1
|
Guo Y, Qian R, Wei X, Yang C, Cao J, Hou X, Zhang X, Lv T, Bai L, Wei D, Bi R, Shan B, Wang Z. pH-Activated Nanoplatform Derived from M1 Macrophages' Exosomes for Photodynamic and Ferroptosis Synergistic Therapy to Augment Cancer Immunotherapy. Biomater Res 2025; 29:0153. [PMID: 40051791 PMCID: PMC11883086 DOI: 10.34133/bmr.0153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 01/24/2025] [Accepted: 01/31/2025] [Indexed: 03/09/2025] Open
Abstract
Combining nanomedicine with immunotherapy offers a promising and potent cancer treatment strategy; however, improving the effectiveness of the antitumor immune response remains challenging. A "cold" tumor microenvironment (TME) is a marked factor affecting the efficacy of immunotherapy. Herein, intracellular-acidity-activatable dynamic nanoparticles (NPs) were designed for precision photodynamic immunotherapy and ferroptosis in cancer. M1 macrophage-derived exosomes (Mex) were constructed to coassemble the photosensitizer SR780, Fe3+, and the antioxidant enzyme catalase (CAT). By further modifying the RS17 peptides on the NPs, we increased their tumor-targeting capability and blocked the CD47-signal regulatory protein checkpoint, enabling macrophages to effectively phagocytose tumor cells. With proper particle size and dual targeting, including homologous targeting and RS17 targeting, FeSR780@CAT@Mex-RS17 NPs were able to accumulate effectively at the tumor site. These NPs can deliver exogenous CAT to relieve the hypoxic TME and enhance the therapeutic effects of photodynamic therapy. SR780 triggered photodynamic therapy to produce reactive oxygen species and induced immunogenic cell death to release danger-associated molecular patterns. In combination with Fe2+-induced ferroptosis, long-term immunotherapeutic effects can be obtained by reprogramming "cold" TMEs into "hot" TMEs. Upon laser irradiation, the designed FeSR780@CAT@Mex-RS17 NPs exert potent antitumor efficacy against both the Lewis lung carcinoma subcutaneous xenograft tumor model and lung orthotopic and liver metastasis models. The NPs suppressed the growth of the primary tumor while inhibiting liver metastasis, thereby exhibiting great potential for antitumor immunotherapy.
Collapse
Affiliation(s)
- Yawen Guo
- Department of Immuno-Oncology,
The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Ruijie Qian
- Department of Interventional Radiology,
The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, P.R. China
| | - Xin Wei
- Department of Ultrasound, Beijing Children’s Hospital, Capital Medical University,
National Center for Children’s Health, Beijing, P.R. China
| | - Chunwang Yang
- Department of Immuno-Oncology,
The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Jing Cao
- Department of Immuno-Oncology,
The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Xiaoming Hou
- Department of Immuno-Oncology,
The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Xiaokuan Zhang
- Department of Immuno-Oncology,
The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Tingting Lv
- Department of Immuno-Oncology,
The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Lu Bai
- Department of Immuno-Oncology,
The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Daoyu Wei
- Department of Immuno-Oncology,
The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Rumeng Bi
- Department of Immuno-Oncology,
The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Baoen Shan
- Department of Immuno-Oncology,
The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Zhiyu Wang
- Department of Immuno-Oncology,
The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| |
Collapse
|
2
|
Balahura (Stămat) LR, Dinu AI, Lungu A, Herman H, Balta C, Hermenean A, Șerban AI, Dinescu S. Implantable Polymer Scaffolds Loaded with Paclitaxel-Cyclodextrin Complexes for Post-Breast Cancer Tissue Reconstruction. Polymers (Basel) 2025; 17:402. [PMID: 39940603 PMCID: PMC11819909 DOI: 10.3390/polym17030402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/28/2025] [Accepted: 01/30/2025] [Indexed: 02/16/2025] Open
Abstract
The side effects associated with the chemotherapy of triple-negative breast cancer (TNBC), such as nucleotide-binding oligomerization domain (NOD)-like receptor family (NLR), pyrin domain containing 3 (NLRP3) inflammasome activity, are responsible for the treatment failure and high mortality rates. Therefore, advanced delivery systems have been developed to improve the transport and targeted administration of anti-tumor agents at the tumor sites using tissue engineering approaches. Implantable delivery systems based on biodegradable polymers are an effective alternative due high biocompatibility, porosity, and mechanical strength. Moreover, the use of paclitaxel (PTX)-cyclodextrin complexes increases the solubility and permeability of PTX, enhancing the bioavailability and efficacy of the drug. All of these properties contribute to the efficient encapsulation and controlled release of drugs, preventing the damage of healthy tissues. In the current study, we detailed the synthesis process and evaluation of 3D scaffolds based on gelatin functionalized with methacryloyl groups (GelMA) and pectin loaded with PTX-cyclodextrin inclusion complexes on TNBC pathogenesis in vitro and in vivo. Bio-physio-chemical analysis of the proposed scaffolds revealed favorable mechanical and biological properties for the cellular component. To improve the drug solubility, a host-guest interaction was performed by the complexation of PTX with a cyclodextrin derivative prior to scaffold synthesis. The presence of PTX suppressed the growth of breast tumor cells and promoted caspase-1 activity, the release of interleukin (IL)-1β, and the production of reactive oxygen species (ROS), conditioning the expression levels of the genes and proteins associated with breast tumorigenesis and NLRP3 inflammasome. The in vivo experiments suggested the activation of pyroptosis tumor cell death, confirming the in vitro experiments. In conclusion, the bio-mechanical properties of the GelMA and pectin-based scaffolds as well as the addition of the PTX-cyclodextrin complexes allow for the targeted and efficient delivery of PTX, suppressing the viability of the breast tumor cells via pyroptosis cell death initiation.
Collapse
Affiliation(s)
| | - Andreea Ioana Dinu
- Advanced Polymer Materials Group, National University of Science and Technology Politehnica Bucharest, 011061 Bucharest, Romania; (A.I.D.); (A.L.)
| | - Adriana Lungu
- Advanced Polymer Materials Group, National University of Science and Technology Politehnica Bucharest, 011061 Bucharest, Romania; (A.I.D.); (A.L.)
| | - Hildegard Herman
- “Aurel Ardelean” Institute of Life Sciences, Vasile Goldis Western University of Arad, 310414 Arad, Romania; (H.H.); (C.B.); (A.H.)
| | - Cornel Balta
- “Aurel Ardelean” Institute of Life Sciences, Vasile Goldis Western University of Arad, 310414 Arad, Romania; (H.H.); (C.B.); (A.H.)
| | - Anca Hermenean
- “Aurel Ardelean” Institute of Life Sciences, Vasile Goldis Western University of Arad, 310414 Arad, Romania; (H.H.); (C.B.); (A.H.)
| | - Andreea Iren Șerban
- Department Preclinical Sciences, Faculty of Veterinary Medicine, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 050097 Bucharest, Romania;
| | - Sorina Dinescu
- Department of Biochemistry and Molecular Biology, University of Bucharest, 050095 Bucharest, Romania;
- Research Institute of the University of Bucharest, 050663 Bucharest, Romania
| |
Collapse
|
3
|
Patil SJ, Thorat VM, Koparde AA, Bhosale RR, Bhinge SD, Chavan DD, Tiwari DD. Theranostic Applications of Scaffolds in Current Biomedical Research. Cureus 2024; 16:e71694. [PMID: 39559663 PMCID: PMC11571282 DOI: 10.7759/cureus.71694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Accepted: 10/17/2024] [Indexed: 11/20/2024] Open
Abstract
Theranostics, a remarkable combination of diagnostics and therapeutics, has given rise to tissue/organ-format theranostic scaffolds that integrate targeted therapy and real-time disease monitoring. The scaffold is a 3D structuring template for cell or tissue attachment and growth. These scaffolds offer unprecedented opportunities for personalized medicine and hold great potential for revolutionizing healthcare. Recent advancements in fabrication techniques have enabled the creation of highly intricate and precisely engineered scaffolds with controllable physical and chemical properties, enhancing their therapeutic potential for tissue engineering and regenerative medicine. This paper proposes a new categorization method for scaffolds in tissue engineering based on the relativity of scaffold design-independent parameters. Five types of scaffolds are defined at different levels, highlighting the importance of understanding and analyzing scaffold types. It possesses the ability to seamlessly integrate diagnostics and therapeutics within a single platform, enhancing the efficacy and precision of personalized medicine. Natural scaffolds derived from biomaterials and synthetic scaffolds fabricated by human intervention are discussed, with synthetic scaffolds offering advantages such as tunable mechanical properties and controlled drug delivery, while natural scaffolds provide inherent biocompatibility and bioactivity, making them ideal for promoting cellular responses. The use of synthetic scaffolds shows great promise in advancing regenerative medicine and improving patient outcomes. The transfer of new technologies and changes in society have accelerated the evolution of health monitoring into the era of personal health monitoring. Using emerging health data, cost-effective analytics, wireless sensor networks, mobile smartphones, and easy internet access, the combination of these technologies is expected to accelerate the transition to personal health monitoring outside of traditional healthcare settings. The main objective of this review article is to provide a comprehensive overview of the theranostic applications of scaffolds in current biomedical research, highlighting their dual role in therapy and diagnostics. The review aims to explore the latest advancements in scaffold design, fabrication, and functionalization, emphasizing how these innovations contribute to improved therapeutic efficacy, targeted drug delivery, and the real-time monitoring of disease progression across various medical fields.
Collapse
Affiliation(s)
- Sarika J Patil
- Department of Pharmacology, Krishna Institute of Medical Sciences, Krishna Vishwa Vidyapeeth (Deemed to be University), Karad, IND
| | - Vandana M Thorat
- Department of Pharmacology, Krishna Institute of Medical Sciences, Krishna Vishwa Vidyapeeth (Deemed to be University), Karad, IND
| | - Akshada A Koparde
- Department of Pharmaceutical Chemistry, Krishna Institute of Pharmacy, Krishna Vishwa Vidyapeeth (Deemed to be University), Karad, IND
| | - Rohit R Bhosale
- Department of Pharmaceutics, Krishna Foundation's Jaywant Institute of Pharmacy, Karad, IND
| | - Somnath D Bhinge
- Department of Pharmaceutical Chemistry, Rajarambapu College of Pharmacy, Kasegaon, IND
| | - Dhanashri D Chavan
- Department of Pharmacology, Krishna Institute of Medical Sciences, Krishna Vishwa Vidyapeeth (Deemed to be University), Karad, IND
| | - Devkumar D Tiwari
- Department of Pharmacology, Krishna Institute of Medical Sciences, Krishna Vishwa Vidyapeeth (Deemed to be University), Karad, IND
| |
Collapse
|
4
|
Mujahid K, Rana I, Suliman IH, Li Z, Wu J, He H, Nam J. Biomaterial-Based Sustained-Release Drug Formulations for Localized Cancer Immunotherapy. ACS APPLIED BIO MATERIALS 2024; 7:4944-4961. [PMID: 38050811 DOI: 10.1021/acsabm.3c00808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Cancer immunotherapy has revolutionized clinical cancer treatments by taking advantage of the immune system to selectively and effectively target and kill cancer cells. However, clinical cancer immunotherapy treatments often have limited efficacy and/or present severe adverse effects associated primarily with their systemic administration. Localized immunotherapy has emerged to overcome these limitations by directly targeting accessible tumors via local administration, reducing potential systemic drug distribution that hampers drug efficacy and safety. Sustained-release formulations can prolong drug activity at target sites, which maximizes the benefits of localized immunotherapy to increase the therapeutic window using smaller dosages than those used for systemic injection, avoiding complications of frequent dosing. The performance of sustained-release formulations for localized cancer immunotherapy has been validated preclinically using various implantable and injectable scaffold platforms. This review introduces the sustained-release formulations developed for localized cancer immunotherapy and highlights their biomaterial-based platforms for representative classes, including inorganic scaffolds, natural hydrogels, synthetic hydrogels, and microneedle patches. The design rationale and other considerations are summarized for further development of biomaterials for the construction of optimal sustained-release formulations.
Collapse
Affiliation(s)
- Khizra Mujahid
- College of Pharmacy, Chonnam National University, Gwangju 61186, South Korea
| | - Isra Rana
- College of Pharmacy, Chonnam National University, Gwangju 61186, South Korea
| | | | - Zhen Li
- College of Pharmacy, Chonnam National University, Gwangju 61186, South Korea
| | - Jiang Wu
- School of Pharmaceutical Sciences, Key Laboratory of Biotechnology and Pharmaceutical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Huacheng He
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang 325000, P. R. China
| | - Jutaek Nam
- College of Pharmacy, Chonnam National University, Gwangju 61186, South Korea
| |
Collapse
|
5
|
Zheng H, Feng XN, Jin XWE, Dai ZQ, Lu S, Cui YX, Kong DM. Multifunctional DNA Nanoflower Applied for High Specific Photodynamic Cancer Therapy In Vivo. Chembiochem 2024; 25:e202400229. [PMID: 38700379 DOI: 10.1002/cbic.202400229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/02/2024] [Accepted: 05/03/2024] [Indexed: 05/05/2024]
Abstract
Photodynamic therapy (PDT) is a newly emerged strategy for disease treatment. One challenge of the application of PDT drugs is the side-effect caused by the non-specificity of the photosensitive molecules. Most of the photosensitizers may invade not only the pathogenic cells but also the normal cells. In recent, people tried to use special cargoes to deliver the drugs into target cells. DNA nanoflowers (NFs) are a kind of newly-emerged nanomaterial which constructed through DNA rolling cycle amplification (RCA) reaction. It is reported that the DNA NFs were suitable materials which have been widely applied as nanocargos for drug delivery in cancer chemotherapeutic treatment. In this paper, we have introduced a new multifunctional DNA NF which could be prepared through an one-pot RCA reaction. This proposed DNA NF contained a versatile AS1411 G-quadruplex moiety, which plays key roles not only for specific recognition of cancer cells but also for near-infrared ray based photodynamic therapy when conjugating with a special porphyrin molecule. We demonstrated that the DNA NF showed good selectivity toward cancer cells, leading to highly efficient photo-induced cytotoxicity. Moreover, the in vivo experiment results suggested this DNA NF is a promising nanomaterial for clinical PDT.
Collapse
Affiliation(s)
- Hao Zheng
- College of Life Sciences, Nankai University, 94 Weijin Road, Nankai District, Tianjin, China
| | - Xue-Nan Feng
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry, Nankai University, 94 Weijin Road, Nankai District, Tianjin, China
| | - Xiang-Wan-Er Jin
- College of Life Sciences, Nankai University, 94 Weijin Road, Nankai District, Tianjin, China
| | - Zhi-Qi Dai
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry, Nankai University, 94 Weijin Road, Nankai District, Tianjin, China
| | - Sha Lu
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry, Nankai University, 94 Weijin Road, Nankai District, Tianjin, China
| | - Yun-Xi Cui
- College of Life Sciences, Nankai University, 94 Weijin Road, Nankai District, Tianjin, China
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry, Nankai University, 94 Weijin Road, Nankai District, Tianjin, China
| | - De-Ming Kong
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry, Nankai University, 94 Weijin Road, Nankai District, Tianjin, China
| |
Collapse
|
6
|
Angelopoulou A. Nanostructured Biomaterials in 3D Tumor Tissue Engineering Scaffolds: Regenerative Medicine and Immunotherapies. Int J Mol Sci 2024; 25:5414. [PMID: 38791452 PMCID: PMC11121067 DOI: 10.3390/ijms25105414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024] Open
Abstract
The evaluation of nanostructured biomaterials and medicines is associated with 2D cultures that provide insight into biological mechanisms at the molecular level, while critical aspects of the tumor microenvironment (TME) are provided by the study of animal xenograft models. More realistic models that can histologically reproduce human tumors are provided by tissue engineering methods of co-culturing cells of varied phenotypes to provide 3D tumor spheroids that recapitulate the dynamic TME in 3D matrices. The novel approaches of creating 3D tumor models are combined with tumor tissue engineering (TTE) scaffolds including hydrogels, bioprinted materials, decellularized tissues, fibrous and nanostructured matrices. This review focuses on the use of nanostructured materials in cancer therapy and regeneration, and the development of realistic models for studying TME molecular and immune characteristics. Tissue regeneration is an important aspect of TTE scaffolds used for restoring the normal function of the tissues, while providing cancer treatment. Thus, this article reports recent advancements in the development of 3D TTE models for antitumor drug screening, studying tumor metastasis, and tissue regeneration. Also, this review identifies the significant opportunities of using 3D TTE scaffolds in the evaluation of the immunological mechanisms and processes involved in the application of immunotherapies.
Collapse
Affiliation(s)
- Athina Angelopoulou
- Department of Pharmacy, School of Health Sciences, University of Patras, 26504 Patras, Greece
| |
Collapse
|
7
|
Yu Q, Li X, Wang J, Guo L, Huang L, Gao W. Recent Advances in Reprogramming Strategy of Tumor Microenvironment for Rejuvenating Photosensitizers-Mediated Photodynamic Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305708. [PMID: 38018311 DOI: 10.1002/smll.202305708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/08/2023] [Indexed: 11/30/2023]
Abstract
Photodynamic therapy (PDT) has recently been considered a potential tumor therapy due to its time-space specificity and non-invasive advantages. PDT can not only directly kill tumor cells by using cytotoxic reactive oxygen species but also induce an anti-tumor immune response by causing immunogenic cell death of tumor cells. Although it exhibits a promising prospect in treating tumors, there are still many problems to be solved in its practical application. Tumor hypoxia and immunosuppressive microenvironment seriously affect the efficacy of PDT. The hypoxic and immunosuppressive microenvironment is mainly due to the abnormal vascular matrix around the tumor, its abnormal metabolism, and the influence of various immunosuppressive-related cells and their expressed molecules. Thus, reprogramming the tumor microenvironment (TME) is of great significance for rejuvenating PDT. This article reviews the latest strategies for rejuvenating PDT, from regulating tumor vascular matrix, interfering with tumor cell metabolism, and reprogramming immunosuppressive related cells and factors to reverse tumor hypoxia and immunosuppressive microenvironment. These strategies provide valuable information for a better understanding of the significance of TME in PDT and also guide the development of the next-generation multifunctional nanoplatforms for PDT.
Collapse
Affiliation(s)
- Qing Yu
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, P. R. China
| | - Xia Li
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, P. R. China
| | - Juan Wang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, P. R. China
| | - Lanping Guo
- National Resource Center for Chinese Materia Medica, Chinese Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Luqi Huang
- National Resource Center for Chinese Materia Medica, Chinese Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Wenyuan Gao
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, P. R. China
| |
Collapse
|
8
|
Lin Y, Wang X, He S, Duan Z, Zhang Y, Sun X, Hu Y, Zhang Y, Qian Z, Gao X, Zhang Z. Immunostimulatory gene therapy combined with checkpoint blockade reshapes tumor microenvironment and enhances ovarian cancer immunotherapy. Acta Pharm Sin B 2024; 14:854-868. [PMID: 38322330 PMCID: PMC10840399 DOI: 10.1016/j.apsb.2023.08.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 06/21/2023] [Accepted: 07/07/2023] [Indexed: 02/08/2024] Open
Abstract
Immune evasion has made ovarian cancer notorious for its refractory features, making the development of immunotherapy highly appealing to ovarian cancer treatment. The immune-stimulating cytokine IL-12 exhibits excellent antitumor activities. However, IL-12 can induce IFN-γ release and subsequently upregulate PDL-1 expression on tumor cells. Therefore, the tumor-targeting folate-modified delivery system F-DPC is constructed for concurrent delivery of IL-12 encoding gene and small molecular PDL-1 inhibitor (iPDL-1) to reduce immune escape and boost anti-tumor immunity. The physicochemical characteristics, gene transfection efficiency of the F-DPC nanoparticles in ovarian cancer cells are analyzed. The immune-modulation effects of combination therapy on different immune cells are also studied. Results show that compared with non-folate-modified vector, folate-modified F-DPC can improve the targeting of ovarian cancer and enhance the transfection efficiency of pIL-12. The underlying anti-tumor mechanisms include the regulation of T cells proliferation and activation, NK activation, macrophage polarization and DC maturation. The F-DPC/pIL-12/iPDL-1 complexes have shown outstanding antitumor effects and low toxicity in peritoneal model of ovarian cancer in mice. Taken together, our work provides new insights into ovarian cancer immunotherapy. Novel F-DPC/pIL-12/iPDL-1 complexes are revealed to exert prominent anti-tumor effect by modulating tumor immune microenvironment and preventing immune escape and might be a promising treatment option for ovarian cancer treatment.
Collapse
Affiliation(s)
- Yunzhu Lin
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
- Department of Pharmacy, Evidence-based Pharmacy Center, West China Second University Hospital, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Chengdu 610041, China
| | - Xiang Wang
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Shi He
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Zhongxin Duan
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Yunchu Zhang
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Xiaodong Sun
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Yuzhu Hu
- Department of Radiation Oncology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Yuanyuan Zhang
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Zhiyong Qian
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Xiang Gao
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Zhirong Zhang
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| |
Collapse
|
9
|
Dandia HY, Pillai MM, Sharma D, Suvarna M, Dalal N, Madhok A, Ingle A, Chiplunkar SV, Galande S, Tayalia P. Acellular scaffold-based approach for in situ genetic engineering of host T-cells in solid tumor immunotherapy. Mil Med Res 2024; 11:3. [PMID: 38173045 PMCID: PMC10765574 DOI: 10.1186/s40779-023-00503-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 11/27/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Targeted T-cell therapy has emerged as a promising strategy for the treatment of hematological malignancies. However, its application to solid tumors presents significant challenges due to the limited accessibility and heterogeneity. Localized delivery of tumor-specific T-cells using biomaterials has shown promise, however, procedures required for genetic modification and generation of a sufficient number of tumor-specific T-cells ex vivo remain major obstacles due to cost and time constraints. METHODS Polyethylene glycol (PEG)-based three-dimensional (3D) scaffolds were developed and conjugated with positively charged poly-L-lysine (PLL) using carbamide chemistry for efficient loading of lentiviruses (LVs) carrying tumor antigen-specific T-cell receptors (TCRs). The physical and biological properties of the scaffold were extensively characterized. Further, the scaffold loaded with OVA-TCR LVs was implanted in B16F10 cells expressing ovalbumin (B16-OVA) tumor model to evaluate the anti-tumor response and the presence of transduced T-cells. RESULTS Our findings demonstrate that the scaffolds do not induce any systemic inflammation upon subcutaneous implantation and effectively recruit T-cells to the site. In B16-OVA melanoma tumor-bearing mice, the scaffolds efficiently transduce host T-cells with OVA-specific TCRs. These genetically modified T-cells exhibit homing capability towards the tumor and secondary lymphoid organs, resulting in a significant reduction of tumor size and systemic increase in anti-tumor cytokines. Immune cell profiling revealed a significantly high percentage of transduced T-cells and a notable reduction in suppressor immune cells within the tumors of mice implanted with these scaffolds. CONCLUSION Our scaffold-based T-cell therapy presents an innovative in situ localized approach for programming T-cells to target solid tumors. This approach offers a viable alternative to in vitro manipulation of T-cells, circumventing the need for large-scale in vitro generation and culture of tumor-specific T-cells. It offers an off-the-shelf alternative that facilitates the use of host cells instead of allogeneic cells, thereby, overcoming a major hurdle.
Collapse
Affiliation(s)
- Hiren Y Dandia
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| | - Mamatha M Pillai
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| | - Deepak Sharma
- Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Mumbai, 400085, India
| | - Meghna Suvarna
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| | - Neha Dalal
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| | - Ayush Madhok
- Centre of Excellence in Epigenetics, Department of Biology, Indian Institute of Science Education and Research, Pune, 411008, India
| | - Arvind Ingle
- Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Mumbai, 410210, India
| | - Shubhada V Chiplunkar
- Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Mumbai, 410210, India
| | - Sanjeev Galande
- Centre of Excellence in Epigenetics, Department of Biology, Indian Institute of Science Education and Research, Pune, 411008, India
| | - Prakriti Tayalia
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India.
| |
Collapse
|
10
|
Askari E, Shokrollahi Barough M, Rahmanian M, Mojtabavi N, Sarrami Forooshani R, Seyfoori A, Akbari M. Cancer Immunotherapy Using Bioengineered Micro/Nano Structured Hydrogels. Adv Healthc Mater 2023; 12:e2301174. [PMID: 37612251 PMCID: PMC11468077 DOI: 10.1002/adhm.202301174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 08/15/2023] [Indexed: 08/25/2023]
Abstract
Hydrogels, a class of materials with a 3D network structure, are widely used in various applications of therapeutic delivery, particularly cancer therapy. Micro and nanogels as miniaturized structures of the bioengineered hydrogels may provide extensive benefits over the common hydrogels in encapsulation and controlled release of small molecular drugs, macromolecular therapeutics, and even cells. Cancer immunotherapy is rapidly developing, and micro/nanostructured hydrogels have gained wide attention regarding their engineered payload release properties that enhance systemic anticancer immunity. Additionally, they are a great candidate due to their local administration properties with a focus on local immune cell manipulation in favor of active and passive immunotherapies. Although applied locally, such micro/nanostructured can also activate systemic antitumor immune responses by releasing nanovaccines safely and effectively inhibiting tumor metastasis and recurrence. However, such hydrogels are mostly used as locally administered carriers to stimulate the immune cells by releasing tumor lysate, drugs, or nanovaccines. In this review, the latest developments in cancer immunotherapy are summarized using micro/nanostructured hydrogels with a particular emphasis on their function depending on the administration route. Moreover, the potential for clinical translation of these hydrogel-based cancer immunotherapies is also discussed.
Collapse
Affiliation(s)
- Esfandyar Askari
- Laboratory for Innovations in Micro Engineering (LiME)Department of Mechanical EngineeringUniversity of VictoriaVictoriaBC V8P 5C2Canada
| | - Mahdieh Shokrollahi Barough
- Laboratory for Innovations in Micro Engineering (LiME)Department of Mechanical EngineeringUniversity of VictoriaVictoriaBC V8P 5C2Canada
- Department of ImmunologySchool of MedicineIran University of Medical SciencesTehran1449614535Iran
- ATMP DepartmentBreast Cancer Research CenterMotamed Cancer InstituteACECRTehran1517964311Iran
| | - Mehdi Rahmanian
- Biomaterials and Tissue Engineering DepartmentBreast Cancer Research CenterMotamed Cancer InstituteACECRTehran1517964311Iran
| | - Nazanin Mojtabavi
- Department of ImmunologySchool of MedicineIran University of Medical SciencesTehran1449614535Iran
| | | | - Amir Seyfoori
- Laboratory for Innovations in Micro Engineering (LiME)Department of Mechanical EngineeringUniversity of VictoriaVictoriaBC V8P 5C2Canada
- Biomaterials and Tissue Engineering DepartmentBreast Cancer Research CenterMotamed Cancer InstituteACECRTehran1517964311Iran
- Center for Advanced Materials and Related TechnologiesUniversity of VictoriaVictoriaBC V8P 5C2Canada
| | - Mohsen Akbari
- Laboratory for Innovations in Micro Engineering (LiME)Department of Mechanical EngineeringUniversity of VictoriaVictoriaBC V8P 5C2Canada
- Center for Advanced Materials and Related TechnologiesUniversity of VictoriaVictoriaBC V8P 5C2Canada
- Center for Biomedical ResearchUniversity of VictoriaVictoriaBC V8P 5C2Canada
| |
Collapse
|
11
|
Huang B, Yin Z, Zhou F, Su J. Functional anti-bone tumor biomaterial scaffold: construction and application. J Mater Chem B 2023; 11:8565-8585. [PMID: 37415547 DOI: 10.1039/d3tb00925d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/08/2023]
Abstract
Bone tumors, including primary bone tumors and bone metastases, have been plagued by poor prognosis for decades. Although most tumor tissue is removed, clinicians are still confronted with the dilemma of eliminating residual cancer cells and regenerating defective bone tissue after surgery. Therefore, functional biomaterial scaffolds are considered to be the ideal candidates to bridge defective tissues and restrain cancer recurrence. Through functionalized structural modifications or coupled therapeutic agents, they provide sufficient mechanical strength and osteoinductive effects while eliminating cancer cells. Numerous novel approaches such as photodynamic, photothermal, drug-conjugated, and immune adjuvant-assisted therapies have exhibited remarkable efficacy against tumors while exhibiting low immunogenicity. This review summarizes the progress of research on biomaterial scaffolds based on different functionalization strategies in bone tumors. We also discuss the feasibility and advantages of the combined application of multiple functionalization strategies. Finally, potential obstacles to the clinical translation of anti-tumor bone bioscaffolds are highlighted. This review will provide valuable references for future advanced biomaterial scaffold design and clinical bone tumor therapy.
Collapse
Affiliation(s)
- Biaotong Huang
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China.
- Organoid Research Center, Shanghai University, Shanghai, 200444, China
- Wenzhou Institute of Shanghai University, Wenzhou 325000, China
| | - Zhifeng Yin
- Department of Orthopedics, Shanghai Zhongye Hospital, Shanghai, 200444, China
| | - Fengjin Zhou
- Department of Orthopedics, Honghui Hospital, Xi'an Jiao Tong University, Xi'an, 710000, China.
| | - Jiacan Su
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China.
- Organoid Research Center, Shanghai University, Shanghai, 200444, China
| |
Collapse
|
12
|
Niu H, Zhao P, Sun W. Biomaterials for chimeric antigen receptor T cell engineering. Acta Biomater 2023; 166:1-13. [PMID: 37137403 DOI: 10.1016/j.actbio.2023.04.043] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 04/23/2023] [Accepted: 04/27/2023] [Indexed: 05/05/2023]
Abstract
Chimeric antigen receptor T (CAR-T) cells have achieved breakthrough efficacies against hematological malignancies, but their unsatisfactory efficacies in solid tumors limit their applications. The prohibitively high prices further restrict their access to broader populations. Novel strategies are urgently needed to address these challenges, and engineering biomaterials can be one promising approach. The established process for manufacturing CAR-T cells involves multiple steps, and biomaterials can help simplify or improve several of them. In this review, we cover recent progress in engineering biomaterials for producing or stimulating CAR-T cells. We focus on the engineering of non-viral gene delivery nanoparticles for transducing CAR into T cells ex vivo/in vitro or in vivo. We also dive into the engineering of nano-/microparticles or implantable scaffolds for local delivery or stimulation of CAR-T cells. These biomaterial-based strategies can potentially change the way CAR-T cells are manufactured, significantly reducing their cost. Modulating the tumor microenvironment with the biomaterials can also considerably enhance the efficacy of CAR-T cells in solid tumors. We pay special attention to progress made in the past five years, and perspectives on future challenges and opportunities are also discussed. STATEMENT OF SIGNIFICANCE: Chimeric antigen receptor T (CAR-T) cell therapies have revolutionized the field of cancer immunotherapy with genetically engineered tumor recognition. They are also promising for treating many other diseases. However, the widespread application of CAR-T cell therapy has been hampered by the high manufacturing cost. Poor penetration of CAR-T cells into solid tissues further restricted their use. While biological strategies have been explored to improve CAR-T cell therapies, such as identifying new cancer targets or integrating smart CARs, biomaterial engineering provides alternative strategies toward better CAR-T cells. In this review, we summarize recent advances in engineering biomaterials for CAR-T cell improvement. Biomaterials ranging from nano-, micro-, and macro-scales have been developed to assist CAR-T cell manufacturing and formulation.
Collapse
Affiliation(s)
- Huanqing Niu
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, VA 24061, USA; State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, Jiangsu 211816, China
| | - Penghui Zhao
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, VA 24061, USA
| | - Wujin Sun
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, VA 24061, USA; Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA 24061, USA; Center for Emerging, Zoonotic, and Arthropod-Born Pathogens, Virginia Tech, Blacksburg, VA 24061, USA.
| |
Collapse
|
13
|
Hosseini F, Mirzaei Chegeni M, Bidaki A, Zaer M, Abolhassani H, Seyedi SA, Nabipoorashrafi SA, Ashrafnia Menarbazari A, Moeinzadeh A, Farmani AR, Tavakkoli Yaraki M. 3D-printing-assisted synthesis of paclitaxel-loaded niosomes functionalized by cross-linked gelatin/alginate composite: Large-scale synthesis and in-vitro anti-cancer evaluation. Int J Biol Macromol 2023; 242:124697. [PMID: 37156313 DOI: 10.1016/j.ijbiomac.2023.124697] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/24/2023] [Accepted: 04/28/2023] [Indexed: 05/10/2023]
Abstract
Breast cancer is one of the most lethal cancers, especially in women. Despite many efforts, side effects of anti-cancer drugs and metastasis are still the main challenges in breast cancer treatment. Recently, advanced technologies such as 3D-printing and nanotechnology have created new horizons in cancer treatment. In this work, we report an advanced drug delivery system based on 3D-printed gelatin-alginate scaffolds containing paclitaxel-loaded niosomes (Nio-PTX@GT-AL). The morphology, drug release, degradation, cellular uptake, flow cytometry, cell cytotoxicity, migration, gene expression, and caspase activity of scaffolds, and control samples (Nio-PTX, and Free-PTX) were investigated. Results demonstrated that synthesized niosomes had spherical-like, in the range of 60-80 nm with desirable cellular uptake. Nio-PTX@GT-AL and Nio-PTX had a sustained drug release and were biodegradable. Cytotoxicity studies revealed that the designed Nio-PTX@GT-AL scaffold had <5 % cytotoxicity against non-tumorigenic breast cell line (MCF-10A) but showed 80 % cytotoxicity against breast cancer cells (MCF-7), which was considerably more than the anti-cancer effects of control samples. In migration evaluation (scratch-assay), approximately 70 % reduction of covered surface area was observed. The anticancer effect of the designed nanocarrier could be attributed to gene expression regulation, where a significant increase in the expression and activity of genes promoting apoptosis (CASP-3, CASP-8, and CASP-9) and inhibiting metastasis (Bax, and p53) and a remarkable decrease in metastasis-enhancing genes (Bcl2, MMP-2, and MMP-9) were observed. Also, flow cytometry results declared that Nio-PTX@GT-AL reduced necrosis and increased apoptosis considerably. The results of this study prove that employing 3D-printing and niosomal formulation is an effective approach in designing nanocarriers for efficient drug delivery applications.
Collapse
Affiliation(s)
- Fatemeh Hosseini
- Chemical Engineering Department, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad, Iran
| | | | - Ali Bidaki
- Chemical Engineering Department, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Mohammad Zaer
- Biomedical Engineering Department, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, Iran
| | - Hossein Abolhassani
- Department of Biomedical Engineering, University of Rochester, Rochester, NY 14627, USA
| | - Seyed Arsalan Seyedi
- Endocrinology and Metabolism Research Center (EMRC), Vali-Asr Hospital, School of Medicine, Tehran, Iran
| | - Seyed Ali Nabipoorashrafi
- Endocrinology and Metabolism Research Center (EMRC), Vali-Asr Hospital, School of Medicine, Tehran, Iran
| | | | - Alaa Moeinzadeh
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ahmad Reza Farmani
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Fasa University of Medical Sciences, Fasa, Iran.
| | - Mohammad Tavakkoli Yaraki
- School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, NSW 2109, Australia.
| |
Collapse
|
14
|
Dong H, Li Q, Zhang Y, Ding M, Teng Z, Mou Y. Biomaterials Facilitating Dendritic Cell-Mediated Cancer Immunotherapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2301339. [PMID: 37088780 PMCID: PMC10288267 DOI: 10.1002/advs.202301339] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/22/2023] [Indexed: 05/03/2023]
Abstract
Dendritic cell (DC)-based cancer immunotherapy has exhibited remarkable clinical prospects because DCs play a central role in initiating and regulating adaptive immune responses. However, the application of traditional DC-mediated immunotherapy is limited due to insufficient antigen delivery, inadequate antigen presentation, and high levels of immunosuppression. To address these challenges, engineered biomaterials have been exploited to enhance DC-mediated immunotherapeutic effects. In this review, vital principal components that can enhance DC-mediated immunotherapeutic effects are first introduced. The parameters considered in the rational design of biomaterials, including targeting modifications, size, shape, surface, and mechanical properties, which can affect biomaterial optimization of DC functions, are further summarized. Moreover, recent applications of various engineered biomaterials in the field of DC-mediated immunotherapy are reviewed, including those serve as immune component delivery platforms, remodel the tumor microenvironment, and synergistically enhance the effects of other antitumor therapies. Overall, the present review comprehensively and systematically summarizes biomaterials related to the promotion of DC functions; and specifically focuses on the recent advances in biomaterial designs for DC activation to eradicate tumors. The challenges and opportunities of treatment strategies designed to amplify DCs via the application of biomaterials are discussed with the aim of inspiring the clinical translation of future DC-mediated cancer immunotherapies.
Collapse
Affiliation(s)
- Heng Dong
- Nanjing Stomatological HospitalAffiliated Hospital of Medical School, Nanjing University30 Zhongyang RoadNanjingJiangsu210008P. R. China
| | - Qiang Li
- Nanjing Stomatological HospitalAffiliated Hospital of Medical School, Nanjing University30 Zhongyang RoadNanjingJiangsu210008P. R. China
| | - Yu Zhang
- Nanjing Stomatological HospitalAffiliated Hospital of Medical School, Nanjing University30 Zhongyang RoadNanjingJiangsu210008P. R. China
| | - Meng Ding
- Nanjing Stomatological HospitalAffiliated Hospital of Medical School, Nanjing University30 Zhongyang RoadNanjingJiangsu210008P. R. China
| | - Zhaogang Teng
- Key Laboratory for Organic Electronics and Information DisplaysJiangsu Key Laboratory for BiosensorsInstitute of Advanced MaterialsJiangsu National Synergetic Innovation Centre for Advanced MaterialsNanjing University of Posts and Telecommunications9 Wenyuan RoadNanjingJiangsu210023P. R. China
| | - Yongbin Mou
- Nanjing Stomatological HospitalAffiliated Hospital of Medical School, Nanjing University30 Zhongyang RoadNanjingJiangsu210008P. R. China
| |
Collapse
|
15
|
Xiao M, Tang Q, Zeng S, Yang Q, Yang X, Tong X, Zhu G, Lei L, Li S. Emerging biomaterials for tumor immunotherapy. Biomater Res 2023; 27:47. [PMID: 37194085 DOI: 10.1186/s40824-023-00369-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 03/23/2023] [Indexed: 05/18/2023] Open
Abstract
BACKGROUND The immune system interacts with cancer cells in various intricate ways that can protect the individual from overproliferation of cancer cells; however, these interactions can also lead to malignancy. There has been a dramatic increase in the application of cancer immunotherapy in the last decade. However, low immunogenicity, poor specificity, weak presentation efficiency, and off-target side effects still limit its widespread application. Fortunately, advanced biomaterials effectively contribute immunotherapy and play an important role in cancer treatment, making it a research hotspot in the biomedical field. MAIN BODY This review discusses immunotherapies and the development of related biomaterials for application in the field. The review first summarizes the various types of tumor immunotherapy applicable in clinical practice as well as their underlying mechanisms. Further, it focuses on the types of biomaterials applied in immunotherapy and related research on metal nanomaterials, silicon nanoparticles, carbon nanotubes, polymer nanoparticles, and cell membrane nanocarriers. Moreover, we introduce the preparation and processing technologies of these biomaterials (liposomes, microspheres, microneedles, and hydrogels) and summarize their mechanisms when applied to tumor immunotherapy. Finally, we discuss future advancements and shortcomings related to the application of biomaterials in tumor immunotherapy. CONCLUSION Research on biomaterial-based tumor immunotherapy is booming; however, several challenges remain to be overcome to transition from experimental research to clinical application. Biomaterials have been optimized continuously and nanotechnology has achieved continuous progression, ensuring the development of more efficient biomaterials, thereby providing a platform and opportunity for breakthroughs in tumor immunotherapy.
Collapse
Affiliation(s)
- Minna Xiao
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Qinglai Tang
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Shiying Zeng
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Qian Yang
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Xinming Yang
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Xinying Tong
- Department of Hemodialysis, the Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Gangcai Zhu
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Lanjie Lei
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China.
| | - Shisheng Li
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China.
| |
Collapse
|
16
|
Lu X, Jiao H, Shi Y, Li Y, Zhang H, Fu Y, Guo J, Wang Q, Liu X, Zhou M, Ullah MW, Sun J, Liu J. Fabrication of bio-inspired anisotropic structures from biopolymers for biomedical applications: A review. Carbohydr Polym 2023; 308:120669. [PMID: 36813347 DOI: 10.1016/j.carbpol.2023.120669] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 01/25/2023] [Accepted: 02/02/2023] [Indexed: 02/09/2023]
Abstract
The anisotropic features play indispensable roles in regulating various life activities in different organisms. Increasing efforts have been made to learn and mimic various tissues' intrinsic anisotropic structure or functionality for broad applications in different areas, especially in biomedicine and pharmacy. This paper discusses the strategies for fabricating biomaterials using biopolymers for biomedical applications with the case study analysis. Biopolymers, including different polysaccharides, proteins, and their derivates, that have been confirmed with sound biocompatibility for different biomedical applications are summarized, with a special focus on nanocellulose. Advanced analytical techniques for understanding and characterizing the biopolymer-based anisotropic structures for various biomedical applications are also summarized. Challenges still exist in precisely constructing biopolymers-based biomaterials with anisotropic structures from molecular to macroscopic levels and fitting the dynamic processes in native tissue. It is foreseeable that with the advancement of biopolymers' molecular functionalization, biopolymer building block orientation manipulation strategies, and structural characterization techniques, developing anisotropic biopolymer-based biomaterials for different biomedical applications would significantly contribute to a friendly disease-curing and healthcare experience.
Collapse
Affiliation(s)
- Xuechu Lu
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Haixin Jiao
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Yifei Shi
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Yan Li
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Hongxing Zhang
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Yinyi Fu
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Jiaqi Guo
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Qianqian Wang
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Xiang Liu
- Institute of Medicine & Chemical Engineering, Zhenjiang College, Zhenjiang 212028, China
| | - Mengbo Zhou
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Muhammad Wajid Ullah
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Jianzhong Sun
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Jun Liu
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China; Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China.
| |
Collapse
|
17
|
Kalami A, Shahgolzari M, Khosroushahi AY, Fiering S. Combining in situ vaccination and immunogenic apoptosis to treat cancer. Immunotherapy 2023; 15:367-381. [PMID: 36852419 DOI: 10.2217/imt-2022-0137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023] Open
Abstract
Immunization approaches are designed to stimulate the immune system and eliminate the tumor. Studies indicate that cancer immunization combined with certain chemotherapeutics and immunostimulatory agents can improve outcomes. Chemotherapeutics-based immunogenic cell death makes the tumor more recognizable by the immune system. In situ vaccination (ISV) utilizes established tumors as antigen sources and directly applies an immune adjuvant to the tumor to reverse a cold tumor microenvironment to a hot one. Immunogenic cell death and ISV highlight for the immune system the tumor antigens that are recognizable by immune cells and support a T-cell attack of the tumor cells. This review presents the concept of immunogenic apoptosis and ISV as a powerful platform for cancer immunization.
Collapse
Affiliation(s)
- Arman Kalami
- Biotechnology Research Center, Student Research Committee, Faculty of Nutrition, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Shahgolzari
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ahmad Yari Khosroushahi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Steven Fiering
- Department of Microbiology & Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA.,Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth & Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA
| |
Collapse
|
18
|
Wang M, Yao X, Bo Z, Zheng J, Yu H, Xie X, Lin Z, Wang Y, Chen G, Wu L. Synergistic Effect of Lenvatinib and Chemotherapy in Hepatocellular Carcinoma Using Preclinical Models. J Hepatocell Carcinoma 2023; 10:483-495. [PMID: 37007211 PMCID: PMC10065123 DOI: 10.2147/jhc.s395474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 03/11/2023] [Indexed: 03/29/2023] Open
Abstract
Purpose The current study aimed to evaluate the synergistic efficacy of lenvatinib and FOLFOX (infusional fluorouracil (FU), folinic acid, and oxaliplatin) in hepatocellular carcinoma (HCC) using patient-derived xenograft (PDX) and PDX-derived organotypic spheroid (XDOTS) models in vivo and in vitro. Methods PDX and matched XDOTS models originating from three patients with HCC were established. All models were divided into four groups and treated with drugs alone or in combination. Tumor growth in the PDX models was measured and recorded, and angiogenesis and phosphorylation of the vascular endothelial growth factor receptor (VEGFR2), rearranged during transfection (RET), and extracellular signal-regulated kinase (ERK) were detected using immunohistochemistry and Western blot assays. The proliferative ability of XDOTS was evaluated through active staining and immunofluorescence staining, and the effect of the combined medication was evaluated using the Celltiter-Glo luminescent cell viability assay. Results Three PDX models with genetic characteristics similar to those of the original tumors were successfully established. Combining lenvatinib with FOLFOX led to a higher tumor growth inhibition rate than individual therapies (P < 0.01). Immunohistochemical analysis demonstrated that the combined treatment significantly inhibited the proliferation and angiogenesis of PDX tissues (P < 0.05), and Western blot analysis showed that the combined treatment significantly inhibited the phosphorylation of VEGFR2, RET, and ERK compared with single-agent treatment. Additionally, all three matched XDOTS models were successfully cultured with satisfactory activity and proliferation, and the combined therapies led to better suppression of XDOTS growth compared with individual therapy (P < 0.05). Conclusion Lenvatinib combined with FOLFOX had a synergistic antitumor effect in HCC PDX and XDOTS models by inhibiting the phosphorylation of VEGFR, RET, and ERK.
Collapse
Affiliation(s)
- Mingxun Wang
- Department of Ultrasonography, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People’s Republic of China
| | - Xinfei Yao
- The First Clinical College, Wenzhou Medical University, Wenzhou, People’s Republic of China
| | - Zhiyuan Bo
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People’s Republic of China
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People’s Republic of China
| | - Jiuyi Zheng
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People’s Republic of China
| | - Haitao Yu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People’s Republic of China
| | - Xiaozai Xie
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People’s Republic of China
| | - Zixia Lin
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People’s Republic of China
| | - Yi Wang
- Department of Epidemiology and Biostatistics, School of Public Health and Management, Wenzhou Medical University, Wenzhou, People’s Republic of China
| | - Gang Chen
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People’s Republic of China
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People’s Republic of China
| | - Lijun Wu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People’s Republic of China
- Correspondence: Lijun Wu; Gang Chen, Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Fuxue Road, Wenzhou, Zhejiang, 325035, People’s Republic of China, Tel +86 577 55579-453, Fax +86 577 55579-555, Email ;
| |
Collapse
|
19
|
Emerging Trends in Nano-Driven Immunotherapy for Treatment of Cancer. Vaccines (Basel) 2023; 11:vaccines11020458. [PMID: 36851335 PMCID: PMC9968063 DOI: 10.3390/vaccines11020458] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/09/2023] [Accepted: 02/12/2023] [Indexed: 02/18/2023] Open
Abstract
Despite advancements in the development of anticancer medications and therapies, cancer still has the greatest fatality rate due to a dismal prognosis. Traditional cancer therapies include chemotherapy, radiotherapy, and targeted therapy. The conventional treatments have a number of shortcomings, such as a lack of selectivity, non-specific cytotoxicity, suboptimal drug delivery to tumour locations, and multi-drug resistance, which results in a less potent/ineffective therapeutic outcome. Cancer immunotherapy is an emerging and promising strategy to elicit a pronounced immune response against cancer. Immunotherapy stimulates the immune system with cancer-specific antigens or immune checkpoint inhibitors to overcome the immune suppressive tumour microenvironment and kill the cancer cells. However, delivery of the antigen or immune checkpoint inhibitors and activation of the immune response need to circumvent the issues pertaining to short lifetimes and effect times, as well as adverse effects associated with off-targeting, suboptimal, or hyperactivation of the immune system. Additional challenges posed by the tumour suppressive microenvironment are less tumour immunogenicity and the inhibition of effector T cells. The evolution of nanotechnology in recent years has paved the way for improving treatment efficacy by facilitating site-specific and sustained delivery of the therapeutic moiety to elicit a robust immune response. The amenability of nanoparticles towards surface functionalization and tuneable physicochemical properties, size, shape, and surfaces charge have been successfully harnessed for immunotherapy, as well as combination therapy, against cancer. In this review, we have summarized the recent advancements made in choosing different nanomaterial combinations and their modifications made to enable their interaction with different molecular and cellular targets for efficient immunotherapy. This review also highlights recent trends in immunotherapy strategies to be used independently, as well as in combination, for the destruction of cancer cells, as well as prevent metastasis and recurrence.
Collapse
|
20
|
Zaszczyńska A, Niemczyk-Soczynska B, Sajkiewicz P. A Comprehensive Review of Electrospun Fibers, 3D-Printed Scaffolds, and Hydrogels for Cancer Therapies. Polymers (Basel) 2022; 14:5278. [PMID: 36501672 PMCID: PMC9736375 DOI: 10.3390/polym14235278] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/21/2022] [Accepted: 11/28/2022] [Indexed: 12/09/2022] Open
Abstract
Anticancer therapies and regenerative medicine are being developed to destroy tumor cells, as well as remodel, replace, and support injured organs and tissues. Nowadays, a suitable three-dimensional structure of the scaffold and the type of cells used are crucial for creating bio-inspired organs and tissues. The materials used in medicine are made of non-degradable and degradable biomaterials and can serve as drug carriers. Developing flexible and properly targeted drug carrier systems is crucial for tissue engineering, regenerative medicine, and novel cancer treatment strategies. This review is focused on presenting innovative biomaterials, i.e., electrospun nanofibers, 3D-printed scaffolds, and hydrogels as a novel approach for anticancer treatments which are still under development and awaiting thorough optimization.
Collapse
Affiliation(s)
| | | | - Paweł Sajkiewicz
- Laboratory of Polymers & Biomaterials, Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawińskiego 5B, 02-106 Warsaw, Poland
| |
Collapse
|
21
|
Liu S, Nguyen K, Park D, Wong N, Wang A, Zhou Y. Harnessing natural killer cells to develop next-generation cellular immunotherapy. Chronic Dis Transl Med 2022; 8:245-255. [PMID: 36420177 PMCID: PMC9676120 DOI: 10.1002/cdt3.40] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 07/07/2022] [Accepted: 07/13/2022] [Indexed: 11/07/2022] Open
Abstract
Cellular immunotherapy harnesses the body's own immune system to fight cancer by using engineered T cells, macrophages, or natural killer (NK) cells. Compared to chimeric antigen receptor T (CAR-T) cells that are commonly used to treat hematological malignancies, CAR-NK cells have shown remarkable therapeutic effectiveness while exhibiting enhanced safety, reduced risk of graft-versus-host disease, fewer side effects, and amplified antitumor efficacy. Preclinical trials have unveiled the high potential of adoptive CAR-NK cell therapy to curtail or even eliminate both hematological malignancies and solid tumors in animal models. We brought forth herein the design principle of CAR-NK cells, highlighted the latest progress in the preclinical testing and clinical trials of CAR-NK cells, briefly delved into discussed major roadblocks in CAR-NK therapy, and discussed potential solutions to surmount these challenges. Given the accelerated progress in both basic and translational studies on immune cell engineering, CAR-NK cell therapy promises to become a serious contender and important addition to the next-generation cell-based immunotherapy.
Collapse
Affiliation(s)
- Siyao Liu
- Center for Translational Cancer Research, Institute of Biosciences and TechnologyTexas A&M UniversityHoustonTexasUSA
| | - Kaycee Nguyen
- Center for Translational Cancer Research, Institute of Biosciences and TechnologyTexas A&M UniversityHoustonTexasUSA
| | - Dongyong Park
- Center for Translational Cancer Research, Institute of Biosciences and TechnologyTexas A&M UniversityHoustonTexasUSA
| | - Nelson Wong
- Center for Translational Cancer Research, Institute of Biosciences and TechnologyTexas A&M UniversityHoustonTexasUSA
| | - Anson Wang
- Center for Translational Cancer Research, Institute of Biosciences and TechnologyTexas A&M UniversityHoustonTexasUSA
| | - Yubin Zhou
- Center for Translational Cancer Research, Institute of Biosciences and TechnologyTexas A&M UniversityHoustonTexasUSA
- Department of Translational Medical Sciences, School of MedicineTexas A&M UniversityHoustonTexasUSA
| |
Collapse
|
22
|
Zhao H, Li Y, Shi H, Niu M, Li D, Zhang Z, Feng Q, Zhang Y, Wang L. Prodrug nanoparticles potentiate tumor chemo-immunometabolic therapy by disturbing oxidative stress. J Control Release 2022; 352:909-919. [PMID: 36370878 DOI: 10.1016/j.jconrel.2022.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/30/2022] [Accepted: 11/04/2022] [Indexed: 11/15/2022]
Abstract
Constant oxidative stress and lactate accumulation are two main causes of tumor immunosuppression, their concurrent reduction plays a dominant role in effective antitumor immunity, but remains challenging. Herein, reactive oxygen species (ROS) responsive prodrug nanoparticles (designed as DHCRJ) are constructed for metabolic amplified chemo-immunotherapy against triple-negative breast cancer (TNBC) by modulating oxidative state and hyperglycolysis. Specifically, DHCRJ is prepared by the self-assembly of DOX prodrug-tethered ROS consuming bond-bridged copolymers with the loading of bromodomain-containing protein 4 inhibitor (BRD4i) JQ1. Interestingly, the nanoparticle polymer network could reduce ROS to relieve tumor hypoxia and realize the dense-to-loose structure inversion arising from ROS-triggered network collapse, which favors JQ1 release and hyaluronidase (Hyal)-activatable DOX prodrugs generation. More importantly, disruption of oxidative stress decreases glucose uptake and assists JQ1 to down-regulate oncogene c-Myc driven tumor glycolysis for blocking the source of lactate and reshaping immunosuppressive tumor microenvironment (ITME). Meanwhile, benefiting from the synergistic effect of DOX prodrugs and JQ1, DHCRJ is able to facilitate tumor immunogenicity and potentiate systemic immune responses through antigen processing and presentation pathway. In this manner, DHCRJ significantly suppresses tumor growth and metastasis with prolonged survival. Collectively, this study represents a proof of concept antioxidant-enhanced chemo-immunometabolic therapy strategy using ROS-reducing nanoparticles for efficient synergistic therapeutic modality of TNBC.
Collapse
Affiliation(s)
- Hongjuan Zhao
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China; Biotherapy Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450052, China; Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou 450001, PR China
| | - Yatong Li
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China
| | - Haiyu Shi
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China
| | - Mengya Niu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China
| | - Dan Li
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China
| | - Zhenzhong Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China; Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou 450001, PR China
| | - Qianhua Feng
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China; Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou 450001, PR China.
| | - Yi Zhang
- Biotherapy Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450052, China.
| | - Lei Wang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China; Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou 450001, PR China.
| |
Collapse
|
23
|
Piñón-Zárate G, Hernández-Téllez B, Jarquín-Yáñez K, Herrera-Enríquez MÁ, Fuerte-Pérez AE, Valencia-Escamilla EA, Castell-Rodríguez AE. Gelatin/Hyaluronic Acid Scaffold Coupled to CpG and MAGE-A5 as a Treatment against Murine Melanoma. Polymers (Basel) 2022; 14:4608. [PMID: 36365602 PMCID: PMC9657831 DOI: 10.3390/polym14214608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/24/2022] [Accepted: 10/25/2022] [Indexed: 09/08/2024] Open
Abstract
The half-time of cells and molecules used in immunotherapy is limited. Scaffolds-based immunotherapy against cancer may increase the half-life of the molecules and also support the migration and activation of leukocytes in situ. For this purpose, the use of gelatin (Ge)/hyaluronic acid (HA) scaffolds coupled to CpG and the tumor antigen MAGE-A5 is proposed. Ge and HA are components of the extracellular matrix that stimulate cell adhesion and activation of leucocytes; CpG can promote dendritic cell maturation, and MAGE-A5 a specific antitumor response. C57BL/6 mice were treated with Ge/HA/scaffolds coupled to MAGE-A5 and/or CpG and then challenged with the B16-F10 melanoma cell line. Survival, tumor growth rate and the immune response induced by the scaffolds were analyzed. Ge/HA/CpG and Ge/HA/MAGE-A5 mediated dendritic cell maturation and macrophage activation, increased survival, and decreased the tumor growth rate and a tumor parenchyma with abundant cell death areas and abundant tumor cells with melanin granules. Only the scaffolds coupled to MAGE-A5 induced the activation of CD8 T cells. In conclusion, Ge/HA scaffolds coupled to CpG or MAGE-A5, but not the mixture, can induce a successful immune response capable of promoting tumor cell clearance and increased survival.
Collapse
Affiliation(s)
- Gabriela Piñón-Zárate
- Facultad de Medicina, National Autonomous University of Mexico, Ciudad de México 04510, Mexico
| | | | | | | | | | | | | |
Collapse
|
24
|
Hu Q, Lu R, Liu S, Liu Y, Gu Y, Zhang H. 3D printing GelMA/PVA interpenetrating polymer networks scaffolds mediated with CuO nanoparticles for angiogenesis. Macromol Biosci 2022; 22:e2200208. [PMID: 35904133 DOI: 10.1002/mabi.202200208] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/19/2022] [Indexed: 11/08/2022]
Abstract
Biocompatible hydrogels have been considered one of the most well-known and promising in the various materials used in the fabrication of tissue-engineering scaffolds. Although considerable progress has been made in recent decades, many limitations remain, such as poor mechanical and degradation properties of biomaterials. In addition, vascularization of tissue-engineering scaffold is enduring challenge, which limited the fabrication and application of scaffold with clinically relevant dimension. To cover these challenges, in this work, a novel nanocomposite interpenetrating polymer networks (IPN) hydrogel scaffold consists of methacrylated gelatin (GelMA), poly(vinyl alcohol) (PVA) and copper oxide nanoparticles (CuONPs) was fabricated by extrusion-based 3D printing and contained favorable biological and physicochemical properties, such as mechanical, degradation, and cytocompatibility properties, particularly conducive to angiogenesis in the scaffold. A series of physiochemical and biological characterizations of the photo-crosslinked and hydrogen-bonded crosslinked IPN scaffolds were performed. Results showed that the mechanical and degradation properties of the nanocompsite GelMA/PVA scaffolds were obviously improved compare to GelMA scaffolds with single network. In vitro cell experiments and a chick embryo angiogenesis (CEA) assay confirmed good cytocompatibility of the fabricated scaffold with adipose-derived stem and human umbilical vein endothelial cells and its potential to promote cell migration and angiogenesis. In conclusion, all together of results demonstrated that GelMA/PVA IPN scaffolds modified with CuONPs have great potential for fabrication of volumetric scaffolds and promote angiogenesis during tissue growth and repair. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Qingxi Hu
- Rapid Manufacturing Engineering Center, School of Mechatronical Engineering and Automation, Shanghai University, Shanghai, 200444, China.,National Demonstration Center for Experimental Engineering Training Education, Shanghai University, Shanghai, 200444, China.,Shanghai Key Laboratory of Intelligent Manufacturing and Robotics, Shanghai University, Shanghai, 200072, China
| | - Runsheng Lu
- Rapid Manufacturing Engineering Center, School of Mechatronical Engineering and Automation, Shanghai University, Shanghai, 200444, China
| | - Suihong Liu
- Rapid Manufacturing Engineering Center, School of Mechatronical Engineering and Automation, Shanghai University, Shanghai, 200444, China.,Centre for Translational Bone, Joint and Soft Tissue Research, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307, Dresden, Germany
| | - Yakui Liu
- Rapid Manufacturing Engineering Center, School of Mechatronical Engineering and Automation, Shanghai University, Shanghai, 200444, China
| | - Yan Gu
- Department of general surgery, Huadong Hospital, Fudan University Shanghai Medical School, Shanghai, 200040, China
| | - Haiguang Zhang
- Rapid Manufacturing Engineering Center, School of Mechatronical Engineering and Automation, Shanghai University, Shanghai, 200444, China.,National Demonstration Center for Experimental Engineering Training Education, Shanghai University, Shanghai, 200444, China.,Shanghai Key Laboratory of Intelligent Manufacturing and Robotics, Shanghai University, Shanghai, 200072, China
| |
Collapse
|
25
|
Zhou C, Wang C, Xu K, Niu Z, Zou S, Zhang D, Qian Z, Liao J, Xie J. Hydrogel platform with tunable stiffness based on magnetic nanoparticles cross-linked GelMA for cartilage regeneration and its intrinsic biomechanism. Bioact Mater 2022; 25:615-628. [PMID: 37056264 PMCID: PMC10087085 DOI: 10.1016/j.bioactmat.2022.07.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 07/11/2022] [Accepted: 07/11/2022] [Indexed: 11/02/2022] Open
Abstract
Cartilage injury affects numerous individuals, but the efficient repair of damaged cartilage is still a problem in clinic. Hydrogel is a potent scaffold candidate for tissue regeneration, but it remains a big challenge to improve its mechanical property and figure out the interaction of chondrocytes and stiffness. Herein, a novel hybrid hydrogel with tunable stiffness was fabricated based on methacrylated gelatin (GelMA) and iron oxide nanoparticles (Fe2O3) through chemical bonding. The stiffness of Fe2O3/GelMA hybrid hydrogel was controlled by adjusting the concentration of magnetic nanoparticles. The hydrogel platform with tunable stiffness modulated its cellular properties including cell morphology, microfilaments and Young's modulus of chondrocytes. Interestingly, Fe2O3/GelMA hybrid hydrogel promoted oxidative phosphorylation of mitochondria and facilitated catabolism of lipids in chondrocytes. As a result, more ATP and metabolic materials generated for cellular physiological activities and organelle component replacements in hybrid hydrogel group compared to pure GelMA hydrogel. Furthermore, implantation of Fe2O3/GelMA hybrid hydrogel in the cartilage defect rat model verified its remodeling potential. This study provides a deep understanding of the bio-mechanism of Fe2O3/GelMA hybrid hydrogel interaction with chondrocytes and indicates the hydrogel platform for further application in tissue engineering.
Collapse
|
26
|
Real-World Evidence of Traditional Chinese Medicine (TCM) Treatment on Cancer: A Literature-Based Review. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:7770380. [PMID: 35815277 PMCID: PMC9259235 DOI: 10.1155/2022/7770380] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/12/2022] [Accepted: 06/16/2022] [Indexed: 11/29/2022]
Abstract
While randomized controlled trials (RCTs) are the gold standard for evidence-based medicine, they do not always reflect the real condition of patients in the real-world setting, which limits their generalizability and external validity. Real-world evidence (RWE), generated during routine clinical practice, is increasingly important in determining external effectiveness of the tightly controlled conditions of RCTs and is well recognized as a valuable complement to RCTs by regulatory bodies currently. Since it could provide new ideas and methods for clinical efficacy and safety evaluation of traditional Chinese medicine (TCM) and high-quality evidence support, real-world study (RWS) has received great attention in the field of medicine, especially in the field of TCM. RWS has shown desirable adaptability in the clinical diagnosis and treatment practice of traditional Chinese medicine. Consequently, it is increasingly essential for physicians and researchers to understand how RWE can be used alongside clinical trial data on TCM. Here, we discuss what real-world study is and outline the benefits and limitations of real-world study. Furthermore, using examples from TCM treatment on cancer, including Chinese herbal medicine, acupuncture, moxibustion, integrated TCM and Western medicine treatment, and other treatments, we elaborate how RWE can be used to help inform treatment decisions when doctoring patients with cancer in the clinic.
Collapse
|