1
|
Zhang X, Yang X, Xie F, Chen X, Zhang Y, Zhang Q. Magnetic Biochar Prepared with Rosa roxburghii Residue as Adsorbents for Congo Red Removal. MATERIALS (BASEL, SWITZERLAND) 2025; 18:1306. [PMID: 40141589 PMCID: PMC11943761 DOI: 10.3390/ma18061306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 03/08/2025] [Accepted: 03/12/2025] [Indexed: 03/28/2025]
Abstract
In this work, magnetic biochars (MBCs) were produced with the chemical coprecipitation method. The resulting materials were dried at 50 °C for 12 h and characterized via SEM-EDS, XRD, FT-IR, BET, TGA, and VSM techniques to evaluate their efficacy in removing Congo red (CR). The effects of solution pH, CR concentration, MBC1:1 mass, and a variety of ions on the adsorption performance were systematically examined. According to the experimental results, for 200 mL of 50 mg/L CR, the highest adsorption capacity of 20 mg MBC1:1 was 172.88 mg/g in a 2 h period at pH 7. Additionally, the pseudo-second-order (PSO) model-based kinetic analysis exhibited that the process of adsorption adhered to this model. Furthermore, the interaction between MBC1:1 and CR was best described by Langmuir multilayer adsorption, according to isotherm analysis. All of these theoretical and practical findings point to the great potential of MBC1:1 as adsorbents for the applications of wastewater treatment.
Collapse
Affiliation(s)
- Xiaojuan Zhang
- School of Chemistry and Chemical Engineering, Anshun University, Anshun 561000, China; (X.Z.); (X.Y.); (F.X.); (X.C.)
- Key Laboratory of Agricultural Resources and Resources and Environment in High Education Institute of Guizhou Province, Anshun 561000, China
| | - Xueqin Yang
- School of Chemistry and Chemical Engineering, Anshun University, Anshun 561000, China; (X.Z.); (X.Y.); (F.X.); (X.C.)
| | - Feiran Xie
- School of Chemistry and Chemical Engineering, Anshun University, Anshun 561000, China; (X.Z.); (X.Y.); (F.X.); (X.C.)
| | - Xianglan Chen
- School of Chemistry and Chemical Engineering, Anshun University, Anshun 561000, China; (X.Z.); (X.Y.); (F.X.); (X.C.)
| | - Yutao Zhang
- School of Chemistry and Chemical Engineering, Anshun University, Anshun 561000, China; (X.Z.); (X.Y.); (F.X.); (X.C.)
- Key Laboratory of Agricultural Resources and Resources and Environment in High Education Institute of Guizhou Province, Anshun 561000, China
| | - Qiuyun Zhang
- School of Chemistry and Chemical Engineering, Anshun University, Anshun 561000, China; (X.Z.); (X.Y.); (F.X.); (X.C.)
- Key Laboratory of Agricultural Resources and Resources and Environment in High Education Institute of Guizhou Province, Anshun 561000, China
| |
Collapse
|
2
|
Jabbar HS. Pseudo-water-soluble Fe 2O 3 as Nanozyme catalyzed chemiluminescent reaction for detection of brilliant blue in gelatin and beverages. Food Chem 2024; 453:139678. [PMID: 38759439 DOI: 10.1016/j.foodchem.2024.139678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 04/14/2024] [Accepted: 05/13/2024] [Indexed: 05/19/2024]
Abstract
Converting solid iron oxide nanoparticles into a "pseudo-water-soluble" form before applying them to chemiluminescent reactions leads to enhance the chemiluminescence intensity. Using 8-hydroxyquinoline as a colloidal agent, a new, fast, and simple method of synthesizing pseudo-water-soluble Fe2O3 nanoparticles was developed. SEM, VSM, SAED, HRTEM, XRD, FTIR, and EDS techniques were used to characterize the synthesized Fe2O3 nanoparticles. Fe2O3 nanoparticles synthesized in this study have superior peroxidase-like activity (POD-like) and are stable under a wide range of pH and temperature. The chemiluminescence reaction of luminol-H2O2 is intensified and accelerated by a colloidal solution of Fe-nanoparticles/8-hydroxyquinoline. Reverse-flow injection analysis was employed to determine brilliant blue. A chemiluminescent sensing method based on iron oxide nanozymes was utilized for sensitive detection of the brilliant blue synthetic dye, achieving a limit of detection of 0.06 mg/L and a dynamic linear range of 0.1 to 50 mg/L. The recovery and relative standard deviations of real samples were found to be 97.83-99.93% and 0.09-3.07%, respectively. An analysis of a sample, from injection to obtaining the maximum peak, could be performed in less than one minute.
Collapse
Affiliation(s)
- Hijran Sanaan Jabbar
- Department of Chemistry, College of Science, Salahaddin University-Erbil, Erbil, Kurdistan Region, Iraq.
| |
Collapse
|
3
|
Sah AK, Al-Amin M, Talukder MR. DC magnetic field-assisted improvement of textile dye degradation efficiency with multi-capillary air bubble discharge plasma jet. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27492-2. [PMID: 37209329 DOI: 10.1007/s11356-023-27492-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 05/03/2023] [Indexed: 05/22/2023]
Abstract
Axial DC magnetic field-assisted multi-capillary underwater air bubble discharge plasma jet has been used to study the productions of reactive oxygen species. Analyses of optical emission data revealed that the rotational (Tr) and vibrational temperatures (Tv) of plasma species slightly increased with magnetic field strength. The electron temperature (Te) and density (ne) increased almost linearly with magnetic field strength. Te increased from 0.53 to 0.59 eV, whereas ne increased from 1.03 × 1015 cm-3 to 1.33 × 1015 cm-3 for B = 0 to B = 374 mT, respectively. Analytical results from the plasma treated water provided that the electrical conductivity (EC), oxidative reduction potential (ORP), and the concentrations of O3 and H2 O2 enhanced from 155 to 229 µS cm-1, 141 to 17 mV, 1.34 to 1.92 mg L-1, and 5.61 to 10.92 mg L-1 due to the influence of axial DC magnetic field, while [Formula: see text] reduced from 5.10 to 3.93 for 30 min treatment of water with B = 0 and B = 374 mT, respectively. The model wastewater prepared with Remazol brilliant blue textile dye and the plasma treated wastewater studied by optical absorption spectrometer, Fourier transform infrared spectrometer, and gas chromatography mass spectrometer. The results show that the decolorization efficiency increased ~ 20% after 5 min treatment for the maximum B = 374 mT with respect to zero-magnetic field and, power consumption, and electrical energy cost reduced ~ 6.3% and ~ 4.5%, respectively, due to the maximum assisted axial DC magnetic field strength of 374 mT.
Collapse
Affiliation(s)
- Abhishek Kumar Sah
- Plasma Science and Technology Lab, Department of Electrical and Electronic Engineering, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Md Al-Amin
- Plasma Science and Technology Lab, Department of Electrical and Electronic Engineering, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Mamunur Rashid Talukder
- Plasma Science and Technology Lab, Department of Electrical and Electronic Engineering, University of Rajshahi, Rajshahi, 6205, Bangladesh.
| |
Collapse
|
4
|
He Y, Ni L, Gao Q, Ren H, Su M, Hou Y, Liu Z. Activated Carbon with Ultrahigh Specific Surface Derived from Bamboo Shoot Shell through K 2FeO 4 Oxidative Pyrolysis for Adsorption of Methylene Blue. Molecules 2023; 28:molecules28083410. [PMID: 37110642 PMCID: PMC10145064 DOI: 10.3390/molecules28083410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/29/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
To effectively remove methylene blue (MB) from dye wastewater, a novel activated carbon (BAC) was manufactured through co-pyrolysis of bamboo shoot shell and K2FeO4. The activation process was optimized to a temperature of 750 °C and an activation time of 90 min based on its excellent adsorption capacity of 560.94 mg/g with a yield of 10.03%. The physicochemical and adsorption properties of BACs were investigated. The BAC had an ultrahigh specific surface area of 2327.7 cm2/g and abundant active functional groups. The adsorption mechanisms included chemisorption and physisorption. The Freundlich model could be used to describe the isothermal adsorption of MB. The kinetics confirmed that the adsorption of MB belonged to the pseudo-second-order model. Intra-particle diffusion was the main rate-limiting step. The thermodynamic study showed that the adsorption process was endothermic and temperature was beneficial for the improvement of adsorption property. Furthermore, the removal rate of MB was 63.5% after three cycles. The BAC will have great potential for commercial development for purifying dye wastewater.
Collapse
Affiliation(s)
- Yuyu He
- International Centre for Bamboo and Rattan, Beijing 100102, China
- Key Laboratory of NFGA/Beijing for Bamboo & Rattan Science and Technology, Beijing 100102, China
| | - Liangmeng Ni
- International Centre for Bamboo and Rattan, Beijing 100102, China
- Key Laboratory of NFGA/Beijing for Bamboo & Rattan Science and Technology, Beijing 100102, China
| | - Qi Gao
- International Centre for Bamboo and Rattan, Beijing 100102, China
- Key Laboratory of NFGA/Beijing for Bamboo & Rattan Science and Technology, Beijing 100102, China
| | - Hao Ren
- International Centre for Bamboo and Rattan, Beijing 100102, China
- Key Laboratory of NFGA/Beijing for Bamboo & Rattan Science and Technology, Beijing 100102, China
| | - Mengfu Su
- International Centre for Bamboo and Rattan, Beijing 100102, China
- Key Laboratory of NFGA/Beijing for Bamboo & Rattan Science and Technology, Beijing 100102, China
| | - Yanmei Hou
- International Centre for Bamboo and Rattan, Beijing 100102, China
- Key Laboratory of NFGA/Beijing for Bamboo & Rattan Science and Technology, Beijing 100102, China
| | - Zhijia Liu
- International Centre for Bamboo and Rattan, Beijing 100102, China
- Key Laboratory of NFGA/Beijing for Bamboo & Rattan Science and Technology, Beijing 100102, China
| |
Collapse
|
5
|
Dadi S, Cardoso MH, Mandal AK, Franco OL, Ildiz N, Ocsoy I. Natural Molecule‐Incorporated Magnetic Organic‐Inorganic Nanoflower: Investigation of Its Dual Fenton Reaction‐Dependent Enzyme‐Like Catalytic Activities with Cyclic Use. ChemistrySelect 2023; 8. [DOI: 10.1002/slct.202300404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 03/17/2023] [Indexed: 04/05/2023]
Abstract
AbstractThe functional organic‐inorganic hybrid nanoflowers (hNFs) have recently attracted considerable attention due to enhanced catalytic activity and stability. The main purpose of this study is to synthesize new Fenton reagents and investigate their catalytic activity, dye degradation performance and antimicrobial activity. This magnetic gallic acid nanoflowers (FeGANF) were self‐assembled via incorporating magnetic nanoparticles (Fe3O4 NPs) into gallic acid (GA) as organic part and copper(II) phosphate (Cu3(PO4)2) as inorganic parts. The FeGANF were characterized by SEM, EDX, FT‐IR and XRD. The peroxidase‐like activity and dye degradation performance of FeGANF and GANF based on Fenton reaction in the presence of H2O2 was studied toward guaiacol as substrate, using methylene blue (MB) and congo red (CR) as a cationic and anionic dyes, respectively. FeGANF shows much high catalytic activity and decoloration efficiency (97 % for MB and 99 % for CR) because of dual active center in Fenton reaction on the surface of FeGANF. FeGANF exhibited more antimicrobial activity against Escherichia coli ATCC 25922, Staphylococcus aureus ATCC 25923, and Candida albicans ATCC 10231 than that of the GA and GANF. The results of these studies suggest that magnetic hNFs has proved to be promising Fenton reagents for biological and environmental applications including treatment of wastewater.
Collapse
Affiliation(s)
- Seyma Dadi
- Department of Analytical Chemistry Faculty of Pharmacy Erciyes University 38039 Kayseri Turkey
- Department of Nanotechnology Engineering Abdullah Gül University 38080 Kayseri Turkey
| | - Marlon Henrique Cardoso
- S-inova Biotech Programa de Pós-Graduação em Biotecnologia Universidade Católica Dom Bosco Avenida Tamandaré 6000 Campo Grande MS 79117900 Brazil
- Centro de Análises Proteômicas e Bioquímicas Pós-Graduação em Ciências Genômicas e Biotecnologia Universidade Católica de Brasília SGAN 916 Módulo B, Asa Norte Brasília DF 70790160 Brazil
| | - Amit Kumar Mandal
- Chemical Biology Laboratory Department of Sericulture Raiganj University North Dinajpur West Bengal 733134 India
- Centre for Nanotechnology Sciences (CeNS) Raiganj University North Dinajpur West Bengal 733134 India
| | - Octávio Luiz Franco
- S-inova Biotech Programa de Pós-Graduação em Biotecnologia Universidade Católica Dom Bosco Avenida Tamandaré 6000 Campo Grande MS 79117900 Brazil
- Centro de Análises Proteômicas e Bioquímicas Pós-Graduação em Ciências Genômicas e Biotecnologia Universidade Católica de Brasília SGAN 916 Módulo B, Asa Norte Brasília DF 70790160 Brazil
| | - Nilay Ildiz
- Department of Pharmaceutical Microbiology Faculty of Pharmacy Erciyes University 38039 Kayseri Turkey
| | - Ismail Ocsoy
- Department of Analytical Chemistry Faculty of Pharmacy Erciyes University 38039 Kayseri Turkey
| |
Collapse
|
6
|
Li H, Qin F, Huang L, Jia W, Zhang M, Li X, Shu Z. Enzymatic synthesis of 2-phenethyl acetate in water catalyzed by an immobilized acyltransferase from Mycobacterium smegmatis. RSC Adv 2022; 12:2310-2318. [PMID: 35425272 PMCID: PMC8979223 DOI: 10.1039/d1ra07946h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 01/07/2022] [Indexed: 11/30/2022] Open
Abstract
Although water is an ideal green solvent for organic synthesis, it is difficult for most biocatalysts to carry out transesterification reactions in water because of the reversible hydrolysis reaction. 3D structural characteristics and the microenvironment of an enzyme has an important effect on its selectivity for the transesterification reaction over the hydrolysis reaction. A novel 2-phenethyl acetate synthesis technology was developed using acyltransferase (EC 3.1.1.2) from Mycobacterium smegmatis (MsAcT) in water. Firstly, MsAcT was entrapped in a tetramethoxysilane gel network and the immobilization process of MsAcT increased its selectivity for the transesterification reaction over the hydrolysis reaction by 6.33-fold. Then, the synthesis technology of 2-phenethyl acetate using the immobilized MsAcT in water was optimized as follows: vinyl acetate was used as acyl donor, the molar ratio of vinyl acetate to 2-phenylethyl alcohol was 2 : 1, and the water content was 80% (w/w). The reaction was carried out at 40 °C for 30 min and conversion rate reached 99.17%. The immobilized MsAcT could be recycled for 10 batches. The synthesis method of 2-phenethyl acetate using MsAcT as a biocatalyst in water is a prospective green process technology.
Collapse
Affiliation(s)
- Huan Li
- National & Local United Engineering Research Center of Industrial Microbiology and Fermentation Technology, Ministry of Education, Fujian Normal University Fuzhou 350117 China
- College of Life Sciences, Fujian Normal University (Qishan Campus) Fuzhou 350117 China
| | - Feng Qin
- National & Local United Engineering Research Center of Industrial Microbiology and Fermentation Technology, Ministry of Education, Fujian Normal University Fuzhou 350117 China
- College of Life Sciences, Fujian Normal University (Qishan Campus) Fuzhou 350117 China
| | - Lijuan Huang
- College of Life Sciences, Fujian Normal University (Qishan Campus) Fuzhou 350117 China
| | - Wenjing Jia
- National & Local United Engineering Research Center of Industrial Microbiology and Fermentation Technology, Ministry of Education, Fujian Normal University Fuzhou 350117 China
- College of Life Sciences, Fujian Normal University (Qishan Campus) Fuzhou 350117 China
| | - Mingliang Zhang
- National & Local United Engineering Research Center of Industrial Microbiology and Fermentation Technology, Ministry of Education, Fujian Normal University Fuzhou 350117 China
- College of Life Sciences, Fujian Normal University (Qishan Campus) Fuzhou 350117 China
| | - Xin Li
- National & Local United Engineering Research Center of Industrial Microbiology and Fermentation Technology, Ministry of Education, Fujian Normal University Fuzhou 350117 China
- College of Life Sciences, Fujian Normal University (Qishan Campus) Fuzhou 350117 China
| | - Zhengyu Shu
- National & Local United Engineering Research Center of Industrial Microbiology and Fermentation Technology, Ministry of Education, Fujian Normal University Fuzhou 350117 China
- College of Life Sciences, Fujian Normal University (Qishan Campus) Fuzhou 350117 China
| |
Collapse
|
7
|
Jia W, Li H, Wang Q, Zheng K, Lin H, Li X, Huang J, Xu L, Dong W, Shu Z. Screening of perhydrolases to optimize glucose oxidase-perhydrolase-in situ chemical oxidation cascade reaction system and its application in melanin decolorization. J Biotechnol 2021; 328:106-114. [PMID: 33485863 DOI: 10.1016/j.jbiotec.2021.01.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 01/02/2021] [Accepted: 01/12/2021] [Indexed: 10/22/2022]
Abstract
A novel glucose oxidase (GOD)-perhydrolase-in situ chemical oxidation (ISCO) cascade reaction system was designed, optimized, and verified the operation feasibility in this research. Among the determined four perhydrolases, acyltransferase from Mycobacterium smegmatis (MsAcT) displayed the highest specific activity for perhydrolysis reaction (76.4 U/mg) and the lowest Km value to hydrogen peroxide (13.9 mmol/L). GOD-MsAcT cascade reaction system also displayed high catalytic efficiency. Under the optimal parameters (50:1 activity unit ratio of GOD to MsAcT, pH 8.0, 50 mmol/L of β-d-glucose, and 15 mmol/L of glyceryl triacetate), the melanin decolorization rate using GOD-MsAcT-ISCO cascade reaction system reached 86.8 %. Kinetics of GOD-MsAcT-ISCO cascade reaction system for melanin decolorization fitted the kinetic model of Boltzmann sigmoid. As a substitutive skin whitening technology, GOD-MsAcT-ISCO cascade reaction system displayed an excellent application prospect.
Collapse
Affiliation(s)
- Wenjing Jia
- National & Local United Engineering Research Center of Industrial Microbiology and Fermentation Technology, Ministry of Education, Fujian Normal University, Fuzhou, 350117, China; College of Life Sciences, Fujian Normal University (Qishan Campus), Fuzhou, 350117, China
| | - Huan Li
- National & Local United Engineering Research Center of Industrial Microbiology and Fermentation Technology, Ministry of Education, Fujian Normal University, Fuzhou, 350117, China; College of Life Sciences, Fujian Normal University (Qishan Campus), Fuzhou, 350117, China
| | - Qian Wang
- National & Local United Engineering Research Center of Industrial Microbiology and Fermentation Technology, Ministry of Education, Fujian Normal University, Fuzhou, 350117, China; College of Life Sciences, Fujian Normal University (Qishan Campus), Fuzhou, 350117, China
| | - Kaixuan Zheng
- National & Local United Engineering Research Center of Industrial Microbiology and Fermentation Technology, Ministry of Education, Fujian Normal University, Fuzhou, 350117, China; College of Life Sciences, Fujian Normal University (Qishan Campus), Fuzhou, 350117, China; Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, Fujian Normal University, Fuzhou, 350117, China
| | - Hong Lin
- National & Local United Engineering Research Center of Industrial Microbiology and Fermentation Technology, Ministry of Education, Fujian Normal University, Fuzhou, 350117, China; College of Life Sciences, Fujian Normal University (Qishan Campus), Fuzhou, 350117, China
| | - Xin Li
- National & Local United Engineering Research Center of Industrial Microbiology and Fermentation Technology, Ministry of Education, Fujian Normal University, Fuzhou, 350117, China; College of Life Sciences, Fujian Normal University (Qishan Campus), Fuzhou, 350117, China
| | - Jianzhong Huang
- National & Local United Engineering Research Center of Industrial Microbiology and Fermentation Technology, Ministry of Education, Fujian Normal University, Fuzhou, 350117, China; College of Life Sciences, Fujian Normal University (Qishan Campus), Fuzhou, 350117, China.
| | - Linting Xu
- National & Local United Engineering Research Center of Industrial Microbiology and Fermentation Technology, Ministry of Education, Fujian Normal University, Fuzhou, 350117, China; College of Life Sciences, Fujian Normal University (Qishan Campus), Fuzhou, 350117, China
| | - Wanqian Dong
- National & Local United Engineering Research Center of Industrial Microbiology and Fermentation Technology, Ministry of Education, Fujian Normal University, Fuzhou, 350117, China; College of Life Sciences, Fujian Normal University (Qishan Campus), Fuzhou, 350117, China
| | - Zhengyu Shu
- National & Local United Engineering Research Center of Industrial Microbiology and Fermentation Technology, Ministry of Education, Fujian Normal University, Fuzhou, 350117, China; College of Life Sciences, Fujian Normal University (Qishan Campus), Fuzhou, 350117, China; Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, Fujian Normal University, Fuzhou, 350117, China.
| |
Collapse
|
8
|
Jost E, Kazemi M, Mrkonjić V, Himo F, Winkler CK, Kroutil W. Variants of the Acyltransferase from Mycobacterium smegmatis Enable Enantioselective Acyl Transfer in Water. ACS Catal 2020. [DOI: 10.1021/acscatal.0c02981] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Etta Jost
- Institute of Chemistry, University of Graz, NAWI Graz, Heinrichstraße 28, 8010 Graz, Austria
| | - Masoud Kazemi
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, 10691 Stockholm, Sweden
| | - Valerija Mrkonjić
- Institute of Chemistry, University of Graz, NAWI Graz, Heinrichstraße 28, 8010 Graz, Austria
| | - Fahmi Himo
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, 10691 Stockholm, Sweden
| | - Christoph K. Winkler
- Institute of Chemistry, University of Graz, NAWI Graz, Heinrichstraße 28, 8010 Graz, Austria
| | - Wolfgang Kroutil
- Institute of Chemistry, University of Graz, NAWI Graz, Heinrichstraße 28, 8010 Graz, Austria
- Field of Excellence BioHealth, University of Graz, 8010 Graz, Austria
- BioTechMed Graz, 8010 Graz, Austria
| |
Collapse
|
9
|
Ma M, Ying H, Cao F, Wang Q, Ai N. Adsorption of congo red on mesoporous activated carbon prepared by CO2 physical activation. Chin J Chem Eng 2020. [DOI: 10.1016/j.cjche.2020.01.016] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
10
|
Barbosa AA, Aquino RVS, Silva MG, Nascimento Júnior WJ, Duarte MMMB, Dantas RF, Rocha ORS. New aluminum mesh from recyclable material for immobilization of TiO
2
in heterogeneous photocatalysis. CAN J CHEM ENG 2020. [DOI: 10.1002/cjce.23706] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Ada A. Barbosa
- Department of Chemical Engineering Universidade Federal de Pernambuco (UFPE) Recife Brazil
| | - Ramon V. S. Aquino
- Department of Chemical Engineering Universidade Federal de Pernambuco (UFPE) Recife Brazil
| | - Marina G. Silva
- Department of Chemical Engineering Universidade Federal de Pernambuco (UFPE) Recife Brazil
| | | | - Marta M. M. B. Duarte
- Department of Chemical Engineering Universidade Federal de Pernambuco (UFPE) Recife Brazil
| | - Renato F. Dantas
- School of Technology University of Campinas (UNICAMP) Limeira Brazil
| | - Otidene R. S. Rocha
- Department of Chemical Engineering Universidade Federal de Pernambuco (UFPE) Recife Brazil
| |
Collapse
|
11
|
Single and competitive dye adsorption onto chitosan–based hybrid hydrogels using artificial neural network modeling. J Colloid Interface Sci 2020; 560:722-729. [DOI: 10.1016/j.jcis.2019.10.106] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 10/26/2019] [Accepted: 10/28/2019] [Indexed: 01/03/2023]
|
12
|
Zhang S, Lu X. Treatment of wastewater containing Reactive Brilliant Blue KN-R using TiO 2/BC composite as heterogeneous photocatalyst and adsorbent. CHEMOSPHERE 2018; 206:777-783. [PMID: 29800882 DOI: 10.1016/j.chemosphere.2018.05.073] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 04/29/2018] [Accepted: 05/13/2018] [Indexed: 05/18/2023]
Abstract
Heterogeneous photocatalysis namely titanium dioxide (TiO2) supported on coconut shell biochar (BC) was synthesized by sol-gel method (calcined at 450 °C) in the paper, which was innovatively applied to the decolorization of Reactive Brilliant Blue KN-R. The transmission electron microscopy (TEM) and X-ray diffraction patterns (XRD) results demonstrated that anatase TiO2 film was firmly immobilized on the surface and pores of BC. The photocatalysis tests under UV high pressure xenon lamp (300 W) showed highest decolorization efficiency occurred at strong acid and alkali conditions (pH = 1 and 11) reached as 99.71% and 96.99% respectively within 60 min. Therefore, the TiO2/BC composites demonstrated both photocatalytic and adsorption capacity on KN-R decolorized, and presented quite durable and reusable in regeneration cycles, indicating a widely application possibility in anthraquinones dyeing wastewater treatment.
Collapse
Affiliation(s)
- Shici Zhang
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Xujie Lu
- School of Ocean Science and Technology, Hainan Tropical Ocean University, Sanya, 572022, China.
| |
Collapse
|