1
|
Zhao Q, Su G, Chen H, Li X, Wu Y, Wang Y, Li J, Yin B, Ao P, Hao P, Li Y. Dynamic distribution of tetracycline and its degradation products in different organs of the geophagous earthworm Metaphire guillelmi. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 287:117250. [PMID: 39476652 DOI: 10.1016/j.ecoenv.2024.117250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/22/2024] [Accepted: 10/23/2024] [Indexed: 11/24/2024]
Abstract
Tetracycline (TC) residues in the environment are harmful to plants and animals; earthworms play an important role in detoxicating tetracycline in the soil. However, the response of different systems of the geophagous earthworm to TC and its degradation products is still not understood well. To understand this problem, Metaphire guillelmi were exposed to the soil contaminated by 100 mg kg-1 tetracycline for 21 days. Liquid chromatography was used to detect the tetracycline concentration and its degradation products in different organs of earthworms on the 1st, 7th, and 21st day. Structural equation model (SEM) was used to determine the cumulative interaction of TC among different systems of earthworm. The results showed that the degradation ability of TC of digestive organs (98.29-99.77 %) was stronger than that of reproductive organs (87.46-98.64 %). The main metabolic pathway of TC in earthworms might be direct dehydration. Anhydrotetracycline was the main degradation product in earthworm organs and could last long in production organs. For lipid soluble pollutants, such as TC, the digestive system of earthworms might be the main pathway for absorbing pollutants from the soil. Furthermore, earthworms can expedite the degradation of organic pollutants. Meanwhile, they also need to absorb more nutrients like nitrogen and phosphorus, to counteract the impact of pollutants on their antioxidant system and reproductive organs. Our study improves our understanding of the degradation and detoxification mechanism of earthworms to TC, and provides useful information for further assessment of the soil eco-risk.
Collapse
Affiliation(s)
- Qi Zhao
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; Shanghai Yangtze River Delta Eco-environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Shanghai, China
| | - Guoxun Su
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Haowen Chen
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xuemeng Li
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yizhao Wu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yali Wang
- School of Environmental Engineering, Henan University of Technology, Zhengzhou, Henan Province 450001, China
| | - Jiayi Li
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Bangyi Yin
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Pei Ao
- Shanghai Jinyuan Senior High School, Shanghai 200333, China
| | - Puguo Hao
- Department of Biotechnology, Ordos Vocational College of Eco-environment, Ordos 017010, China
| | - Yinsheng Li
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; Shanghai Yangtze River Delta Eco-environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Shanghai, China.
| |
Collapse
|
2
|
Rutkoski CF, Vergara-Luis I, Urionabarrenetxea E, García-Velasco N, Zaldibar B, Anza M, Olivares M, Prieto A, Epelde L, Garbisu C, Almeida EA, Soto M. Effects of sulfamethazine and tetracycline at molecular, cellular and tissue levels in Eisenia fetida earthworms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175579. [PMID: 39154996 DOI: 10.1016/j.scitotenv.2024.175579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/24/2024] [Accepted: 08/14/2024] [Indexed: 08/20/2024]
Abstract
Soil contamination by antibiotics is a global issue of great concern that contributes to the rise of bacterial antibiotic resistance and can have toxic effects on non-target organisms. This study evaluated the variations of molecular, cellular, and histological parameters in Eisenia fetida earthworms exposed to sulfamethazine (SMZ) and tetracycline (TC), two antibiotics commonly found in agricultural soils. The earthworms were exposed for 14 days to a series of concentrations (0, 10, 100, and 1000 mg/kg) of both antibiotics. SMZ and TC did not affect the survival of E. fetida, however, other effects at different levels of biological complexity were detected. The two highest concentrations of SMZ reduced the viability of coelomocytes. At the highest TC concentration, there was a noticeable decline in cell viability, acetylcholinesterase activity (neurotoxicity), and the relative presence of mucopolysaccharides in the epidermis (mucous production). Glutathione S-transferase activity decreased in all TC treatments and at the highest SMZ concentration. However, levels of malondialdehyde and protein carbonyls did not change, suggesting an absence of oxidative stress. Tetracycline was neurotoxic to E. fetida and changed the integrity of the epidermis. Both antibiotics altered the intestinal microbiota of E. fetida, leading to a reduction in the relative abundance of bacteria from the phyla Proteobacteria and Bacteroidetes, while causing an increase in the phylum Actinobacteroidota. All observed changes indicate that both SMZ and TC can disrupt the earthworms' immune system and gut microbiome, while fostering the growth of bacteria that harbour antibiotic resistance genes. Finally, both antibiotics exerted additional metabolic and physiological effects that increased the vulnerability of E. fetida to pathogens.
Collapse
Affiliation(s)
- C F Rutkoski
- Environmental Engineering Post-Graduation Program, University of Blumenau, Blumenau, SC, Brazil; Department of Natural Science, University of Blumenau, Blumenau, SC, Brazil
| | - I Vergara-Luis
- Department of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Basque Country, Spain; Research Centre for Experimental Marine Biology and Biotechnology (PIE), University of the Basque Country (UPV/EHU), Plentzia, Basque Country, Spain
| | - E Urionabarrenetxea
- Research Centre for Experimental Marine Biology and Biotechnology (PIE), University of the Basque Country (UPV/EHU), Plentzia, Basque Country, Spain; CBET Research Group, Dept. Zoology and Animal Cell Biology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Basque Country, Spain
| | - N García-Velasco
- Research Centre for Experimental Marine Biology and Biotechnology (PIE), University of the Basque Country (UPV/EHU), Plentzia, Basque Country, Spain; CBET Research Group, Dept. Zoology and Animal Cell Biology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Basque Country, Spain
| | - B Zaldibar
- Research Centre for Experimental Marine Biology and Biotechnology (PIE), University of the Basque Country (UPV/EHU), Plentzia, Basque Country, Spain; CBET Research Group, Dept. Zoology and Animal Cell Biology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Basque Country, Spain
| | - M Anza
- NEIKER-Basque Institute for Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), Parque Científico y Tecnológico de Bizkaia, P812, E-48160 Derio, Basque Country, Spain
| | - M Olivares
- Department of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Basque Country, Spain; Research Centre for Experimental Marine Biology and Biotechnology (PIE), University of the Basque Country (UPV/EHU), Plentzia, Basque Country, Spain
| | - A Prieto
- Department of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Basque Country, Spain; Research Centre for Experimental Marine Biology and Biotechnology (PIE), University of the Basque Country (UPV/EHU), Plentzia, Basque Country, Spain
| | - L Epelde
- NEIKER-Basque Institute for Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), Parque Científico y Tecnológico de Bizkaia, P812, E-48160 Derio, Basque Country, Spain
| | - C Garbisu
- NEIKER-Basque Institute for Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), Parque Científico y Tecnológico de Bizkaia, P812, E-48160 Derio, Basque Country, Spain
| | - E A Almeida
- Environmental Engineering Post-Graduation Program, University of Blumenau, Blumenau, SC, Brazil; Department of Natural Science, University of Blumenau, Blumenau, SC, Brazil
| | - M Soto
- Research Centre for Experimental Marine Biology and Biotechnology (PIE), University of the Basque Country (UPV/EHU), Plentzia, Basque Country, Spain; CBET Research Group, Dept. Zoology and Animal Cell Biology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Basque Country, Spain.
| |
Collapse
|
3
|
Lin Z, Chen Y, Li G, Wei T, Li H, Huang F, Wu W, Zhang W, Ren L, Liang Y, Zhen Z, Zhang D. Change of tetracycline speciation and its impacts on tetracycline removal efficiency in vermicomposting with epigeic and endogeic earthworms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 881:163410. [PMID: 37059136 DOI: 10.1016/j.scitotenv.2023.163410] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/25/2023] [Accepted: 04/06/2023] [Indexed: 06/01/2023]
Abstract
Tetracycline pollution is common in Chinese arable soils, and vermicomposting is an effective approach to accelerate tetracycline bioremediation. However, current studies mainly focus on the impacts of soil physicochemical properties, microbial degraders and responsive degradation/resistance genes on tetracycline degradation efficiencies, and limited information is known about tetracycline speciation in vermicomposting. This study explored the roles of epigeic E. fetida and endogeic A. robustus in altering tetracycline speciation and accelerating tetracycline degradation in a laterite soil. Both earthworms significantly affected tetracycline profiles in soils by decreasing exchangeable and bound tetracycline but increasing water soluble tetracycline, thereby facilitating tetracycline degradation efficiencies. Although earthworms increased soil cation exchange capacity and enhanced tetracycline adsorption on soil particles, the significantly elevated soil pH and dissolved organic carbon benefited faster tetracycline degradation, attributing to the consumption of soil organic matter and humus by earthworms. Different from endogeic A. robustus which promoted both abiotic and biotic degradation of tetracycline, epigeic E. foetida preferently accelerated abiotic tetracyline degradation. Our findings described the change of tetracycline speciation during vermicompsiting process, unraveled the mechanisms of different earthworm types in tetracycline speciation and metabolisms, and offered clues for effective vermiremediation application at tetracycline contaminated sites.
Collapse
Affiliation(s)
- Zhong Lin
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China; Shenzhen Research Institute of Guangdong Ocean University, Shenzhen 518108, PR China
| | - Yijie Chen
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Gaoyang Li
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Ting Wei
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Huijun Li
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Fengcheng Huang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Weijian Wu
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Weijian Zhang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Lei Ren
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Yanqiu Liang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Zhen Zhen
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China.
| | - Dayi Zhang
- College of New Energy and Environment, Jilin University, Changchun 130021, PR China; Key Laboratory of Groundwater Resources and Environment Ministry of Education, Jilin University, Changchun 130021, PR China.
| |
Collapse
|
4
|
Liu P, Song Y, Wei J, Mao W, Ju J, Zheng S, Zhao H. Synergistic Effects of Earthworms and Plants on Chromium Removal from Acidic and Alkaline Soils: Biological Responses and Implications. BIOLOGY 2023; 12:831. [PMID: 37372116 DOI: 10.3390/biology12060831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023]
Abstract
Soil heavy metal pollution has become one of the major environmental issues of global concern and solving this problem is a major scientific and technological need for today's socio-economic development. Environmentally friendly bioremediation methods are currently the most commonly used for soil heavy metal pollution remediation. Via controlled experiments, the removal characteristics of chromium from contaminated soil were studied using earthworms (Eisenia fetida and Pheretima guillelmi) and plants (ryegrass and maize) at different chromium concentrations (15 mg/kg and 50 mg/kg) in acidic and alkaline soils. The effects of chromium contamination on biomass, chromium bioaccumulation, and earthworm gut microbial communities were also analyzed. The results showed that E. fetida had a relatively stronger ability to remove chromium from acidic and alkaline soil than P. guillelmi, and ryegrass had a significantly better ability to remove chromium from acidic and alkaline soil than maize. The combined use of E. fetida and ryegrass showed the best effect of removing chromium from contaminated soils, wih the highest removal rate (63.23%) in acidic soil at low Cr concentrations. After soil ingestion by earthworms, the content of stable chromium (residual and oxidizable forms) in the soil decreased significantly, while the content of active chromium (acid-extractable and reducible forms) increased significantly, thus promoting the enrichment of chromium in plants. The diversity in gut bacterial communities in earthworms decreased significantly following the ingestion of chromium-polluted soil, and their composition differences were significantly correlated with soil acidity and alkalinity. Bacillales, Chryseobacterium, and Citrobacter may have strong abilities to resist chromium and enhance chromium activity in acidic and alkaline soils. There was also a significant correlation between changes in enzyme activity in earthworms and their gut bacterial communities. The bacterial communities, including Pseudomonas and Verminephrobacter, were closely related to the bioavailability of chromium in soil and the degree of chromium stress in earthworms. This study provides insights into the differences in bioremediation for chromium-contaminated soils with different properties and its biological responses.
Collapse
Affiliation(s)
- Ping Liu
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, China
- Key Laboratory of Cultivated Land Quality Monitoring and Evaluation, Yangzhou University, Ministry of Agriculture and Rural Affairs, Yangzhou 225127, China
| | - Yan Song
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, China
- Key Laboratory of Cultivated Land Quality Monitoring and Evaluation, Yangzhou University, Ministry of Agriculture and Rural Affairs, Yangzhou 225127, China
| | - Jie Wei
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, China
- Key Laboratory of Cultivated Land Quality Monitoring and Evaluation, Yangzhou University, Ministry of Agriculture and Rural Affairs, Yangzhou 225127, China
| | - Wei Mao
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, China
- Key Laboratory of Cultivated Land Quality Monitoring and Evaluation, Yangzhou University, Ministry of Agriculture and Rural Affairs, Yangzhou 225127, China
| | - Jing Ju
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, China
- Key Laboratory of Cultivated Land Quality Monitoring and Evaluation, Yangzhou University, Ministry of Agriculture and Rural Affairs, Yangzhou 225127, China
| | - Shengyang Zheng
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, China
- Key Laboratory of Cultivated Land Quality Monitoring and Evaluation, Yangzhou University, Ministry of Agriculture and Rural Affairs, Yangzhou 225127, China
| | - Haitao Zhao
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, China
- Key Laboratory of Cultivated Land Quality Monitoring and Evaluation, Yangzhou University, Ministry of Agriculture and Rural Affairs, Yangzhou 225127, China
| |
Collapse
|
5
|
Wu X, Zhu Y, Yang M, Zhang J, Lin D. Biological responses of Eisenia fetida towards the exposure and metabolism of tris (2-butoxyethyl) phosphate. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 811:152285. [PMID: 34933047 DOI: 10.1016/j.scitotenv.2021.152285] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/04/2021] [Accepted: 12/05/2021] [Indexed: 06/14/2023]
Abstract
The toxicity of various organophosphorus flame retardants (OPFRs) is of increasing concern. However, there is still a lack of research on the toxicity of OPFRs to terrestrial invertebrates and its metabolism in vivo. Herein, earthworms (Eisenia fetida) were exposed to soil spiked with 0, 0.05, 0.5, and 5 mg/kg tris(2-butoxyethyl) phosphate (TBOEP, a typical alkyl OPFRs) for 28 d to study the biological responses to the exposure and metabolism of TBOEP. TBOEP exposure inhibited the activity of acetyl-cholinesterase (64.4-68.6% of that in the control group), increased the energy consumption level, and affected calcium-dependent pathways of E. fetida, which caused a 3.6-12.4% reduction in the weight gain rate (developmental toxicity), a 10.6-69.4% reduction in the number of juveniles (reproduction toxicity), and neurotoxicity to E. fetida. The 5 mg/kg TBOEP exposure caused a significant accumulation of malondialdehyde (1.68 times higher than that in the control group) in E. fetida, which indicated that the balance of oxidation and anti-oxidation of E. fetida was broken. Meanwhile, E. fetida maintained the absorption and metabolic abilities to TBOEP under the environmental condition. The removal rate of soil TBOEP was increased by 25.1-35.5% by the presence of E. fetida. Importantly, TBOEP could accumulate in E. fetida (0.09-76.0 μg/kg) and the activation of cytochrome P450 and glutathione detoxification pathway promoted the metabolism of TBOEP in E. fetida. These findings link the biological responses and metabolic behavior of earthworms under pollution stress and provide fundamental data for the environmental risk assessment and pollution removal of OPFRs in soil.
Collapse
Affiliation(s)
- Xinyue Wu
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Ya Zhu
- Zhejiang Provincial Key Laboratory of Watershed Science and Health, School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, China
| | - Meirui Yang
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Jianying Zhang
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Daohui Lin
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
6
|
Hui X, Kui H. Effects of TiO 2 and ZnO nanoparticles on vermicomposting of dewatered sludge: studies based on the humification and microbial profiles of vermicompost. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:38718-38729. [PMID: 33742383 DOI: 10.1007/s11356-021-13226-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 02/25/2021] [Indexed: 06/12/2023]
Abstract
Nanoparticles (NPs) are prevalent in dewatered sludge, and their presence increases the environmental risks associated with the subsequent sludge treatment process. However, until now, their potential effects on sludge vermicomposting have not been clarified. This study investigated the effects of NPs on sludge humification and microbial profiles during vermicomposting by comparing fresh dewatered sludge substrates with substrates mixed with 0 mg/kg NPs (control), 100 mg/kg TiO2, 500 mg/kg TiO2, 100 mg/kg ZnO, and 500 mg/kg ZnO. The results showed that addition of TiO2 and ZnO NPs to sludge did not significantly affect the growth rate of earthworms and the superoxide dismutase activity in their guts during vermicomposting. Moreover, higher concentrations of the selected NPs promoted the humification index of sludge by 20.7-49.6%, through the formation of polysaccharides, aromatic substances, and organic acids in final vermicomposts. Compared with the control without NP addition, bacterial community diversity was enhanced in treatments with TiO2 and ZnO NPs, and dominant genera differed according to the type and concentration of NPs. This study suggests that the presence of TiO2 and ZnO NP residuals modify the microbial community of sludge, thus promoting sludge humification during vermicomposting.
Collapse
Affiliation(s)
- Xia Hui
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China
| | - Huang Kui
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China.
- Key laboratory of Yellow River Water Environment in Gansu Province, Lanzhou, 730070, China.
| |
Collapse
|
7
|
Lin Z, Zhen Z, Luo S, Ren L, Chen Y, Wu W, Zhang W, Liang YQ, Song Z, Li Y, Zhang D. Effects of two ecological earthworm species on tetracycline degradation performance, pathway and bacterial community structure in laterite soil. JOURNAL OF HAZARDOUS MATERIALS 2021; 412:125212. [PMID: 33524732 DOI: 10.1016/j.jhazmat.2021.125212] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 01/19/2021] [Accepted: 01/21/2021] [Indexed: 06/12/2023]
Abstract
This study explored the change of tetracycline degradation efficiency, metabolic pathway, soil physiochemical properties and degraders in vermiremediation by two earthworm species of epigeic Eisenia fetida and endogeic Amynthas robustus. We found a significant acceleration of tetracycline degradation in both earthworm treatments, and 4-epitetracycline dehydration pathway was remarkably enhanced only by vermiremediation. Tetracycline degraders from soils, earthworm intestines and casts were different. Ralstonia and Sphingomonas were potential tetracycline degraders in soils and metabolized tetracycline through direct dehydration pathway. Degraders in earthworm casts (Comamonas, Acinetobacter and Stenotrophomonas) and intestines (Pseudomonas and Arthrobacter) dehydrated 4-epitetracycline into 4-epianhydrotetracycline. More bacterial lineages resisting tetracycline were found in earthworm treatments, indicating the adaptation of soil and intestinal flora under tetracycline pressure. Earthworm amendment primarily enhanced tetracycline degradation by neutralizing soil pH and consuming organic matters, stimulating both direct dehydration and epimerization-dehydration pathways. Our findings proved that vermicomposting with earthworms is effective to alter soil microenvironment and accelerate tetracycline degradation, behaving as a potential approach in soil remediation at tetracycline contaminated sites.
Collapse
Affiliation(s)
- Zhong Lin
- Faculty of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang 524088, PR China; Shenzhen Research Institute of Guangdong Ocean University, Shenzhen 518108, PR China
| | - Zhen Zhen
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Shuwen Luo
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Lei Ren
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Yijie Chen
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Weijian Wu
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Weijian Zhang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Yan-Qiu Liang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Zhiguang Song
- Faculty of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang 524088, PR China; Shenzhen Research Institute of Guangdong Ocean University, Shenzhen 518108, PR China
| | - Yongtao Li
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, PR China.
| | - Dayi Zhang
- School of Environment, Tsinghua University, Beijing 100084, PR China.
| |
Collapse
|