1
|
Jorge AMS, Pereira JFB. Aqueous two-phase systems - versatile and advanced (bio)process engineering tools. Chem Commun (Camb) 2024; 60:12144-12168. [PMID: 39350759 DOI: 10.1039/d4cc02663b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2024]
Abstract
Aqueous two-phase systems (ATPS), also known as Aqueous Biphasic Systems (ABS), have been extensively studied as platforms for the separation and purification of biomolecules and other valuable compounds. These liquid-liquid extraction (LLE) systems have been a tool for biotechnology since its origin (Albertsson, 1950's), recently expanding to exciting fields such as health, biomedicine and material sciences. Due to their biocompatibility, amenability, flexibility, and versatility, ATPS have been applied across various research areas, addressing many challenges associated with conventional methodologies. In this feature article, we first discuss the fundamentals of ATPS and the molecular mechanisms that govern their formation and are crucial for their application. We then explore the most prominent and innovative applications of these systems in downstream processing. Additionally, we provide insights into the design of in situ upstream-downstream integrated platforms, and their use as pre-treatment and analytical tools. The latest advancements in ATPS applications within disruptive bioengineering and biotechnology fields are presented, along with their pioneering use in emerging scientific areas, such as the formation of all-aqueous (water-in-water) emulsions, microfluidic systems, and membrane-free batteries. Overall, this work underscores the transformative potential of ATPS in various branches of science, pinpointing directions for future research to fully explore and maximize ATPS capabilities, overcome existing hurdles, and drive innovation forward.
Collapse
Affiliation(s)
- Alexandre M S Jorge
- University of Coimbra, CERES, FCTUC, Department of Chemical Engineering, Rua Sílvio Lima, Pólo II - Pinhal de Marrocos, 3030-790 Coimbra, Portugal.
| | - Jorge F B Pereira
- University of Coimbra, CERES, FCTUC, Department of Chemical Engineering, Rua Sílvio Lima, Pólo II - Pinhal de Marrocos, 3030-790 Coimbra, Portugal.
| |
Collapse
|
2
|
Torres-Acosta MA, Olivares-Molina A, Kent R, Leitão N, Gershater M, Parker B, Lye GJ, Dikicioglu D. Practical deployment of automation to expedite aqueous two-phase extraction. J Biotechnol 2024; 387:32-43. [PMID: 38555021 DOI: 10.1016/j.jbiotec.2024.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/15/2024] [Accepted: 03/26/2024] [Indexed: 04/02/2024]
Abstract
The feasibility of bioprocess development relies heavily on the successful application of primary recovery and purification techniques. Aqueous two-phase extraction (ATPE) disrupts the definition of "unit operation" by serving as an integrative and intensive technique that combines different objectives such as the removal of biomass and integrated recovery and purification of the product of interest. The relative simplicity of processing large samples renders this technique an attractive alternative for industrial bioprocessing applications. However, process development is hindered by the lack of easily predictable partition behaviours, the elucidation of which necessitates a large number of experiments to be conducted. Liquid handling devices can assist to address this problem; however, they are configured to operate using low viscosity fluids such as water and water-based solutions as opposed to highly viscous polymeric solutions, which are typically required in ATPE. In this work, an automated high throughput ATPE process development framework is presented by constructing phase diagrams and identifying the binodal curves for PEG6000, PEG3000, and PEG2000. Models were built to determine viscosity- and volume-independent transfer parameters. The framework provided an appropriate strategy to develop a very precise and accurate operation by exploiting the relationship between different liquid transfer parameters and process error. Process accuracy, measured by mean absolute error, and device precision, evaluated by the coefficient of variation, were both shown to be affected by the mechanical properties, particularly viscosity, of the fluids employed. For PEG6000, the mean absolute error improved by six-fold (from 4.82% to 0.75%) and the coefficient of variation improved by three-fold (from 0.027 to 0.008) upon optimisation of the liquid transfer parameters accounting for the viscosity effect on the PEG-salt buffer utilising ATPE operations. As demonstrated here, automated liquid handling devices can serve to streamline process development for APTE enabling wide adoption of this technique in large scale bioprocess applications.
Collapse
Affiliation(s)
- Mario A Torres-Acosta
- The Advanced Centre for Biochemical Engineering, Department of Biochemical Engineering, University College London, London WC1E 6BT, United Kingdom; Tecnologico de Monterrey, School of Engineering and Science, Av. Eugenio Garza Sada 2501 Sur, Monterrey, N.L. 64849, México
| | - Alex Olivares-Molina
- The Advanced Centre for Biochemical Engineering, Department of Biochemical Engineering, University College London, London WC1E 6BT, United Kingdom
| | - Ross Kent
- Synthace Ltd., The Westworks 4th Floor, 195 Wood Lane, W12 7FQ, United Kingdom
| | - Nuno Leitão
- Synthace Ltd., The Westworks 4th Floor, 195 Wood Lane, W12 7FQ, United Kingdom
| | - Markus Gershater
- Synthace Ltd., The Westworks 4th Floor, 195 Wood Lane, W12 7FQ, United Kingdom
| | - Brenda Parker
- The Advanced Centre for Biochemical Engineering, Department of Biochemical Engineering, University College London, London WC1E 6BT, United Kingdom
| | - Gary J Lye
- The Advanced Centre for Biochemical Engineering, Department of Biochemical Engineering, University College London, London WC1E 6BT, United Kingdom
| | - Duygu Dikicioglu
- The Advanced Centre for Biochemical Engineering, Department of Biochemical Engineering, University College London, London WC1E 6BT, United Kingdom.
| |
Collapse
|
3
|
Alejandra WP, Miriam Irene JP, Fabio Antonio GS, Patricia RGR, Elizabeth TA, Juan Pablo AA, Rebeca GV. Production of monoclonal antibodies for therapeutic purposes: A review. Int Immunopharmacol 2023; 120:110376. [PMID: 37244118 DOI: 10.1016/j.intimp.2023.110376] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/02/2023] [Accepted: 05/19/2023] [Indexed: 05/29/2023]
Abstract
Monoclonal antibodies (mAbs) have been used in the development of immunotherapies that target a variety of diseases, such as cancer, autoimmune diseases, and even viral infections; they play a key role in immunization and are expected after vaccination. However, some conditions do not promote the development of neutralizing antibodies. Production and use of mAbs, generated in biofactories, represent vast potential as aids in immunological responses when the organism cannot produce them on their own, these convey unique specificity by recognizing and targeting specific antigen. Antibodies can be defined as heterotetrametric glycoproteins of symmetric nature, and they participate as effector proteins in humoral responses. Additionally, there are different types of mAbs (murine, chimeric, humanized, human, mAbs as Antibody-drug conjugates and bispecific mAbs) discussed in the present work. When these molecules are produced in vitro as mAbs, several common techniques, such as hybridomas or phage display are used. There are several preferred cell lines that function as biofactories, for the production of mAbs, the selection of which rely on the variation of adaptability, productivity and both phenotypic and genotypic shifts. After the cell expression systems and culture techniques are used, there are diverse specialized downstream processes to achieve desired yield and isolation as well as product quality and characterization. Novel perspectives regarding these protocols represent a potential improvement for mAbs high-scale production.
Collapse
Affiliation(s)
- Waller-Pulido Alejandra
- Tecnologico de Monterrey, School of Engineering and Science, Ave. General Ramon Corona 2514, 45138 Zapopan, Jalisco, Mexico
| | - Jiménez-Pérez Miriam Irene
- Tecnologico de Monterrey, School of Medicine and Health Science, Ave. General Ramon Corona 2514, 45138 Zapopan, Jalisco, Mexico
| | - Gonzalez-Sanchez Fabio Antonio
- Tecnologico de Monterrey, School of Engineering and Science, Ave. General Ramon Corona 2514, 45138 Zapopan, Jalisco, Mexico
| | | | | | - Aleman-Aguilar Juan Pablo
- Tecnologico de Monterrey, School of Medicine and Health Science, Ave. General Ramon Corona 2514, 45138 Zapopan, Jalisco, Mexico.
| | - Garcia-Varela Rebeca
- Tecnologico de Monterrey, School of Engineering and Science, Ave. General Ramon Corona 2514, 45138 Zapopan, Jalisco, Mexico.
| |
Collapse
|
4
|
Guo Y, Chen X, Yu X, Wan J, Cao X. Prediction and validation of monoclonal antibodies separation in aqueous two-phase system using molecular dynamic simulation. J Chromatogr A 2023; 1694:463921. [PMID: 36940643 DOI: 10.1016/j.chroma.2023.463921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 02/19/2023] [Accepted: 03/07/2023] [Indexed: 03/16/2023]
Abstract
In order to predict how mAbs partition in 20% ethylene oxide/80% propylene oxide (v/v) random copolymer (EO20PO80)/water aqueous two-phase system (ATPS), a molecular dynamic simulation model was developed using Gromacs and then validated by experiments. The ATPS was applied with seven kinds of salt, including buffer salt and strong dissociation salt that were commonly employed in the purification of protein. Na2SO4 was shown to have the best effects on lowering EO20PO80 content in the aqueous phase and enhancing recovery. The content of EO20PO80 in the sample solution was decreased to 0.62%±0.25% and the recovery of rituximab increased to 97.88%±0.95% by adding 300 mM Na2SO4 into back extraction ATPS. The viability determined by ELISA was 95.57% at the same time. A strategy for constructing a prediction model for the distribution of mAbs in ATPS was proposed in consideration of this finding. Partition of trastuzumab in ATPS was predicted by the model created using this method and the prediction result was further validated by experiments. The recovery of trastuzumab reached 95.63%±2.86% under the ideal extraction conditions suggested by the prediction model.
Collapse
Affiliation(s)
- Yibo Guo
- State Key Laboratory of Bioreactor Engineering, Department of Bioengineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237 China
| | - Xi Chen
- State Key Laboratory of Bioreactor Engineering, Department of Bioengineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237 China
| | - Xue Yu
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou, 253023, P.R. China
| | - Junfen Wan
- State Key Laboratory of Bioreactor Engineering, Department of Bioengineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237 China.
| | - Xuejun Cao
- State Key Laboratory of Bioreactor Engineering, Department of Bioengineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237 China.
| |
Collapse
|
5
|
Intensification of endo-1,4-Xylanase Extraction by Coupling Microextractors and Aqueous Two-Phase System. Processes (Basel) 2023. [DOI: 10.3390/pr11020447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The extraction of xylanase was performed using an aqueous two-phase system (ATPS) based on polyethylene glycol (PEG1540) and various salts. Preliminary studies in a batch extractor showed that the highest extraction efficiency, E = 79.63 ± 5.21%, and purification factor, PF = 1.26 ± 0.25, were obtained with sodium citrate dihydrate-H2O-PEG1540-based ATPS for an extraction time of 10 min. The process was optimized using the experimental Box-Behnken design at three levels with three factors: extraction time (t), xylanase concentration (γ), and mass fraction of PEG in the ATPS (wPEG). Under optimal process conditions (γ = 0.3 mg/mL, wPEG = 0.21 w/w, and t = 15 min), E = 99.13 ± 1.20% and PF = 6.49 ± 0.05 were achieved. In order to intensify the process, the extraction was performed continuously in microextractors at optimal process conditions. The influence of residence time, different feeding strategies, and channel diameter on extraction efficiency and purification factor was further examined. Similar results were obtained in the microextractor for a residence time of τ = 1.03 min (E = 99.59 ± 1.22% and PF = 6.61 ± 0.07) as in the experiment carried out under optimal conditions in the batch extractor. In addition, a batch extractor and a continuous microextractor were used for the extraction of raw xylanase produced by Thermomyces lanuginosus on solid supports.
Collapse
|
6
|
Efficient isolation of biosurfactant rhamnolipids from fermentation broth via aqueous two-phase extraction with 2-propanol/ammonium sulfate system. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
7
|
Almeida MR, Ferreira F, Domingues P, A. P. Coutinho J, Freire MG. Towards the purification of IgY from egg yolk by centrifugal partition chromatography. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
8
|
Ding C, Ardeshna H, Gillespie C, Ierapetritou M. Process Design of a Fully Integrated Continuous Biopharmaceutical Process using Economic and Ecological Impact Assessment. Biotechnol Bioeng 2022; 119:3567-3583. [DOI: 10.1002/bit.28234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 08/31/2022] [Accepted: 09/11/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Chaoying Ding
- Department of Chemical and Biomolecular EngineeringUniversity of DelawareNewarkDE19716US
| | - Hiren Ardeshna
- Manufacturing Science and Technology, Biopharm and Steriles, GlaxoSmithKlinePhiladelphiaPA19112US
| | | | - Marianthi Ierapetritou
- Department of Chemical and Biomolecular EngineeringUniversity of DelawareNewarkDE19716US
| |
Collapse
|
9
|
Quintana AA, Sztapka AM, Santos Ebinuma VDC, Agatemor C. Enabling Sustainable Chemistry with Ionic Liquids and Deep Eutectic Solvents: A Fad or the Future? Angew Chem Int Ed Engl 2022; 61:e202205609. [PMID: 35789078 DOI: 10.1002/anie.202205609] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Indexed: 12/17/2022]
Abstract
Ionic liquids (ILs) and deep eutectic solvents (DESs) debuted with a promise of a superior sustainability footprint due to their low vapor pressure. However, their toxicity and high cost compromise this footprint, impeding their real-world applications. Fortunately, their property tunability through a rational selection of precursors, including bioderived ones, provides a strategy to ameliorate toxicity, lower cost, and endow new functions. This Review discusses whether ILs and DESs are sustainable solvents and how they contribute to sustainable chemical processes.
Collapse
Affiliation(s)
| | | | - Valéria de Carvalho Santos Ebinuma
- Department of Engineering of Bioprocesses and Biotechnology, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Christian Agatemor
- Department of Chemistry, University of Miami, Coral Gables, FL 33124, USA.,Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL 33136, USA
| |
Collapse
|
10
|
Schwaminger SP, Zimmermann I, Berensmeier S. Current research approaches in downstream processing of pharmaceutically relevant proteins. Curr Opin Biotechnol 2022; 77:102768. [PMID: 35930843 DOI: 10.1016/j.copbio.2022.102768] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/04/2022] [Accepted: 07/12/2022] [Indexed: 11/03/2022]
Abstract
Biopharmaceuticals and their production are on the rise. They are needed to treat and to prevent multiple diseases. Therefore, an urgent need for process intensification in downstream processing (DSP) has been identified to produce biopharmaceuticals more efficiently. The DSP currently accounts for the majority of production costs of pharmaceutically relevant proteins. This short review gathers essential research over the past 3 years that addresses novel solutions to overcome this bottleneck. The overview includes promising studies in the fields of chromatography, aqueous two-phase systems, precipitation, crystallization, magnetic separation, and filtration for the purification of pharmaceutically relevant proteins.
Collapse
Affiliation(s)
- Sebastian P Schwaminger
- Division of Medicinal Chemistry, Otto Loewi Research Center, Medical University of Graz, Graz, Austria; Bioseparation Engineering Group, School of Engineering and Design, Technical University of Munich, Garching, Germany.
| | - Ines Zimmermann
- Bioseparation Engineering Group, School of Engineering and Design, Technical University of Munich, Garching, Germany
| | - Sonja Berensmeier
- Bioseparation Engineering Group, School of Engineering and Design, Technical University of Munich, Garching, Germany.
| |
Collapse
|
11
|
Agatemor C, Quintana AA, Sztapka LM, Ebinuma VDCS. Enabling Sustainable Chemistry with Ionic Liquids and Deep Eutectic Solvents: a Fad or the Future? Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202205609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Christian Agatemor
- University of Miami - Coral Gables Campus: University of Miami Chemistry 1301 Memorial Dr 33146 Coral Gables UNITED STATES
| | - Aline Andrea Quintana
- University of Miami - Coral Gables Campus: University of Miami Chemistry UNITED STATES
| | - Lani Maria Sztapka
- University of Miami - Coral Gables Campus: University of Miami Chemistry UNITED STATES
| | | |
Collapse
|
12
|
Kruse T, Schneider S, Reger LN, Kampmann M, Reif O. A novel approach for enumeration of extracellular vesicles from crude and purified cell culture samples. Eng Life Sci 2022; 22:334-343. [PMID: 35382531 PMCID: PMC8961042 DOI: 10.1002/elsc.202100149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/20/2021] [Accepted: 12/28/2021] [Indexed: 12/17/2022] Open
Abstract
The interest in extracellular vesicles (EVs) has been increased in recent years due to their potential application in diagnosis and therapy of severe diseases. The versatile fields of application due to the numerous possible cargos and the targeted delivery system make them a promising biopharmaceutical product. However, their broad size range as well as varied surface protein content result in challenges for the purification, characterization, and quantification. In this study a novel method, based on high-resolution flow cytometry, was examined for the enumeration of EVs in purified as well as crude process samples. In addition to quantification, samples were characterized by dynamic light scattering, zeta potential measurement, and analytical size exclusion chromatography. It has been demonstrated that EVs were successfully enumerated with the novel method, offering great benefits for development and monitoring of EV processes.
Collapse
|
13
|
Schulze M, Niemann J, Wijffels RH, Matuszczyk J, Martens DE. Rapid intensification of an established CHO cell fed-batch process. Biotechnol Prog 2021; 38:e3213. [PMID: 34542245 PMCID: PMC9286570 DOI: 10.1002/btpr.3213] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 09/02/2021] [Accepted: 09/16/2021] [Indexed: 11/17/2022]
Abstract
Currently, the mammalian biomanufacturing industry explores process intensification (PI) to meet upcoming demands of biotherapeutics while keeping production flexible but, more importantly, as economic as possible. However, intensified processes often require more development time compared with conventional fed‐batches (FBs) preventing their implementation. Hence, rapid and efficient, yet straightforward strategies for PI are needed. In this study we demonstrate such a strategy for the intensification of an N‐stage FB by implementing N‐1 perfusion cell culture and high inoculum cell densities resulting in a robust intensified FB (iFB). Furthermore, we show successful combination of such an iFB with the addition of productivity enhancers, which has not been reported so far. The conventional CHO cell FB process was step‐wise improved and intensified rapidly in multi‐parallel small‐scale bioreactors using N‐1 perfusion. The iFBs were performed in 15 and 250 ml bioreactors and allowed to evaluate the impact on key process indicators (KPI): the space–time yield (STY) was successfully doubled from 0.28 to 0.55 g/L d, while product quality was maintained. This gain was generated by initially increasing the inoculation density, thus shrinking process time, and second supplementation with butyric acid (BA), which reduced cell growth and enhanced cell‐specific productivity from ~25 to 37 pg/(cell d). Potential impacts of PI on cell metabolism were evaluated using flux balance analysis. Initial metabolic differences between the standard and intensified process were observed but disappeared quickly. This shows that PI can be achieved rapidly for new as well as existing processes without introducing sustained changes in cellular and metabolic behavior.
Collapse
Affiliation(s)
- Markus Schulze
- Corporate Research, Sartorius Stedim Biotech GmbH, Göttingen, Germany.,Bioprocess Engineering, Wageningen University, Wageningen, Netherlands
| | - Julia Niemann
- Corporate Research, Sartorius Stedim Biotech GmbH, Göttingen, Germany
| | - Rene H Wijffels
- Bioprocess Engineering, Wageningen University, Wageningen, Netherlands.,Biosciences and Aquaculture, Nord University, Bodø, Norway
| | - Jens Matuszczyk
- Product Development, Sartorius Stedim Biotech GmbH, Göttingen, Germany
| | - Dirk E Martens
- Bioprocess Engineering, Wageningen University, Wageningen, Netherlands
| |
Collapse
|
14
|
Khanal O, Lenhoff AM. Developments and opportunities in continuous biopharmaceutical manufacturing. MAbs 2021; 13:1903664. [PMID: 33843449 PMCID: PMC8043180 DOI: 10.1080/19420862.2021.1903664] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 02/25/2021] [Accepted: 03/11/2021] [Indexed: 12/12/2022] Open
Abstract
Today's biologics manufacturing practices incur high costs to the drug makers, which can contribute to high prices for patients. Timely investment in the development and implementation of continuous biomanufacturing can increase the production of consistent-quality drugs at a lower cost and a faster pace, to meet growing demand. Efficient use of equipment, manufacturing footprint, and labor also offer the potential to improve drug accessibility. Although technological efforts enabling continuous biomanufacturing have commenced, challenges remain in the integration, monitoring, and control of traditionally segmented unit operations. Here, we discuss recent developments supporting the implementation of continuous biomanufacturing, along with their benefits.
Collapse
Affiliation(s)
- Ohnmar Khanal
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE
| | - Abraham M. Lenhoff
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE
| |
Collapse
|