1
|
Kim K, Min S, Thangam R, Tag KR, Lee HJ, Heo J, Jung H, Swe TT, Zare I, Song G, Najafabadi AH, Lee J, Jung HD, Kim JS, Hur S, Song HC, Park SG, Zhang K, Zhao P, Bian L, Kim SH, Yoon J, Ahn JP, Kim HK, Kang H. Dynamic hierarchical ligand anisotropy for competing macrophage regulation in vivo. Bioact Mater 2025; 47:121-135. [PMID: 39897585 PMCID: PMC11787691 DOI: 10.1016/j.bioactmat.2025.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 12/30/2024] [Accepted: 01/10/2025] [Indexed: 02/04/2025] Open
Abstract
Diverse connective tissues exhibit hierarchical anisotropic structures that intricately regulate homeostasis and tissue functions for dynamic immune response modulation. In this study, remotely manipulable hierarchical nanostructures are tailored to exhibit multi-scale ligand anisotropy. Hierarchical nanostructure construction involves coupling liganded nanoscale isotropic/anisotropic Au (comparable to few integrin molecules-scale) to the surface of microscale isotropic/anisotropic magnetic Fe3O4 (comparable to integrin cluster-scale) and then elastically tethering them to a substrate. Systematic independent tailoring of nanoscale or microscale ligand isotropy versus anisotropy in four different hierarchical nanostructures with constant liganded surface area demonstrates similar levels of integrin molecule bridging and macrophage adhesion on the nanoscale ligand isotropy versus anisotropy. Conversely, the levels of integrin cluster bridging across hierarchical nanostructures and macrophage adhesion are significantly promoted by microscale ligand anisotropy compared with microscale ligand isotropy. Furthermore, microscale ligand anisotropy dominantly activates the host macrophage adhesion and pro-regenerative M2 polarization in vivo over the nanoscale ligand anisotropy, which can be cyclically reversed by substrate-proximate versus substrate-distant magnetic manipulation. This unprecedented scale-specific regulation of cells can be diversified by unlimited tuning of the scale, anisotropy, dimension, shape, and magnetism of hierarchical structures to decipher scale-specific dynamic cell-material interactions to advance immunoengineering strategies.
Collapse
Affiliation(s)
- Kanghyeon Kim
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Sunhong Min
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Ramar Thangam
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Kyong-Ryol Tag
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
- Advanced Analysis Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Hyun-Jeong Lee
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
- Advanced Analysis Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Jeongyun Heo
- Center for Theragnosis, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Hwapyung Jung
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Thet Thet Swe
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Iman Zare
- Research and Development Department, Sina Medical Biochemistry Technologies Co., Ltd., Shiraz, 7178795844, Iran
| | - Guosheng Song
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | | | - Junmin Lee
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 790-784, Republic of Korea
| | - Hyun-Do Jung
- Division of Materials Science and Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Jong Seung Kim
- Department of Chemistry, Korea University, Seoul, 02841, Republic of Korea
| | - Sunghoon Hur
- Electronic Materials Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Yongin, 17104, Republic of Korea
| | - Hyun-Cheol Song
- Electronic Materials Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
- KIST-SKKU Carbon-Neutral Research Center, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Sung-Gyu Park
- Department of Nano-Bio Convergence, Korea Institute of Materials Science (KIMS), Changwon, Gyeongnam, 51508, Republic of Korea
- Department of Future Convergence Materials, Korea University, Seoul, 02841, Republic of Korea
| | - Kunyu Zhang
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, 511442, China
| | - Pengchao Zhao
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, 511442, China
| | - Liming Bian
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, 511442, China
| | - Se Hoon Kim
- Center for Theragnosis, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
| | - Juyoung Yoon
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, 03760, Republic of Korea
- Graduate Program in Innovative Biomaterials Convergence, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Jae-Pyoung Ahn
- Advanced Analysis Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Hong-Kyu Kim
- Advanced Analysis Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Heemin Kang
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
- Department of Future Convergence Materials, Korea University, Seoul, 02841, Republic of Korea
- College of Medicine, Korea University, Seoul, 02841, Republic of Korea
| |
Collapse
|
2
|
Jo S, Hwangbo H, Francis N, Lee J, Pei M, Kim G. Fish-derived biomaterials for tissue engineering: advances in scaffold fabrication and applications in regenerative medicine and cancer therapy. Theranostics 2025; 15:5666-5692. [PMID: 40365274 PMCID: PMC12068294 DOI: 10.7150/thno.109186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Accepted: 03/10/2025] [Indexed: 05/15/2025] Open
Abstract
Fish-derived biomaterials, such as collagen, polyunsaturated fatty acids, and antimicrobial peptides, have emerged as promising candidates for scaffold development in stem cell therapies and tissue engineering due to their excellent biocompatibility and low immunogenicity. Although good bioactivity is a prerequisite for biomedical substitutes, scaffold design is necessary for the successful development of bioconstructs used in tissue regeneration. However, the limited processability of fish biomaterials poses a substantial challenge to the development of diverse scaffold structures. In this review, unlike previous reviews that primarily focused on the bioactivities of fish-derived components, we placed greater emphasis on scaffold fabrication and its applications in tissue regeneration. Specifically, we examined various cross-linking strategies to enhance the structural integrity of fish biomaterials and address challenges, such as poor processability, low mechanical strength, and rapid degradation. Furthermore, we demonstrated the potential of fish scaffolds in stem cell therapies, particularly their capacity to support stem cell growth and modulate the cellular microenvironment. Finally, this review provides future directions for the application of these scaffolds in cancer therapy.
Collapse
Affiliation(s)
- Seoyul Jo
- Department of Precision Medicine, Sungkyunkwan University School of Medicine (SKKU-SOM), Suwon 16419, Republic of Korea
| | - Hanjun Hwangbo
- Department of Precision Medicine, Sungkyunkwan University School of Medicine (SKKU-SOM), Suwon 16419, Republic of Korea
| | - Nacionales Francis
- Department of Precision Medicine, Sungkyunkwan University School of Medicine (SKKU-SOM), Suwon 16419, Republic of Korea
| | - JaeYoon Lee
- Department of Precision Medicine, Sungkyunkwan University School of Medicine (SKKU-SOM), Suwon 16419, Republic of Korea
| | - Mohan Pei
- Department of Precision Medicine, Sungkyunkwan University School of Medicine (SKKU-SOM), Suwon 16419, Republic of Korea
| | - GeunHyung Kim
- Department of Precision Medicine, Sungkyunkwan University School of Medicine (SKKU-SOM), Suwon 16419, Republic of Korea
- Institute of Quantum Biophysics, Department of Biophysics, Sungkyunkwan University, Suwon, Gyeonggi-do 16419, Republic of Korea
- Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
3
|
Li M, Tang Y, Zhou C, Geng Y, Zhang C, Hsu Y, Ma L, Guo W, Li M, Wang Y. The Application of Stem Cells and Exosomes in Promoting Nerve Conduits for Peripheral Nerve Repair. Biomater Res 2025; 29:0160. [PMID: 40231207 PMCID: PMC11994886 DOI: 10.34133/bmr.0160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 02/13/2025] [Accepted: 02/14/2025] [Indexed: 04/16/2025] Open
Abstract
The repair of peripheral nerve injury (PNI) presents a multifaceted and protracted challenge, with current therapeutic approaches failing to achieve optimal repair outcomes, thereby not satisfying the considerable clinical demand. The advent of tissue engineering has led to a growing body of experimental evidence indicating that the synergistic application of nerve conduits, which provide structural guidance, alongside the biological signals derived from exosomes and stem cells, yields superior therapeutic results for PNI compared to isolated interventions. This combined approach holds great promise for clinical application. In this review, we present the latest advancements in the treatment of PNI through the integration of stem cells or exosomes with nerve conduits. We have addressed the inadequate efficiency of exosomes or stem cells in conjunction with nerve conduits from 3 perspectives: enhancing stem cells or exosomes, improving nerve conduits, and incorporating physical stimulation.
Collapse
Affiliation(s)
- Mengen Li
- National Center for Trauma Medicine, Beijing 100044, China
- Key Laboratory of Trauma and Neural Regeneration, Ministry of Education,
Peking University, Beijing 100044, China
- Trauma Medicine Center,
Peking University People’s Hospital, Beijing 100044, China
- Department of Orthopedics and Trauma,
Peking University People’s Hospital, Beijing 100044, China
| | - Ye Tang
- National Center for Trauma Medicine, Beijing 100044, China
- Key Laboratory of Trauma and Neural Regeneration, Ministry of Education,
Peking University, Beijing 100044, China
- Trauma Medicine Center,
Peking University People’s Hospital, Beijing 100044, China
- Department of Orthopedics and Trauma,
Peking University People’s Hospital, Beijing 100044, China
| | - Chengkai Zhou
- National Center for Trauma Medicine, Beijing 100044, China
- Key Laboratory of Trauma and Neural Regeneration, Ministry of Education,
Peking University, Beijing 100044, China
- Trauma Medicine Center,
Peking University People’s Hospital, Beijing 100044, China
| | - Yan Geng
- National Center for Trauma Medicine, Beijing 100044, China
- Key Laboratory of Trauma and Neural Regeneration, Ministry of Education,
Peking University, Beijing 100044, China
- Trauma Medicine Center,
Peking University People’s Hospital, Beijing 100044, China
| | - Chenxi Zhang
- National Center for Trauma Medicine, Beijing 100044, China
- Key Laboratory of Trauma and Neural Regeneration, Ministry of Education,
Peking University, Beijing 100044, China
- Trauma Medicine Center,
Peking University People’s Hospital, Beijing 100044, China
| | - Yuwei Hsu
- National Center for Trauma Medicine, Beijing 100044, China
- Key Laboratory of Trauma and Neural Regeneration, Ministry of Education,
Peking University, Beijing 100044, China
- Trauma Medicine Center,
Peking University People’s Hospital, Beijing 100044, China
- Emergency Department,
Peking University People’s Hospital, Beijing 100044, China
| | - Le Ma
- National Center for Trauma Medicine, Beijing 100044, China
- Key Laboratory of Trauma and Neural Regeneration, Ministry of Education,
Peking University, Beijing 100044, China
- Trauma Medicine Center,
Peking University People’s Hospital, Beijing 100044, China
| | - Wei Guo
- Emergency Department,
Peking University People’s Hospital, Beijing 100044, China
| | - Ming Li
- National Center for Trauma Medicine, Beijing 100044, China
- Key Laboratory of Trauma and Neural Regeneration, Ministry of Education,
Peking University, Beijing 100044, China
- Trauma Medicine Center,
Peking University People’s Hospital, Beijing 100044, China
| | - Yanhua Wang
- National Center for Trauma Medicine, Beijing 100044, China
- Key Laboratory of Trauma and Neural Regeneration, Ministry of Education,
Peking University, Beijing 100044, China
- Department of Orthopedics and Trauma,
Peking University People’s Hospital, Beijing 100044, China
| |
Collapse
|
4
|
Liu C, Sun M, Lin L, Luo Y, Peng L, Zhang J, Qiu T, Liu Z, Yin J, Yu M. Potentially commercializable nerve guidance conduits for peripheral nerve injury: Past, present, and future. Mater Today Bio 2025; 31:101503. [PMID: 40018056 PMCID: PMC11867546 DOI: 10.1016/j.mtbio.2025.101503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 01/06/2025] [Accepted: 01/18/2025] [Indexed: 03/01/2025] Open
Abstract
Peripheral nerve injuries are a prevalent global issue that has garnered great concern. Although autografts remain the preferred clinical approach to repair, their efficacy is hampered by factors like donor scarcity. The emergence of nerve guidance conduits as novel tissue engineering tools offers a promising alternative strategy. This review aims to interpret nerve guidance conduits and their commercialization from both clinical and laboratory perspectives. To enhance comprehension of clinical situations, this article provides a comprehensive analysis of the clinical efficacy of nerve conduits approved by the United States Food and Drug Administration. It proposes that the initial six months post-transplantation is a critical window period for evaluating their efficacy. Additionally, this study conducts a systematic discussion on the research progress of laboratory conduits, focusing on biomaterials and add-on strategies as pivotal factors for nerve regeneration, as supported by the literature analysis. The clinical conduit materials and prospective optimal materials are thoroughly discussed. The add-on strategies, together with their distinct obstacles and potentials are deeply analyzed. Based on the above evaluations, the development path and manufacturing strategy for the commercialization of nerve guidance conduits are envisioned. The critical conclusion promoting commercialization is summarized as follows: 1) The optimization of biomaterials is the fundamental means; 2) The phased application of additional strategies is the emphasized direction; 3) The additive manufacturing techniques are the necessary tools. As a result, the findings of this research provide academic and clinical practitioners with valuable insights that may facilitate future commercialization endeavors of nerve guidance conduits.
Collapse
Affiliation(s)
- Chundi Liu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| | - Mouyuan Sun
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| | - Lining Lin
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| | - Yaxian Luo
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| | - Lianjie Peng
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| | - Jingyu Zhang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| | - Tao Qiu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| | - Zhichao Liu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| | - Jun Yin
- The State Key Laboratory of Fluid Power and Mechatronic Systems, Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Mengfei Yu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| |
Collapse
|
5
|
Chen X, Xu J, Qin F, Yang Z, Li X, Yu M, Li M, Wang Y, Xin W. An immunoregulation PLGA/Chitosan aligned nanofibers with polydopamine coupling basic fibroblast growth factor and ROS scavenging for peripheral nerve regeneration. Mater Today Bio 2025; 31:101543. [PMID: 40026623 PMCID: PMC11869013 DOI: 10.1016/j.mtbio.2025.101543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 01/21/2025] [Accepted: 02/01/2025] [Indexed: 03/05/2025] Open
Abstract
The repair and functional recovery of long-segment peripheral nerve injuries are crucial in clinical settings. Nerve conduits are seen as promising alternatives to autologous nerve grafts, but their effectiveness is limited by the controlled delivery of bioactive factors and meeting various functional requirements during different stages of repair. This research developed multifunctional nerve conduits using electrospinning and polydopamine (PDA) coating techniques to integrate bioactive substances. Chitosan-composite PLGA electrospun nerve conduits demonstrated exceptional mechanical properties and biocompatibility. Nanofibers with specific topological structures effectively promoted oriented cell growth. The PDA coating provided ROS scavenging and immune modulation functions. The bFGF growth factor attached to the PDA coating facilitated sustained release, enhancing Schwann cell functionality and stimulating neurite outgrowth. In a rat sciatic nerve defect model with a 10 mm gap, PLGA/CS-PDA-bFGF nerve conduits showed a positive impact on nerve regeneration and functional recovery. Consequently, nerve conduits with multiple functions modified with PDA-coated bioactive molecules are poised to be excellent materials for mending peripheral nerve injuries.
Collapse
Affiliation(s)
- Xiaokun Chen
- Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, China
| | - Jihai Xu
- Department of Hand Surgery, Department of Plastic Reconstructive Surgery, Ningbo No.6 Hospital, Ningbo, 315040, China
| | - Feng Qin
- Key Laboratory of Trauma and Neural Regeneration, Ministry of Education, Peking University, Beijing, 100044, China
- National Center for Trauma Medicine, Beijing, 100044, China
- Department of Orthopedics and Trauma, Peking University People's Hospital, Beijing, 100044, China
| | - Ziyuan Yang
- Key Laboratory of Trauma and Neural Regeneration, Ministry of Education, Peking University, Beijing, 100044, China
- National Center for Trauma Medicine, Beijing, 100044, China
- Trauma Medicine Center, Peking University People's Hospital, Beijing, 100044, China
| | - Xueyuan Li
- Department of Hand Surgery, Ningbo No.6 Hospital, Ningbo, 315040, China
| | - Miao Yu
- Department of Hand Surgery, Ningbo No.6 Hospital, Ningbo, 315040, China
| | - Ming Li
- Key Laboratory of Trauma and Neural Regeneration, Ministry of Education, Peking University, Beijing, 100044, China
- National Center for Trauma Medicine, Beijing, 100044, China
- Trauma Medicine Center, Peking University People's Hospital, Beijing, 100044, China
| | - Yanhua Wang
- Key Laboratory of Trauma and Neural Regeneration, Ministry of Education, Peking University, Beijing, 100044, China
- National Center for Trauma Medicine, Beijing, 100044, China
- Department of Orthopedics and Trauma, Peking University People's Hospital, Beijing, 100044, China
| | - Wang Xin
- Department of Plastic Reconstructive Surgery, Ningbo No.6 Hospital, Ningbo, 315040, China
| |
Collapse
|
6
|
Yao X, Xue T, Chen B, Zhou X, Ji Y, Gao Z, Liu B, Yang J, Shen Y, Sun H, Gu X, Dai B. Advances in biomaterial-based tissue engineering for peripheral nerve injury repair. Bioact Mater 2025; 46:150-172. [PMID: 39760068 PMCID: PMC11699443 DOI: 10.1016/j.bioactmat.2024.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 11/21/2024] [Accepted: 12/02/2024] [Indexed: 01/07/2025] Open
Abstract
Peripheral nerve injury is a common clinical disease. Effective post-injury nerve repair remains a challenge in neurosurgery, and clinical outcomes are often unsatisfactory, resulting in social and economic burden. Particularly, the repair of long-distance nerve defects remains a challenge. The existing nerve transplantation strategies show limitations, including donor site morbidity and immune rejection issues. The multiple studies have revealed the potential of tissue engineering strategies based on biomaterials in the repair of peripheral nerve injuries. We review the events of regeneration after peripheral nerve injury, evaluates the efficacy of existing nerve grafting strategies, and delves into the progress in the construction and application strategies of different nerve guidance conduits. A spotlight is cast on the materials, technologies, seed cells, and microenvironment within these conduits to facilitate optimal nerve regeneration. Further discussion was conducted on the approve of nerve guidance conduits and potential future research directions. This study anticipates and proposes potential avenues for future research, aiming to refine existing strategies and uncover innovative approaches in biomaterial-based nerve repair. This study endeavors to synthesize the collective insights from the fields of neuroscience, materials science, and regenerative medicine, offering a multifaceted perspective on the role of biomaterials in advancing the frontiers of peripheral nerve injury treatment.
Collapse
Affiliation(s)
- Xinlei Yao
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province, 226001, PR China
| | - Tong Xue
- Department of Paediatrics and Clinical Medicine, Medical School of Nantong University, Nantong University, Nantong, Jiangsu Province, 226001, PR China
| | - Bingqian Chen
- Department of Orthopedics, Changshu Hospital Affiliated to Soochow University, First People's Hospital of Changshu City, Changshu, Jiangsu Province, 215500, PR China
| | - Xinyang Zhou
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province, 226001, PR China
| | - Yanan Ji
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province, 226001, PR China
| | - Zihui Gao
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province, 226001, PR China
| | - Boya Liu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province, 226001, PR China
| | - Jiawen Yang
- Department of Paediatrics and Clinical Medicine, Medical School of Nantong University, Nantong University, Nantong, Jiangsu Province, 226001, PR China
| | - Yuntian Shen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province, 226001, PR China
| | - Hualin Sun
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province, 226001, PR China
- Research and Development Center for E-Learning, Ministry of Education, Beijing, 100816, PR China
| | - Xiaosong Gu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province, 226001, PR China
| | - Bin Dai
- Department of Orthopedics, Binhai County People's Hospital, Binhai, Jiangsu Province, 224500, PR China
| |
Collapse
|
7
|
Wan T, Li QC, Zhang FS, Zhang XM, Han N, Zhang PX. Biomimetic ECM nerve guidance conduit with dynamic 3D interconnected porous network and sustained IGF-1 delivery for enhanced peripheral nerve regeneration and immune modulation. Mater Today Bio 2025; 30:101403. [PMID: 39790488 PMCID: PMC11713512 DOI: 10.1016/j.mtbio.2024.101403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 12/05/2024] [Accepted: 12/10/2024] [Indexed: 01/12/2025] Open
Abstract
Recent advancements in tissue engineering have promoted the development of nerve guidance conduits (NGCs) that significantly enhance peripheral nerve injury treatment, improving outcomes and recovery rates. However, utilising tailored biomimetic three-dimensional (3D) topological porous structures combined with multiple bio-effect neurotrophic factors to create environments similar to neural tissues, regulate local immune responses, and develop a supportive microenvironment to promote peripheral nerve regeneration and repair poses significant challenges. Herein, a biomimetic extracellular matrix (ECM) NGC featuring an interconnected 3D porous network and sustained delivery of insulin-like growth factor-1 (IGF-1) is designed using multi-functional gelatine microcapsules (GMs). Nerve conduits made by blending chitosan (CS) with GMs demonstrate suitable degradation rates, reduced swelling rates, increased suture tensile strength, improved elongation at break, and 50 % radial compression performance that meet clinical application requirements. In vitro cytological studies indicate that biomimetic ECM NGCs exhibit good biocompatibility, promote early survival, proliferation, and remyelination potential of Schwann cells (SCs), and support neurite outgrowth. The biomimetic ECM NGCs comprising a 3D interconnected porous network in a 10-mm sciatic nerve defect rat model sustain IGF-1 delivery, promoting early infiltration of macrophages and polarisation towards M2-type macrophages. Furthermore, observations at 12 weeks post-implantation revealed improvements in electrophysiological performance, alleviation of gastrocnemius muscle atrophy, increased peripheral nerve regeneration, and motor function restoration. Thus, biomimetic ECM NGCs offer a therapeutic strategy for peripheral nerve regeneration with promising clinical applications and transformation prospects to regulate immune microenvironments, promoting SC proliferation and differentiation with nerve axon growth.
Collapse
Affiliation(s)
- Teng Wan
- Department of Orthopedics and Trauma, Peking University People's Hospital, Beijing, 100044, China
- Key Laboratory of Trauma and Neural Regeneration, Peking University, Beijing, 100044, China
- National Centre for Trauma Medicine, Beijing, 100044, China
| | - Qi-Cheng Li
- Department of Orthopedics and Trauma, Peking University People's Hospital, Beijing, 100044, China
- Key Laboratory of Trauma and Neural Regeneration, Peking University, Beijing, 100044, China
- National Centre for Trauma Medicine, Beijing, 100044, China
| | - Feng-Shi Zhang
- Department of Orthopedics and Trauma, Peking University People's Hospital, Beijing, 100044, China
- Key Laboratory of Trauma and Neural Regeneration, Peking University, Beijing, 100044, China
- National Centre for Trauma Medicine, Beijing, 100044, China
| | - Xiao-Meng Zhang
- Department of Orthopedics and Trauma, Peking University People's Hospital, Beijing, 100044, China
- Key Laboratory of Trauma and Neural Regeneration, Peking University, Beijing, 100044, China
- National Centre for Trauma Medicine, Beijing, 100044, China
| | - Na Han
- Department of Orthopedics and Trauma, Peking University People's Hospital, Beijing, 100044, China
- Key Laboratory of Trauma and Neural Regeneration, Peking University, Beijing, 100044, China
- National Centre for Trauma Medicine, Beijing, 100044, China
| | - Pei-Xun Zhang
- Department of Orthopedics and Trauma, Peking University People's Hospital, Beijing, 100044, China
- Key Laboratory of Trauma and Neural Regeneration, Peking University, Beijing, 100044, China
- National Centre for Trauma Medicine, Beijing, 100044, China
- Peking University People's Hospital Qingdao Hospital, Qingdao, 266000, China
| |
Collapse
|
8
|
Wei Z, Li X, Chen Y, Han Z, Li Y, Gan L, Yang Y, Chen Y, Zhang F, Ye X, Cui W. Programmable DNA‐Peptide Conjugated Hydrogel via Click Chemistry for Sequential Modulation of Peripheral Nerve Regeneration. ADVANCED FUNCTIONAL MATERIALS 2025. [DOI: 10.1002/adfm.202419915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Indexed: 02/02/2025]
Abstract
AbstractDuring peripheral nerve regeneration, current deoxyribonucleic acid (DNA)‐based therapeutic platforms face the challenge of precisely regulating Schwann cells (SCs) fate to sustain their repair phenotype due to their inability to stably and precisely integrate multiple bioactive components. Herein, the strain‐promoted azide–alkyne cycloaddition reaction is utilized to integrate the neurotrophic factor mimetic peptide RGI and the laminin‐derived peptide IKVAV into DNA monomers. Through DNA sequence self‐assembly, a programmable DNA‐peptide conjugated hydrogel is constructed for loading bone marrow mesenchymal stem cell‐derived exosomes. This programmable hydrogel can rapidly, stably, and precisely integrate various bioactive components into the hydrogel network, thereby enabling sequential modulation of peripheral nerve repair. In vitro, studies show that this hydrogel, through sequential modulation mechanisms, can activate the neuregulin‐1 (Nrg1)/ErbB pathway to induce the reprogramming of SCs and promote the recruitment and proliferation of repair SCs. The induced repair SCs promote neuronal axon outgrowth and enhance tube formation in endothelial cells. In vivo, this programmable hydrogel can gelate in situ through intraneural injection in a rat sciatic nerve crush injury model, promoting nerve regeneration and functional recovery. In summary, this work provides an effective and practical strategy for peripheral nerve regeneration.
Collapse
Affiliation(s)
- Zhenyuan Wei
- Department of Orthopaedics Laboratory of Key Technology and Materials in Minimally Invasive Spine Surgery Center for Spinal Minimally Invasive Research Hongqiao International Institute of Medicine, Tongren Hospital Shanghai Jiao Tong University School of Medicine Shanghai 200336 P. R. China
| | - Xiaoxiao Li
- Department of Orthopaedics Laboratory of Key Technology and Materials in Minimally Invasive Spine Surgery Center for Spinal Minimally Invasive Research Hongqiao International Institute of Medicine, Tongren Hospital Shanghai Jiao Tong University School of Medicine Shanghai 200336 P. R. China
| | - Yicheng Chen
- Department of Orthopaedics Laboratory of Key Technology and Materials in Minimally Invasive Spine Surgery Center for Spinal Minimally Invasive Research Hongqiao International Institute of Medicine, Tongren Hospital Shanghai Jiao Tong University School of Medicine Shanghai 200336 P. R. China
| | - Zhaopu Han
- Department of Orthopaedics Laboratory of Key Technology and Materials in Minimally Invasive Spine Surgery Center for Spinal Minimally Invasive Research Hongqiao International Institute of Medicine, Tongren Hospital Shanghai Jiao Tong University School of Medicine Shanghai 200336 P. R. China
| | - Yan Li
- Department of Rehabilitation Medicine, Tongren Hospital Shanghai Jiao Tong University School of Medicine Shanghai 200336 P. R. China
| | - Lin Gan
- Department of Rehabilitation Medicine, Tongren Hospital Shanghai Jiao Tong University School of Medicine Shanghai 200336 P. R. China
| | - Yang Yang
- Department of Rehabilitation Medicine, Tongren Hospital Shanghai Jiao Tong University School of Medicine Shanghai 200336 P. R. China
| | - Yujie Chen
- Department of Orthopaedics Laboratory of Key Technology and Materials in Minimally Invasive Spine Surgery Center for Spinal Minimally Invasive Research Hongqiao International Institute of Medicine, Tongren Hospital Shanghai Jiao Tong University School of Medicine Shanghai 200336 P. R. China
| | - Feng Zhang
- Eye Institute and Department of Ophthalmology Eye & ENT Hospital Fudan University Shanghai 200031 P. R. China
- NHC Key Laboratory of Myopia (Fudan University) Key Laboratory of Myopia Chinese Academy of Medical Sciences Shanghai 200031 P. R. China
| | - Xiaojian Ye
- Department of Orthopaedics Laboratory of Key Technology and Materials in Minimally Invasive Spine Surgery Center for Spinal Minimally Invasive Research Hongqiao International Institute of Medicine, Tongren Hospital Shanghai Jiao Tong University School of Medicine Shanghai 200336 P. R. China
| | - Wenguo Cui
- Department of Orthopaedics Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases Shanghai Institute of Traumatology and Orthopaedics Ruijin Hospital Shanghai Jiao Tong University School of Medicine 197 Ruijin 2nd Road Shanghai 200025 P. R. China
| |
Collapse
|
9
|
Jiao K, Sun M, Jia W, Liu Y, Wang S, Yang Y, Dai Z, Liu L, Cheng Z, Liu G, Luo Y. The polycaprolactone and silk fibroin nanofibers with Janus-structured sheaths for antibacterial and antioxidant by loading Taxifolin. Heliyon 2024; 10:e33770. [PMID: 39040317 PMCID: PMC11261843 DOI: 10.1016/j.heliyon.2024.e33770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/24/2024] [Accepted: 06/26/2024] [Indexed: 07/24/2024] Open
Abstract
Electrospinning is a widely recognized method for producing Janus or core-shell nanofibers. In this study, nanofibrous membranes were fabricated through co-axial electrospinning utilizing polycaprolactone (PCL) and silk fibroin (SF) as the Janus shell, and taxifolin (TAX) and SF as the core. The resulting nanofibers had diameters of 816 ± 161 nm and core diameters of 73 ± 5 nm. The morphology and properties of the PCL-SF@SF/TAX nanofibers were subsequently analyzed. The results demonstrated that the nanofibrous membranes achieved physical and chemical characteristics potential for tissue engineering and drug delivery. Specifically, the membranes exhibited a Young's modulus of 9.64 ± 0.29 MPa, a water contact angle of 79.1 ± 1.3°, and a weight loss of 17.3 ± 1.0 % over a period of 28 days. The incorporation of TAX endowed the membranes with antibacterial properties, effectively combating Escherichia coli and Staphylococcus aureus. Furthermore, the membranes demonstrated antioxidant capabilities, with a DPPH radical scavenging efficiency of 38.5 ± 5.6 % and a Trolox-equivalent antioxidant capacity of 0.24 ± 0.01 mM. The release of the antioxidant was sustained over 28 days, following first-order release kinetics. The nanofibrous membranes, referred to as PSST, exhibit promising potential for use as biomaterials, characterized by their antibacterial activity, antioxidant and cytocompatibility.
Collapse
Affiliation(s)
- Kun Jiao
- The First Hospital of Jilin University, Changchun, 130000, China
| | - Maolei Sun
- Department of Stomatology, The Second Hospital of Jilin University, Changchun, 130000, China
- Scientific and Technological Innovation Center of Health Products and Medical Materials with Characterisitic Resource of Jilin Province, Changchun, 130000, China
| | - Wenyuan Jia
- Scientific and Technological Innovation Center of Health Products and Medical Materials with Characterisitic Resource of Jilin Province, Changchun, 130000, China
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, 130000, China
| | - Yun Liu
- The First Hospital of Jilin University, Changchun, 130000, China
- Scientific and Technological Innovation Center of Health Products and Medical Materials with Characterisitic Resource of Jilin Province, Changchun, 130000, China
| | - Shaoru Wang
- Scientific and Technological Innovation Center of Health Products and Medical Materials with Characterisitic Resource of Jilin Province, Changchun, 130000, China
- Department of Prosthodontics, Hospital of Stomatology, Jilin University, Changchun, 130000, China
| | - Yuheng Yang
- Scientific and Technological Innovation Center of Health Products and Medical Materials with Characterisitic Resource of Jilin Province, Changchun, 130000, China
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, 130000, China
| | - Zhihui Dai
- Scientific and Technological Innovation Center of Health Products and Medical Materials with Characterisitic Resource of Jilin Province, Changchun, 130000, China
- Department of Prosthodontics, Hospital of Stomatology, Jilin University, Changchun, 130000, China
| | - Liping Liu
- Scientific and Technological Innovation Center of Health Products and Medical Materials with Characterisitic Resource of Jilin Province, Changchun, 130000, China
- Department of Prosthodontics, Hospital of Stomatology, Jilin University, Changchun, 130000, China
| | - Zhiqiang Cheng
- Scientific and Technological Innovation Center of Health Products and Medical Materials with Characterisitic Resource of Jilin Province, Changchun, 130000, China
- College of Resources and Environment, Jilin Agriculture University, Changchun, 130000, China
| | - Guomin Liu
- Scientific and Technological Innovation Center of Health Products and Medical Materials with Characterisitic Resource of Jilin Province, Changchun, 130000, China
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, 130000, China
| | - Yungang Luo
- The First Hospital of Jilin University, Changchun, 130000, China
| |
Collapse
|
10
|
Sulaksono HLS, Annisa A, Ruslami R, Mufeeduzzaman M, Panatarani C, Hermawan W, Ekawardhani S, Joni IM. Recent Advances in Graphene Oxide-Based on Organoid Culture as Disease Model and Cell Behavior - A Systematic Literature Review. Int J Nanomedicine 2024; 19:6201-6228. [PMID: 38911499 PMCID: PMC11193994 DOI: 10.2147/ijn.s455940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 06/02/2024] [Indexed: 06/25/2024] Open
Abstract
Due to their ability to replicate the in vivo microenvironment through cell interaction and induce cells to stimulate cell function, three-dimensional cell culture models can overcome the limitations of two-dimensional models. Organoids are 3D models that demonstrate the ability to replicate the natural structure of an organ. In most organoid tissue cultures, matrigel made of a mouse tumor extracellular matrix protein mixture is an essential ingredient. However, its tumor-derived origin, batch-to-batch variation, high cost, and safety concerns have limited the usefulness of organoid drug development and regenerative medicine. Its clinical application has also been hindered by the fact that organoid generation is dependent on the use of poorly defined matrices. Therefore, matrix optimization is a crucial step in developing organoid culture that introduces alternatives as different materials. Recently, a variety of substitute materials has reportedly replaced matrigel. The purpose of this study is to review the significance of the latest advances in materials for cell culture applications and how they enhance build network systems by generating proper cell behavior. Excellence in cell behavior is evaluated from their cell characteristics, cell proliferation, cell differentiation, and even gene expression. As a result, graphene oxide as a matrix optimization demonstrated high potency in developing organoid models. Graphene oxide can promote good cell behavior and is well known for having good biocompatibility. Hence, advances in matrix optimization of graphene oxide provide opportunities for the future development of advanced organoid models.
Collapse
Affiliation(s)
| | - Annisa Annisa
- Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Bandung, Indonesia
| | - Rovina Ruslami
- Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
| | - Mufeeduzzaman Mufeeduzzaman
- Functional Nano Powder University Center of Excellence (FiNder U-CoE), Universitas Padjadjaran, Bandung, Indonesia
| | - Camellia Panatarani
- Functional Nano Powder University Center of Excellence (FiNder U-CoE), Universitas Padjadjaran, Bandung, Indonesia
- Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Bandung, Indonesia
| | - Wawan Hermawan
- Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Bandung, Indonesia
- Functional Nano Powder University Center of Excellence (FiNder U-CoE), Universitas Padjadjaran, Bandung, Indonesia
| | - Savira Ekawardhani
- Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
- Functional Nano Powder University Center of Excellence (FiNder U-CoE), Universitas Padjadjaran, Bandung, Indonesia
| | - I Made Joni
- Functional Nano Powder University Center of Excellence (FiNder U-CoE), Universitas Padjadjaran, Bandung, Indonesia
- Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Bandung, Indonesia
| |
Collapse
|
11
|
Hu C, Liu B, Huang X, Wang Z, Qin K, Sun L, Fan Z. Sea Cucumber-Inspired Microneedle Nerve Guidance Conduit for Synergistically Inhibiting Muscle Atrophy and Promoting Nerve Regeneration. ACS NANO 2024; 18:14427-14440. [PMID: 38776414 DOI: 10.1021/acsnano.4c00794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Muscle atrophy resulting from peripheral nerve injury (PNI) poses a threat to a patient's mobility and sensitivity. However, an effective method to inhibit muscle atrophy following PNI remains elusive. Drawing inspiration from the sea cucumber, we have integrated microneedles (MNs) and microchannel technology into nerve guidance conduits (NGCs) to develop bionic microneedle NGCs (MNGCs) that emulate the structure and piezoelectric function of sea cucumbers. Morphologically, MNGCs feature an outer surface with outward-pointing needle tips capable of applying electrical stimulation to denervated muscles. Simultaneously, the interior contains microchannels designed to guide the migration of Schwann cells (SCs). Physiologically, the incorporation of conductive reduced graphene oxide and piezoelectric zinc oxide nanoparticles into the polycaprolactone scaffold enhances conductivity and piezoelectric properties, facilitating SCs' migration, myelin regeneration, axon growth, and the restoration of neuromuscular function. These combined effects ultimately lead to the inhibition of muscle atrophy and the restoration of nerve function. Consequently, the concept of the synergistic effect of inhibiting muscle atrophy and promoting nerve regeneration has the capacity to transform the traditional approach to PNI repair and find broad applications in PNI repair.
Collapse
Affiliation(s)
- Cewen Hu
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing of Gansu Province, School of Stomatology, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Bin Liu
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing of Gansu Province, School of Stomatology, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Xinyue Huang
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing of Gansu Province, School of Stomatology, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Zhilong Wang
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing of Gansu Province, School of Stomatology, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Kaiqi Qin
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing of Gansu Province, School of Stomatology, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Luyi Sun
- Polymer Program, Institute of Materials Science and Department of Chemical & Biomolecular Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Zengjie Fan
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing of Gansu Province, School of Stomatology, Lanzhou University, Lanzhou 730000, People's Republic of China
| |
Collapse
|
12
|
Cao W, Zhang Y, Li L, Liu B, Ding J, Chen X. Physical cues of scaffolds promote peripheral nerve regeneration. APPLIED PHYSICS REVIEWS 2024; 11. [DOI: 10.1063/5.0189181] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2025]
Abstract
The effective treatment of long-gap peripheral nerve injury (PNI) remains a challenge in clinical settings. The autograft, the gold standard for the long-gap PNI therapy, has several limitations, including a limited supply of donor nerve, size mismatch between the donor and recipient sites, functional loss at the donor site, neuroma formation, and the requirement for two operations. With the increasing abundance of biocompatible materials with adjustable structures and properties, tissue engineering provides a promising avenue for bridging peripheral nerve gaps and addressing the above issues of autograft. The physical cues provided by tissue engineering scaffolds, essential for regulating the neural cell fate and microenvironments, have received considerable research attention. This review elaborates on three major physical cues of tissue engineering scaffolds for peripheral nerve regeneration: topological structure, mechanical support, and electrical stimulation. These three aspects are analogs to Lego bricks, wherein different combinations result in diverse functions. Innovative and more effective bricks, along with multi-level and all-around integration, are expected to provide new advances in tissue engineering for peripheral nerve generation.
Collapse
Affiliation(s)
- Wanqing Cao
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences 1 , 5625 Renmin Street, Changchun 130022, People's Republic of China
- School of Applied Chemistry and Engineering, University of Science and Technology of China 2 , 96 Jinzhai Road, Hefei 230026, People's Republic of China
| | - Ye Zhang
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry and Biomedicine Innovation Center, Collaborative Innovation Center of Advanced Microstructures, College of Engineering and Applied Sciences, Nanjing University 3 , 163 Xianlin Avenue, Nanjing 210023, People's Republic of China
| | - Luhe Li
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry and Biomedicine Innovation Center, Collaborative Innovation Center of Advanced Microstructures, College of Engineering and Applied Sciences, Nanjing University 3 , 163 Xianlin Avenue, Nanjing 210023, People's Republic of China
| | - Bin Liu
- Department of Hand and Foot Surgery, The First Hospital of Jilin University 4 , 1 Xinmin Street, Changchun 130061, People's Republic of China
| | - Jianxun Ding
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences 1 , 5625 Renmin Street, Changchun 130022, People's Republic of China
- School of Applied Chemistry and Engineering, University of Science and Technology of China 2 , 96 Jinzhai Road, Hefei 230026, People's Republic of China
| | - Xuesi Chen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences 1 , 5625 Renmin Street, Changchun 130022, People's Republic of China
- School of Applied Chemistry and Engineering, University of Science and Technology of China 2 , 96 Jinzhai Road, Hefei 230026, People's Republic of China
| |
Collapse
|
13
|
Sun R, Lang Y, Chang MW, Zhao M, Li C, Liu S, Wang B. Leveraging Oriented Lateral Walls of Nerve Guidance Conduit with Core-Shell MWCNTs Fibers for Peripheral Nerve Regeneration. Adv Healthc Mater 2024; 13:e2303867. [PMID: 38258406 DOI: 10.1002/adhm.202303867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Indexed: 01/24/2024]
Abstract
Peripheral nerve regeneration and functional recovery rely on the chemical, physical, and structural properties of nerve guidance conduits (NGCs). However, the limited support for long-distance nerve regeneration and axonal guidance has hindered the widespread use of NGCs. This study introduces a novel nerve guidance conduit with oriented lateral walls, incorporating multi-walled carbon nanotubes (MWCNTs) within core-shell fibers prepared in a single step using a modified electrohydrodynamic (EHD) printing technique to promote peripheral nerve regeneration. The structured conduit demonstrated exceptional stability, mechanical properties, and biocompatibility, significantly enhancing the functionality of NGCs. In vitro cell studies revealed that RSC96 cells adhered and proliferated effectively along the oriented fibers, demonstrating a favorable response to the distinctive architectures and properties. Subsequently, a rat sciatic nerve injury model demonstrated effective efficacy in promoting peripheral nerve regeneration and functional recovery. Tissue analysis and functional testing highlighted the significant impact of MWCNT concentration in enhancing peripheral nerve regeneration and confirming well-matured aligned axonal growth, muscle recovery, and higher densities of myelinated axons. These findings demonstrate the potential of oriented lateral architectures with coaxial MWCNT fibers as a promising approach to support long-distance regeneration and encourage directional nerve growth for peripheral nerve repair in clinical applications.
Collapse
Affiliation(s)
- Renyuan Sun
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Tianjin Key Laboratory of Bio-Electromagnetic and Neural Engineering, Hebei Key Laboratory of Bioelectromagnetics and Neuroengineering, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin, 300132, China
| | - Yuna Lang
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Tianjin Key Laboratory of Bio-Electromagnetic and Neural Engineering, Hebei Key Laboratory of Bioelectromagnetics and Neuroengineering, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin, 300132, China
| | - Ming-Wei Chang
- Nanotechnology and Integrated Bioengineering Centre, University of Ulster, Belfast, BT15 1AP, UK
| | - Mingkang Zhao
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Tianjin Key Laboratory of Bio-Electromagnetic and Neural Engineering, Hebei Key Laboratory of Bioelectromagnetics and Neuroengineering, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin, 300132, China
| | - Chao Li
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Tianjin Key Laboratory of Bio-Electromagnetic and Neural Engineering, Hebei Key Laboratory of Bioelectromagnetics and Neuroengineering, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin, 300132, China
| | - Shiheng Liu
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Tianjin Key Laboratory of Bio-Electromagnetic and Neural Engineering, Hebei Key Laboratory of Bioelectromagnetics and Neuroengineering, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin, 300132, China
| | - Baolin Wang
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Tianjin Key Laboratory of Bio-Electromagnetic and Neural Engineering, Hebei Key Laboratory of Bioelectromagnetics and Neuroengineering, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin, 300132, China
| |
Collapse
|
14
|
Lv Y, Yao X, Li X, Ouyang Y, Fan C, Qian Y. Cell metabolism pathways involved in the pathophysiological changes of diabetic peripheral neuropathy. Neural Regen Res 2024; 19:598-605. [PMID: 37721290 PMCID: PMC10581560 DOI: 10.4103/1673-5374.380872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/31/2023] [Accepted: 06/08/2023] [Indexed: 09/19/2023] Open
Abstract
Diabetic peripheral neuropathy is a common complication of diabetes mellitus. Elucidating the pathophysiological metabolic mechanism impels the generation of ideal therapies. However, existing limited treatments for diabetic peripheral neuropathy expose the urgent need for cell metabolism research. Given the lack of comprehensive understanding of energy metabolism changes and related signaling pathways in diabetic peripheral neuropathy, it is essential to explore energy changes and metabolic changes in diabetic peripheral neuropathy to develop suitable treatment methods. This review summarizes the pathophysiological mechanism of diabetic peripheral neuropathy from the perspective of cellular metabolism and the specific interventions for different metabolic pathways to develop effective treatment methods. Various metabolic mechanisms (e.g., polyol, hexosamine, protein kinase C pathway) are associated with diabetic peripheral neuropathy, and researchers are looking for more effective treatments through these pathways.
Collapse
Affiliation(s)
- Yaowei Lv
- Department of Orthopedics, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai, China
| | - Xiangyun Yao
- Department of Orthopedics, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai, China
- Youth Science and Technology Innovation Studio of Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiao Li
- Department of Orthopedics, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai, China
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Yuanming Ouyang
- Department of Orthopedics, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai, China
- Youth Science and Technology Innovation Studio of Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Cunyi Fan
- Department of Orthopedics, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai, China
- Youth Science and Technology Innovation Studio of Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yun Qian
- Department of Orthopedics, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai, China
- Youth Science and Technology Innovation Studio of Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
15
|
Dong X, Yang Y, Bao Z, Midgley AC, Li F, Dai S, Yang Z, Wang J, Liu L, Li W, Zheng Y, Liu S, Liu Y, Yu W, Liu J, Fan M, Zhu M, Shen Z, Xiaosong G, Kong D. Micro-nanofiber composite biomimetic conduits promote long-gap peripheral nerve regeneration in canine models. Bioact Mater 2023; 30:98-115. [PMID: 37560200 PMCID: PMC10406865 DOI: 10.1016/j.bioactmat.2023.06.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/01/2023] [Accepted: 06/19/2023] [Indexed: 08/11/2023] Open
Abstract
Peripheral nerve injuries may result in severe long-gap interruptions that are challenging to repair. Autografting is the gold standard surgical approach for repairing long-gap nerve injuries but can result in prominent donor-site complications. Instead, imitating the native neural microarchitecture using synthetic conduits is expected to offer an alternative strategy for improving nerve regeneration. Here, we designed nerve conduits composed of high-resolution anisotropic microfiber grid-cordes with randomly organized nanofiber sheaths to interrogate the positive effects of these biomimetic structures on peripheral nerve regeneration. Anisotropic microfiber-grids demonstrated the capacity to directionally guide Schwann cells and neurites. Nanofiber sheaths conveyed adequate elasticity and permeability, whilst exhibiting a barrier function against the infiltration of fibroblasts. We then used the composite nerve conduits bridge 30-mm long sciatic nerve defects in canine models. At 12 months post-implant, the morphometric and histological recovery, gait recovery, electrophysiological function, and degree of muscle atrophy were assessed. The newly regenerated nerve tissue that formed within the composite nerve conduits showed restored neurological functions that were superior compared to sheaths-only scaffolds and Neurolac nerve conduit controls. Our findings demonstrate the feasibility of using synthetic biophysical cues to effectively bridge long-gap peripheral nerve injuries and indicates the promising clinical application prospects of biomimetic composite nerve conduits.
Collapse
Affiliation(s)
- Xianhao Dong
- State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin, China
| | - Yueyue Yang
- State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin, China
| | - Zheheng Bao
- Department of Orthopaedics, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, China
- Outpatient Department, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, China
| | - Adam C. Midgley
- State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin, China
| | - Feiyi Li
- State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin, China
| | - Shuxin Dai
- State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin, China
| | - Zhuangzhuang Yang
- State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin, China
| | - Jin Wang
- Outpatient Department, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, China
| | - Lihua Liu
- Department of Radiology, Tianjin First Central Hospital, Tianjin Medical Imaging Institute, School of Medicine, Nankai University, Tianjin, China
| | - Wenlei Li
- State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin, China
| | - Yayuan Zheng
- State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin, China
| | - Siyang Liu
- State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin, China
| | - Yang Liu
- Department of Radiology, Tianjin First Central Hospital, Tianjin Medical Imaging Institute, School of Medicine, Nankai University, Tianjin, China
| | - Weijian Yu
- State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin, China
| | - Jun Liu
- Clinical School/College of Orthopedics, Tianjin Medical University, Tianjin, China
- Department of Joint, Tianjin Hospital, Tianjin, China
| | - Meng Fan
- Department of Orthopaedics, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, China
| | - Meifeng Zhu
- State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin, China
- Haihe Laboratory of Sustainable Chemical Transformations, Keyan West Road, Tianjin, 300192, China
| | - Zhongyang Shen
- Institute of Transplantation Medicine, NHC Key Laboratory for Critical Care Medicine, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, China
| | - Gu Xiaosong
- Jiangsu Key Laboratory of Neuroregeneration, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, China
| | - Deling Kong
- State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin, China
- Institute of Transplantation Medicine, NHC Key Laboratory for Critical Care Medicine, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, China
- Haihe Laboratory of Sustainable Chemical Transformations, Keyan West Road, Tianjin, 300192, China
| |
Collapse
|
16
|
Wu S, Shen W, Ge X, Ao F, Zheng Y, Wang Y, Jia X, Mao Y, Luo Y. Advances in Large Gap Peripheral Nerve Injury Repair and Regeneration with Bridging Nerve Guidance Conduits. Macromol Biosci 2023; 23:e2300078. [PMID: 37235853 DOI: 10.1002/mabi.202300078] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/10/2023] [Indexed: 05/28/2023]
Abstract
Peripheral nerve injury is a common complication of accidents and diseases. The traditional autologous nerve graft approach remains the gold standard for the treatment of nerve injuries. While sources of autologous nerve grafts are very limited and difficult to obtain. Nerve guidance conduits are widely used in the treatment of peripheral nerve injuries as an alternative to nerve autografts and allografts. However, the development of nerve conduits does not meet the needs of large gap peripheral nerve injury. Functional nerve conduits can provide a good microenvironment for axon elongation and myelin regeneration. Herein, the manufacturing methods and different design types of functional bridging nerve conduits for nerve conduits combined with electrical or magnetic stimulation and loaded with Schwann cells, etc., are summarized. It summarizes the literature and finds that the technical solutions of functional nerve conduits with electrical stimulation, magnetic stimulation and nerve conduits combined with Schwann cells can be used as effective strategies for bridging large gap nerve injury and provide an effective way for the study of large gap nerve injury repair. In addition, functional nerve conduits provide a new way to construct delivery systems for drugs and growth factors in vivo.
Collapse
Affiliation(s)
- Shang Wu
- School of Biological and Pharmaceutical Sciences, Shaanxi University of Science and Technology, Xi'an, 710021, P. R. China
| | - Wen Shen
- School of Biological and Pharmaceutical Sciences, Shaanxi University of Science and Technology, Xi'an, 710021, P. R. China
| | - Xuemei Ge
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, 210037, P. R. China
| | - Fen Ao
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, P. R. China
| | - Yan Zheng
- School of Biological and Pharmaceutical Sciences, Shaanxi University of Science and Technology, Xi'an, 710021, P. R. China
| | - Yigang Wang
- Department of Pharmacy, No. 215 Hospital of Shaanxi Nuclear Industry, Xianyang, Shaanxi, 712000, P. R. China
| | - Xiaoni Jia
- Central Laboratory, Xi'an Mental Health Center, Xi'an, 710061, P. R. China
| | - Yueyang Mao
- School of Biological and Pharmaceutical Sciences, Shaanxi University of Science and Technology, Xi'an, 710021, P. R. China
| | - Yali Luo
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, 210037, P. R. China
| |
Collapse
|
17
|
Zhang Q, Chen J, Feng Y, Lin J, Li J, Wang Y, Tan H. Electroactive scaffolds of biodegradable polyurethane/polydopamine-functionalized graphene oxide regulating the inflammatory response and revitalizing the axonal growth cone for peripheral nerve regeneration. J Mater Chem B 2023. [PMID: 37326438 DOI: 10.1039/d3tb00837a] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Long-gap peripheral nerve injury remains a major challenge in regenerative medicine and results in permanent sensory and motor dysfunction. Nerve guidance scaffolds (NGSs) are known as a promising alternative to autologous nerve grafting. The latter, the current "gold standard" in clinical practice, is frequently constrained by the limited availability of sources and the inevitable damage to the donor area. Given the electrophysiological properties of nerves, electroactive biomaterials are being intensively investigated in nerve tissue engineering. In this study, we engineered a conductive NGS compounded of biodegradable waterborne polyurethane (WPU) and polydopamine-reduced graphene oxide (pGO) for repairing impaired peripheral nerves. The incorporation of pGO at the optimal concentration (3 wt%) promoted in vitro spreading of Schwann cells (SCs) with high expression of the proliferation marker S100 protein. In an in vivo study of sciatic nerve transection injury, WPU/pGO NGSs were found to regulate the immune microenvironment by activating macrophage M2 polarization and upregulate growth-associated protein 43 (GAP43) to facilitate axonal elongation. Histological and motor function analysis demonstrated that WPU/pGO NGSs had a neuroprosthetic effect close to that of an autograft, which significantly promoted the regeneration of myelinated axons, reduced gastrocnemius atrophy, and enhanced hindlimb motor function. These findings together suggested that electroactive WPU/pGO NGSs may represent a safe and effective strategy to manage large nerve defects.
Collapse
Affiliation(s)
- Qiao Zhang
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan, 610000, China.
| | - Jinlin Chen
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Med-X Center of Materials, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Yuan Feng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Med-X Center of Materials, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Jingjing Lin
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Med-X Center of Materials, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Jiehua Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Med-X Center of Materials, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Yanchao Wang
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan, 610000, China.
| | - Hong Tan
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Med-X Center of Materials, Sichuan University, Chengdu, Sichuan, 610065, China
| |
Collapse
|
18
|
Tan Y, Chen Y, Lu T, Witman N, Yan B, Gong Y, Ai X, Yang L, Liu M, Luo R, Wang H, Ministrini S, Dong W, Wang W, Fu W. Engineering a conduction-consistent cardiac patch with rGO/PLCL electrospun nanofibrous membranes and human iPSC-derived cardiomyocytes. Front Bioeng Biotechnol 2023; 11:1094397. [PMID: 36845196 PMCID: PMC9944832 DOI: 10.3389/fbioe.2023.1094397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 01/25/2023] [Indexed: 02/10/2023] Open
Abstract
The healthy human heart has special directional arrangement of cardiomyocytes and a unique electrical conduction system, which is critical for the maintenance of effective contractions. The precise arrangement of cardiomyocytes (CMs) along with conduction consistency between CMs is essential for enhancing the physiological accuracy of in vitro cardiac model systems. Here, we prepared aligned electrospun rGO/PLCL membranes using electrospinning technology to mimic the natural heart structure. The physical, chemical and biocompatible properties of the membranes were rigorously tested. We next assembled human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) on electrospun rGO/PLCL membranes in order to construct a myocardial muscle patch. The conduction consistency of cardiomyocytes on the patches were carefully recorded. We found that cells cultivated on the electrospun rGO/PLCL fibers presented with an ordered and arranged structure, excellent mechanical properties, oxidation resistance and effective guidance. The addition of rGO was found to be beneficial for the maturation and synchronous electrical conductivity of hiPSC-CMs within the cardiac patch. This study verified the possibility of using conduction-consistent cardiac patches to enhance drug screening and disease modeling applications. Implementation of such a system could one day lead to in vivo cardiac repair applications.
Collapse
Affiliation(s)
- Yao Tan
- Institute of Pediatric Translational Medicine, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ying Chen
- Institute of Pediatric Translational Medicine, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Tingting Lu
- Institute of Pediatric Translational Medicine, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Nevin Witman
- Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - Bingqian Yan
- Institute of Pediatric Translational Medicine, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yiqi Gong
- Department of Pediatric Cardiothoracic Surgery, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xuefeng Ai
- Department of Pediatric Cardiothoracic Surgery, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Li Yang
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, Shanghai, China,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Minglu Liu
- Department of Pediatric Cardiothoracic Surgery, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Runjiao Luo
- Department of Pediatric Cardiothoracic Surgery, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Huijing Wang
- Institute of Pediatric Translational Medicine, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Stefano Ministrini
- Center for Molecular Cardiology, University of Zurich, Zurich, Switzerland,Department of Medicine and Surgery, Internal Medicine, Angiology and Atherosclerosis, University of Perugia, Perugia, Italy
| | - Wei Dong
- Department of Pediatric Cardiothoracic Surgery, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China,*Correspondence: Wei Dong, ; Wei Wang, ; Wei Fu,
| | - Wei Wang
- Department of Pediatric Cardiothoracic Surgery, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China,*Correspondence: Wei Dong, ; Wei Wang, ; Wei Fu,
| | - Wei Fu
- Institute of Pediatric Translational Medicine, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China,Shanghai Key Laboratory of Tissue Engineering, Shanghai 9th People’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China,*Correspondence: Wei Dong, ; Wei Wang, ; Wei Fu,
| |
Collapse
|