1
|
Kareklas K, Teles MC, Nunes AR, Oliveira RF. Social zebrafish: Danio rerio as an emerging model in social neuroendocrinology. J Neuroendocrinol 2023; 35:e13280. [PMID: 37165563 DOI: 10.1111/jne.13280] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 04/14/2023] [Accepted: 04/17/2023] [Indexed: 05/12/2023]
Abstract
The fitness benefits of social life depend on the ability of animals to affiliate with others and form groups, on dominance hierarchies within groups that determine resource distribution, and on cognitive capacities for recognition, learning and information transfer. The evolution of these phenotypes is coupled with that of neuroendocrine mechanisms, but the causal link between the two remains underexplored. Growing evidence from our research group and others demonstrates that the tools available in zebrafish, Danio rerio, can markedly facilitate progress in this field. Here, we review this evidence and provide a synthesis of the state-of-the-art in this model system. We discuss the involvement of generalized motivation and cognitive components, neuroplasticity and functional connectivity across social decision-making brain areas, and how these are modulated chiefly by the oxytocin-vasopressin neuroendocrine system, but also by reward-pathway monoamine signaling and the effects of sex-hormones and stress physiology.
Collapse
Affiliation(s)
| | - Magda C Teles
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
- ISPA-Instituto Universitário, Lisbon, Portugal
| | | | - Rui F Oliveira
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
- ISPA-Instituto Universitário, Lisbon, Portugal
| |
Collapse
|
2
|
Kareklas K, Kunc HP, Arnott G. Complex strategies: an integrative analysis of contests in Siamese fighting fish. BMC ZOOL 2022; 7:59. [PMID: 37170148 PMCID: PMC10127297 DOI: 10.1186/s40850-022-00156-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 10/30/2022] [Indexed: 12/13/2022] Open
Abstract
Abstract
Background
Animals use contests to attain resources and employ strategic decisions to minimise contest costs. These decisions are defined by behavioural response to resource value and competitive ability, but remain poorly understood. This is because the two factors are typically studied separately. Also, their study relies on overgeneralised assumptions that (i) strategies are fixed, (ii) modulated by the motivation or drive to fight and (iii) used to manage costs proportional to the timing of the loser’s retreat. To address these problems, we adopt an integrative sequential analysis that incorporates competitive ability and resource value factors, to characterise territorial contest decisions in male Siamese fighting fish (Betta splendens).
Results
Individuals exhibited a chronological organisation of behaviour, engaging opponents first with frontal display, then switching to lateral display before deciding to attack, and reserved retreats for later stages. Using asymmetries in retreats as a proxy for outcome, the likelihood of winning was found to be mostly dependent on display. However, resource and contest conditions affected initiation latency, display, attack and retreat, suggesting that strategic decisions influence all behaviour. Overall, sequential behaviour varied consistently with individual aggressiveness and resource-value factors, and increasingly with information on competitive ability collected during the contest. This enabled shifts in tactics, such as disadvantaged individuals responding first with aggression and later with submission. Motivation to continue fighting, after interruption by startle, was also adjusted to information gathered during the contest and progressively with energetic state. Two clusters of correlated behaviours were identified, cost-mitigation (display and retreat) and escalation (initiation and attack), but changes in motivation were associated only with cost mitigation.
Conclusions
Our findings contrast dominant assumptions that strategic decisions are fixed, controlled by motivational state and sufficiently described by outcome-dependent measures. We instead demonstrate that strategic decisions are complex, comprising functional changes in assessment, information use and motivational effects, which are not always inter-dependent.
Collapse
|
3
|
Greene SM, Szalda-Petree AD. Fins of Fury or Fainéant: Fluoxetine impacts the aggressive behavior of fighting fish (Betta splendens). Behav Processes 2021; 194:104544. [PMID: 34800605 DOI: 10.1016/j.beproc.2021.104544] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 10/30/2021] [Accepted: 11/11/2021] [Indexed: 11/02/2022]
Abstract
While an extensive literature has demonstrated that the selective serotonin reuptake inhibitor (SSRI) antidepressant fluoxetine, disrupts aggressive behavior in male Betta splendens the behavioral mechanisms underlying this disruption remain unknown. To elucidate the behavioral mechanism underlying fluoxetine, male fish were acutely exposed to a 10 μmol (0.0034578 μg/L) concentration of fluoxetine for 25 days using an ABA design. Male Betta splendens are naturally aggressive fish with well-studied and patterned behavioral responses. Importantly, aggressive behavior in this species can be conditionally primed allowing for examination of motivational components of behavior in addition to motor performance. The present study focused on using female fish as an ecologically relevant prime for eliciting aggressive behavior as a means of examining the motivational and motoric effects of fluoxetine. We found that male courtship with a female was strongly correlated with aggressive responding against a mirror. However, despite the strong correlation male fish were not found to have different levels of aggression or changes in aggressive responding when compared to males not primed with a female. Also, latency was not different between the no female prime and female prime males for either the excitatory mirror condition or inhibitory white wall condition, of which the fish had no preference. However, fluoxetine was found to have profound effects on all males in the study regardless of prime type, with increases in latency for the mirror and white wall and decreases in aggressive responding to the mirror. These results support the hypothesis that fluoxetine impairs aggressive motivation and movement in Betta splendens.
Collapse
Affiliation(s)
- Susan M Greene
- Department of Cellular and Integrative Physiology, Center for Biomedical Neuroscience, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, United States.
| | | |
Collapse
|
4
|
Hubená P, Horký P, Slavík O. Fish self-awareness: limits of current knowledge and theoretical expectations. Anim Cogn 2021; 25:447-461. [PMID: 34655023 DOI: 10.1007/s10071-021-01566-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 09/15/2021] [Accepted: 10/08/2021] [Indexed: 10/20/2022]
Abstract
Animal self-awareness is divided into three levels: bodily, social, and introspective self-awareness. Research has focused mainly on the introspection of so-called higher organisms such as mammals. Herein, we turn our attention to fish and provide opinions on their self-awareness based on a review of the scientific literature. Our specific aims are to discuss whether fish (A) could have a neural substrate supporting self-awareness and whether they display signs of (B) social and (C) introspective self-awareness. The present knowledge does not exclude the possibility that fish could have a simple neocortex or other structures that support certain higher cognitive processes, as the function of the primate cerebral cortex can be replaced by other neurological structures. Fish are known to display winner, loser, and audience effects, which could be interpreted as signs of social self-awareness. The audience effect may be explained not only by ethological cost and benefit theory but also by the concept of public self-awareness, which comes from human studies. The behavioural and neural manifestations of depression may be induced in fish under social subordination and may be viewed as certain awareness of a social status. The current findings on fish introspective self-awareness have been debated in the scientific community and, therefore, demand replication to provide more evidence. Further research is needed to verify the outlined ideas; however, the current knowledge indicates that fish are capable of certain higher cognitive processes, which raises questions and implications regarding ethics and welfare in fish-related research and husbandry.
Collapse
Affiliation(s)
- Pavla Hubená
- Department of Zoology and Fisheries, Czech University of Life Sciences Prague, Kamýcká 129, Prague 6, 165 00, Suchdol, Czech Republic.
| | - Pavel Horký
- Department of Zoology and Fisheries, Czech University of Life Sciences Prague, Kamýcká 129, Prague 6, 165 00, Suchdol, Czech Republic
| | - Ondřej Slavík
- Department of Zoology and Fisheries, Czech University of Life Sciences Prague, Kamýcká 129, Prague 6, 165 00, Suchdol, Czech Republic
| |
Collapse
|
5
|
Josi D, Frommen JG. Through a glass darkly? Divergent reactions of eight Lake Tanganyika cichlid species towards their mirror image in their natural environment. Ethology 2021. [DOI: 10.1111/eth.13207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Dario Josi
- Department of Natural Sciences Ecology and Environment Research Centre Conservation, Ecology, Evolution and Behaviour Research Group Manchester Metropolitan University Manchester UK
- Institute of Ecology and Evolution Division of Behavioural Ecology University of Bern Hinterkappelen Switzerland
| | - Joachim G. Frommen
- Department of Natural Sciences Ecology and Environment Research Centre Conservation, Ecology, Evolution and Behaviour Research Group Manchester Metropolitan University Manchester UK
- Institute of Ecology and Evolution Division of Behavioural Ecology University of Bern Hinterkappelen Switzerland
| |
Collapse
|
6
|
Ramos A, Alex D, Cardoso SD, Gonçalves D. Androgens and corticosteroids increase in response to mirror images and interacting conspecifics in males of the Siamese fighting fish Betta splendens. Horm Behav 2021; 132:104991. [PMID: 33984609 DOI: 10.1016/j.yhbeh.2021.104991] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 04/24/2021] [Accepted: 04/24/2021] [Indexed: 11/24/2022]
Abstract
The role of hormones as modulators of aggressive behavior in fish remains poorly understood. Androgens and corticosteroids, in particular, have been associated with aggressive behavior in fish but it is still not clear if animals adjust the secretion of these hormones to regulate behavior during ongoing fights, in response to fight outcomes in order to adjust aggressive behavior in subsequent fights, or both. With its stereotyped displays and high aggression levels, the Siamese fighting fish Betta splendens is an excellent model to investigate this question. Here, we compared the behavioral and endocrine response of male B. splendens to fights where there is no winner or loser by presenting them with a size-matched live interacting conspecific behind a transparent partition or with a mirror image. The aggressive response started with threat displays that were overall similar in frequency and duration towards both types of stimuli. Fights transitioned to overt attacks and interacting with a live conspecific elicited a higher frequency of attempted bites and head hits, as compared with the mirror image. There was a pronounced increase in plasma androgens (11-ketotestosterone and testosterone) and corticosteroids (cortisol) levels in response to the aggression challenge, independent of stimulus type. Post-fight intra-group levels of these hormones did not correlate with measures of physical activity or aggressive behavior. A linear discriminant analysis including all behavioral and endocrine data was a poor classifier of fish from the conspecific and mirror trials, showing that overall the behavioral and endocrine response to mirror images and conspecifics was similar. The results show that fight resolution is not necessary to induce an evident increase in peripheral levels of androgens and corticosteroids in B. splendens. However, the function of these hormones during present and future aggressive contests remains to be clarified.
Collapse
Affiliation(s)
- Andreia Ramos
- Institute of Science and Environment, University of Saint Joseph, Macao.
| | - Deepa Alex
- Institute of Science and Environment, University of Saint Joseph, Macao.
| | - Sara D Cardoso
- Institute of Science and Environment, University of Saint Joseph, Macao.
| | - David Gonçalves
- Institute of Science and Environment, University of Saint Joseph, Macao.
| |
Collapse
|
7
|
Iwata E, Masamoto K, Kuga H, Ogino M. Timing of isolation from an enriched environment determines the level of aggressive behavior and sexual maturity in Siamese fighting fish (Betta splendens). BMC ZOOL 2021; 6:15. [PMID: 37170314 PMCID: PMC10127351 DOI: 10.1186/s40850-021-00081-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 04/21/2021] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Teleost fish are known to respond to environmental manipulation, which makes them an ideal model animal for testing relationships between the environment and behavior. The Siamese fighting fish, Betta splendens, is a solitary, highly territorial fish that displays fierce stereotyped aggressive behavior toward conspecifics or members of other species. Adult fish, especially males, are generally housed in isolation in captivity. Here we report evidence that an enriched rearing environment can decrease the level of aggression in bettas and enable adults to be housed in groups.
Results
B. splendens individuals were hatched in our laboratory and raised in groups in an enriched environment. At the juvenile or subadult stage, some individuals were relocated to a poor environment and kept in isolation. To evaluate aggression, a mirror-image test was conducted at the juvenile, subadult, and adult stages for each fish, and body parameters as well as plasma concentrations of 11-ketotestosterone, estradiol, and cortisol were evaluated. Male and female adult bettas raised in a group showed lower levels of aggression than other adult fish. The magnitude of threatening behavior was greater in adult bettas isolated as subadults, whereas the magnitude of fighting behavior was grater in adult bettas isolated as juveniles. The influence of rearing conditions on behavior was greater in females than in males. Plasma cortisol concentrations of adult bettas isolated as subadults after the mirror-image test were higher than those in other experimental groups. Adult males isolated as subadults had significantly higher plasma concentrations of 11-ketotestosterone than males raised in a group and isolated as juveniles. Females isolated as subadults had a higher gonadosomatic index than females raised in a group and females isolated as juveniles.
Conclusions
These results indicate that bettas can be kept in a group under enriched environments and that the timing of isolation influences the aggression and sexual maturity of bettas. Female and male bettas responded differently to environmental manipulation. Judging from their level of sexual maturity, bettas isolated as subadults show proper development.
Collapse
|
8
|
Kua ZX, Hamilton IM, McLaughlin AL, Brodnik RM, Keitzer SC, Gilliland J, Hoskins EA, Ludsin SA. Water warming increases aggression in a tropical fish. Sci Rep 2020; 10:20107. [PMID: 33208894 PMCID: PMC7676273 DOI: 10.1038/s41598-020-76780-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 11/02/2020] [Indexed: 11/09/2022] Open
Abstract
Our understanding of how projected climatic warming will influence the world's biota remains largely speculative, owing to the many ways in which it can directly and indirectly affect individual phenotypes. Its impact is expected to be especially severe in the tropics, where organisms have evolved in more physically stable conditions relative to temperate ecosystems. Lake Tanganyika (eastern Africa) is one ecosystem experiencing rapid warming, yet our understanding of how its diverse assemblage of endemic species will respond is incomplete. Herein, we conducted a laboratory experiment to assess how anticipated future warming would affect the mirror-elicited aggressive behaviour of Julidochromis ornatus, a common endemic cichlid in Lake Tanganyika. Given linkages that have been established between temperature and individual behaviour in fish and other animals, we hypothesized that water warming would heighten average individual aggression. Our findings support this hypothesis, suggesting the potential for water warming to mediate behavioural phenotypic expression through negative effects associated with individual health (body condition). We ultimately discuss the implications of our findings for efforts aimed at understanding how continued climate warming will affect the ecology of Lake Tanganyika fishes and other tropical ectotherms.
Collapse
Affiliation(s)
- Zi Xun Kua
- Aquatic Ecology Laboratory, Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, 1314 Kinnear Road, Columbus, OH, 43212, USA
- Department of Sustainable Resources Management, College of Environmental Science and Forestry, State University of New York, 1 Forestry Drive, Syracuse, NY, 13210, USA
| | - Ian M Hamilton
- Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, 318 W 12th Avenue, Columbus, OH, 43210, USA
- Department of Mathematics, The Ohio State University, 318 W 12th Avenue, Columbus, OH, 43210, USA
| | - Allison L McLaughlin
- Aquatic Ecology Laboratory, Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, 1314 Kinnear Road, Columbus, OH, 43212, USA
- Department of Biology, University of Kentucky, 101 T.H. Morgan Building, Lexington, KY, 40506, USA
| | - Reed M Brodnik
- Aquatic Ecology Laboratory, Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, 1314 Kinnear Road, Columbus, OH, 43212, USA
- Chesapeake Biological Laboratory, University of Maryland Center for Environmental Science, 146 Williams St., Solomons, MD, 20688, USA
| | - S Conor Keitzer
- Aquatic Ecology Laboratory, Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, 1314 Kinnear Road, Columbus, OH, 43212, USA
- Department of Natural Science, Tusculum University, Greenville, TN, 37745, USA
| | - Jake Gilliland
- Aquatic Ecology Laboratory, Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, 1314 Kinnear Road, Columbus, OH, 43212, USA
- Nationwide Children's Hospital, Columbus, OH, 43205, USA
| | - Elizabeth A Hoskins
- Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, 318 W 12th Avenue, Columbus, OH, 43210, USA
| | - Stuart A Ludsin
- Aquatic Ecology Laboratory, Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, 1314 Kinnear Road, Columbus, OH, 43212, USA.
| |
Collapse
|
9
|
Performance of cyprinids in non-reversing mirrors versus regular mirrors in tests of aggressiveness. J ETHOL 2020. [DOI: 10.1007/s10164-020-00679-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
10
|
Hubená P, Horký P, Slavík O. Test-dependent expression of behavioral syndromes: A study of aggressiveness, activity, and stress of chub. Aggress Behav 2020; 46:412-424. [PMID: 32542801 DOI: 10.1002/ab.21909] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 05/19/2020] [Accepted: 06/04/2020] [Indexed: 11/09/2022]
Abstract
Aggressiveness has been one of the behavioral traits most examined with various standard testing methods. We used two distinct methods (the mirror and the real opponent tests) to evaluate individual aggression and relate it to the activity and individual stress of chub (Squalius cephalus L.). Three hypotheses were formulated and tested: (a) there is a significant positive relationship between the aggressiveness of individuals measured with the mirror and the real opponent tests, indicating their convergent validity; (b) the irregularities in response to the aggressiveness and activity tests lead to the context-specific expression of the behavioral syndromes; and (c) there is a significant positive relationship between the stress induced in individuals by both tests of aggressiveness, demonstrating individually consistent stress-coping strategies. The first and the second hypothesis were confirmed, while the third hypothesis was rejected. Our results suggest that particular tests of aggressiveness could act as a situation with high strength, leaving little variation between individual responses. Thus, we propose that for the proper interpretation of various studies using different tests to study identical behavioral traits, it is important to consider the convergent validity of not only the tested behavioral traits but also the individual stress responses. The chub also showed stress relieve through aggressiveness, suggesting the species as a prospective animal model to the study interaction between the stress and the aggressiveness. A detailed aggression ethogram of chub was provided to facilitate the use of this specie in future studies.
Collapse
Affiliation(s)
- Pavla Hubená
- Department of Zoology and FisheriesCzech University of Life Sciences Prague Prague Suchdol Czech Republic
| | - Pavel Horký
- Department of Zoology and FisheriesCzech University of Life Sciences Prague Prague Suchdol Czech Republic
| | - Ondřej Slavík
- Department of Zoology and FisheriesCzech University of Life Sciences Prague Prague Suchdol Czech Republic
| |
Collapse
|
11
|
da Silva-Pinto T, Silveira MM, de Souza JF, Moreira ALP, Vieira EA, Longo GO, Luchiari AC. Damselfish face climate change: Impact of temperature and habitat structure on agonistic behavior. PLoS One 2020; 15:e0235389. [PMID: 32603347 PMCID: PMC7326182 DOI: 10.1371/journal.pone.0235389] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 06/16/2020] [Indexed: 12/27/2022] Open
Abstract
Oceans absorb a huge part of the atmospheric heat, leading to the rise in water temperature. Reefs are among the most affected ecosystems, where the complex behavioral repertoire of fishes is usually an indicator of environmental impacts. Here, we examined whether temperature (28 and 34°C) and habitat complexity (high and low) interact to affect the agonistic behavior (mirror test) of the dusky damselfish (Stegastes fuscus), a key species in Brazilian reefs because of its gardening capacity and territorial behavior. Higher temperatures altered basal behavior in both high and low-complexity conditions. Fish kept at 28°C under the high-complexity condition were more aggressive than those at a higher temperature (34°C) and in a low-complexity condition, which also exhibited lower dispersion. Our data show that changes in behavior of coral reef fish is associated to fluctuations in environmental conditions. Thus, it is important to implement management or conservation strategies that could mitigate global change effects.
Collapse
Affiliation(s)
- Thalles da Silva-Pinto
- Laboratório de Peixes, Departamento de Fisiologia e Comportamento, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Natal, Brazil
| | - Mayara Moura Silveira
- Laboratório de Peixes, Departamento de Fisiologia e Comportamento, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Natal, Brazil
| | - Jéssica Ferreira de Souza
- Laboratório de Peixes, Departamento de Fisiologia e Comportamento, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Natal, Brazil
| | - Ana Luisa Pires Moreira
- Laboratório de Peixes, Departamento de Fisiologia e Comportamento, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Natal, Brazil
| | - Edson Aparecido Vieira
- Laboratório de Ecologia Marinha, Departamento de Oceanografia e Limnologia, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Natal, Brazil
| | - Guilherme Ortigara Longo
- Laboratório de Ecologia Marinha, Departamento de Oceanografia e Limnologia, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Natal, Brazil
| | - Ana Carolina Luchiari
- Laboratório de Peixes, Departamento de Fisiologia e Comportamento, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Natal, Brazil
- * E-mail:
| |
Collapse
|
12
|
Baran NM, Streelman JT. Ecotype differences in aggression, neural activity and behaviorally relevant gene expression in cichlid fish. GENES BRAIN AND BEHAVIOR 2020; 19:e12657. [PMID: 32323443 DOI: 10.1111/gbb.12657] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 04/17/2020] [Accepted: 04/18/2020] [Indexed: 12/18/2022]
Abstract
In Lake Malawi, two ecologically distinct lineages of cichlid fishes (rock- vs sand-dwelling ecotypes, each comprised of over 200 species) evolved within the last million years. The rock-dwelling species (Mbuna) are aggressively territorial year-round and males court and spawn with females over rocky substrate. In contrast, males of sand-dwelling species are not territorial and instead aggregate on seasonal breeding leks in which males construct courtship "bowers" in the sand. However, little is known about how phenotypic variation in aggression is produced by the genome. In this study, we first quantify and compare behavior in seven cichlid species, demonstrating substantial ecotype and species differences in unconditioned mirror-elicited aggression. Second, we compare neural activity in mirror-elicited aggression in two representative species, Mchenga conophoros (sand-dwelling) and Petrotilapia chitimba (rock-dwelling). Finally, we compare gene expression patterns between these two species, specifically within neurons activated during mirror aggression. We identified a large number of genes showing differential expression in mirror-elicited aggression, as well as many genes that differ between ecotypes. These genes, which may underly species differences in behavior, include several neuropeptides, genes involved in the synthesis of steroid hormones and neurotransmitter activity. This work lays the foundation for future experiments using this emerging genetic model system to investigate the genomic basis of evolved species differences in both brain and behavior.
Collapse
Affiliation(s)
- Nicole M Baran
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA.,Department of Psychology, Emory University, Atlanta, Georgia, USA
| | - J Todd Streelman
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA.,The Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, USA
| |
Collapse
|
13
|
Complex visual analysis of ecologically relevant signals in Siamese fighting fish. Anim Cogn 2019; 23:41-53. [DOI: 10.1007/s10071-019-01313-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 09/03/2019] [Accepted: 09/24/2019] [Indexed: 12/27/2022]
|
14
|
Ramos A, Gonçalves D. Artificial selection for male winners in the Siamese fighting fish Betta splendens correlates with high female aggression. Front Zool 2019; 16:34. [PMID: 31406496 PMCID: PMC6686523 DOI: 10.1186/s12983-019-0333-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 07/29/2019] [Indexed: 11/10/2022] Open
Abstract
In Southeast Asia, males of the Siamese fighting fish Betta splendens have been selected across centuries for paired-staged fights. During the selection process, matched for size males fight in a small tank until the contest is resolved. Breeders discard losing batches and reproduce winner batches with the aim of increasing fight performance. We assessed the results of this long-term selection process by comparing under standard laboratory conditions male and female aggressive behaviour of one strain selected for staged fights ("fighters") and one strain of wild-types. The aggressive response of adult fish was tested against their mirror image or a size-matched conspecific. Fighter males were more aggressive than wild-type males for all measured behaviours. Differences were not only quantitative but the pattern of fight display was also divergent. Fighter males had an overall higher swimming activity, performing frequent fast strikes in the direction of the intruder and displaying from a distance. Wild-type males were less active and exhibited aggressive displays mostly in close proximity to the stimuli. Females of the fighter strain, which are not used for fights, were also more aggressive than wild-type females. Aggressive behaviours were correlated across male and female fighter siblings, suggesting common genetic and physiological mechanisms to male and female aggression in this species. The study further shows that results were largely independent of the stimulus type, with the mirror test inducing similar and less variable responses than the live conspecific presentation. These results suggest that selection for male winners co-selected for high-frequency and metabolic demanding aggressive display in males and also enhanced female aggression, opening a wide range of testable hypothesis about the ultimate and proximate mechanisms of male and female aggression in B. splendens.
Collapse
Affiliation(s)
- A. Ramos
- Institute of Science and Environment, University of Saint Joseph, Rua de Londres 16, Macao, China
| | - D. Gonçalves
- Institute of Science and Environment, University of Saint Joseph, Rua de Londres 16, Macao, China
| |
Collapse
|
15
|
Kareklas K, McMurray R, Arnott G. Increased aggressive motivation towards formidable opponents: evidence of a novel form of mutual assessment. Anim Behav 2019. [DOI: 10.1016/j.anbehav.2019.04.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
16
|
St. John ME, McGirr JA, Martin CH. The behavioral origins of novelty: did increased aggression lead to scale-eating in pupfishes? Behav Ecol 2019; 30:557-569. [PMID: 30971862 PMCID: PMC6450202 DOI: 10.1093/beheco/ary196] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 11/08/2018] [Accepted: 12/14/2018] [Indexed: 11/13/2022] Open
Abstract
Behavioral changes in a new environment are often assumed to precede the origins of evolutionary novelties. Here, we examined whether an increase in aggression is associated with a novel scale-eating trophic niche within a recent radiation of Cyprinodon pupfishes endemic to San Salvador Island, Bahamas. We measured aggression using multiple behavioral assays and used transcriptomic analyses to identify differentially expressed genes in aggression and other behavioral pathways across 3 sympatric species in the San Salvador radiation (generalist, snail-eating specialist, and scale-eating specialist) and 2 generalist outgroups. Surprisingly, we found increased behavioral aggression and differential expression of aggression-related pathways in both the scale-eating and snail-eating specialists, despite their independent evolutionary origins. Increased behavioral aggression varied across both sex and stimulus context in both species. Our results indicate that aggression is not unique to scale-eating specialists. Instead, selection may increase aggression in other contexts such as niche specialization in general or mate competition. Alternatively, increased aggression may result from indirect selection on craniofacial traits, pigmentation, or metabolism-all traits which are highly divergent, exhibit signs of selective sweeps, and are affected by aggression-related genetic pathways which are differentially expressed in this system. In conclusion, the evolution of a novel predatory trophic niche within a recent adaptive radiation does not have clear-cut behavioral origins as previously assumed, highlighting the multivariate nature of adaptation and the complex integration of behavior with other phenotypic traits.
Collapse
Affiliation(s)
| | - Joseph A McGirr
- Department of Biology, University of North Carolina at Chapel Hill, NC, USA
| | - Christopher H Martin
- Department of Biology, University of North Carolina at Chapel Hill, NC, USA
- Department of Integrative Biology and Museum of Vertebrate Zoology, University of California, Berkeley, CA, USA
| |
Collapse
|
17
|
Bautista NM, Pothini T, Meng K, Burggren WW. Behavioral consequences of dietary exposure to crude oil extracts in the Siamese fighting fish (Betta splendens). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 207:34-42. [PMID: 30513419 DOI: 10.1016/j.aquatox.2018.11.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 10/14/2018] [Accepted: 11/28/2018] [Indexed: 05/24/2023]
Abstract
Uptake by fishes of crude oil and its polycyclic aromatic hydrocarbons (PAHs) components occurs via gills, dietary intake, or diffusion through the skin. Dietary exposure to crude oil and its components is environmentally relevant, and induces physiological and morphological disruptions in fish. However, the impacts of crude oil on fish social and reproductive behaviors and thus the possible influences on reproductive success are poorly understood. As a part of their intraspecific interactions, male Siamese fighting fish (Betta splendens) exhibit highly stereotypic behavioral and territorial displays. This makes this species a tractable model for testing crude oil effects on behavior. After 2 weeks of acclimation at 29 °C, male adult betta fish were divided into three groups and fed for 4 weeks with food spiked with water (control), low oil concentrations or high oil concentrations (∑Total PAH concentrations 340, 3960 or 8820 ng/g dw, respectively) to determine subsequent alterations in behavioral displays. Compared with control fish, the aggressive display of "opercular flaring" was significantly increased (P < 0.03, n = 14-16) in oil-exposed fish. Bubble nest building, as well as testis and brain mass, were significantly reduced in treated fish (P < 0.05). Hematocrit of treated groups was increased significantly (P < 0.02) from 21% in control fish to ∼27% in both oil exposure groups. Dietary exposure over a 4-week period to low, relevant levels of crude oil thus leads to an increase in aggressive behavioral displays, a decrease in reproductive activity and additional morphological changes.
Collapse
Affiliation(s)
- Naim M Bautista
- Developmental Integrative Biology Research Group, Department of Biological Sciences, University of North Texas,1155 Union Circle #305220, Denton, TX, 76203-5017, USA.
| | - Tanushri Pothini
- Developmental Integrative Biology Research Group, Department of Biological Sciences, University of North Texas,1155 Union Circle #305220, Denton, TX, 76203-5017, USA
| | - Kelly Meng
- Developmental Integrative Biology Research Group, Department of Biological Sciences, University of North Texas,1155 Union Circle #305220, Denton, TX, 76203-5017, USA
| | - Warren W Burggren
- Developmental Integrative Biology Research Group, Department of Biological Sciences, University of North Texas,1155 Union Circle #305220, Denton, TX, 76203-5017, USA
| |
Collapse
|
18
|
Clements KN, Miller TH, Keever JM, Hall AM, Issa FA. Social Status-Related Differences in Motor Activity Between Wild-Type and Mutant Zebrafish. THE BIOLOGICAL BULLETIN 2018; 235:71-82. [PMID: 30358446 DOI: 10.1086/699514] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Use of zebrafish as a model organism in biomedical research has led to the generation of many genetically modified mutant lines to investigate various aspects of developmental and cellular processes. However, the broader effects of the underlying mutations on social and motor behavior remain poorly examined. Here, we compared the dynamics of social interactions in the Tüpfel long-fin nacre mutant line, which lacks skin pigmentation, to wild-type zebrafish; and we determined whether status-dependent differences in escape and swimming behavior existed within each strain. We show that despite similarities in aggressive activity, Tüpfel long-fin nacre pairs exhibit unstable social relationships characterized by frequent reversals in social dominance compared to wild-type pairs. The lack of strong dominance relationships in Tüpfel long-fin nacre pairs correlates with weak territoriality and overlapping spatial distribution of dominants and subordinates. Conversely, wild-type dominants displayed strong territoriality that severely limited the movement of subordinates. Additionally, the sensitivity of the startle escape response was significantly higher in wild-type subordinates compared to dominants. However, status-related differences in sensitivity of escape response in Tüpfel long-fin nacre pairs were absent. Finally, we present evidence suggesting that these differences could be a consequence of a disruption of proper visual social signals. We show that in wild-type pairs dominants are more conspicuous, and that in wild-type and Tüpfel long-fin nacre pairings wild-type fish are more likely to dominate Tüpfel long-fin nacres. Our results serve as a cautionary note in research design when morphologically engineered zebrafish for color differences are utilized in the study of social behavior and central nervous system function.
Collapse
|
19
|
Lateralization influences contest behaviour in domestic pigs. Sci Rep 2018; 8:12116. [PMID: 30108266 PMCID: PMC6092404 DOI: 10.1038/s41598-018-30634-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 08/01/2018] [Indexed: 12/11/2022] Open
Abstract
Cerebral lateralization, i.e. hemispheric asymmetries in structure and function, relates in many species to a preference to attack from their left. Lateralization increases cognitive capacity, enabling the simultaneous processing of multiple sources of information. Therefore, lateralization may constitute a component of fighting ability (Resource Holding Potential), and/or influence the efficiency of information-gathering during a contest. We hypothesized that lateralization will affect contest outcome and duration, with an advantage for more strongly lateralized individuals. In 52 dyadic contests between weight-matched pigs (Sus scrofa; n = 104; 10 wk age), the direction of orientation towards the opponent was scan sampled every 10 s. Laterality indexes (LI) were calculated for the direction and strength of lateralization. Up to 12.5% of the individuals showed significant lateralization towards either the right or left but lateralization was absent at the population level. In line with our hypothesis, animals showing strong lateralization (irrespective of direction) had a shorter contest duration than animals showing weak lateralization. Winners did not differ from losers in their strength or direction of lateralization. Overall the results suggest that cerebral lateralization may aid in conflict resolution, but does not directly contribute to fighting ability, and will be of value in the study of animal contests.
Collapse
|
20
|
Nonreversing mirrors elicit behaviour that more accurately predicts performance against live opponents. Anim Behav 2018. [DOI: 10.1016/j.anbehav.2018.01.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
21
|
Romano D, Benelli G, Donati E, Remorini D, Canale A, Stefanini C. Multiple cues produced by a robotic fish modulate aggressive behaviour in Siamese fighting fishes. Sci Rep 2017; 7:4667. [PMID: 28680126 PMCID: PMC5498610 DOI: 10.1038/s41598-017-04840-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 05/22/2017] [Indexed: 11/25/2022] Open
Abstract
The use of robotics to establish social interactions between animals and robots, represents an elegant and innovative method to investigate animal behaviour. However, robots are still underused to investigate high complex and flexible behaviours, such as aggression. Here, Betta splendens was tested as model system to shed light on the effect of a robotic fish eliciting aggression. We evaluated how multiple signal systems, including a light stimulus, affect aggressive responses in B. splendens. Furthermore, we conducted experiments to estimate if aggressive responses were triggered by the biomimetic shape of fish replica, or whether any intruder object was effective as well. Male fishes showed longer and higher aggressive displays as puzzled stimuli from the fish replica increased. When the fish replica emitted its full sequence of cues, the intensity of aggression exceeded even that produced by real fish opponents. Fish replica shape was necessary for conspecific opponent perception, evoking significant aggressive responses. Overall, this study highlights that the efficacy of an artificial opponent eliciting aggressive behaviour in fish can be boosted by exposure to multiple signals. Optimizing the cue combination delivered by the robotic fish replica may be helpful to predict escalating levels of aggression.
Collapse
Affiliation(s)
- Donato Romano
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Viale Rinaldo Piaggio 34, 56025 Pontedera, Pisa, Italy.
| | - Giovanni Benelli
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Viale Rinaldo Piaggio 34, 56025 Pontedera, Pisa, Italy.
- Department of Agriculture, Food and Environment, University of Pisa, via del Borghetto 80, 56124, Pisa, Italy.
| | - Elisa Donati
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Viale Rinaldo Piaggio 34, 56025 Pontedera, Pisa, Italy
| | - Damiano Remorini
- Department of Agriculture, Food and Environment, University of Pisa, via del Borghetto 80, 56124, Pisa, Italy
| | - Angelo Canale
- Department of Agriculture, Food and Environment, University of Pisa, via del Borghetto 80, 56124, Pisa, Italy
| | - Cesare Stefanini
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Viale Rinaldo Piaggio 34, 56025 Pontedera, Pisa, Italy
- Department of Biomedical Engineering and Robotics Institute, Khalifa University, PO Box, 127788, Abu Dhabi, UAE
| |
Collapse
|
22
|
Of fish and mirrors: Fluoxetine disrupts aggression and learning for social rewards. Physiol Behav 2017; 173:258-262. [DOI: 10.1016/j.physbeh.2017.02.021] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 02/18/2017] [Accepted: 02/20/2017] [Indexed: 11/22/2022]
|