1
|
Gu Z, He Y, Xiang H, Qin Q, Cao X, Jiang K, Zhang H, Li Y. Self-healing injectable multifunctional hydrogels for intervertebral disc disease. Mater Today Bio 2025; 32:101655. [PMID: 40166378 PMCID: PMC11957681 DOI: 10.1016/j.mtbio.2025.101655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 03/06/2025] [Accepted: 03/10/2025] [Indexed: 04/02/2025] Open
Abstract
Intervertebral disc degeneration (IVDD) is increasingly prevalent in aging societies and poses a significant health challenge. Due to the limited blood supply to the disc, oral medications and systemic treatments are often ineffective. Consequently, localized injection therapies, which deliver therapeutic agents directly to the degenerated disc, have emerged as more efficient. Self-healing injectable hydrogels are particularly promising due to their potential for minimally invasive delivery, precise implantation, and targeted drug release into hard-to-reach tissue sites, including those requiring prolonged healing. Their dynamic viscoelastic properties accurately replicate the mechanical environment of the natural nucleus pulposus, providing cells with an adaptive biomimetic microenvironment. This review will initially discuss the anatomy and pathophysiology of intervertebral discs, current treatments, and their limitations. Subsequently, we conduct bibliometric analysis to explore the research hotspots and trends in applying injectable hydrogel technology to treat IVDD. It will then explore the promising features of injectable hydrogels in biomedical applications such as drug, protein, cells and gene delivery, tissue engineering and regenerative medicine. We discuss the construction mechanisms of injectable hydrogels via physical interactions, chemical and biological crosslinkers, and discuss the selection of biomaterials and fabrication methods for developing novel hydrogels for IVD tissue engineering. The article concludes with future perspectives on the application of injectable hydrogels in this field.
Collapse
Affiliation(s)
- Zhengrong Gu
- Department of Orthopedics, Affiliated Guang'an District People's Hospital of North Sichuan Medical College, Guang'an County, 638000, PR China
| | - Yi He
- Department of Orthopedics, Affiliated Nanbu People's Hospital of North Sichuan Medical College, Nanbu County, Nanchong, 637000, PR China
| | - Honglin Xiang
- Department of Orthopedics, Laboratory of Biological Tissue Engineering and Digital Medicine, Institute of Nanomedicine Innovation and Translational Research, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, PR China
| | - Qiwei Qin
- Department of Orthopedics, Laboratory of Biological Tissue Engineering and Digital Medicine, Institute of Nanomedicine Innovation and Translational Research, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, PR China
| | - Xinna Cao
- Department of Orthopedics, Laboratory of Biological Tissue Engineering and Digital Medicine, Institute of Nanomedicine Innovation and Translational Research, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, PR China
| | - Ke Jiang
- Department of Orthopedics, Laboratory of Biological Tissue Engineering and Digital Medicine, Institute of Nanomedicine Innovation and Translational Research, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, PR China
| | - Haoshaqiang Zhang
- Department of Orthopedics Surgery, People's Hospital of Xinjiang Uygur Autonomous Region, No. 91, Tianchi Road, Tianshan District, Urumqi, 830001, PR China
| | - Yuling Li
- Department of Orthopedics, Laboratory of Biological Tissue Engineering and Digital Medicine, Institute of Nanomedicine Innovation and Translational Research, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, PR China
| |
Collapse
|
2
|
Kmail M, Razak R, Mohd Isa IL. Engineering extracellular matrix-based hydrogels for intervertebral disc regeneration. Front Bioeng Biotechnol 2025; 13:1601154. [PMID: 40375978 PMCID: PMC12078266 DOI: 10.3389/fbioe.2025.1601154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2025] [Accepted: 04/16/2025] [Indexed: 05/18/2025] Open
Abstract
Lower back pain (LBP) is a major health concern, especially in older adults. A key aetiological factor is intervertebral disc (IVD) degeneration. It is mediated by dysregulation of extracellular matrix (ECM) and inflammation. In recent years, regenerative therapies have garnered attention for their potential to restore disc function by addressing the underlying biological alterations within the IVD. This review focuses on the comprehensive understanding of the anatomy and physiology of the IVD, highlighting its life cycle from embryonic development, and maturation to degenerative phenotype. We describe current treatments for managing LBP caused by IVD degeneration. This review emphasizes on the recent advancements in hydrogel engineering, highlighting natural, synthetic, and composite hydrogels and their application in ECM-targeted regenerative therapy for IVD degeneration. By exploring innovations in hydrogel technology, including improvements in crosslinking techniques and controlled degradation rates-we discuss how these materials could enhance IVD regeneration and potentially be used for the management of LBP. With their enhanced biomimicry, hydrogel-based ECM mimics offer a promising pathway for developing effective, durable therapies that address the root causes of disc degeneration, providing new hope for individuals living with chronic LBP.
Collapse
Affiliation(s)
- Mwafaq Kmail
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan, Kuala Lumpur, Malaysia
| | - Rusydi Razak
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan, Kuala Lumpur, Malaysia
| | - Isma Liza Mohd Isa
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan, Kuala Lumpur, Malaysia
- CÚRAM Research Ireland Centre for Medical Devices, School of Medicine, University of Galway, Galway, Ireland
| |
Collapse
|
3
|
Dong R, Zheng S, Cheng X. Designing hydrogel for application in spinal surgery. Mater Today Bio 2025; 31:101536. [PMID: 39990734 PMCID: PMC11847550 DOI: 10.1016/j.mtbio.2025.101536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/07/2025] [Accepted: 02/01/2025] [Indexed: 02/25/2025] Open
Abstract
Spinal diseases and injuries are prevalent in clinical settings and impose a substantial burden on healthcare systems. Current treatments for spinal diseases are predominantly limited to surgical interventions, drug injections, and conservative treatments. Generally, these treatment modalities have limited or no long-term benefits. Hydrogel-based treatments have emerged as potentially powerful paradigms for improving therapeutic outcomes and the quality of life of patients. Hydrogels can be injected into target sites, including the epidural, intraspinal, and nucleus pulposus spaces, in a minimally invasive manner and fill defects to provide mechanical support. Hydrogels can be designed for the localized and controlled delivery of pharmacological agents to enhance therapeutic effects and reduce adverse reactions. Hydrogels can act as structural supports for transplanted cells to improve cell survival, proliferation, and differentiation, as well as integration into adjacent host tissues. In this review, we summarize recent advances in the design of hydrogels for the treatment of spinal diseases and injuries commonly found in clinical settings, including intervertebral disc degeneration, spinal cord injury, and dural membrane injury. We introduce the design considerations for different hydrogel systems, including precursor polymers and crosslinking mechanisms. Herein, we discuss the therapeutic outcomes of these hydrogels in terms of providing mechanical support, delivering cells/bioactive agents, regulating local inflammation, and promoting tissue regeneration and functional recovery.
Collapse
Affiliation(s)
- Rongpeng Dong
- Department of Orthopedics, The Second Norman Bethune Hospital of Jilin University, Changchun, 130014, Jilin, China
| | - Shuang Zheng
- Department of Orthopedics, The Second Norman Bethune Hospital of Jilin University, Changchun, 130014, Jilin, China
| | - Xueliang Cheng
- Department of Orthopedics, The Second Norman Bethune Hospital of Jilin University, Changchun, 130014, Jilin, China
| |
Collapse
|
4
|
Sun C, Liu S, Lau JW, Yang H, Chen Y, Xing B. Enzyme-Activated Orthogonal Proteolysis Chimeras for Tumor Microenvironment-Responsive Immunomodulation. Angew Chem Int Ed Engl 2025:e202423057. [PMID: 39932237 DOI: 10.1002/anie.202423057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Indexed: 02/20/2025]
Abstract
Precise modulation of dynamic and complex tumor microenvironment (TME) to disrupt tumorigenesis and reshape intratumoral immune infiltration has emerged as promising approaches for enhanced cancer therapy. Among recent innovations, proteolysis-targeting chimeras (PROTACs) represent a burgeoning chemical knockdown technology capable of degrading oncogenic protein homeostasis and inducing dynamic alternations within carcinoma settings, offering potential for antitumor manipulation. However, achieving selectivity in PROTACs that respond to disease environmental stimulation and precisely perturb on-target proteins remains challenging. The multi-step synthesis and limited permeability, attributed to high-molecular-weight and heterobifunctional structures, further hinder their in vivo efficacy. Herein, we present a unique TME-responsive enzyme-activated clickable PROTACs, which features a short peptide-tagged pomalidomide derivative to undergo tumor-specific cleavage by cathepsin protease to induce orthogonal crosslinking of the exposed cysteine with 2-cyanobenzothiazole-labeled epigenetic protein-ligand JQ1, facilitating in situ degrader formation within tumor regions only. Systematic protein profiling and proteomic analysis revealed that such TME-specific clickable-PROTACs not only selectively eliminate epigenetic proteins without tedious pre-synthesis to bridge disparate small-molecule bi-warhead fragments, but also demonstrated superior tumor penetration compared to conventional high-molecular-weight PROTACs. Importantly, these clickable-PROTACs efficiently downregulated immune checkpoint programmed death-ligand 1 (PD-L1) both in vitro and in vivo, remodeling TME for enhanced therapeutics, especially in anti-tumoral immunomodulation.
Collapse
Affiliation(s)
- Caixia Sun
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Songhan Liu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Jun Wei Lau
- Department of Chemistry, National University of Singapore, Singapore, 117543, Singapore
| | - Hanyu Yang
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Yun Chen
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Bengang Xing
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, 11 Yuk Choi Rd, Hung Hom, Kowloon, Hong Kong SAR, China
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| |
Collapse
|
5
|
Wang Z, Lin Z, Mei X, Cai L, Lin KC, Rodríguez JF, Ye Z, Parraguez XS, Guajardo EM, García Luna PC, Zhang JYJ, Zhang YS. Engineered Living Systems Based on Gelatin: Design, Manufacturing, and Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2416260. [PMID: 39910847 DOI: 10.1002/adma.202416260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/26/2024] [Indexed: 02/07/2025]
Abstract
Engineered living systems (ELSs) represent purpose-driven assemblies of living components, encompassing cells, biomaterials, and active agents, intricately designed to fulfill diverse biomedical applications. Gelatin and its derivatives have been used extensively in ELSs owing to their mature translational pathways, favorable biological properties, and adjustable physicochemical characteristics. This review explores the intersection of gelatin and its derivatives with fabrication techniques, offering a comprehensive examination of their synergistic potential in creating ELSs for various applications in biomedicine. It offers a deep dive into gelatin, including its structures and production, sources, processing, and properties. Additionally, the review explores various fabrication techniques employing gelatin and its derivatives, including generic fabrication techniques, microfluidics, and various 3D printing methods. Furthermore, it discusses the applications of ELSs based on gelatin in regenerative engineering as well as in cell therapies, bioadhesives, biorobots, and biosensors. Future directions and challenges in gelatin fabrication are also examined, highlighting emerging trends and potential areas for improvements and innovations. In summary, this comprehensive review underscores the significance of gelatin-based ELSs in advancing biomedical engineering and lays the groundwork for guiding future research and developments within the field.
Collapse
Affiliation(s)
- Zhenwu Wang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Zeng Lin
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Xuan Mei
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Ling Cai
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Ko-Chih Lin
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Jimena Flores Rodríguez
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Zixin Ye
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Ximena Salazar Parraguez
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Emilio Mireles Guajardo
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Pedro Cortés García Luna
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Jun Yi Joey Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, 02138, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| |
Collapse
|
6
|
Rudnik‐Jansen I, van Kruining Kodele S, Creemers L, Joosten B. Biomolecular therapies for chronic discogenic low back pain: A narrative review. JOR Spine 2024; 7:e1345. [PMID: 39114580 PMCID: PMC11303450 DOI: 10.1002/jsp2.1345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 02/01/2024] [Accepted: 05/01/2024] [Indexed: 08/10/2024] Open
Abstract
Chronic low back pain caused by intervertebral disc (IVD) degeneration, also termed chronic discogenic low back pain (CD-LBP), is one of the most prevalent musculoskeletal diseases. Degenerative processes in the IVD, such as inflammation and extra-cellular matrix breakdown, result in neurotrophin release. Local elevated neurotrophin levels will stimulate sprouting and innervation of sensory neurons. Furthermore, sprouted sensory nerves that are directly connected to adjacent dorsal root ganglia have shown to increase microglia activation, contributing to the maintenance and chronification of pain. Current pain treatments have shown to be insufficient or inadequate for long-term usage. Furthermore, most therapeutic approaches aimed to target the underlying pathogenesis of disc degeneration focus on repair and regeneration and neglect chronic pain. How biomolecular therapies influence the degenerative IVD environment, pain signaling cascades, and innervation and excitability of the sensory neurons often remains unclear. This review addresses the relatively underexplored area of chronic pain treatment for CD-LBP and summarizes effects of therapies aimed for CD-LBP with special emphasis on chronic pain. Approaches based on blocking pro-inflammatory mediators or neurotrophin activity have been shown to hamper neuronal ingrowth into the disc. Furthermore, the tissue regenerative and neuro inhibitory properties of extracellular matrix components or transplanted mesenchymal stem cells are potentially interesting biomolecular approaches to not only block IVD degeneration but also impede pain sensitization. At present, most biomolecular therapies are based on acute IVD degeneration models and thus do not reflect the real clinical chronic pain situation in CD-LBP patients. Future studies should aim at investigating the effects of therapeutic interventions applied in chronic degenerated discs containing established sensory nerve ingrowth. The in-depth understanding of the ramifications from biomolecular therapies on pain (chronification) pathways and pain relief in CD-LBP could help narrow the gap between the pre-clinical bench and clinical bedside for novel CD-LBP therapeutics and optimize pain treatment.
Collapse
Affiliation(s)
- Imke Rudnik‐Jansen
- Department of Anesthesiology and Pain ManagementMaastricht University Medical Center (MUMC+)Maastrichtthe Netherlands
- Department of Translational Neuroscience, School of Mental Health and Neuroscience (MHeNs)University of MaastrichtMaastrichtthe Netherlands
| | - Sanda van Kruining Kodele
- Department of Translational Neuroscience, School of Mental Health and Neuroscience (MHeNs)University of MaastrichtMaastrichtthe Netherlands
| | - Laura Creemers
- Department of OrthopedicsUniversity Medical Center UtrechtUtrechtthe Netherlands
| | - Bert Joosten
- Department of Anesthesiology and Pain ManagementMaastricht University Medical Center (MUMC+)Maastrichtthe Netherlands
- Department of Translational Neuroscience, School of Mental Health and Neuroscience (MHeNs)University of MaastrichtMaastrichtthe Netherlands
| |
Collapse
|
7
|
Chen L, Peng K, Huang H, Gong Z, Huang J, Mohamed AM, Chen Q, Sow WT, Guo L, Kwan KYH, Li B, Khan MA, Makvnadi P, Jones M, Shen S, Wang X, Ma C, Li H, Wu A. Injectable Hydrogel Based on Enzymatic Initiation of Keratin Methacrylate for Controlled Exosome Release in Intervertebral Disc Degeneration Therapy. ADVANCED FUNCTIONAL MATERIALS 2024; 34. [DOI: 10.1002/adfm.202316545] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Indexed: 01/03/2025]
Abstract
AbstractThe treatment of intervertebral disc degeneration (IVDD) using bone marrow mesenchymal stem cell‐derived exosomes has shown success in alleviating inflammation and restoring the extracellular matrix (ECM), however, challenges persist due to the deficiency in mechanical support and controlled release. Herein, a carbon‐carbon double bond modified keratin (KeMA) is synthesized by 2‐isocyanatoethyl modification for exosomes wrapping. This injectable KeMA hydrogel, initiated by a biocompatible glucose/ glucose oxidase/ horse radish peroxidase enzymatic cascade reaction with acetylacetone and N‐vinylpyrrolidone, displayed rapid gelation, resembling nucleus pulposus (NP) elasticity, and excellent cytocompatibility. In vitro studies showcased that the exosomes‐loaded KeMA hydrogel (Exo@KeMA) enhanced exosome release kinetics, suppressed inflammation, fostered extracellular matrix (ECM) regeneration, and reinstated NP biomechanics. RNA‐seq analysis indicated Exo@KeMA's effects involved PI3K‐Akt signaling for matrix regeneration and NF‐κB signaling inhibition for anti‐inflammation. In vivo IVDD rat models demonstrated Exo@KeMA attenuated inflammation, maintained NP water content, preserved disc height, and promoted structural regeneration. This research introduces an injectable KeMA hydrogel as a promising therapy for IVDD, by facilitating biomechanics restoration, anti‐inflammatory response, and ECM regeneration.
Collapse
Affiliation(s)
- Linjie Chen
- Department of Orthopaedics Key Laboratory of Structural Malformations in Children of Zhejiang Province Key Laboratory of Orthopaedics of Zhejiang Province The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University Wenzhou Zhejiang 325035 P. R. China
| | - Ke Peng
- School of Biomedical Engineering School of Ophthalmology and Optometry and Eye Hospital Wenzhou Medical University Wenzhou Zhejiang 325035 P. R. China
- Zhejiang Engineering Research Center for Tissue Repair Materials Wenzhou Institute University of Chinese Academy of Sciences Wenzhou Zhejiang 325011 P. R. China
| | - He Huang
- College of Chemistry and Materials Engineering Wenzhou University Wenzhou Zhejiang 325000 P. R. China
| | - Zehua Gong
- School of Biomedical Engineering School of Ophthalmology and Optometry and Eye Hospital Wenzhou Medical University Wenzhou Zhejiang 325035 P. R. China
| | - Jinyi Huang
- School of Biomedical Engineering School of Ophthalmology and Optometry and Eye Hospital Wenzhou Medical University Wenzhou Zhejiang 325035 P. R. China
| | - Abdihafid Mohamud Mohamed
- Department of Orthopaedics Key Laboratory of Structural Malformations in Children of Zhejiang Province Key Laboratory of Orthopaedics of Zhejiang Province The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University Wenzhou Zhejiang 325035 P. R. China
| | - Qizhu Chen
- Department of Orthopaedics Key Laboratory of Structural Malformations in Children of Zhejiang Province Key Laboratory of Orthopaedics of Zhejiang Province The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University Wenzhou Zhejiang 325035 P. R. China
| | - Wan Ting Sow
- Zhejiang Engineering Research Center for Tissue Repair Materials Wenzhou Institute University of Chinese Academy of Sciences Wenzhou Zhejiang 325011 P. R. China
| | - Liting Guo
- School of Biomedical Engineering School of Ophthalmology and Optometry and Eye Hospital Wenzhou Medical University Wenzhou Zhejiang 325035 P. R. China
| | - Kenny Yat Hong Kwan
- Department of Orthopaedics and Traumatology Li Ka Shing Faculty of Medicine The University of Hong Kong Hong Kong SAR China
| | - Bin Li
- Orthopedic Institute Department of Orthopedic Surgery The First Affiliated Hospital School of Biology & Basic Medical Sciences Suzhou Medical College Soochow University Suzhou Jiangsu 215007 P. R. China
| | - Moonis Ali Khan
- Chemistry Department College of Science King Saud University Riyadh 11451 Saudi Arabia
| | - Pooyan Makvnadi
- The Quzhou Affiliated Hospital of Wenzhou Medical University Quzhou People's Hospital Quzhou Zhejiang 324000 P. R. China
| | - Morgan Jones
- Spine Unit The Royal Orthopaedic Hospital Bristol Road South Northfield Birmingham B31 2AP UK
| | - Shuying Shen
- Department of Orthopaedic Surgery Sir Run Run Shaw Hospital Zhejiang University School of Medicine Hangzhou Zhejiang 310000 P. R. China
| | - Xiangyang Wang
- Department of Orthopaedics Key Laboratory of Structural Malformations in Children of Zhejiang Province Key Laboratory of Orthopaedics of Zhejiang Province The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University Wenzhou Zhejiang 325035 P. R. China
| | - Chao Ma
- Department of Chemistry Tsinghua University Beijing 100080 P. R. China
| | - Huaqiong Li
- School of Biomedical Engineering School of Ophthalmology and Optometry and Eye Hospital Wenzhou Medical University Wenzhou Zhejiang 325035 P. R. China
- Zhejiang Engineering Research Center for Tissue Repair Materials Wenzhou Institute University of Chinese Academy of Sciences Wenzhou Zhejiang 325011 P. R. China
| | - Aimin Wu
- Department of Orthopaedics Key Laboratory of Structural Malformations in Children of Zhejiang Province Key Laboratory of Orthopaedics of Zhejiang Province The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University Wenzhou Zhejiang 325035 P. R. China
| |
Collapse
|
8
|
Wang D, Zhang L, He D, Zhang Y, Zhao L, Miao Z, Cheng W, Zhu C, Shao Y, Ge G, Zhu H, Jin H, Zhang W, Pan H. A natural hydrogel complex improves intervertebral disc degeneration by correcting fatty acid metabolism and inhibiting nucleus pulposus cell pyroptosis. Mater Today Bio 2024; 26:101081. [PMID: 38741924 PMCID: PMC11089368 DOI: 10.1016/j.mtbio.2024.101081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/26/2024] [Accepted: 05/02/2024] [Indexed: 05/16/2024] Open
Abstract
The degeneration of intervertebral discs is strongly associated with the occurrence of pyroptosis in nucleus pulposus (NP) cells. This pyroptosis is characterized by abnormal metabolism of fatty acids in the degenerative pathological state, which is further exacerbated by the inflammatory microenvironment and degradation of the extracellular matrix. In order to address this issue, we have developed a fibrin hydrogel complex (FG@PEV). This intricate formulation amalgamates the beneficial attributes of platelet extravasation vesicles, contributing to tissue repair and regeneration. Furthermore, this complex showcases exceptional stability, gradual-release capabilities, and a high degree of biocompatibility. In order to substantiate the biological significance of FG@PEV in intervertebral disc degeneration (IVDD), we conducted a comprehensive investigation into its potential mechanism of action through the integration of RNA-seq sequencing and metabolomics analysis. Furthermore, these findings were subsequently validated through experimentation in both in vivo and in vitro models. The experimental results revealed that the FG@PEV intervention possesses the capability to reshape the inflammatory microenvironment within the disc. It also addresses the irregularities in fatty acid metabolism of nucleus pulposus cells, consequently hindering cellular pyroptosis and slowing down disc degeneration through the regulation of extracellular matrix synthesis and degradation. As a result, this injectable gel system represents a promising and innovative therapeutic approach for mitigating disc degeneration.
Collapse
Affiliation(s)
- Dong Wang
- Department of Orthopaedics, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University (Hangzhou Hospital of Traditional Chinese Medicine), Hangzhou, 310000, Zhejiang Province, PR China
- Department of Orthopaedics, Hangzhou Dingqiao Hospital, Huanding Road NO 1630, Hangzhou, 310021, Zhejiang Province, PR China
- Institute of Orthopaedics and Traumatology, Hangzhou Traditional Chinese Medicine Hospital Affiliated to Zhejiang Chinese Medical University, Tiyuchang Road NO 453, Hangzhou, 310007, Zhejiang Province, PR China
| | - Liangping Zhang
- Department of Orthopaedics, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University (Hangzhou Hospital of Traditional Chinese Medicine), Hangzhou, 310000, Zhejiang Province, PR China
| | - Du He
- Department of Orthopaedics, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University (Hangzhou Hospital of Traditional Chinese Medicine), Hangzhou, 310000, Zhejiang Province, PR China
| | - Yujun Zhang
- Department of Orthopaedics, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University (Hangzhou Hospital of Traditional Chinese Medicine), Hangzhou, 310000, Zhejiang Province, PR China
| | - Lan Zhao
- Department of Orthopaedics, Hangzhou Dingqiao Hospital, Huanding Road NO 1630, Hangzhou, 310021, Zhejiang Province, PR China
| | - Zhimin Miao
- Department of Orthopaedics, Hangzhou Dingqiao Hospital, Huanding Road NO 1630, Hangzhou, 310021, Zhejiang Province, PR China
| | - Wei Cheng
- Department of Orthopaedics, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University (Hangzhou Hospital of Traditional Chinese Medicine), Hangzhou, 310000, Zhejiang Province, PR China
- Department of Orthopaedics, Hangzhou Dingqiao Hospital, Huanding Road NO 1630, Hangzhou, 310021, Zhejiang Province, PR China
| | - Chengyue Zhu
- Department of Orthopaedics, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University (Hangzhou Hospital of Traditional Chinese Medicine), Hangzhou, 310000, Zhejiang Province, PR China
- Department of Orthopaedics, Hangzhou Dingqiao Hospital, Huanding Road NO 1630, Hangzhou, 310021, Zhejiang Province, PR China
- Institute of Orthopaedics and Traumatology, Hangzhou Traditional Chinese Medicine Hospital Affiliated to Zhejiang Chinese Medical University, Tiyuchang Road NO 453, Hangzhou, 310007, Zhejiang Province, PR China
| | - Yinyan Shao
- Department of Orthopaedics, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University (Hangzhou Hospital of Traditional Chinese Medicine), Hangzhou, 310000, Zhejiang Province, PR China
| | - Guofen Ge
- Department of Orthopaedics, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University (Hangzhou Hospital of Traditional Chinese Medicine), Hangzhou, 310000, Zhejiang Province, PR China
| | - Hang Zhu
- Department of Orthopaedics, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University (Hangzhou Hospital of Traditional Chinese Medicine), Hangzhou, 310000, Zhejiang Province, PR China
| | - HongTing Jin
- Department of Orthopaedics, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University (Hangzhou Hospital of Traditional Chinese Medicine), Hangzhou, 310000, Zhejiang Province, PR China
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, PR China
| | - Wei Zhang
- Department of Orthopaedics, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University (Hangzhou Hospital of Traditional Chinese Medicine), Hangzhou, 310000, Zhejiang Province, PR China
- Department of Orthopaedics, Hangzhou Dingqiao Hospital, Huanding Road NO 1630, Hangzhou, 310021, Zhejiang Province, PR China
- Institute of Orthopaedics and Traumatology, Hangzhou Traditional Chinese Medicine Hospital Affiliated to Zhejiang Chinese Medical University, Tiyuchang Road NO 453, Hangzhou, 310007, Zhejiang Province, PR China
| | - Hao Pan
- Department of Orthopaedics, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University (Hangzhou Hospital of Traditional Chinese Medicine), Hangzhou, 310000, Zhejiang Province, PR China
- Department of Orthopaedics, Hangzhou Dingqiao Hospital, Huanding Road NO 1630, Hangzhou, 310021, Zhejiang Province, PR China
- Institute of Orthopaedics and Traumatology, Hangzhou Traditional Chinese Medicine Hospital Affiliated to Zhejiang Chinese Medical University, Tiyuchang Road NO 453, Hangzhou, 310007, Zhejiang Province, PR China
| |
Collapse
|
9
|
Jiang H, Qin H, Yang Q, Huang L, Liang X, Wang C, Moro A, Xu S, Wei Q. Effective delivery of miR-150-5p with nucleus pulposus cell-specific nanoparticles attenuates intervertebral disc degeneration. J Nanobiotechnology 2024; 22:292. [PMID: 38802882 PMCID: PMC11129471 DOI: 10.1186/s12951-024-02561-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 05/16/2024] [Indexed: 05/29/2024] Open
Abstract
BACKGROUND The use of gene therapy to deliver microRNAs (miRNAs) has gradually translated to preclinical application for the treatment of intervertebral disc degeneration (IDD). However, the effects of miRNAs are hindered by the short half-life time and the poor cellular uptake, owing to the lack of efficient delivery systems. Here, we investigated nucleus pulposus cell (NPC) specific aptamer-decorated polymeric nanoparticles that can load miR-150-5p for IDD treatment. METHODS The role of miR-150-5p during disc development and degeneration was examined by miR-150-5p knockout (KO) mice. Histological analysis was undertaken in disc specimens. The functional mechanism of miR-150-5p in IDD development was investigated by qRT-PCR assay, Western blot, coimmunoprecipitation and immunofluorescence. NPC specific aptamer-decorated nanoparticles was designed, and its penetration, stability and safety were evaluated. IDD progression was assessed by radiological analysis including X-ray and MRI, after the annulus fibrosus needle puncture surgery with miR-150-5p manipulation by intradiscal injection of nanoparticles. The investigations into the interaction between aptamer and receptor were conducted using mass spectrometry, molecular docking and molecular dynamics simulations. RESULTS We investigated NPC-specific aptamer-decorated polymeric nanoparticles that can bind to miR-150-5p for IDD treatment. Furthermore, we detected that nanoparticle-loaded miR-150-5p inhibitors alleviated NPC senescence in vitro, and the effects of the nanoparticles were sustained for more than 3 months in vivo. The microenvironment of NPCs improves the endo/lysosomal escape of miRNAs, greatly inhibiting the secretion of senescence-associated factors and the subsequent degeneration of NPCs. Importantly, nanoparticles delivering miR-150-5p inhibitors attenuated needle puncture-induced IDD in mouse models by targeting FBXW11 and inhibiting TAK1 ubiquitination, resulting in the downregulation of NF-kB signaling pathway activity. CONCLUSIONS NPC-targeting nanoparticles delivering miR-150-5p show favorable therapeutic efficacy and safety and may constitute a promising treatment for IDD.
Collapse
Affiliation(s)
- Hua Jiang
- Department of Spine Surgery, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China.
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China.
| | - Hongyu Qin
- Department of Spine Surgery, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Qinghua Yang
- Department of Spine Surgery, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Longao Huang
- Department of Spine Surgery, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Xiao Liang
- Department of Spine Surgery, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Congyang Wang
- Department of Spine Surgery, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Abu Moro
- Department of Spine Surgery, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Sheng Xu
- Research Centre for Regenerative Medicine, Guangxi Engineering Center in Biomedical Material for Tissue and Organ Regeneration, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Qingjun Wei
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China.
| |
Collapse
|
10
|
Lin CC, Frahm E, Afolabi FO. Orthogonally Crosslinked Gelatin-Norbornene Hydrogels for Biomedical Applications. Macromol Biosci 2024; 24:e2300371. [PMID: 37748778 PMCID: PMC10922053 DOI: 10.1002/mabi.202300371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/19/2023] [Indexed: 09/27/2023]
Abstract
The thiol-norbornene photo-click reaction has exceptionally fast crosslinking efficiency compared with chain-growth polymerization at equivalent macromer contents. The orthogonal reactivity between norbornene and thiol/tetrazine permits crosslinking of synthetic and naturally derived macromolecules with modularity, including poly(ethylene glycol) (PEG)-norbornene (PEGNB), gelatin-norbornene (GelNB), among others. For example, collagen-derived gelatin contains both cell adhesive motifs (e.g., Arg-Gly-Asp or RGD) and protease-labile sequences, making it an ideal macromer for forming cell-laden hydrogels. First reported in 2014, GelNB is increasingly used in orthogonal crosslinking of biomimetic matrices in various applications. GelNB can be crosslinked into hydrogels using multi-functional thiol linkers (e.g., dithiothreitol (DTT) or PEG-tetra-thiol (PEG4SH) via visible light or longwave ultraviolet (UV) light step-growth thiol-norbornene reaction or through an enzyme-mediated crosslinking (i.e., horseradish peroxidase, HRP). GelNB-based hydrogels can also be modularly crosslinked with tetrazine-bearing macromers via inverse electron-demand Diels-Alder (iEDDA) click reaction. This review surveys the various methods for preparing GelNB macromers, the crosslinking mechanisms of GelNB-based hydrogels, and their applications in cell and tissue engineering, including crosslinking of dynamic matrices, disease modeling, and tissue regeneration, delivery of therapeutics, as well as bioprinting and biofabrication.
Collapse
Affiliation(s)
- Chien-Chi Lin
- Department of Biomedical Engineering, Purdue School of Engineering & Technology, Indiana University-Purdue University Indianapolis, Indianapolis, IN. 46202. USA
| | - Ellen Frahm
- Department of Biomedical Engineering, Purdue School of Engineering & Technology, Indiana University-Purdue University Indianapolis, Indianapolis, IN. 46202. USA
| | - Favor O. Afolabi
- Department of Biomedical Engineering, Purdue School of Engineering & Technology, Indiana University-Purdue University Indianapolis, Indianapolis, IN. 46202. USA
| |
Collapse
|
11
|
Yang S, Jing S, Wang S, Jia F. From drugs to biomaterials: a review of emerging therapeutic strategies for intervertebral disc inflammation. Front Cell Infect Microbiol 2024; 14:1303645. [PMID: 38352058 PMCID: PMC10861683 DOI: 10.3389/fcimb.2024.1303645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 01/12/2024] [Indexed: 02/16/2024] Open
Abstract
Chronic low back pain (LBP) is an increasingly prevalent issue, especially among aging populations. A major underlying cause of LBP is intervertebral disc degeneration (IDD), often triggered by intervertebral disc (IVD) inflammation. Inflammation of the IVD is divided into Septic and Aseptic inflammation. Conservative therapy and surgical treatment often fail to address the root cause of IDD. Recent advances in the treatment of IVD infection and inflammation range from antibiotics and small-molecule drugs to cellular therapies, biological agents, and innovative biomaterials. This review sheds light on the complex mechanisms of IVD inflammation and physiological and biochemical processes of IDD. Furthermore, it provides an overview of recent research developments in this area, intending to identify novel therapeutic targets and guide future clinical strategies for effectively treating IVD-related conditions.
Collapse
Affiliation(s)
- Shuhan Yang
- Department of Orthopedics, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Shaoze Jing
- Department of Orthopedics, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Shanxi Wang
- Department of Spine Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Fajing Jia
- Department of General Practice, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| |
Collapse
|
12
|
Liu Y, Zhao Z, Guo C, Huang Z, Zhang W, Ma F, Wang Z, Kong Q, Wang Y. Application and development of hydrogel biomaterials for the treatment of intervertebral disc degeneration: a literature review. Front Cell Dev Biol 2023; 11:1286223. [PMID: 38130952 PMCID: PMC10733535 DOI: 10.3389/fcell.2023.1286223] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 11/24/2023] [Indexed: 12/23/2023] Open
Abstract
Low back pain caused by disc herniation and spinal stenosis imposes an enormous medical burden on society due to its high prevalence and refractory nature. This is mainly due to the long-term inflammation and degradation of the extracellular matrix in the process of intervertebral disc degeneration (IVDD), which manifests as loss of water in the nucleus pulposus (NP) and the formation of fibrous disc fissures. Biomaterial repair strategies involving hydrogels play an important role in the treatment of intervertebral disc degeneration. Excellent biocompatibility, tunable mechanical properties, easy modification, injectability, and the ability to encapsulate drugs, cells, genes, etc. make hydrogels good candidates as scaffolds and cell/drug carriers for treating NP degeneration and other aspects of IVDD. This review first briefly describes the anatomy, pathology, and current treatments of IVDD, and then introduces different types of hydrogels and addresses "smart hydrogels". Finally, we discuss the feasibility and prospects of using hydrogels to treat IVDD.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Qingquan Kong
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yu Wang
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
13
|
Chaudhuri R, Bhattacharya S, Dash J. Bioorthogonal Chemistry in Translational Research: Advances and Opportunities. Chembiochem 2023; 24:e202300474. [PMID: 37800582 DOI: 10.1002/cbic.202300474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 09/19/2023] [Indexed: 10/07/2023]
Abstract
Bioorthogonal chemistry is a rapidly expanding field of research that involves the use of small molecules that can react selectively with biomolecules in living cells and organisms, without causing any harm or interference with native biochemical processes. It has made significant contributions to the field of biology and medicine by enabling selective labeling, imaging, drug targeting, and manipulation of bio-macromolecules in living systems. This approach offers numerous advantages over traditional chemistry-based methods, including high specificity, compatibility with biological systems, and minimal interference with biological processes. In this review, we provide an overview of the recent advancements in bioorthogonal chemistry and their current and potential applications in translational research. We present an update on this innovative chemical approach that has been utilized in cells and living systems during the last five years for biomedical applications. We also highlight the nucleic acid-templated synthesis of small molecules by using bioorthogonal chemistry. Overall, bioorthogonal chemistry provides a powerful toolset for studying and manipulating complex biological systems, and holds great potential for advancing translational research.
Collapse
Affiliation(s)
- Ritapa Chaudhuri
- School of Chemical Sciences Indian Association for the Cultivation of Science, 2A and 2B Raja S.C. Mullick Road, Jadavpur, Kolkata, 700099, India
| | - Semantee Bhattacharya
- School of Chemical Sciences Indian Association for the Cultivation of Science, 2A and 2B Raja S.C. Mullick Road, Jadavpur, Kolkata, 700099, India
| | - Jyotirmayee Dash
- School of Chemical Sciences Indian Association for the Cultivation of Science, 2A and 2B Raja S.C. Mullick Road, Jadavpur, Kolkata, 700099, India
| |
Collapse
|
14
|
Luo Z, Wei Z, Zhang G, Chen H, Li L, Kang X. Achilles' Heel-The Significance of Maintaining Microenvironmental Homeostasis in the Nucleus Pulposus for Intervertebral Discs. Int J Mol Sci 2023; 24:16592. [PMID: 38068915 PMCID: PMC10706299 DOI: 10.3390/ijms242316592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/02/2023] [Accepted: 11/07/2023] [Indexed: 12/18/2023] Open
Abstract
The dysregulation of intracellular and extracellular environments as well as the aberrant expression of ion channels on the cell membrane are intricately linked to a diverse array of degenerative disorders, including intervertebral disc degeneration. This condition is a significant contributor to low back pain, which poses a substantial burden on both personal quality of life and societal economics. Changes in the number and function of ion channels can disrupt the water and ion balance both inside and outside cells, thereby impacting the physiological functions of tissues and organs. Therefore, maintaining ion homeostasis and stable expression of ion channels within the cellular microenvironment may prove beneficial in the treatment of disc degeneration. Aquaporin (AQP), calcium ion channels, and acid-sensitive ion channels (ASIC) play crucial roles in regulating water, calcium ions, and hydrogen ions levels. These channels have significant effects on physiological and pathological processes such as cellular aging, inflammatory response, stromal decomposition, endoplasmic reticulum stress, and accumulation of cell metabolites. Additionally, Piezo 1, transient receptor potential vanilloid type 4 (TRPV4), tension response enhancer binding protein (TonEBP), potassium ions, zinc ions, and tungsten all play a role in the process of intervertebral disc degeneration. This review endeavors to elucidate alterations in the microenvironment of the nucleus pulposus during intervertebral disc degeneration (IVDD), with a view to offer novel insights and approaches for exploring therapeutic interventions against disc degeneration.
Collapse
Affiliation(s)
- Zhangbin Luo
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou 730030, China; (Z.L.); (Z.W.); (G.Z.); (H.C.); (L.L.)
- The Second Clinical Medical College, Lanzhou University, Lanzhou 730030, China
| | - Ziyan Wei
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou 730030, China; (Z.L.); (Z.W.); (G.Z.); (H.C.); (L.L.)
- The Second Clinical Medical College, Lanzhou University, Lanzhou 730030, China
| | - Guangzhi Zhang
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou 730030, China; (Z.L.); (Z.W.); (G.Z.); (H.C.); (L.L.)
- The Second Clinical Medical College, Lanzhou University, Lanzhou 730030, China
| | - Haiwei Chen
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou 730030, China; (Z.L.); (Z.W.); (G.Z.); (H.C.); (L.L.)
| | - Lei Li
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou 730030, China; (Z.L.); (Z.W.); (G.Z.); (H.C.); (L.L.)
- The Second Clinical Medical College, Lanzhou University, Lanzhou 730030, China
| | - Xuewen Kang
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou 730030, China; (Z.L.); (Z.W.); (G.Z.); (H.C.); (L.L.)
- The Second Clinical Medical College, Lanzhou University, Lanzhou 730030, China
- Key Laboratory of Orthopedics Disease of Gansu Province, Lanzhou University Second Hospital, Lanzhou 730030, China
| |
Collapse
|
15
|
Wu R, Huang L, Xia Q, Liu Z, Huang Y, Jiang Y, Wang J, Ding H, Zhu C, Song Y, Liu L, Zhang L, Feng G. Injectable mesoporous bioactive glass/sodium alginate hydrogel loaded with melatonin for intervertebral disc regeneration. Mater Today Bio 2023; 22:100731. [PMID: 37533731 PMCID: PMC10393589 DOI: 10.1016/j.mtbio.2023.100731] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 07/10/2023] [Accepted: 07/12/2023] [Indexed: 08/04/2023] Open
Abstract
Intervertebral disc degeneration (IDD) is a major contributing factor to both lower back and neck pain. As IDD progresses, the intervertebral disc (IVD) loses its ability to maintain its disc height when subjected to axial loading. This failure in the weight-bearing capacity of the IVD is a characteristic feature of degeneration. Natural polymer-based hydrogel, derived from biological polymers, possesses biocompatibility and is able to mimic the structure of extracellular matrix, enabling them to support cellular behavior. However, their mechanical performance is relatively poor, thus limiting their application in IVD regeneration. In this study, we developed an injectable composite hydrogel, namely, Mel-MBG/SA, which is similar to natural weight-bearing IVD. Mesoporous bioactive glasses not only enhance hydrogels, but also act as carriers for melatonin (Mel) to suppress inflammation during IDD. The Mel-MBG/SA hydrogel further provides a mixed system with sustained Mel release to alleviate IL-1β-induced oxidative stress and relieve inflammation associated with IDD pathology. Furthermore, our study shows that this delivery system can effectively suppress inflammation in the rat tail model, which is expected to further promote IVD regeneration. This approach presents a novel strategy for promoting tissue regeneration by effectively modulating the inflammatory environment while harnessing the mechanical properties of the material.
Collapse
Affiliation(s)
- Ruibang Wu
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Leizhen Huang
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Qinghong Xia
- Operating Room of Anesthesia Surgery Center, West China Hospital, Sichuan University / West China School of Nursing, Sichuan University, Chengdu, 610041, China
| | - Zheng Liu
- Analytical and Testing Center, Sichuan University, Chengdu, 610065, China
| | - Yong Huang
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yulin Jiang
- Analytical and Testing Center, Sichuan University, Chengdu, 610065, China
| | - Juehan Wang
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Hong Ding
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Ce Zhu
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yueming Song
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Limin Liu
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Li Zhang
- Analytical and Testing Center, Sichuan University, Chengdu, 610065, China
| | - Ganjun Feng
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| |
Collapse
|
16
|
Bhujel B, Yang SS, Kim HR, Kim SB, Min BH, Choi BH, Han I. An Injectable Engineered Cartilage Gel Improves Intervertebral Disc Repair in a Rat Nucleotomy Model. Int J Mol Sci 2023; 24:3146. [PMID: 36834559 PMCID: PMC9966384 DOI: 10.3390/ijms24043146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/19/2023] [Accepted: 02/03/2023] [Indexed: 02/09/2023] Open
Abstract
Lower back pain is a major problem caused by intervertebral disc degeneration. A common surgical procedure is lumbar partial discectomy (excision of the herniated disc causing nerve root compression), which results in further disc degeneration, severe lower back pain, and disability after discectomy. Thus, the development of disc regenerative therapies for patients who require lumbar partial discectomy is crucial. Here, we investigated the effectiveness of an engineered cartilage gel utilizing human fetal cartilage-derived progenitor cells (hFCPCs) on intervertebral disc repair in a rat tail nucleotomy model. Eight-week-old female Sprague-Dawley rats were randomized into three groups to undergo intradiscal injection of (1) cartilage gel, (2) hFCPCs, or (3) decellularized extracellular matrix (ECM) (n = 10/each group). The treatment materials were injected immediately after nucleotomy of the coccygeal discs. The coccygeal discs were removed six weeks after implantation for radiologic and histological analysis. Implantation of the cartilage gel promoted degenerative disc repair compared to hFCPCs or hFCPC-derived ECM by increasing the cellularity and matrix integrity, promoting reconstruction of nucleus pulposus, restoring disc hydration, and downregulating inflammatory cytokines and pain. Our results demonstrate that cartilage gel has higher therapeutic potential than its cellular or ECM component alone, and support further translation to large animal models and human subjects.
Collapse
Affiliation(s)
- Basanta Bhujel
- Department of Biomedical Science, College of Life Sciences, CHA University, Seongnam 13496, Republic of Korea
| | | | | | - Sung Bum Kim
- Department of Neurosurgery, Kyung Hee University, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Byoung-Hyun Min
- ATEMs Inc., Seoul 02447, Republic of Korea
- Wake Forest Institute of Regenerative Medicine, School of Medicine, Wake Forest University, Winston Salem, NC 27101, USA
| | - Byung Hyune Choi
- ATEMs Inc., Seoul 02447, Republic of Korea
- Department of Biomedical Sciences, Inha University College of Medicine, Incheon 22212, Republic of Korea
| | - Inbo Han
- Department of Neurosurgery, CHA Bundang Medical Center, School of Medicine, CHA University, Seongnam 13496, Republic of Korea
| |
Collapse
|