1
|
Jelena R, Jelena T, Marija R, Tanja L, Tatjana S, Bojan B, Biljana BN, Pavković-Lučić S. Different Long-Term Nutritional Regimens of Drosophila melanogaster Shape Its Microbiota and Associated Metabolic Activity in a Sex-Specific Manner. INSECTS 2025; 16:141. [PMID: 40003771 PMCID: PMC11856610 DOI: 10.3390/insects16020141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 01/20/2025] [Accepted: 01/24/2025] [Indexed: 02/27/2025]
Abstract
The dietary habits of fruit flies profoundly influence their fitness, morphology, and physiology yet the mechanisms underlying these effects remain incompletely understood. To address this gap, the relationship between dietary regimens and the composition and function of adult Drosophila melanogaster microbiota was investigated in the present study. The adult fly microbiota communities that were reared for long time on five different diets were characterized by means of 16S rRNA sequencing. Obtained results revealed distinct community structures associated with each dietary regimen, which was additionally corroborated through machine learning-based analysis. In general, sugar-rich diets correlate with microbial ecosystems of higher richness/diversity. Dominance of the phyla Proteobacteria and Firmicutes in the microbiota was confirmed irrespective of diet, with the varying proportions of the most abundant families: Acetobacteraceae, Lactobacillaceae, Moraxellaceae, Bradyrhizobiaceae, and Leucostonocaceae. Bacterial families of lower abundance also emerged as differentially present among the studied fly groups. Additionally, functional prediction provided initial clues into how nutrient availability might modulate the metabolic traits of adult fly microbiota in a sex-specific manner to meet host metabolic needs. Overall, the presented findings highlight the intricate interplay between diet, microbiota composition, and host phenotype in fruit flies, underscoring the importance of diet as a determinant of host-microbiota interactions.
Collapse
Affiliation(s)
- Repac Jelena
- Faculty of Biology, University of Belgrade, 11000 Belgrade, Serbia; (R.M.); (L.T.); (B.B.); (B.N.B.); (S.P.-L.)
| | - Trajković Jelena
- Faculty of Biology, University of Belgrade, 11000 Belgrade, Serbia; (R.M.); (L.T.); (B.B.); (B.N.B.); (S.P.-L.)
| | - Rakić Marija
- Faculty of Biology, University of Belgrade, 11000 Belgrade, Serbia; (R.M.); (L.T.); (B.B.); (B.N.B.); (S.P.-L.)
| | - Lunić Tanja
- Faculty of Biology, University of Belgrade, 11000 Belgrade, Serbia; (R.M.); (L.T.); (B.B.); (B.N.B.); (S.P.-L.)
| | - Savić Tatjana
- Institute for Biological Research “Siniša Stanković” National Institute of the Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia;
| | - Božić Bojan
- Faculty of Biology, University of Belgrade, 11000 Belgrade, Serbia; (R.M.); (L.T.); (B.B.); (B.N.B.); (S.P.-L.)
| | - Božić Nedeljković Biljana
- Faculty of Biology, University of Belgrade, 11000 Belgrade, Serbia; (R.M.); (L.T.); (B.B.); (B.N.B.); (S.P.-L.)
| | - Sofija Pavković-Lučić
- Faculty of Biology, University of Belgrade, 11000 Belgrade, Serbia; (R.M.); (L.T.); (B.B.); (B.N.B.); (S.P.-L.)
| |
Collapse
|
2
|
Zhao Y, Song L, Wang J, Fang X, Li K, Han L, Beiles A, Cao YB, Nevo E. Selection of p53 pathway in adaptive evolution and reproductive isolation in incipient sympatric speciation of Drosophila at Evolution Canyon. Biol J Linn Soc Lond 2023. [DOI: 10.1093/biolinnean/blac125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Abstract
Sympatric speciation (SS) refers to the origin of new species within a freely breeding population. The ‘Evolution Canyon’ (EC) in Israel is a natural microsite model for SS of species across phylogenies from viruses and bacteria to mammals, adapting to, and speciating in, interslope microclimates. The cosmopolitan Drosophila melanogaster at EC I, Mount Carmel, is undergoing incipient SS in response to sharply divergent interslope microclimate stresses, including solar radiation, temperature, humidity and pathogenicity. We demonstrated here a selective interslope divergence of single nucleotide polymorphism (SNP) distribution in the Drosophila p53 pathway. This involves a total of 71 genes, which are associated with DNA repair, heat response, and fungal and bacterial resistant pathways. This distribution pattern links the previously observed thermotolerance and ageing divergence of D. melanogaster between the opposite canyon slopes: the south-facing slope (SFS, or African slope: tropical, savannoid and dry) and the abutting north-facing slope (NFS, or European slope; temperate, forested, cool and humid). The genes with interslope-significant differential SNPs link the p53 pathway with pathways related to the responses to microclimates through protein-protein interaction. Moreover, for the first time we provide evidence that the p53 pathway is linked to reproductive isolation, and is thus actively participating in incipient SS of D. melanogaster. This is the first demonstration of a link between the p53 pathway and reproductive isolation, thereby contributing to adaptive incipient sympatric speciation.
Collapse
Affiliation(s)
- Yang Zhao
- Department of Physiology, and Department of Hepatobiliary and Pancreatic Surgery of the First Affiliated Hospital , , Hangzhou 301158 , China
- Zhejiang University School of Medicine , , Hangzhou 301158 , China
- Institute of Evolution, University of Haifa , Haifa 3498838 , Israel
| | - Li Song
- BGI Genomics, BGI-Shenzhen , Shenzhen 518083 , China
| | - Junying Wang
- School of Life Science, South China Normal University , Guangzhou 510631 , China
| | - Xiaodong Fang
- BGI Genomics, BGI-Shenzhen , Shenzhen 518083 , China
| | - Kexin Li
- Institute of Evolution, University of Haifa , Haifa 3498838 , Israel
| | - Lijuan Han
- BGI Genomics, BGI-Shenzhen , Shenzhen 518083 , China
| | - Avigdor Beiles
- Institute of Evolution, University of Haifa , Haifa 3498838 , Israel
| | - Yi-Bin Cao
- Institute of Evolution, University of Haifa , Haifa 3498838 , Israel
- Division of Biochemistry and Molecular Biology, Department of Biotechnology, College of Chemistry and Life Science, Zhejiang Normal University , Jinhua 321004 , China
| | - Eviatar Nevo
- Institute of Evolution, University of Haifa , Haifa 3498838 , Israel
| |
Collapse
|
3
|
Pavković-Lučić S, Trajković J, Miličić D, Anđelković B, Lučić L, Savić T, Vujisić L. "Scent of a fruit fly": Cuticular chemoprofiles after mating in differently fed Drosophila melanogaster (Diptera: Drosophilidae) strains. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2022; 109:e21866. [PMID: 35020218 DOI: 10.1002/arch.21866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/07/2021] [Accepted: 12/25/2021] [Indexed: 06/14/2023]
Abstract
In the world of complex smells in natural environment, feeding and mating represent two important olfactory-guided behaviors in Drosophila melanogaster (Diptera: Drosophilidae). Diet affects the chemoprofile composition of the individuals, which, indirectly, may significantly affect their mating success. In this study, chemoprofiles of recently mated flies belonging to four D. melanogaster strains, which were fed for many generations on different substrates (standard cornmeal-S strain; banana-B strain; carrot-C strain; tomato-T strain) were identified and quantified. In total, 67 chemical compounds were identified: 48 compounds were extracted from males maintained on banana and carrot, and 47 compounds from males maintained on cornmeal and tomato substrates, while total of 60 compounds were identified in females from all strains. The strains and the sexes significantly differed in qualitative nature of their chemoprofiles after mating. Significant differences in the relative amount of three major male pheromones (cis-vaccenyl acetate-cVA, (Z)-7-pentacosene, and (Z)-7-tricosene) and in female pheromone (Z,Z)-7,11-nonacosadiene among strains were also recorded. Furthermore, multivariate analysis of variance (MANOVA) pointed to significant differences between virgin and mated individuals of all strains and within both sexes. Differences in some of the well known sex pheromones were also identified when comparing their relative amount before and after mating. The presence of typical male pheromones in females, and vice versa may indicate their bidirectional transfer during copulation. Our results confirm significant effect of mating status on cuticular hydrocarbon (CHC) phenotypes in differently fed D. melanogaster flies.
Collapse
Affiliation(s)
| | | | - Dragana Miličić
- Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | | | - Luka Lučić
- Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Tatjana Savić
- Institute for Biological Research "Siniša Stanković", National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | | |
Collapse
|
4
|
Different diets can affect attractiveness of Drosophila melanogaster males via changes in wing morphology. Anim Behav 2021. [DOI: 10.1016/j.anbehav.2020.11.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
5
|
Shahandeh MP, Brock C, Turner TL. Light dependent courtship behavior in Drosophila simulans and D. melanogaster. PeerJ 2020; 8:e9499. [PMID: 32742789 PMCID: PMC7369021 DOI: 10.7717/peerj.9499] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 06/17/2020] [Indexed: 11/20/2022] Open
Abstract
Differences in courtship signals and perception are well-known among Drosophila species. One such described difference is the dependency on light, and thus presumably vision, for copulation success. Many studies have described a difference in light-dependent copulation success between D. melanogaster and D. simulans, identifying D. simulans as a light-dependent species, and D. melanogaster as a light-independent one. However, many of these studies use assays of varying design and few strains to represent the entire species. Here, we attempt to better characterize this purported difference using 11 strains of each species, paired by collection location, in behavioral assays conducted at two different exposure times. We show that, while there is a species-wide difference in magnitude of light-dependent copulation success, D. melanogaster copulation success is, on average, still impaired in the dark at both exposure times we measured. Additionally, there is significant variation in strain-specific ability to copulate in the dark in both species across two different exposure times. We find that this variation correlates strongly with longitude in D. melanogaster, but not in D. simulans. We hypothesize that differences in species history and demography may explain behavioral variation. Finally, we use courtship assays to show that light-dependent copulation success in one D. simulans strain is driven in part by both males and females. We discuss potential differences in courtship signals and/or signal importance between these species and potential for further comparative studies for functional characterization.
Collapse
Affiliation(s)
- Michael P. Shahandeh
- Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, Santa Barbara, CA, United States of America
| | - Cameryn Brock
- Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, Santa Barbara, CA, United States of America
| | - Thomas L. Turner
- Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, Santa Barbara, CA, United States of America
| |
Collapse
|
6
|
Cohen P, Privman E. Speciation and hybridization in invasive fire ants. BMC Evol Biol 2019; 19:111. [PMID: 31142287 PMCID: PMC6542140 DOI: 10.1186/s12862-019-1437-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Accepted: 05/13/2019] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND A major focus of evolutionary biology is the formation of reproductive barriers leading to divergence and ultimately, speciation. Often, it is not clear whether the separation of populations is complete or if there still is ongoing gene flow in the form of rare cases of admixture, known as isolation with migration. Here, we studied the speciation of two fire ant species, Solenopsis invicta and Solenopsis richteri, both native to South America, both inadvertently introduced to North America in the early twentieth century. While the two species are known to admix in the introduced range, in the native range no hybrids were found. RESULTS We conducted a population genomic survey of native and introduced populations of the two species using reduced representation genomic sequencing of 337 samples. Using maximum likelihood analysis over native range samples, we found no evidence of any gene flow between the species since they diverged. We estimated their time of divergence to 190,000 (100,000-350,000) generations ago. Modelling the demographic history of native and introduced S. invicta populations, we evaluated their divergence times and historic and contemporary population sizes, including the original founder population in North America, which was estimated at 26 (10-93) unrelated singly-mated queens. CONCLUSIONS We provide evidence for complete genetic isolation maintained between two invasive species in their natïve range, based, for the first time, on large scale genomic data analysis. The results lay the foundations for further studies into different stages in the formation of genetic barriers in dynamic, invasive populations.
Collapse
Affiliation(s)
- Pnina Cohen
- Department of Evolution and Environmental Biology, Institute of Evolution, University of Haifa, Haifa, Israel
| | - Eyal Privman
- Department of Evolution and Environmental Biology, Institute of Evolution, University of Haifa, Haifa, Israel
| |
Collapse
|
7
|
Abstract
Experimental studies of the evolution of reproductive isolation (RI) in real time are a powerful way in which to reveal fundamental, early processes that initiate divergence. In a classic speciation experiment, populations of Drosophila pseudoobscura were subjected to divergent dietary selection and evolved significant positive assortative mating by diet. More recently, a direct role for the gut microbiome in determining this type of RI in Drosophila melanogaster has been proposed. Manipulation of the diet, and hence the gut microbiome, was reported to result in immediate assortative mating by diet, which could be eliminated by reducing gut microbes using antibiotics and recreated by adding back Lactobacillus plantarum We suggest that the evolutionary significance of this result is unclear. For example, in D. melanogaster, the microbiome is reported as flexible and largely environmentally determined. Therefore, microbiome-mediated RI would be transient and would break down under dietary variation. In the absence of evolutionary coassociation or recurrent exposure between host and microbiome, there are no advantages for the gut bacteria or host in effecting RI. To explore these puzzling effects and their mechanisms further, we repeated the tests for RI associated with diet-specific gut microbiomes in D. melanogaster Despite observing replicable differences in the gut microbiomes of flies maintained on different diets, we found no evidence for diet-associated RI, for any role of gut bacteria, or for L. plantarum specifically. The results suggest that there is no general role for gut bacteria in driving the evolution of RI in this species and resolve an evolutionary riddle.
Collapse
|