of the methodology, outlining regions to be further explored experimentally. One example of quantitative result is that the maximum feasible enzyme load was 11.3 FPU/gcellulose when xylose is fermented to ethanol and 7.7 FPU/gcellulose when xylose is biodigested.
Collapse
Affiliation(s)
- Andreza A Longati
- Chemical Engineering Graduate Program, Federal University of São Carlos, C.P. 676, São Carlos, São Paulo 13565-905, Brazil
| | - Anderson R A Lino
- Chemical Engineering Graduate Program, Federal University of São Carlos, C.P. 676, São Carlos, São Paulo 13565-905, Brazil
| | - Roberto C Giordano
- Chemical Engineering Graduate Program, Federal University of São Carlos, C.P. 676, São Carlos, São Paulo 13565-905, Brazil; Chemical Engineering Department, Federal University of São Carlos, C.P. 676, São Carlos, São Paulo 13565-905, Brazil
| | - Felipe F Furlan
- Chemical Engineering Graduate Program, Federal University of São Carlos, C.P. 676, São Carlos, São Paulo 13565-905, Brazil; Chemical Engineering Department, Federal University of São Carlos, C.P. 676, São Carlos, São Paulo 13565-905, Brazil
| | - Antonio J G Cruz
- Chemical Engineering Graduate Program, Federal University of São Carlos, C.P. 676, São Carlos, São Paulo 13565-905, Brazil; Chemical Engineering Department, Federal University of São Carlos, C.P. 676, São Carlos, São Paulo 13565-905, Brazil.
| |
Collapse
|
36
|
Gas-liquid mass transfer studies: The influence of single- and double-impeller configurations in stirred tanks. KOREAN J CHEM ENG 2017. [DOI: 10.1007/s11814-017-0266-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
37
|
Moradkhani H, Izadkhah MS, Anarjan N, Abdi A. Oxygen mass transfer and shear stress effects on Pseudomonas putida BCRC 14365 growth to improve bioreactor design and performance. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:22427-22441. [PMID: 28803423 DOI: 10.1007/s11356-017-9827-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 07/24/2017] [Indexed: 06/07/2023]
Abstract
In this work, the experimental evidence is presented for two basic issues including oxygen mass transfer and shear analysis on the microorganism containing medium on the most prominent sections of the bioreactor. Computational fluid dynamics (CFD) methodology reproduces shear rate values for specific impeller designs using the commercial code (Fluent 6.2). CFD calculates volumetric mass transfer coefficient based on the Higbie's penetration theory. Four types of impeller are used. The spherical probe is used to measure flow hydrodynamic parameters to obtain shear rate by electro-diffusion (ED) method. The obtained results are validated experimentally and it is shown that a fully axial pattern impeller represents more enhanced results than partially axial and radial. In this regard, experimental results for volumetric oxygen mass transfer coefficient (k l a) confirm CFD predictions by acceptable deviations of 2.65, 8.90, and 9.20 for 0.15, 0.2, and 0.3 VVM, respectively. These results collaboratively indicate that LIGHTNIN-C 200 type operates more efficiently by reflecting the flow to the bottom corner stagnation areas with the minimum tolerable shear and the most velocity distribution uniformity. Furthermore, the values of k l a improve by aeration rate. Conversely, increasing the rotational speed of impeller creates difficulties for cell growth due to the generated harsh shear condition. CFD provide a better understanding of how operational and geometrical variables may be manipulated to achieve a moderate shear rate and acceptable level of mass transfer.
Collapse
Affiliation(s)
- Hamed Moradkhani
- Environmental Engineering Research Center (EERC), Faculty of Chemical Engineering, Sahand University of Technology, P.O. Box 513551996, Sahand New Town, Tabriz, Iran.
| | - Mir-Shahabeddin Izadkhah
- Department of Chemical and Petroleum Engineering, University of Tabriz, P.O. Box 5166616471, Tabriz, Iran
| | - Navideh Anarjan
- Department of Chemical Engineering, Tabriz Branch, Islamic Azad University, P.O. Box 5157944533, Tabriz, Iran
| | - Abolfazl Abdi
- Department of Chemical and Petroleum Engineering, University of Tabriz, P.O. Box 5166616471, Tabriz, Iran
| |
Collapse
|