1
|
Wang ZJ, Yang XL, Sun Y, Song HL. Selection and optimization of biofilm carriers as high-effective microbial separator in microbial fuel cells. BIORESOURCE TECHNOLOGY 2025; 418:131941. [PMID: 39638004 DOI: 10.1016/j.biortech.2024.131941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 11/29/2024] [Accepted: 12/03/2024] [Indexed: 12/07/2024]
Abstract
Four biofilm carriers including pyrite, manganese ore, ceramsite, and polyurethane sponge were used to construct microbial separators (MSs), while their performance in dual-chamber microbial fuel cells (MFCs) was evaluated. Polyurethane sponge and pyrite were superior biofilm carriers for MSs. The dense biofilm on the polyurethane sponge provides MS with optimal barrier capacity against dissolved oxygen and chemical oxygen demand. Pyrite's unique redox activity enhances proton transfer in MS and reduces ohmic resistance in MFC. The optimal thicknesses of polyurethane sponge MS and pyrite MS were 1.20 and 1.80 cm, and the maximum power densities of MFCs equipped with these two MSs were 14.62 and 11.21 W/m3. Using MSs as separators can significantly lower MFC manufacturing costs, particularly with polyurethane sponge MS at 3.52 $/m2. Additionally, MSs demonstrated good regenerability. These results indicated that MSs based on pyrite and polyurethane sponge have the potential to be high-effective separators for MFC scale-up.
Collapse
Affiliation(s)
- Zi-Jie Wang
- School of Civil Engineering, Southeast University, Dongnan Daxue Road 2, Jiangning District, Nanjing 211189, China
| | - Xiao-Li Yang
- School of Civil Engineering, Southeast University, Dongnan Daxue Road 2, Jiangning District, Nanjing 211189, China.
| | - Yun Sun
- School of Civil Engineering, Southeast University, Dongnan Daxue Road 2, Jiangning District, Nanjing 211189, China
| | - Hai-Liang Song
- School of Environment, Nanjing Normal University, Jiangsu Engineering Lab of Water and Soil Eco-Remediation, Nanjing 210023, China.
| |
Collapse
|
2
|
Neethu B, Ihjas K, Chakraborty I, Ghangrekar MM. Nickel adsorbed algae biochar based oxygen reduction reaction catalyst. Bioelectrochemistry 2024; 159:108747. [PMID: 38820671 DOI: 10.1016/j.bioelechem.2024.108747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 05/18/2024] [Accepted: 05/24/2024] [Indexed: 06/02/2024]
Abstract
Lately, the bio electrochemical systems are emerging as an efficient wastewater treatment and energy conversion technology. However, their scaling-up is considerably restrained by slow-rate of cathodic oxygen reduction reaction (ORR) or otherwise by the high cost associated with the available efficient ORR catalysts. In this investigation, a cost-effective and eco-friendly approach for synthesizing Ni based ORR catalyst utilizing biosorption property of microalgae is accomplished. The synthesised Ni adsorbed algal biochar (NAB) served as an efficient cathode catalyst for enhancing ORR in a microbial carbon-capture cell (MCC). On increasing the initial concentration of Ni2+ in the aqueous medium from 100 mgL-1 to 500 mgL-1, the biosorption capacity was found to increase from 3 mgg-1 to 32 mgg-1 of algae cell. The MCC operated with NAB based cathode catalyst loading of 2 mgcm-2 exhibited 3.5 times higher power density (4.69 Wm-3) as compared to the one with commercial activated carbon. A significant organic matter removal (82 %) in the anodic chamber with simultaneous algal biomass productivity in the cathodic chamber was attained by MCC with cathode loaded with 2 mgcm-2 of NAB. Hence, this easily synthesised low-cost catalyst, out of waste stream, proved its ability to improve the performance of MCC.
Collapse
Affiliation(s)
- B Neethu
- Department of Civil Engineering, Indian Institute of Technology Kharagpur 721302, India; Kerala State Council for Science, Technology and Environment (KSCSTE), Sasthrabhavan, Pattom, Thiruvananthapuram 69500, India.
| | - K Ihjas
- Ecology and Environment Research Group, KSCSTE-Centre for Water Resources Development and Management, Kozhikode, Kerala 673571, India
| | - I Chakraborty
- Department of Civil Engineering, Indian Institute of Technology Kharagpur 721302, India
| | - M M Ghangrekar
- Department of Civil Engineering, Indian Institute of Technology Kharagpur 721302, India
| |
Collapse
|
3
|
Banerjee AN, Joo SW. 'Beyond Li-ion technology'-a status review. NANOTECHNOLOGY 2024; 35:472001. [PMID: 39079542 DOI: 10.1088/1361-6528/ad690b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 07/30/2024] [Indexed: 09/05/2024]
Abstract
Li-ion battery is currently considered to be the most proven technology for energy storage systems when it comes to the overall combination of energy, power, cyclability and cost. However, there are continuous expectations for cost reduction in large-scale applications, especially in electric vehicles and grids, alongside growing concerns over safety, availability of natural resources for lithium, and environmental remediation. Therefore, industry and academia have consequently shifted their focus towards 'beyond Li-ion technologies'. In this respect, other non-Li-based alkali-ion/polyvalent-ion batteries, non-Li-based all solid-state batteries, fluoride-ion/ammonium-ion batteries, redox-flow batteries, sand batteries and hydrogen fuel cells etc. are becoming potential cost-effective alternatives. While there has been notable swift advancement across various materials, chemistries, architectures, and applications in this field, a comprehensive overview encompassing high-energy 'beyond Li-ion' technologies, along with considerations of commercial viability, is currently lacking. Therefore, in this review article, a rationalized approach is adopted to identify notable 'post-Li' candidates. Their pros and cons are comprehensively presented by discussing the fundamental principles in terms of material characteristics, relevant chemistries, and architectural developments that make a good high-energy 'beyond Li' storage system. Furthermore, a concise summary outlining the primary challenges of each system is provided, alongside the potential strategies being implemented to mitigate these issues. Additionally, the extent to which these strategies have positively influenced the performance of these 'post-Li' technologies is discussed.
Collapse
Affiliation(s)
- Arghya Narayan Banerjee
- School of Mechanical and IT Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Sang Woo Joo
- School of Mechanical and IT Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| |
Collapse
|
4
|
Liu S, Wang A, Liu Y, Zhou W, Wen H, Zhang H, Sun K, Li S, Zhou J, Wang Y, Jiang J, Li B. Catalytically Active Carbon for Oxygen Reduction Reaction in Energy Conversion: Recent Advances and Future Perspectives. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308040. [PMID: 38581142 PMCID: PMC11165562 DOI: 10.1002/advs.202308040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/25/2024] [Indexed: 04/08/2024]
Abstract
The shortage and unevenness of fossil energy sources are affecting the development and progress of human civilization. The technology of efficiently converting material resources into energy for utilization and storage is attracting the attention of researchers. Environmentally friendly biomass materials are a treasure to drive the development of new-generation energy sources. Electrochemical theory is used to efficiently convert the chemical energy of chemical substances into electrical energy. In recent years, significant progress has been made in the development of green and economical electrocatalysts for oxygen reduction reaction (ORR). Although many reviews have been reported around the application of biomass-derived catalytically active carbon (CAC) catalysts in ORR, these reviews have only selected a single/partial topic (including synthesis and preparation of catalysts from different sources, structural optimization, or performance enhancement methods based on CAC catalysts, and application of biomass-derived CACs) for discussion. There is no review that systematically addresses the latest progress in the synthesis, performance enhancement, and applications related to biomass-derived CAC-based oxygen reduction electrocatalysts synchronously. This review fills the gap by providing a timely and comprehensive review and summary from the following sections: the exposition of the basic catalytic principles of ORR, the summary of the chemical composition and structural properties of various types of biomass, the analysis of traditional and the latest popular biomass-derived CAC synthesis methods and optimization strategies, and the summary of the practical applications of biomass-derived CAC-based oxidative reduction electrocatalysts. This review provides a comprehensive summary of the latest advances to provide research directions and design ideas for the development of catalyst synthesis/optimization and contributes to the industrialization of biomass-derived CAC electrocatalysis and electric energy storage.
Collapse
Affiliation(s)
- Shuling Liu
- College of ChemistryZhengzhou University100 Science RoadZhengzhou450001P. R. China
| | - Ao Wang
- Institute of Chemical Industry of Forest ProductsCAFNational Engineering Lab for Biomass Chemical UtilizationKey and Open Lab on Forest Chemical EngineeringSFA16 SuojinwucunNanjing210042P. R. China
| | - Yanyan Liu
- College of ChemistryZhengzhou University100 Science RoadZhengzhou450001P. R. China
- Institute of Chemical Industry of Forest ProductsCAFNational Engineering Lab for Biomass Chemical UtilizationKey and Open Lab on Forest Chemical EngineeringSFA16 SuojinwucunNanjing210042P. R. China
- College of ScienceHenan Agricultural University95 Wenhua RoadZhengzhou450002P. R. China
| | - Wenshu Zhou
- Institute of Chemical Industry of Forest ProductsCAFNational Engineering Lab for Biomass Chemical UtilizationKey and Open Lab on Forest Chemical EngineeringSFA16 SuojinwucunNanjing210042P. R. China
| | - Hao Wen
- College of ChemistryZhengzhou University100 Science RoadZhengzhou450001P. R. China
| | - Huanhuan Zhang
- College of ChemistryZhengzhou University100 Science RoadZhengzhou450001P. R. China
| | - Kang Sun
- Institute of Chemical Industry of Forest ProductsCAFNational Engineering Lab for Biomass Chemical UtilizationKey and Open Lab on Forest Chemical EngineeringSFA16 SuojinwucunNanjing210042P. R. China
| | - Shuqi Li
- College of ScienceHenan Agricultural University95 Wenhua RoadZhengzhou450002P. R. China
| | - Jingjing Zhou
- College of ScienceHenan Agricultural University95 Wenhua RoadZhengzhou450002P. R. China
| | - Yongfeng Wang
- Center for Carbon‐based Electronics and Key Laboratory for the Physics and Chemistry of NanodevicesSchool of ElectronicsPeking UniversityBeijing100871P. R. China
| | - Jianchun Jiang
- Institute of Chemical Industry of Forest ProductsCAFNational Engineering Lab for Biomass Chemical UtilizationKey and Open Lab on Forest Chemical EngineeringSFA16 SuojinwucunNanjing210042P. R. China
| | - Baojun Li
- College of ChemistryZhengzhou University100 Science RoadZhengzhou450001P. R. China
| |
Collapse
|
5
|
Suri D, Aeshala LM, Palai T. Microbial electrosynthesis of valuable chemicals from the reduction of CO 2: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:36591-36614. [PMID: 38772994 DOI: 10.1007/s11356-024-33678-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 05/10/2024] [Indexed: 05/23/2024]
Abstract
The present energy demand of the world is increasing but the fossil fuels are gradually depleting. As a result, the need for alternative fuels and energy sources is growing. Fuel cells could be one alternative to address the challenge. The fuel cell can convert CO2 to value-added chemicals. The potential of bio-fuel cells, specifically enzymatic fuel cells and microbial fuel cells, and the importance of immobilization technology in bio-fuel cells are highlighted. The review paper also includes a detailed explanation of the microbial electrosynthesis system to reduce CO2 and the value-added products during microbial electrosynthesis. Future research in bio-electrochemical synthesis for CO2 conversion is expected to prioritize enhancing biocatalyst efficiency, refining reactor design, exploring novel electrode materials, understanding microbial interactions, integrating renewable energy sources, and investigating electrochemical processes for carbon capture and selective CO2 reduction. The challenges and perspectives of bio-electrochemical systems in the application of CO2 conversion are also discussed. Overall, this review paper provides valuable insights into the latest developments and criteria for effective research and implementation in bio-fuel cells, immobilization technology, and microbial electro-synthesis systems.
Collapse
Affiliation(s)
- Diksha Suri
- Department of Chemical Engineering, National Institute of Technology Hamirpur, Hamirpur, Himachal Pradesh, 177005, India
| | - Leela Manohar Aeshala
- Department of Chemical Engineering, National Institute of Technology Srinagar, Hazratbal, Srinagar, Jammu & Kashmir, 190006, India
- Department of Chemical Engineering, National Institute of Technology Warangal, Warangal, Telangana, 506004, India
| | - Tapas Palai
- Department of Chemical Engineering, National Institute of Technology Hamirpur, Hamirpur, Himachal Pradesh, 177005, India.
| |
Collapse
|
6
|
Amalina F, Krishnan S, Zularisam AW, Nasrullah M. Pristine and modified biochar applications as multifunctional component towards sustainable future: Recent advances and new insights. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 914:169608. [PMID: 38157898 DOI: 10.1016/j.scitotenv.2023.169608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/09/2023] [Accepted: 12/20/2023] [Indexed: 01/03/2024]
Abstract
Employing biomass for environmental conservation is regarded as a successful and environmentally friendly technique since they are cost-effective, renewable, and abundant. Biochar (BC), a thermochemically converted biomass, has a considerably lower production cost than the other conventional activated carbons. This material's distinctive properties, including a high carbon content, good electrical conductivity (EC), high stability, and a large surface area, can be utilized in various research fields. BC is feasible as a renewable source for potential applications that may achieve a comprehensive economic niche. Despite being an inexpensive and environmentally sustainable product, research has indicated that pristine BC possesses restricted properties that prevent it from fulfilling the intended remediation objectives. Consequently, modifications must be made to BC to strengthen its physicochemical properties and, thereby, its efficacy in decontaminating the environment. Modified BC, an enhanced iteration of BC, has garnered considerable interest within academia. Many modification techniques have been suggested to augment BC's functionality, including its adsorption and immobilization reliability. Modified BC is overviewed in its production, functionality, applications, and regeneration. This work provides a holistic review of the recent advances in synthesizing modified BC through physical, chemical, or biological methods to achieve enhanced performance in a specific application, which has generated considerable research interest. Surface chemistry modifications require the initiation of surface functional groups, which can be accomplished through various techniques. Therefore, the fundamental objective of these modification techniques is to improve the efficacy of BC contaminant removal, typically through adjustments in its physical or chemical characteristics, including surface area or functionality. In addition, this article summarized and discussed the applications and related mechanisms of modified BC in environmental decontamination, focusing on applying it as an ideal adsorbent, soil amendment, catalyst, electrochemical device, and anaerobic digestion (AD) promoter. Current research trends, future directions, and academic demands were available in this study.
Collapse
Affiliation(s)
- Farah Amalina
- Faculty of Civil Engineering Technology, Universiti Malaysia Pahang Al-Sultan Abdullah (UMPSA), Lbh Persiaran Tun Khalil Yaakob, 26300 Gambang, Kuantan, Pahang, Malaysia
| | - Santhana Krishnan
- Department of Civil and Environmental Engineering, Faculty of Engineering, Prince of Songkla University, Songkhla 90110, Thailand
| | - A W Zularisam
- Faculty of Civil Engineering Technology, Universiti Malaysia Pahang Al-Sultan Abdullah (UMPSA), Lbh Persiaran Tun Khalil Yaakob, 26300 Gambang, Kuantan, Pahang, Malaysia
| | - Mohd Nasrullah
- Faculty of Civil Engineering Technology, Universiti Malaysia Pahang Al-Sultan Abdullah (UMPSA), Lbh Persiaran Tun Khalil Yaakob, 26300 Gambang, Kuantan, Pahang, Malaysia.
| |
Collapse
|
7
|
James A, Velayudhaperumal Chellam P. Recent Advances in the Development of Sustainable Composite Materials used as Membranes in Microbial Fuel Cells. CHEM REC 2024; 24:e202300227. [PMID: 37650319 DOI: 10.1002/tcr.202300227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/16/2023] [Indexed: 09/01/2023]
Abstract
MFC can have dual functions; they can generate electricity from industrial and domestic effluents while purifying wastewater. Most MFC designs comprise a membrane which physically separates the cathode and anode compartments while keeping them electrically connected, playing a significant role in its efficiency. Popular commercial membranes such as Nafion, Hyflon and Zifron have excellent ionic conductivity, but have several drawbacks, mainly their prohibitive cost and non-biodegradability, preventing the large-scale application of MFC. Fabrication of composite materials that can function better at a much lower cost while also being environment-friendly has been the endeavor of few researchers over the past years. The current review aims to apprise readers of the latest trends of the past decade in fabricating composite membranes (CM) for MFC. For emphasis on environmental-friendly CM, the review begins with biopolymers, moving on to the carbon-polymer, polymer-polymer, and metal-polymer CM. Lastly, critical analysis towards technology-oriented propositions and realistic future directives in terms of strengths, weakness, opportunities, challenges (SWOC analysis) of the application of CM in MFC have been discussed for their possible large-scale use. The focus of this review is the development of hybrid materials as membranes for fuel cells, while underscoring the need for environment-friendly composites and processes.
Collapse
Affiliation(s)
- Anina James
- Department of Zoology, Deen Dayal Upadhyaya College, University of Delhi, 110078, Delhi, India
| | | |
Collapse
|
8
|
Zhao S, Wang X, Wang Q, Sumpradit T, Khan A, Zhou J, Salama ES, Li X, Qu J. Application of biochar in microbial fuel cells: Characteristic performances, electron-transfer mechanism, and environmental and economic assessments. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 267:115643. [PMID: 37944462 DOI: 10.1016/j.ecoenv.2023.115643] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 10/24/2023] [Accepted: 10/26/2023] [Indexed: 11/12/2023]
Abstract
Biochar is a by-product of thermochemical conversion of biomass or other carbonaceous materials. Recently, it has garnered extensive attention for its high application potential in microbial fuel cell (MFC) systems owing to its high conductivity and low cost. However, the effects of biochar on MFC system performance have not been comprehensively reviewed, thereby necessitating the evaluation of the efficacy of biochar application in MFCs. In this review, biochar characteristics were outlined based on recent publications. Subsequently, various applications of biochar in the MFC systems and their probable processes were summarized. Finally, proposals for future applications of biochar in MFCs were explored along with its perspectives and an environmental evaluation in the context of a circular economy. The purpose of this review is to gain comprehensive insights into the application of biochar in the MFC systems, offering important viewpoints on the effective and steady utilization of biochar in MFCs for practical application.
Collapse
Affiliation(s)
- Shuai Zhao
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Xu Wang
- College of International Education, Henan University of Technology, Zhengzhou 450001, Henan, China
| | - Qiutong Wang
- College of International Education, Henan University of Technology, Zhengzhou 450001, Henan, China
| | - Tawatchai Sumpradit
- Microbiolgy and Parasitology Department, Naresuan University, Muang, Phitsanulok, Thailand
| | - Aman Khan
- Pakistan Agricultural Research Council, 20-Attaturk Avenue, Sector G-5/1, Islamabad, Pakistan
| | - Jia Zhou
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - El-Sayed Salama
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Tianshui South Road #222, Lanzhou 730000, China
| | - Xiangkai Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Tianshui South Road #222, Lanzhou 730000, China
| | - Jianhang Qu
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China.
| |
Collapse
|
9
|
Palanisamy G, Im YM, Muhammed AP, Palanisamy K, Thangarasu S, Oh TH. Fabrication of Cellulose Acetate-Based Proton Exchange Membrane with Sulfonated SiO 2 and Plasticizers for Microbial Fuel Cell Applications. MEMBRANES 2023; 13:581. [PMID: 37367785 DOI: 10.3390/membranes13060581] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/19/2023] [Accepted: 05/31/2023] [Indexed: 06/28/2023]
Abstract
Developing a hybrid composite polymer membrane with desired functional and intrinsic properties has gained significant consideration in the fabrication of proton exchange membranes for microbial fuel cell applications. Among the different polymers, a naturally derived cellulose biopolymer has excellent benefits over synthetic polymers derived from petrochemical byproducts. However, the inferior physicochemical, thermal, and mechanical properties of biopolymers limit their benefits. In this study, we developed a new hybrid polymer composite of a semi-synthetic cellulose acetate (CA) polymer derivate incorporated with inorganic silica (SiO2) nanoparticles, with or without a sulfonation (-SO3H) functional group (sSiO2). The excellent composite membrane formation was further improved by adding a plasticizer (glycerol (G)) and optimized by varying the SiO2 concentration in the polymer membrane matrix. The composite membrane's effectively improved physicochemical properties (water uptake, swelling ratio, proton conductivity, and ion exchange capacity) were identified because of the intramolecular bonding between the cellulose acetate, SiO2, and plasticizer. The proton (H+) transfer properties were exhibited in the composite membrane by incorporating sSiO2. The composite CAG-2% sSiO2 membrane exhibited a higher proton conductivity (6.4 mS/cm) than the pristine CA membrane. The homogeneous incorporation of SiO2 inorganic additives in the polymer matrix provided excellent mechanical properties. Due to the enhancement of the physicochemical, thermal, and mechanical properties, CAG-sSiO2 can effectively be considered an eco-friendly, low-cost, and efficient proton exchange membrane for enhancing MFC performance.
Collapse
Affiliation(s)
- Gowthami Palanisamy
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Yeong Min Im
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Ajmal P Muhammed
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Karvembu Palanisamy
- Department of Microbiology, Punjab Agricultural University, Ludhiana 141004, Punjab, India
| | - Sadhasivam Thangarasu
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Tae Hwan Oh
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| |
Collapse
|
10
|
Ajit K, John J, Krishnan H. Synthesis and performance of a cathode catalyst derived from Bauhinia accuminata seed pods in single and stacked microbial fuel cell. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27845-x. [PMID: 37249763 DOI: 10.1007/s11356-023-27845-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 05/19/2023] [Indexed: 05/31/2023]
Abstract
The cathode catalyst in microbial fuel cell (MFC) plays a crucial role in scaling up. Activity of biomass-derived activated carbon catalysts with appropriate precursor selection in a natural clay membrane-based MFC of 250 mL was studied. The performance of scaled up MFC of 1.5 L capacity with two different configurations was monitored. Rod-shaped particles with slit-type pores and amorphous graphitic nature with a surface area of 800.37 m2/g was synthesized. The intrinsic doping of heteroatoms N and P in the catalyst was with atomic weight percentages of 4.5 and 3.5, respectively and the deconvolution of N1 spectra confirmed pyridinic N and graphitic N content of 17.3% and 34.1% validating its suitability as a cathode catalyst. Electrochemical characterization of the catalyst coated SS mesh electrode confirmed that a loading of 5 mg/cm2 rendered higher catalytic activity compared to bare SS mesh. The maximum power density in catalyst modified cell was 0.91 W/m3 compared to 0.02 W/m3 as obtained in a plain stainless steel electrode cell at a COD removal efficiency of 93.3%. Series, parallel, and parallel-series combinations of 6 cells showed a maximum voltage of 4.15 V when connected in series and a maximum power density of 1.54 W/m3 when connected in parallel. System with multielectrode assembly achieved better power and current density (0.84 W/m3 and 1.97 A/m3) than the mixed parallel series circuitry (0.7 W/m3 and 0.57 A/m3). These performance results confirm that the catalyst is effective in both stacked and hydraulically connected system.
Collapse
Affiliation(s)
- Karnapa Ajit
- Department of Chemical Engineering, National Institute of Technology Calicut (NITC), Kozhikode, Kerala, 673601, India
| | - Juliana John
- Department of Chemical Engineering, National Institute of Technology Calicut (NITC), Kozhikode, Kerala, 673601, India
| | - Haribabu Krishnan
- Department of Chemical Engineering, National Institute of Technology Calicut (NITC), Kozhikode, Kerala, 673601, India.
| |
Collapse
|
11
|
Rao A, Kaushik A, Kuppurangan G, Selvaraj G. Characterization and application of novel fly ash blended ceramic membrane in MFC for low-cost and sustainable wastewater treatment and power generation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:45872-45887. [PMID: 36707477 DOI: 10.1007/s11356-023-25327-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 01/11/2023] [Indexed: 06/18/2023]
Abstract
Field-scale application of the microbial fuel cell (MFC) technology faces a major constraint due to the widely used high-cost proton exchange membrane Nafion, prompting lately, the development of ceramic membranes using different clay minerals. In the present study, the characteristics and applicability of a novel ceramic membrane fabricated using potter's clay (C) blended with varying proportions (0, 5, 10, and 20 wt%) of fly ash (FA), designated as CFA0, CFA5, CFA10, and CFA20, were assessed for cost-effective and sustainable use in MFC. On assessing the properties of the membrane, CFA10 was found to exhibit superior quality with fine pore size distribution (average 0.49 μm) favoring higher water uptake and less oxygen diffusion. The CFA10 membrane showed a maximum proton mass transfer coefficient (4.32 ± 0.04 × 10-5 cm/s) that was about three times that of the control CFA0. The oxygen mass transfer coefficient of CFA10 was 5.13 ± 0.12 × 10-5 cm/s, which was about 40% less than in the control. X-ray diffraction (XRD) analysis of CFA membrane revealed the richness of quartz, which facilitates proton conductance and water retention. The CFA10 membrane fitted MFC demonstrated a peak power output of 4.57 W/m3 (twice that in CFA0) with an average of 80.02 ± 0.86% COD removal and 68.03 ± 0.13% coulombic efficiency in a long-term study indicating its improved applicability and durability. Electrochemical kinetics involving cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) also affirmed the efficacy of CFA10 membrane in MFC showing peak current output of 13.95 mA and low ohmic resistance (74.2 Ω). The novel (CFA10) ceramic membrane amalgamated with the coal fly ash, a waste of concern, shows promise for high MFC performance at a much reduced (98% less) cost that can be used for sustainable scale-up of the technology.
Collapse
Affiliation(s)
- Ankit Rao
- University School of Environment Management, Guru Gobind Singh Indraprastha University, New Delhi, 110078, India
| | - Anubha Kaushik
- University School of Environment Management, Guru Gobind Singh Indraprastha University, New Delhi, 110078, India.
| | - Gunaseelan Kuppurangan
- Sustainable Fuel Cells Technology Lab, Centre for Pollution Control & Environmental Engineering, Pondicherry University, Puducherry, 605 014, India
| | - Gajalakshmi Selvaraj
- Sustainable Fuel Cells Technology Lab, Centre for Pollution Control & Environmental Engineering, Pondicherry University, Puducherry, 605 014, India
| |
Collapse
|
12
|
Lesbayev B, Auyelkhankyzy M, Ustayeva G, Yeleuov M, Rakhymzhan N, Maltay A, Maral Y. Recent advances: Biomass-derived porous carbon materials. SOUTH AFRICAN JOURNAL OF CHEMICAL ENGINEERING 2023. [DOI: 10.1016/j.sajce.2022.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
|
13
|
Vidhyeswari D, Surendhar A, Bhuvaneshwari S. General aspects and novel PEMss in microbial fuel cell technology: A review. CHEMOSPHERE 2022; 309:136454. [PMID: 36167209 DOI: 10.1016/j.chemosphere.2022.136454] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 08/20/2022] [Accepted: 09/11/2022] [Indexed: 06/16/2023]
Abstract
The current scenario of energy production is mostly shifted towards sustainable renewable energy sources. Other than the energy production from natural resources such as sun, wind and water, microbial fuel cell system (MFC) has earned attraction in recent times. These microbial fuel cell systems are bioelectrochemical cell that possesses a unique ability to generate power as well as treats wastewater simultaneously. In this paper, an overview of the microbial fuel cell system and the effect of significant components on the performance of microbial fuel cell systems are reviewed. Firstly, the importance of the MFC system in power generation, its components, the working principle and various configurations of the MFC were briefly introduced. Biofilm plays a major role in the MFC system. Thus the importance of bio film, bio film formation and characterization techniques are summarised. Further, the review mainly addresses the mechanism of conventional and novel membrane materials on the performance of the MFC system. In addition, special emphasis on ceramic-based materials in the MFC system is presented. Finally, recent applications of the MFC systems are discussed.
Collapse
Affiliation(s)
- D Vidhyeswari
- Department of Chemical Engineering, National Institute of Technology Calicut, 673601, India.
| | - A Surendhar
- Department of Food Technology, TKM Institute of Technology, Kollam, India.
| | - S Bhuvaneshwari
- Department of Chemical Engineering, National Institute of Technology Calicut, 673601, India.
| |
Collapse
|
14
|
Modified sulfonated polyphenylsulfone proton exchange membrane with enhanced fuel cell performance: A review. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
15
|
Effectiveness of biophotovoltaics system modified with fuller-clay composite separators for chromium removal. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140714] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
16
|
Al-Sahari M, Al-Gheethi AA, Radin Mohamed RMS, Yashni G, Vo DVN, Ismail N. Microbial fuel cell systems; developments, designs, efficiencies, and trends: A comparative study between the conventional and innovative systems. CHEMOSPHERE 2022; 298:134244. [PMID: 35278440 DOI: 10.1016/j.chemosphere.2022.134244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 01/07/2022] [Accepted: 03/04/2022] [Indexed: 06/14/2023]
Abstract
The microbial fuel cell (MFC) technology has appeared in the late 20th century and received considerable attention over the last decade due to its multiple and unique potential in converting the substrates into electricity and valuable productions. Extensive efforts have been paid to improve the MFCs performance, leading to the publication of a massive amount of research that developed various aspects of these systems. Most of these improvements have focused on optimization parameters, which is currently inappropriate to provide an innovational developing vision for MFC systems. The convergent results in most of the previous conventional studies (12,643 studies according to the WOS database) have reduced the value of MFCs by drawing an incomplete image for the performance of the systems. Therefore, this paper aimed to provide a comprehensive comparison between the highly reliable studies that innovatively developed the MFC systems and the conventional MFCs studies. The current paper discusses the novel MFCs development history, designs, efficiency, and challenges compared to conventional MFCs. The discussion has displayed the high efficiency of the novel MFCs in removing over 90% of substrates and generating power of 800 mW m-2. The paper also analyzed the literature trends, history and suggested recommendations for future studies. This is the first paper highlighting the substantial differences between the innovative and conventional MFC systems, nominating it to be a vital reference for novel MFCs studies in the future.
Collapse
Affiliation(s)
- Mohammed Al-Sahari
- Micropollutant Research Centre (MPRC), Faculty of Civil Engineering & Built Environment, Universiti Tun Hussein Onn Malaysia, Parit Raja, 86400, Johor, Malaysia.
| | - Adel Ali Al-Gheethi
- Micropollutant Research Centre (MPRC), Faculty of Civil Engineering & Built Environment, Universiti Tun Hussein Onn Malaysia, Parit Raja, 86400, Johor, Malaysia.
| | - Radin Maya Saphira Radin Mohamed
- Micropollutant Research Centre (MPRC), Faculty of Civil Engineering & Built Environment, Universiti Tun Hussein Onn Malaysia, Parit Raja, 86400, Johor, Malaysia.
| | - G Yashni
- School of Applied Sciences, Faculty of Engineering, Science and Technology, Nilai University, Malaysia.
| | - Dai-Viet N Vo
- Center of Excellence for Green Energy and Environmental Nanomaterials (CE@GrEEN), Nguyen Tat Thanh University, 300A Nguyen Tat Thanh, District 4, Ho Chi Minh City, 755414, Viet Nam
| | - Norli Ismail
- Environmental Technology Division, School of Industrial Technology, Universiti Sains Malaysia (USM), 11800, Penang, Malaysia
| |
Collapse
|
17
|
Priya AK, Subha C, Kumar PS, Suresh R, Rajendran S, Vasseghian Y, Soto-Moscoso M. Advancements on sustainable microbial fuel cells and their future prospects: A review. ENVIRONMENTAL RESEARCH 2022; 210:112930. [PMID: 35182595 DOI: 10.1016/j.envres.2022.112930] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/31/2022] [Accepted: 02/07/2022] [Indexed: 06/14/2023]
Abstract
A microbial fuel cell (MFC) is a sustainable device that produces electricity. The main components of MFC are electrodes (anode & cathode) and separators. The MFC's performance is ascertained by measuring its power density. Its components and other parameters, such as cell design and configuration, operation parameters (pH, salinity, and temperature), substrate characteristics, and microbes present in the substrate, all influence its performance. MFC can be scaled up and commercialized using low-cost materials without affecting its performance. Hence the choice of materials plays a significant role. In the past, precious and non-precious metals were mostly used. These were replaced by a variety of low-cost carbonaceous and non-carbonaceous materials. Nano materials, activated compounds, composite materials, have also found their way as components of MFC materials. This review describes the recently reported modified electrodes (anode and cathode), their improvisation, their merits, pollutant removal efficiency, and associated power density.
Collapse
Affiliation(s)
- A K Priya
- Department of Civil Engineering, KPR Institute of Engineering and Technology, Coimbatore, 641027, India
| | - C Subha
- Department of Civil Engineering, Ramco Institute of Technology, Rajapalayam, 626 117, India
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603 110, India
| | - R Suresh
- Laboratorio de Investigaciones Ambientales Zonas Áridas, Departamento de Ingeniería Mecánica, Facultad de Ingeniería, Universidad de Tarapacá, Avda. General Velásquez, 1775, Arica, Chile
| | - Saravanan Rajendran
- Laboratorio de Investigaciones Ambientales Zonas Áridas, Departamento de Ingeniería Mecánica, Facultad de Ingeniería, Universidad de Tarapacá, Avda. General Velásquez, 1775, Arica, Chile.
| | - Yasser Vasseghian
- Department of Chemistry, Soongsil University, Seoul, 06978, South Korea.
| | - Matias Soto-Moscoso
- Departamento de Física, Facultad de Ciencias, Universidad del Bío-bío, avenida Collao 1202, casilla 15-C, Concepción, Chile
| |
Collapse
|
18
|
Novikau R, Lujaniene G. Adsorption behaviour of pollutants: Heavy metals, radionuclides, organic pollutants, on clays and their minerals (raw, modified and treated): A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 309:114685. [PMID: 35151139 DOI: 10.1016/j.jenvman.2022.114685] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 01/06/2022] [Accepted: 02/04/2022] [Indexed: 06/14/2023]
Abstract
The increasing anthropogenic pressure results in environmental pollution and thus adversely affects the integrity of ecosystems. Consequently, various methods of removing pollutants from effluents have been developed and used to minimise this negative impact, with adsorption on clay minerals identified as the most promising approach. This review examines the adsorption of heavy metals, radionuclides, and organic pollutants on clays/clay minerals and their composites under diverse conditions and deals with the applications of these materials in the construction of engineering barriers for waste management. Additionally, we discuss the efficiency and mechanisms of pollutant adsorption on clays subjected to various treatments and modifications while describing the beneficial effects of such modification/treatment on adsorption performance, reusability, and in vivo/in vitro toxicity.
Collapse
Affiliation(s)
- Raman Novikau
- Department of Environmental Research, State Research Institute Center for Physical Sciences and Technology, Savanoriu Ave. 231, Vilnius, 02300, Lithuania.
| | - Galina Lujaniene
- Department of Environmental Research, State Research Institute Center for Physical Sciences and Technology, Savanoriu Ave. 231, Vilnius, 02300, Lithuania.
| |
Collapse
|
19
|
Wang F, Wang B, Hao B, Zhang C, Wang Q. Designable Guest‐Molecule Encapsulation in Metal–Organic Frameworks for Proton Conductivity. Chemistry 2022; 28:e202103732. [DOI: 10.1002/chem.202103732] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Indexed: 11/07/2022]
Affiliation(s)
- Feng‐Dong Wang
- College of Chemical Engineering and Materials Science Tianjin University of Science and Technology Tianjin 300457 P. R. China
- College of Chemistry and Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education) Nankai University Tianjin 300071 P. R. China
| | - Bin‐Cheng Wang
- College of Chemical Engineering and Materials Science Tianjin University of Science and Technology Tianjin 300457 P. R. China
| | - Biao‐Biao Hao
- College of Chemical Engineering and Materials Science Tianjin University of Science and Technology Tianjin 300457 P. R. China
| | - Chen‐Xi Zhang
- College of Chemical Engineering and Materials Science Tianjin University of Science and Technology Tianjin 300457 P. R. China
- Key Laboratory of Brine Chemical Engineering and Resource Eco-utilization Tianjin University of Science and Technology Tianjin 300457 P. R. China
| | - Qing‐Lun Wang
- College of Chemistry and Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education) Nankai University Tianjin 300071 P. R. China
| |
Collapse
|
20
|
Vempaty A, Mathuriya AS. Strategic development and performance evaluation of functionalized tea waste ash-clay composite as low-cost, high-performance separator in microbial fuel cell. ENVIRONMENTAL TECHNOLOGY 2022:1-12. [PMID: 35138220 DOI: 10.1080/09593330.2022.2041103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 02/02/2022] [Indexed: 06/14/2023]
Abstract
The separator is an important component of the microbial fuel cells (MFCs), which separates anode and cathode entities and facilitates ion transfer between both. Despite the high research in separators in recent years, the need for cost-effective, waste-driven selective separators in MFCs persists. Present study discloses the strategic fabrication of functionalized-tea-waste-ash-clay (FTWA-C) composite separator by integrating functionalized tea waste ash (FTWA) with potter's clay. Clay was used as a base, while FTWA was used as cation exchanger. FTWA and clay were separately mixed in four different ratios, 00:100 (C1); 05:95 (C2); 10:90 (C3); 15:85 (C4). Mixtures were then crafted manually as consecutive four layers. C1-side faced anode while separator-cathode-assembly was developed at C4. The separator was characterized by evaluating proton and oxygen transfer coefficient, and water-uptake analysis. The separator was also analysed for elemental composition, microstructure, particle size, and surface area and porous structure. SEM analysis of FTWA showed the presence of 15-100 nm pores. EDS analysis of the FTWA-C showed the presence of hygroscopic oxides, mainly SO42- and SiO2. A slight peak observed at P/Po∼1, confirmed the presence of macropores. The FTWA-C separator showed proton transfer coefficient as high as 18.7 × 10-5 cm/s, and oxygen mass transfer coefficient of 2.1 × 10-4 cm/s. The FTWA-C displayed the highest operating voltage of 612.4.2 mV, the power density of 1.81 W/m3, and COD removal efficiency of 87.52%. The fabrication cost of this separator was estimated to be $9.8/m2. FTWA-C could be an affordable and high-efficiency alternative for expensive ion-exchange membranes in MFCs.
Collapse
Affiliation(s)
- Anusha Vempaty
- Bio-POSITIVE, Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida, India
| | - Abhilasha Singh Mathuriya
- Bio-POSITIVE, Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida, India
- Environmental Impact Assessment Division, Ministry of Environment, Forest and Climate Change, New Delhi, India
| |
Collapse
|
21
|
Role and Important Properties of a Membrane with Its Recent Advancement in a Microbial Fuel Cell. ENERGIES 2022. [DOI: 10.3390/en15020444] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Microbial fuel cells (MFC) are an emerging technology for wastewater treatment that utilizes the metabolism of microorganisms to generate electricity from the organic matter present in water directly. The principle of MFC is the same as hydrogen fuel cell and has three main components (i.e., anode, cathode, and proton exchange membrane). The membrane separates the anode and cathode chambers and keeps the anaerobic and aerobic conditions in the two chambers, respectively. This review paper describes the state-of-the-art membrane materials particularly suited for MFC and discusses the recent development to obtain robust, sustainable, and cost-effective membranes. Nafion 117, Flemion, and Hyflon are the typical commercially available membranes used in MFC. Use of non-fluorinated polymeric membrane materials such as sulfonated silicon dioxide (S-SiO2) in sulfonated polystyrene ethylene butylene polystyrene (SSEBS), sulfonated polyether ether ketone (SPEEK) and graphene oxide sulfonated polyether ether ketone (GO/SPEEK) membranes showed promising output and proved to be an alternative material to Nafion 117. There are many challenges to selecting a suitable membrane for a scaled-up MFC system so that the technology become technically and economically viable.
Collapse
|
22
|
Sujiono E, Zabrian D, Zurnansyah, Mulyati, Zharvan V, Samnur, Humairah N. Fabrication and Characterization of Coconut Shell Activated Carbon using Variation Chemical Activation for Wastewater Treatment Application. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100291] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
23
|
Mahmoud RH, Gomaa OM, Hassan RYA. Bio-electrochemical frameworks governing microbial fuel cell performance: technical bottlenecks and proposed solutions. RSC Adv 2022; 12:5749-5764. [PMID: 35424538 PMCID: PMC8981509 DOI: 10.1039/d1ra08487a] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 02/10/2022] [Indexed: 12/02/2022] Open
Abstract
Microbial fuel cells (MFCs) are recognized as a future technology with a unique ability to exploit metabolic activities of living microorganisms for simultaneous conversion of chemical energy into electrical energy. This technology holds the promise to offer sustained innovations and continuous development towards many different applications and value-added production that extends beyond electricity generation, such as water desalination, wastewater treatment, heavy metal removal, bio-hydrogen production, volatile fatty acid production and biosensors. Despite these advantages, MFCs still face technical challenges in terms of low power and current density, limiting their use to powering only small-scale devices. Description of some of these challenges and their proposed solutions is demanded if MFCs are applied on a large or commercial scale. On the other hand, the slow oxygen reduction process (ORR) in the cathodic compartment is a major roadblock in the commercialization of fuel cells for energy conversion. Thus, the scope of this review article addresses the main technical challenges of MFC operation and provides different practical approaches based on different attempts reported over the years. Sustainable operation requires addressing key MFC-bottleneck issues. Enhancing extracellular electron transfer is the key to elevated MFC performance.![]()
Collapse
Affiliation(s)
- Rehab H. Mahmoud
- Water Pollution Research Department, National Research Centre (NRC), Dokki, Giza, Egypt
| | - Ola M. Gomaa
- Microbiology Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Nasr City, Cairo, Egypt
| | - Rabeay Y. A. Hassan
- Nanoscience Program, University of Science and Technology (UST), Zewail City of Science and Technology, 6th October City, Giza 12578, Egypt
- Applied Organic Chemistry Department, National Research Centre (NRC), Dokki, 12622 Giza, Egypt
| |
Collapse
|
24
|
Jiang S, Sun H, Wang H, Ladewig BP, Yao Z. A comprehensive review on the synthesis and applications of ion exchange membranes. CHEMOSPHERE 2021; 282:130817. [PMID: 34091294 DOI: 10.1016/j.chemosphere.2021.130817] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 05/01/2021] [Accepted: 05/05/2021] [Indexed: 06/12/2023]
Abstract
Ion exchange membranes (IEMs) are undergoing prosperous development in recent years. More than 30,000 papers which are indexed by Science Citation Index Expanded (SCIE) have been published on IEMs during the past twenty years (2001-2020). Especially, more than 3000 papers are published in the year of 2020, revealing researchers' great interest in this area. This paper firstly reviews the different types (e.g., cation exchange membrane, anion exchange membrane, proton exchange membrane, bipolar membrane) and electrochemical properties (e.g., permselectivity, electrical resistance/ionic conductivity) of IEMs and the corresponding working principles, followed by membrane synthesis methods, including the common solution casting method. Especially, as a promising future direction, green synthesis is critically discussed. IEMs are extensively applied in various applications, which can be generalized into two big categories, where the water-based category mainly includes electrodialysis, diffusion dialysis and membrane capacitive deionization, while the energy-based category mainly includes reverse electrodialysis, fuel cells, redox flow battery and electrolysis for hydrogen production. These applications are comprehensively discussed in this paper. This review may open new possibilities for the future development of IEMs.
Collapse
Affiliation(s)
- Shanxue Jiang
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing, 100048, China; Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business University, Beijing, 100048, China; Barrer Centre, Department of Chemical Engineering, Imperial College London, Exhibition Road, London, SW7 2AZ, United Kingdom
| | - Haishu Sun
- Department of Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Huijiao Wang
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing, 100083, China
| | - Bradley P Ladewig
- Barrer Centre, Department of Chemical Engineering, Imperial College London, Exhibition Road, London, SW7 2AZ, United Kingdom; Institute for Micro Process Engineering (IMVT), Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Zhiliang Yao
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing, 100048, China; Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business University, Beijing, 100048, China.
| |
Collapse
|
25
|
Kumbar SS, Jadhav DA, Jarali CS, Talange DB, Afzal A, Khan SA, Asif M, Abdullah MZ. Enhancement in Cathodic Redox Reactions of Single-Chambered Microbial Fuel Cells with Castor Oil-Emitted Powder as Cathode Material. MATERIALS 2021; 14:ma14164454. [PMID: 34442980 PMCID: PMC8401471 DOI: 10.3390/ma14164454] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/31/2021] [Accepted: 08/03/2021] [Indexed: 02/07/2023]
Abstract
Microbial fuel cell (MFC) would be a standalone solution for clean, sustainable energy and rural electrification. It can be used in addition to wastewater treatment for bioelectricity generation. Materials chosen for the membrane and electrodes are of low cost with suitable conducting ions and electrical properties. The prime objective of the present work is to enhance redox reactions by using novel and low-cost cathode catalysts synthesized from waste castor oil. Synthesized graphene has been used as an anode, castor oil-emitted carbon powder serves as a cathode, and clay material acts as a membrane. Three single-chambered MFC modules developed were used in the current study, and continuous readings were recorded. The maximum voltage achieved was 0.36 V for a 100 mL mixture of domestic wastewater and cow dung for an anodic chamber of 200 mL. The maximum power density obtained was 7280 mW/m2. In addition, a performance test was evaluated for another MFC with inoculums slurry, and a maximum voltage of 0.78 V and power density of 34.4093 mW/m2 with an anodic chamber of 50 mL was reported. The present study’s findings show that such cathode catalysts can be a suitable option for practical applications of microbial fuel cells.
Collapse
Affiliation(s)
- Shobha Suresh Kumbar
- Research Scholar, Visvesvaraya Technological University, Belagavi 590018, India
- Department of Electrical Engineering, Sanjay Ghodawat University, Atigre 416118, India
- Correspondence: (S.S.K.); (A.A.); (M.Z.A.)
| | - Dipak Ashok Jadhav
- Department of Agricultural Engineering, Maharashtra Institute of Technology, Aurangabad 431010, India;
| | - Chetan S. Jarali
- Structural Technologies Division, CSIR NAL, Bengaluru 560017, India;
| | - Dhananjay B. Talange
- Department of Electrical Engineering, College of Engineering, Pune 411005, India;
| | - Asif Afzal
- Department of Mechanical Engineering, P.A. College of Engineering (Affiliated to Visvesvaraya Technological University, Belagavi), Mangaluru 574153, India
- Correspondence: (S.S.K.); (A.A.); (M.Z.A.)
| | - Sher Afghan Khan
- Department of Mechanical Engineering, Faculty of Engineering, International Islamic University, Kuala Lumpur 53100, Malaysia;
| | - Mohammad Asif
- Department of Chemical Engineering, College of Engineering, King Saud University, P.O. Box 800, Riyadh 11421, Saudi Arabia;
| | - Mohd. Zulkifly Abdullah
- School of Mechanical Engineering, Engineering Campus, Universiti Sains Malaysia, Nibong Tebal 14300, Malaysia
- Correspondence: (S.S.K.); (A.A.); (M.Z.A.)
| |
Collapse
|
26
|
Raychaudhuri A, Sahoo RN, Behera M. Application of clayware ceramic separator modified with silica in microbial fuel cell for bioelectricity generation during rice mill wastewater treatment. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2021; 84:66-76. [PMID: 34280155 DOI: 10.2166/wst.2021.213] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Ceramic separators have recently been investigated as low-cost, robust, and sustainable separators for application in microbial fuel cells (MFC). In the present study, an attempt was made to develop a low-cost MFC employing a clayware ceramic separator modified with silica. The properties of separators with varying silica content (10%-40% w/w) were evaluated in terms of oxygen and proton diffusion. The membrane containing 30% silica exhibited improved performance compared to the unmodified membrane. Two identical MFCs, fabricated using ceramic separators with 30% silica content (MFCS-30) and without silica (MFCC), were operated at hydraulic retention time of 12 h with real rice mill wastewater with a chemical oxygen demand (COD) of 3,200 ± 50 mg/L. The maximum volumetric power density of 791.72 mW/m3 and coulombic efficiency of 35.77% was obtained in MFCS-30, which was 60.4% and 48.5%, respectively, higher than that of MFCC. The maximum COD and phenol removal efficiency of 76.2% and 58.2%, respectively, were obtained in MFCS-30. MFC fabricated with modified ceramic separator demonstrated higher power generation and pollutant removal. The presence of hygroscopic silica in the ceramic separator improved its performance in terms of hydration properties and proton transport.
Collapse
Affiliation(s)
- Aryama Raychaudhuri
- School of Infrastructure, Indian Institute of Technology Bhubaneswar, Argul, Khordha, Odisha 752050, India
| | - Rudra Narayan Sahoo
- School of Infrastructure, Indian Institute of Technology Bhubaneswar, Argul, Khordha, Odisha 752050, India
| | - Manaswini Behera
- School of Infrastructure, Indian Institute of Technology Bhubaneswar, Argul, Khordha, Odisha 752050, India
| |
Collapse
|
27
|
Raychaudhuri A, Behera M. Enhancement of bioelectricity generation by integrating acidogenic compartment into a dual-chambered microbial fuel cell during rice mill wastewater treatment. Process Biochem 2021. [DOI: 10.1016/j.procbio.2021.03.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
28
|
Tholia V, Neethu B, Bhowmick GD, Ghangrekar MM. Enhancing the Performance of Microbial Fuel Cell by Using Chloroform Pre-treated Mixed Anaerobic Sludge to Control Methanogenesis in Anodic Chamber. Appl Biochem Biotechnol 2021; 193:846-855. [PMID: 33196970 DOI: 10.1007/s12010-020-03458-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Accepted: 11/08/2020] [Indexed: 02/05/2023]
Abstract
Formation of methane in the anodic chamber of a microbial fuel cell (MFC) indicates an energy inefficiency in electricity generation as the energy required for electrogenesis gets redirected to methanogenesis. The hypothesis of this research is that inhibition of methanogenesis in the mixed anaerobic anodic inoculum is associated with an enhanced activity of the electrogenic bacterial consortia. Hence, the primary objective of this investigation is to evaluate the ability of chloroform to inhibit the methanogenesis at different dosing to enhance the activity of electrogenic consortia in MFC. A higher methane inhibition and hence an enhanced performance of MFC was achieved when mixed anaerobic sludge, collected from septic tank, was used as inoculum after pre-treatment with 0.25% (v/v) chloroform dosing (MFC-0.25CF). The MFC-0.25CF attained a maximum power density of 8.51 W/m3, which was more than twice as that of MFC inoculated with untreated sludge. Also, a clear correlation between the chloroform dosing, methane inhibition, wastewater treatment, and power generation was established, which demonstrated the effectiveness of the technique in enhancing power generation in MFC along with adequate biodegradation of organic matter present in wastewater at an optimum chloroform dosing of 0.25% (v/v) to inhibit methanogenesis.
Collapse
Affiliation(s)
- V Tholia
- School of Water Resources, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - B Neethu
- Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - G D Bhowmick
- Department of Agricultural and Food Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - M M Ghangrekar
- Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India.
| |
Collapse
|
29
|
Gunaseelan K, Jadhav DA, Gajalakshmi S, Pant D. Blending of microbial inocula: An effective strategy for performance enhancement of clayware Biophotovoltaics microbial fuel cells. BIORESOURCE TECHNOLOGY 2021; 323:124564. [PMID: 33360719 DOI: 10.1016/j.biortech.2020.124564] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/13/2020] [Accepted: 12/14/2020] [Indexed: 06/12/2023]
Abstract
Performance of clayware Biophotovoltaics (BPVs) with three variants of inocula namely anoxygenic photosynthetic bacteria (APB) rich Effective microbes (EM), Up-flow anaerobic sludge blanket reactor (UASB) sludge, SUPER-MIX the blend of EM and UASB inoculum were evaluated on the basis of electrical output and pollutant removal. SUPER-MIX inocula with microbial community comprising of 28.42% APB and 71.58% of other microbes resulted in peak power density of 275 mW/m2, 69.3 ± 1.74% Coulombic efficiency and 91 ± 3.96% organic matter removal. The higher performance of the SUPER-MIX than EM and UASB inocula was due to the syntrophic associations of the various APBs and other heterogenous microorganisms in perfect blend which improved biocatalytic electron transfer, electro-kinetic activities with higher redox current and bio-capacitance. The promising performance of clayware BPVs with SUPER-MIX inocula indicate the possibility of BPVs to move towards the scale-up process to minimize the investment towards pure culture by effective blending strategies of inocula.
Collapse
Affiliation(s)
- K Gunaseelan
- Sustainable Fuel Cells Technology Lab, Centre for Pollution Control & Environmental Engineering, Pondicherry University, Puducherry 605 014, India
| | - Dipak A Jadhav
- Department of Agricultural Engineering, Maharashtra Institute of Technology, Aurangabad 431010, India
| | - S Gajalakshmi
- Sustainable Fuel Cells Technology Lab, Centre for Pollution Control & Environmental Engineering, Pondicherry University, Puducherry 605 014, India.
| | - Deepak Pant
- Separation and Conversion Technology, Flemish Institute for Technological Research (VITO), Boeretang 200, 2400 Mol, Belgium
| |
Collapse
|
30
|
Huang WH, Lee DJ, Huang C. Modification on biochars for applications: A research update. BIORESOURCE TECHNOLOGY 2021; 319:124100. [PMID: 32950819 DOI: 10.1016/j.biortech.2020.124100] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 08/31/2020] [Accepted: 09/03/2020] [Indexed: 06/11/2023]
Abstract
Biochars are the solid product of biomass under pyrolysis or gasification treatment, whose wholesale prices are lower than commercial activated carbons and other fine materials now in use. The employment of biochars as a renewable resource for field applications, if feasible, would gain apparent economic niche. Modification using physical or chemical protocol to revise the surface properties of biochar for reaching enhanced performances of target application has attracted great research interests. This article provided an overview of biochar application, particularly with the respect to the use of modified biochar as preferred soil amendment, adsorbent, electrochemical material, anaerobic digestion promotor, and catalyst. Based on literature works the current research trends and the prospects and research needs were outlined.
Collapse
Affiliation(s)
- Wei-Hao Huang
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Duu-Jong Lee
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan; Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan; College of Engineering, Tunghai University, Taichung 10607, Taiwan.
| | - Chihpin Huang
- Institute of Environmental Engineering, National Chiao Tung University, Hsinchu 30009, Taiwan
| |
Collapse
|
31
|
Bhowmick GD, Das S, Adhikary K, Ghangrekar MM, Mitra A. Bismuth-Impregnated Ruthenium with Activated Carbon as Photocathode Catalyst to Proliferate the Efficacy of a Microbial Fuel Cell. JOURNAL OF HAZARDOUS, TOXIC, AND RADIOACTIVE WASTE 2021; 25. [DOI: 10.1061/(asce)hz.2153-5515.0000565] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 07/30/2020] [Indexed: 02/06/2023]
Affiliation(s)
- Gourav Dhar Bhowmick
- Ph.D. Scholar, Dept. of Agricultural and Food Engineering, Indian Institute of Technology, Kharagpur 721302, India. ORCID:
| | - Sovik Das
- Ph.D. Scholar, Dept. of Civil Engineering, Indian Institute of Technology, Kharagpur 721302, India. ORCID:
| | - Koushik Adhikary
- Dept. of Agricultural and Food Engineering, Indian Institute of Technology, Kharagpur 721302, India
| | - Makarand Madhao Ghangrekar
- Professor, Dept. of Civil Engineering, Indian Institute of Technology, Kharagpur 721302, India (corresponding author). ORCID:
| | - Arunabha Mitra
- Professor, Dept. of Agricultural and Food Engineering, Indian Institute of Technology, Kharagpur 721302, India
| |
Collapse
|
32
|
Bhowmick GD, Dhar D, Ghangrekar MM, Banerjee R. TiO2-Si- or SrTiO3-Si-impregnated PVA–based low-cost proton exchange membranes for application in microbial fuel cell. IONICS 2020; 26:6195-6205. [DOI: 10.1007/s11581-020-03779-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 08/15/2020] [Accepted: 09/09/2020] [Indexed: 02/08/2023]
|
33
|
|
34
|
Bhowmick GD, Neethu B, Ghangrekar MM, Banerjee R. Improved Performance of Microbial Fuel Cell by In Situ Methanogenesis Suppression While Treating Fish Market Wastewater. Appl Biochem Biotechnol 2020; 192:1060-1075. [PMID: 32648058 DOI: 10.1007/s12010-020-03366-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 06/22/2020] [Indexed: 02/05/2023]
Abstract
The fish market wastewater, which is rich in ammonium concentration, was investigated to explore its ability of in situ suppression of methanogenesis in the anodic chamber of microbial fuel cell (MFC) while treating it and to ensure non-reoccurrence of methanogenic consortia in the anodic chamber during its long-term operations. A lower specific methanogenic activity (0.097g chemical oxygen demand (COD)CH4/g volatile suspended solids (VSS). day) with a higher power density (3.81 ± 0.19 W/m3) was exhibited by the MFC operated with raw fish market wastewater as compared to the MFC fed with synthetic wastewater (0.219g CODCH4/g VSS. day and 1.75 ± 0.09 W/m3, respectively). The enhanced electrochemical activity of anodic biofilm of MFC fed with raw fish market wastewater than the MFC fed with synthetic wastewater further advocated the enhanced electrogenic activity and suppression of methanogenesis, because of the presence of higher ammonium content in the feed. This, in response, reduced the internal resistance (55 Ω), enhanced the coulombic efficiency (21.9 ± 0.3%) and normalized the energy recovery (0.27 kWh/m3) from the MFC fed with fish market wastewater than the MFC fed with synthetic wastewater (92 Ω, 15.7 ± 0.3% and 0.13 kWh/m3, respectively). Thus, while treating the fish market wastewater in the anodic chamber of MFC, any costly and repetitive treatment procedures for anodic microorganisms are not required for suppression of methanogens to ensure higher activity of electrogenic bacteria for higher electricity harvesting.
Collapse
Affiliation(s)
- G D Bhowmick
- Department of Agricultural and Food Engineering, Indian Institute of Technology Kharagpu, Kharagpur, 721302, India
| | - B Neethu
- Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - M M Ghangrekar
- Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India.
| | - R Banerjee
- Department of Agricultural and Food Engineering, Indian Institute of Technology Kharagpu, Kharagpur, 721302, India
| |
Collapse
|
35
|
Effect of sulfated metal oxides on the performance and stability of sulfonated poly (ether ether ketone) nanocomposite proton exchange membrane for fuel cell applications. REACT FUNCT POLYM 2020. [DOI: 10.1016/j.reactfunctpolym.2020.104732] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
36
|
Chakraborty I, Sathe SM, Dubey BK, Ghangrekar MM. Waste-derived biochar: Applications and future perspective in microbial fuel cells. BIORESOURCE TECHNOLOGY 2020; 312:123587. [PMID: 32480350 DOI: 10.1016/j.biortech.2020.123587] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/22/2020] [Accepted: 05/25/2020] [Indexed: 02/08/2023]
Abstract
Application of microbial fuel cell (MFC) is coming to the forefront as a dual-purpose system for wastewater treatment and energy recovery. Future research should emphasize on developing low-cost field-scale MFCs for removal of organic matter, nutrients, xenobiotic and recalcitrant compounds from wastewaters and powering low energy devices. For achieving this, low-cost electrodes, low-cost yet efficient cathode catalysts and proton exchange membrane (PEM) should be developed from waste-based resources to salvage the waste-derived material as much as possible, thereby reducing the fabrication cost of this device. Biochar is one such low-cost material, which has wide range of applications. This review discusses different applications of biochar in MFC, viz. in the form of standalone electrodes, electrocatalyst and material for PEM in light of different characteristics of biochar. Further emphasis is given on the future direction of research for implementation of biochar-based PEMs and electrodes in field-scale MFCs.
Collapse
Affiliation(s)
- Indrajit Chakraborty
- Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - S M Sathe
- Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - B K Dubey
- Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - M M Ghangrekar
- Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, India.
| |
Collapse
|
37
|
Neethu B, Bhowmick G, Fathima A, Ghangrekar M. Anodic inoculum pre-treatment by extracts of Azadirachta indica leaves and Allium sativum peels for improved bioelectricity recovery from microbial fuel cell. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY 2020; 45:23391-23400. [DOI: 10.1016/j.ijhydene.2020.06.086] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
38
|
Bakonyi P, Koók L, Rózsenberszki T, Tóth G, Bélafi-Bakó K, Nemestóthy N. Development and Application of Supported Ionic Liquid Membranes in Microbial Fuel Cell Technology: A Concise Overview. MEMBRANES 2020; 10:membranes10010016. [PMID: 31963734 PMCID: PMC7023342 DOI: 10.3390/membranes10010016] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 01/16/2020] [Indexed: 02/06/2023]
Abstract
Membrane separators are key elements of microbial fuel cells (MFCs), especially of those constructed in a dual-chamber configuration. Until now, membranes made of Nafion have been applied the most widely to set-up MFCs. However, there is a broader agreement in the literature that Nafion is expensive and in many cases, does not meet the actual (mainly mass transfer-specific) requirements demanded by the process and users. Driven by these issues, there has been notable progress in the development of alternative materials for membrane fabrication, among which those relying on the deployment of ionic liquids are emerging. In this review, the background of and recent advances in ionic liquid-containing separators, particularly supported ionic liquid membranes (SILMs), designed for MFC applications are addressed and evaluated. After an assessment of the basic criteria to be fulfilled by membranes in MFCs, experiences with SILMs will be outlined, along with important aspects of transport processes. Finally, a comparison with the literature is presented to elaborate on how MFCs installed with SILM perform relative to similar systems assembled with other, e.g., Nafion, membranes.
Collapse
|
39
|
Xie XX, Yang YC, Dou BH, Li ZF, Li G. Proton conductive carboxylate-based metal–organic frameworks. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2019.213100] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|