1
|
Hsieh CY, Huang YH, Yu YT, Chang KW, Chen YJ, Hsieh LS. Enhanced Stability of Lactobacillus paracasei Aspartate Ammonia-Lyase via Electrospinning for Enzyme Immobilization. Polymers (Basel) 2025; 17:270. [PMID: 39940473 PMCID: PMC11820169 DOI: 10.3390/polym17030270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 01/16/2025] [Accepted: 01/20/2025] [Indexed: 02/16/2025] Open
Abstract
This study investigates the immobilization of Lactobacillus paracasei AAL (LpAAL) protein onto polyvinyl alcohol/nylon 6/chitosan nanofiber membranes using dextran polyaldehyde as a biodegradable cross-linker. Immobilization enhanced the enzyme's stability, shifting its optimal reaction conditions from 40 °C to 45 °C and pH from 8.0 to 8.5. While immobilization slightly reduced its catalytic efficiency, it significantly improved enzyme stability and reusability. The immobilized enzyme retained 85% of its initial activity after 7 days of storage at room temperature, compared to 55% for the free enzyme. Reusability tests demonstrated that immobilized LpAAL protein maintained approximately 50% of its activity after six consecutive reaction cycles, highlighting its robustness over repeated use. These results underscore the advantages of nanofiber-based immobilization in enhancing enzyme stability and utility for industrial applications, offering a practical approach to overcoming the limitations associated with free enzyme systems.
Collapse
Affiliation(s)
- Chun-Yen Hsieh
- Department of Pathology and Laboratory Medicine, Shin Kong Wu Ho-Su Memorial Hospital, Taipei City 111, Taiwan;
| | - Yi-Hao Huang
- Department of Food Science, College of Agriculture and Health, Tunghai University, Taichung 407, Taiwan; (Y.-H.H.); (Y.-T.Y.); (K.-W.C.)
| | - Yu-Ting Yu
- Department of Food Science, College of Agriculture and Health, Tunghai University, Taichung 407, Taiwan; (Y.-H.H.); (Y.-T.Y.); (K.-W.C.)
| | - Kai-Wei Chang
- Department of Food Science, College of Agriculture and Health, Tunghai University, Taichung 407, Taiwan; (Y.-H.H.); (Y.-T.Y.); (K.-W.C.)
| | - Yung-Ju Chen
- Department of Food Science, College of Agriculture and Health, Tunghai University, Taichung 407, Taiwan; (Y.-H.H.); (Y.-T.Y.); (K.-W.C.)
| | - Lu-Sheng Hsieh
- Department of Food Science, College of Agriculture and Health, Tunghai University, Taichung 407, Taiwan; (Y.-H.H.); (Y.-T.Y.); (K.-W.C.)
| |
Collapse
|
2
|
Fan L, Mei X, Huang Y, Zheng W, Wei P, Jiang M, Dong W. Advanced applications in enzyme-induced electrospun nanofibers. NANOSCALE 2024; 16:19606-19619. [PMID: 39370938 DOI: 10.1039/d4nr03404j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Electrospun nanofibers, renowned for their high specific surface area, robust mechanical properties, and versatile chemical functionalities, offer a promising platform for enzyme immobilization. Over the past decade, significant strides have been made in developing enzyme-induced electrospun nanofibers (EIEN). This review systematically summarizes the advanced applications of EIEN which are fabricated using both non-specific immobilization methods including interfacial adsorption (direct adsorption, cross-linking, and covalent binding) and encapsulation, and specific immobilization techniques (coordination and affinity immobilization). Future research should prioritize optimizing immobilization techniques to achieve a balance between enzyme activity, stability, and cost-effectiveness, thereby facilitating the industrialization of EIEN. We elucidate the rationale behind various immobilization methods and their applications, such as wastewater treatment, biosensors, and biomedicine. We aim to provide guidelines for developing suitable EIEN immobilization techniques tailored to specific future applications.
Collapse
Affiliation(s)
- Lingling Fan
- Key Laboratory for Waste Plastics Biocatalytic Degradation and Recycling, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211800, PR China.
| | - Xingyu Mei
- Key Laboratory for Waste Plastics Biocatalytic Degradation and Recycling, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211800, PR China.
| | - Yigen Huang
- Key Laboratory for Waste Plastics Biocatalytic Degradation and Recycling, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211800, PR China.
| | - Wenxiang Zheng
- Key Laboratory for Waste Plastics Biocatalytic Degradation and Recycling, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211800, PR China.
| | - Ping Wei
- Key Laboratory for Waste Plastics Biocatalytic Degradation and Recycling, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211800, PR China.
| | - Min Jiang
- Key Laboratory for Waste Plastics Biocatalytic Degradation and Recycling, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211800, PR China.
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, 211800, PR China
| | - Weiliang Dong
- Key Laboratory for Waste Plastics Biocatalytic Degradation and Recycling, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211800, PR China.
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, 211800, PR China
| |
Collapse
|
3
|
Chen J, Zhao Q, Tang J, Lei X, Zhang J, Li Y, Li J, Li Y, Zuo Y. Enzyme-Activated Biomimetic Vesicles Confining Mineralization for Bone Maturation. ACS APPLIED MATERIALS & INTERFACES 2024; 16:33005-33020. [PMID: 38900067 DOI: 10.1021/acsami.4c03978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Inspired by the crucial role of matrix vesicles (MVs), a series of biomimetic vesicles (BVs) fabricated by calcium glycerophosphate (CaGP) modified polyurethane were designed to mediate the mineralization through in situ enzyme activation for bone therapy. In this study, alkaline phosphatase (ALP) was harbored in the porous BVs by adsorption (Ad-BVs) or entrapment (En-BVs). High encapsulation of ALP on En-BVs was effectively self-activating by calcium ions of CaGP-modified PU that specifically hydrolyzed the organophosphorus (CaGP) to inorganic phosphate, thus promoting the formation of the highly oriented bone-like apatite in vitro. Enzyme-catalyzed kinetics confirms the regulation of apatite crystallization by the synergistic action of self-activated ALP and the confined microcompartments of BVs. This leads to a supersaturated microenvironment, with the En-BVs group exhibiting inorganic phosphate (Pi) levels 4.19 times higher and Ca2+ levels 3.67 times higher than those of simulated body fluid (SBF). Of note, the En-BVs group exhibited excellent osteo-inducing differentiation of BMSCs in vitro and the highest maturity with reduced bone loss in rat femoral defect in vivo. This innovative strategy of biomimetic vesicles is expected to provide valuable insights into the enzyme-activated field of bone therapy.
Collapse
Affiliation(s)
- Jieqiong Chen
- Research Center for Nano-Biomaterials, Analytical and Testing Center, Sichuan University, Chengdu, 610064, PR China
| | - Qing Zhao
- Research Center for Nano-Biomaterials, Analytical and Testing Center, Sichuan University, Chengdu, 610064, PR China
| | - Jiajing Tang
- Research Center for Nano-Biomaterials, Analytical and Testing Center, Sichuan University, Chengdu, 610064, PR China
| | - Xiaoyu Lei
- Research Center for Nano-Biomaterials, Analytical and Testing Center, Sichuan University, Chengdu, 610064, PR China
| | - Jinzheng Zhang
- Research Center for Nano-Biomaterials, Analytical and Testing Center, Sichuan University, Chengdu, 610064, PR China
| | - Yuping Li
- Research Center for Nano-Biomaterials, Analytical and Testing Center, Sichuan University, Chengdu, 610064, PR China
| | - Jidong Li
- Research Center for Nano-Biomaterials, Analytical and Testing Center, Sichuan University, Chengdu, 610064, PR China
| | - Yubao Li
- Research Center for Nano-Biomaterials, Analytical and Testing Center, Sichuan University, Chengdu, 610064, PR China
| | - Yi Zuo
- Research Center for Nano-Biomaterials, Analytical and Testing Center, Sichuan University, Chengdu, 610064, PR China
| |
Collapse
|
4
|
Papatola F, Slimani S, Peddis D, Pellis A. Biocatalyst immobilization on magnetic nano-architectures for potential applications in condensation reactions. Microb Biotechnol 2024; 17:e14481. [PMID: 38850268 PMCID: PMC11162105 DOI: 10.1111/1751-7915.14481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/30/2024] [Accepted: 05/07/2024] [Indexed: 06/10/2024] Open
Abstract
In this review article, a perspective on the immobilization of various hydrolytic enzymes onto magnetic nanoparticles for synthetic organic chemistry applications is presented. After a first part giving short overview on nanomagnetism and highlighting advantages and disadvantages of immobilizing enzymes on magnetic nanoparticles (MNPs), the most important hydrolytic enzymes and their applications were summarized. A section reviewing the immobilization techniques with a particular focus on supporting enzymes on MNPs introduces the reader to the final chapter describing synthetic organic chemistry applications of small molecules (flavour esters) and polymers (polyesters and polyamides). Finally, the conclusion and perspective section gives the author's personal view on further research discussing the new idea of a synergistic rational design of the magnetic and biocatalytic component to produce novel magnetic nano-architectures.
Collapse
Affiliation(s)
- F. Papatola
- Dipartimento di Chimica e Chimica IndustrialeUniversità di GenovaGenoaItaly
| | - S. Slimani
- Dipartimento di Chimica e Chimica IndustrialeUniversità di GenovaGenoaItaly
- CNRIstituto di Struttura Della Materia, nM2‐LabMonterotondo Scalo (Roma)Italy
| | - D. Peddis
- Dipartimento di Chimica e Chimica IndustrialeUniversità di GenovaGenoaItaly
- CNRIstituto di Struttura Della Materia, nM2‐LabMonterotondo Scalo (Roma)Italy
| | - A. Pellis
- Dipartimento di Chimica e Chimica IndustrialeUniversità di GenovaGenoaItaly
| |
Collapse
|
5
|
Zhang S, Tanioka A, Matsumoto H. De Novo Ion-Exchange Membranes Based on Nanofibers. MEMBRANES 2021; 11:652. [PMID: 34564469 PMCID: PMC8469869 DOI: 10.3390/membranes11090652] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/23/2021] [Accepted: 08/23/2021] [Indexed: 11/16/2022]
Abstract
The unique functions of nanofibers (NFs) are based on their nanoscale cross-section, high specific surface area, and high molecular orientation, and/or their confined polymer chains inside the fibers. The introduction of ion-exchange (IEX) groups on the surface and/or inside the NFs provides de novo ion-exchangers. In particular, the combination of large surface areas and ionizable groups in the IEX-NFs improves their performance through indices such as extremely rapid ion-exchange kinetics and high ion-exchange capacities. In reality, the membranes based on ion-exchange NFs exhibit superior properties such as high catalytic efficiency, high ion-exchange and adsorption capacities, and high ionic conductivities. The present review highlights the fundamental aspects of IEX-NFs (i.e., their unique size-dependent properties), scalable production methods, and the recent advancements in their applications in catalysis, separation/adsorption processes, and fuel cells, as well as the future perspectives and endeavors of NF-based IEMs.
Collapse
Affiliation(s)
- Shaoling Zhang
- Department of Materials Science and Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8552, Japan
| | - Akihiko Tanioka
- Interdisciplinary Cluster for Cutting Edge Research, Institute of Carbon Science and Technology, Shinshu University, 4-17-1, Wakasato, Nagano 380-8553, Japan;
| | - Hidetoshi Matsumoto
- Department of Materials Science and Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8552, Japan
| |
Collapse
|
6
|
Lipase immobilization on ceramic supports: An overview on techniques and materials. Biotechnol Adv 2020; 42:107581. [DOI: 10.1016/j.biotechadv.2020.107581] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 06/17/2020] [Accepted: 06/18/2020] [Indexed: 02/08/2023]
|
7
|
Filho DG, Silva AG, Guidini CZ. Lipases: sources, immobilization methods, and industrial applications. Appl Microbiol Biotechnol 2019; 103:7399-7423. [DOI: 10.1007/s00253-019-10027-6] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 07/11/2019] [Accepted: 07/12/2019] [Indexed: 01/15/2023]
|
8
|
Gomez Rodríguez EI, Falcone RD, Beassoni PR, Moyano F, Correa NM. Supramolecular Systems as an Alternative for Enzymatic Degradation of 1‐Naphthyl Methylcarbamate (Carbaryl) Pesticide. ChemistrySelect 2019. [DOI: 10.1002/slct.201901735] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Esteban I. Gomez Rodríguez
- Instituto para el Desarrollo Agroindustrial y de la Salud (IDAS)UNRC-CONICET Facultad de Ciencias ExactasFísico-Químicas y Naturales Agencia Postal # 3 C.P. X5804BYA Río Cuarto ARGENTINA
- Departamento de QuímicaUniversidad Nacional de Río CuartoFacultad de Ciencias ExactasFísico-Químicas y Naturales, Agencia Postal # 3 C.P. X5804BYA Río Cuarto ARGENTINA
| | - R. Darío Falcone
- Instituto para el Desarrollo Agroindustrial y de la Salud (IDAS)UNRC-CONICET Facultad de Ciencias ExactasFísico-Químicas y Naturales Agencia Postal # 3 C.P. X5804BYA Río Cuarto ARGENTINA
- Departamento de QuímicaUniversidad Nacional de Río CuartoFacultad de Ciencias ExactasFísico-Químicas y Naturales, Agencia Postal # 3 C.P. X5804BYA Río Cuarto ARGENTINA
| | - Paola R. Beassoni
- Instituto para el Desarrollo Agroindustrial y de la Salud (IDAS)UNRC-CONICET Facultad de Ciencias ExactasFísico-Químicas y Naturales Agencia Postal # 3 C.P. X5804BYA Río Cuarto ARGENTINA
- Departamento de Biologia Molecular Universidad Nacional de Río CuartoFacultad de Ciencias ExactasFísico-Químicas y Naturales. Agencia Postal # 3 C.P. X5804BYA Río Cuarto ARGENTINA
| | - Fernando Moyano
- Instituto para el Desarrollo Agroindustrial y de la Salud (IDAS)UNRC-CONICET Facultad de Ciencias ExactasFísico-Químicas y Naturales Agencia Postal # 3 C.P. X5804BYA Río Cuarto ARGENTINA
- Departamento de QuímicaUniversidad Nacional de Río CuartoFacultad de Ciencias ExactasFísico-Químicas y Naturales, Agencia Postal # 3 C.P. X5804BYA Río Cuarto ARGENTINA
| | - N. Mariano Correa
- Instituto para el Desarrollo Agroindustrial y de la Salud (IDAS)UNRC-CONICET Facultad de Ciencias ExactasFísico-Químicas y Naturales Agencia Postal # 3 C.P. X5804BYA Río Cuarto ARGENTINA
- Departamento de QuímicaUniversidad Nacional de Río CuartoFacultad de Ciencias ExactasFísico-Químicas y Naturales, Agencia Postal # 3 C.P. X5804BYA Río Cuarto ARGENTINA
| |
Collapse
|
9
|
Schmid-Dannert C, López-Gallego F. Advances and opportunities for the design of self-sufficient and spatially organized cell-free biocatalytic systems. Curr Opin Chem Biol 2019; 49:97-104. [DOI: 10.1016/j.cbpa.2018.11.021] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 11/16/2018] [Accepted: 11/27/2018] [Indexed: 11/29/2022]
|
10
|
Li H, Pang Y, Wang X, Cao X, He X, Chen K, Li G, Ouyang P, Tan W. Phospholipase D encapsulated into metal-surfactant nanocapsules for enhancing biocatalysis in a two-phase system. RSC Adv 2019; 9:6548-6555. [PMID: 35518461 PMCID: PMC9060939 DOI: 10.1039/c8ra09827a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 02/11/2019] [Indexed: 12/14/2022] Open
Abstract
Methods for enhancing enzyme activities in two-phase systems are getting more attention. Phospholipase D (PLD) was successfully encapsulated into metal-surfactant nanocapsules (MSNCs) using a one-pot self-assembly technique in an aqueous solution. The highest yield for the production of high-value phosphatidylserine (PS) from low-value phosphatidylcholine (PC) in the two-phase system was achieved by encapsulating PLD into MSNCs formed from Ca2+ which gave an enzyme activity that was 133.6% of that of free PLD. The PLD@MSNC transformed the two-phase system into an emulsion phase system and improved the organic solvent tolerance, pH and thermal stabilities as well as the storage stability and reusability of the enzyme. Under optimal conditions, PLD@MSNC generated 91.9% PS over 8 h in the two-phase system, while free PLD generated only 77.5%. PLD@MSNC transforms a two-phase system into an emulsion phase, and enhances transphosphatidylation.![]()
Collapse
Affiliation(s)
- Hui Li
- College of Biotechnology and Pharmaceutical Engineering
- Nanjing Tech University
- Nanjing 210000
- China
- State Key Laboratory of Materials-Oriented Chemical Engineering
| | - Yang Pang
- College of Biotechnology and Pharmaceutical Engineering
- Nanjing Tech University
- Nanjing 210000
- China
- State Key Laboratory of Materials-Oriented Chemical Engineering
| | - Xin Wang
- College of Biotechnology and Pharmaceutical Engineering
- Nanjing Tech University
- Nanjing 210000
- China
- State Key Laboratory of Materials-Oriented Chemical Engineering
| | - Xun Cao
- College of Biotechnology and Pharmaceutical Engineering
- Nanjing Tech University
- Nanjing 210000
- China
- State Key Laboratory of Materials-Oriented Chemical Engineering
| | - Xun He
- College of Biotechnology and Pharmaceutical Engineering
- Nanjing Tech University
- Nanjing 210000
- China
- State Key Laboratory of Materials-Oriented Chemical Engineering
| | - Kequan Chen
- College of Biotechnology and Pharmaceutical Engineering
- Nanjing Tech University
- Nanjing 210000
- China
- State Key Laboratory of Materials-Oriented Chemical Engineering
| | - Ganlu Li
- College of Biotechnology and Pharmaceutical Engineering
- Nanjing Tech University
- Nanjing 210000
- China
- State Key Laboratory of Materials-Oriented Chemical Engineering
| | - Pingkai Ouyang
- College of Biotechnology and Pharmaceutical Engineering
- Nanjing Tech University
- Nanjing 210000
- China
- State Key Laboratory of Materials-Oriented Chemical Engineering
| | - Weiming Tan
- National Engineering Research Center for Coatings
- CNOOC Changzhou Paint and Coatings Industry Research Institute Co., Ltd
- Changzhou 213016
- P. R. China
| |
Collapse
|
11
|
Ji X, Su Z, Ma G, Zhang S. Sandwiching multiple dehydrogenases and shared cofactor between double polyelectrolytes for enhanced communication of cofactor and enzymes. Biochem Eng J 2018. [DOI: 10.1016/j.bej.2018.05.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
12
|
Electrospun epoxy-based nanofibrous membrane containing biocompatible feather polypeptide for highly stable and active covalent immobilization of lipase. Colloids Surf B Biointerfaces 2018; 166:277-285. [DOI: 10.1016/j.colsurfb.2018.03.037] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Revised: 03/23/2018] [Accepted: 03/24/2018] [Indexed: 12/25/2022]
|