1
|
Li T, Wang N, Yi D, Xiao Y, Li X, Shao B, Wu Z, Bai J, Shi X, Wu C, Qiu T, Yang G, Sun X, Zhang R. ROS-mediated ferroptosis and pyroptosis in cardiomyocytes: An update. Life Sci 2025; 370:123565. [PMID: 40113077 DOI: 10.1016/j.lfs.2025.123565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Revised: 03/04/2025] [Accepted: 03/14/2025] [Indexed: 03/22/2025]
Abstract
The cardiomyocyte is an essential component of the heart, communicating and coordinating with non-cardiomyocytes (endothelial cells, fibroblasts, and immune cells), and are critical for the regulation of structural deformation, electrical conduction, and contractile properties of healthy and remodeled myocardium. Reactive oxygen species (ROS) in cardiomyocytes are mainly produced by the mitochondrial oxidative respiratory chain, nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX), xanthine oxidoreductase (XOR), monoamine oxidase (MAO), and p66shc. Under physiological conditions, ROS are involved in the regulation of cardiac development and cardiomyocyte maturation, cardiac calcium handling, and excitation-contraction coupling. In contrast, dysregulation of ROS metabolism is involved in the development and progression of cardiovascular diseases (CVDs), including myocardial hypertrophy, hyperlipidemia, myocardial ischemia/reperfusion injury, arrhythmias and diabetic cardiomyopathy. Further oxidative stress induced by ROS dyshomeostasis was found to be the major reason for cardiomyocyte death in cardiac diseases, and in recent years, ferroptosis induced by oxidative stress have been considered to be fatal to cardiomyocytes. In addition, ROS is also a key trigger for the activation of pyroptosis, which induces and exacerbates the inflammatory response caused by various cardiac diseases and plays a critical role in CVDs. Therefore, in this review, the sources and destinations of ROS in cardiomyocytes will be systematically addressed, so as to reveal the molecular mechanisms by which ROS accumulation triggers cardiomyocyte ferroptosis and pyroptosis under pathological conditions, and provide a new concept for the research and treatment of heart-related diseases.
Collapse
Affiliation(s)
- Tao Li
- Department of Cardiology, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116023, PR China
| | - Ningning Wang
- Experimental Teaching Center of Public Health, School of Public Health, Dalian Medical University, Dalian, Liaoning 116044, PR China; Global Health Research Center, Dalian Medical University, Dalian, Liaoning 116044, PR China
| | - Dongxin Yi
- School of Public Health, Dalian Medical University, Dalian, Liaoning 116044, PR China
| | - Yuji Xiao
- School of Public Health, Dalian Medical University, Dalian, Liaoning 116044, PR China; Bishan Hospital of Chongqing Medical University, Chongqing 402760, PR China
| | - Xiao Li
- School of Public Health, Dalian Medical University, Dalian, Liaoning 116044, PR China
| | - Bing Shao
- School of Public Health, Dalian Medical University, Dalian, Liaoning 116044, PR China
| | - Ziyi Wu
- School of Public Health, Dalian Medical University, Dalian, Liaoning 116044, PR China
| | - Jie Bai
- Experimental Teaching Center of Public Health, School of Public Health, Dalian Medical University, Dalian, Liaoning 116044, PR China
| | - Xiaoxia Shi
- Experimental Teaching Center of Public Health, School of Public Health, Dalian Medical University, Dalian, Liaoning 116044, PR China
| | - Chenbing Wu
- Experimental Teaching Center of Public Health, School of Public Health, Dalian Medical University, Dalian, Liaoning 116044, PR China
| | - Tianming Qiu
- Global Health Research Center, Dalian Medical University, Dalian, Liaoning 116044, PR China; Occupational and Environmental Health Department, School of Public Health, Dalian Medical University, Dalian, Liaoning 116044, PR China
| | - Guang Yang
- Department of Nutrition and Food Hygiene, School of Public Health, Dalian Medical University, Dalian, Liaoning 116044, PR China
| | - Xiance Sun
- Global Health Research Center, Dalian Medical University, Dalian, Liaoning 116044, PR China; Occupational and Environmental Health Department, School of Public Health, Dalian Medical University, Dalian, Liaoning 116044, PR China
| | - Rongfeng Zhang
- Department of Cardiology, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116023, PR China.
| |
Collapse
|
2
|
Rahdari T, Ghafouri H, Ramezanpour S, Ardestani MS, Asghari SM. Design and Characterization of Peptide-Conjugated Solid Lipid Nanoparticles for Targeted MRI and SPECT Imaging of Breast Tumors. ACS OMEGA 2025; 10:17310-17326. [PMID: 40352495 PMCID: PMC12059910 DOI: 10.1021/acsomega.4c10153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 03/17/2025] [Accepted: 03/31/2025] [Indexed: 05/14/2025]
Abstract
Triple-negative breast cancer (TNBC) presents significant challenges due to its aggressive behavior and lack of targeted treatments. High-resolution imaging techniques and targeted nanoparticles offer potential solutions for early detection and monitoring of TNBC. In this study, we developed and characterized solid lipid nanoparticles (SLNs) conjugated with a C-peptide derived from endostatin to target integrin αvβ3, overexpressed in TNBC. These SLNs were loaded with superparamagnetic iron oxide nanoparticles (SPIONs) for enhanced magnetic resonance imaging (MRI) and radiolabeled with technetium-99m (99mTc) for single-photon emission computed tomography (SPECT), enabling dual-modality imaging. Extensive characterization of the nanoparticles was performed utilizing a variety of advanced techniques, including dynamic light scattering (DLS), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), X-ray diffraction (XRD), vibrating sample magnetometry (VSM), field-emission scanning electron microscopy (FE-SEM), and atomic force microscopy (AFM). This comprehensive analysis validated the successful synthesis and functionalization of the nanoparticles, along with their remarkable magnetic properties, while also revealing their distinct spherical morphology, optimal size, uniform distribution, and colloidal stability. The conjugation of C-peptide significantly enhanced the targeting efficiency in vitro, as evidenced by the MTT and receptor-binding assays in 4T1 cells using flow cytometry and MRI. In vivo studies using a 4T1 murine model demonstrated that peptide-conjugated SLNs accumulated in tumor tissues, providing superior contrast in MRI and enhanced tumor-specific localization in SPECT imaging. Biodistribution analysis confirmed reduced off-target accumulation, particularly in the liver, compared to nontargeted formulations. Collectively, C-peptide-conjugated SLNs provide a promising dual-modality imaging platform for TNBC, offering improved diagnostic accuracy and tumor targeting.
Collapse
Affiliation(s)
- Tahereh Rahdari
- Department
of Biology, Faculty of Sciences, University
of Guilan, 4199613776 Rasht, Iran
| | - Hossein Ghafouri
- Department
of Biology, Faculty of Sciences, University
of Guilan, 4199613776 Rasht, Iran
| | - Sorour Ramezanpour
- Department
of Chemistry, K. N. Toosi University of
Technology, 158754416 Tehran, Iran
| | - Mehdi Shafiee Ardestani
- Department
of Radiopharmacy, Faculty of Pharmacy, Tehran
University of Medical Sciences, 1461884513 Tehran, Iran
- Research
Center for Nuclear Medicine, Shariati Hospital, North Kargar Ave, 1411713135 Tehran, Iran
| | - S. Mohsen Asghari
- Institute
of Biochemistry and Biophysics, University
of Tehran, 1411713135 Tehran, Iran
| |
Collapse
|
3
|
Wang D, Qu X, Zhang Z, Zhou G. New developments in the role of ferroptosis in sepsis‑induced cardiomyopathy (Review). Mol Med Rep 2025; 31:118. [PMID: 40052561 PMCID: PMC11904766 DOI: 10.3892/mmr.2025.13483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 01/15/2025] [Indexed: 03/15/2025] Open
Abstract
Sepsis is a life‑threatening organ dysfunction disorder caused by dysfunctional host response to infection. Sepsis‑induced cardiomyopathy (SIC) is a common and serious complication of sepsis, and it is associated with increased mortality rates; however, its specific pathogenesis is still unclear. Ferroptosis, which is an iron‑dependent form of programmed cell death, is involved in the pathophysiology of SIC. Further study on the mechanism and therapeutic targets of ferroptosis in SIC may provide new strategies for clinical diagnosis and treatment of this condition. The present article reviews the mechanisms between SIC and ferroptosis, summarizes the progress in research of the involvement of ferroptosis in SIC and provides new potential strategies for further research and treatment in the future.
Collapse
Affiliation(s)
- Dingdeng Wang
- Department of Critical Care Medicine, The First College of Clinical Medical Science, China Three Gorges University, Yichang Central People's Hospital, Yichang, Hubei 443003, P.R. China
- Yichang Sepsis Clinical Research Center Yichang, Yichang, Hubei 443003, P.R. China
| | - Xinguang Qu
- Department of Critical Care Medicine, The First College of Clinical Medical Science, China Three Gorges University, Yichang Central People's Hospital, Yichang, Hubei 443003, P.R. China
- Yichang Sepsis Clinical Research Center Yichang, Yichang, Hubei 443003, P.R. China
| | - Zhaohui Zhang
- Department of Critical Care Medicine, The First College of Clinical Medical Science, China Three Gorges University, Yichang Central People's Hospital, Yichang, Hubei 443003, P.R. China
- Yichang Sepsis Clinical Research Center Yichang, Yichang, Hubei 443003, P.R. China
| | - Gaosheng Zhou
- Department of Critical Care Medicine, The First College of Clinical Medical Science, China Three Gorges University, Yichang Central People's Hospital, Yichang, Hubei 443003, P.R. China
- Yichang Sepsis Clinical Research Center Yichang, Yichang, Hubei 443003, P.R. China
| |
Collapse
|
4
|
Liu H, Wang L, Zhou J. Nrf2 and its signaling pathways in sepsis and its complications: A comprehensive review of research progress. Medicine (Baltimore) 2025; 104:e42132. [PMID: 40258745 PMCID: PMC12014120 DOI: 10.1097/md.0000000000042132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 03/30/2025] [Indexed: 04/23/2025] Open
Abstract
Sepsis is a life-threatening condition characterized by organ dysfunction resulting from a dysregulated host immune response to infection. It is associated with a high incidence, intricate pathophysiological mechanisms, and rapidly progressive severity, rendering it a leading cause of mortality among patients in intensive care units. The Nuclear Factor Erythroid 2-Related Factor 2 (Nrf2) is a transcription factor pivotal for maintaining cellular redox homeostasis by regulating the expression of antioxidant and cytoprotective genes. Emerging evidence suggests that activation of the Nrf2 signaling pathway attenuates sepsis-induced inflammatory responses, oxidative stress, and organ dysfunction, thereby improving clinical outcomes. These findings underscore the potential of Nrf2 as a therapeutic target, offering a promising avenue for the development of novel interventions aimed at mitigating the complications and improving the prognosis of sepsis.
Collapse
Affiliation(s)
- Huan Liu
- Department of Emergency Internal Medicine, Jining NO.1 People’s Hospital, Jining, PR China
| | - Lei Wang
- Department of Pulmonary and Critical Care Medicine, Jining NO.1 People’s Hospital, Jining, PR China
| | - Jinhua Zhou
- Department of Pulmonary and Critical Care Medicine, Jining NO.1 People’s Hospital, Jining, PR China
| |
Collapse
|
5
|
Liu Y, Yu Z, Lu Y, Liu Y, Chen L, Li J. Progress in the study of the mechanism of ferroptosis in coronary heart disease and clinical intervention strategies. Front Cardiovasc Med 2025; 12:1545231. [PMID: 40308274 PMCID: PMC12040834 DOI: 10.3389/fcvm.2025.1545231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Accepted: 03/31/2025] [Indexed: 05/02/2025] Open
Abstract
Coronary heart disease (CHD), a serious cardiovascular condition with complex and diverse pathogenesis, has recently seen increased attention to the role of ferroptosis-a novel iron-dependent form of programmed cell death. This review synthesizes current research on ferroptosis mechanisms in CHD and emerging clinical intervention strategies. Ferroptosis is characterized by dysregulated iron metabolism, lipid peroxidation, and reactive oxygen species (ROS) accumulation, processes intimately linked to CHD pathophysiology. Under ischemic and hypoxic conditions commonly seen in coronary artery disease (CAD), cardiomyocytes become particularly susceptible to ferroptosis, resulting in cellular dysfunction and diminished cardiac performance. Mechanistic studies have revealed that altered expression of iron metabolism-related proteins (including GPX4, FTH1, TfR1, and HO-1), accumulation of lipid peroxidation products, and disruption of antioxidant defense systems (particularly the Nrf2/GPX4 pathway) are central to ferroptosis progression in cardiac tissue. Clinically, both specific ferroptosis inhibitors (such as Ferrostatin-1) and traditional medicine components (such as Puerarin) have emerged as promising therapeutic candidates, showing cardioprotective effects in experimental models. However, research into ferroptosis mechanisms in CHD remains in its early stages, with significant questions regarding its relationship with other cell death pathways and the clinical efficacy of ferroptosis-targeting interventions requiring further investigation. Future research directions should include in-depth mechanistic exploration and the development of more effective, safer clinical interventions targeting the ferroptosis pathway in cardiovascular disease.
Collapse
Affiliation(s)
- Yingzhi Liu
- Hunan Key Laboratory of TCM Diagnostics, Hunan University of Chinese Medicine, Changsha, China
| | - Zixuan Yu
- Hunan Key Laboratory of TCM Diagnostics, Hunan University of Chinese Medicine, Changsha, China
| | - Yuwen Lu
- Hunan Key Laboratory of TCM Diagnostics, Hunan University of Chinese Medicine, Changsha, China
| | - Yue Liu
- Hunan Key Laboratory of TCM Diagnostics, Hunan University of Chinese Medicine, Changsha, China
| | - Lingli Chen
- Hunan Key Laboratory of Pathogeny Biology of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Jie Li
- Hunan Key Laboratory of TCM Diagnostics, Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
6
|
Zeng Z, Deng J, Wang G, Luo Z, Xiao W, Xie W, Liu J, Li K. Ferroptosis-related protein biomarkers for diagnosis, differential diagnosis, and short-term mortality in patients with sepsis in the intensive care unit. Front Immunol 2025; 16:1528986. [PMID: 40264754 PMCID: PMC12011590 DOI: 10.3389/fimmu.2025.1528986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 03/19/2025] [Indexed: 04/24/2025] Open
Abstract
Background Sepsis is a disease with high mortality caused by a dysregulated response to infection. Ferroptosis is a newly discovered type of cell death. Ferroptosis-related genes are involved in the occurrence and development of sepsis. However, research on the diagnostic value of ferroptosis-related protein biomarkers in sepsis serum is limited. This study aims to explore the clinical value of Ferroptosis-related proteins in diagnosing sepsis and predicting mortality risk. Methods A single-center, prospective, observational study was conducted from January to December 2023, involving 170 sepsis patients, 49 non-septic ICU patients, and 50 healthy individuals. Upon ICU admission, biochemical parameters, GCS, SOFA, and APACHE II scores were recorded, and surplus serum was stored at -80°C for biomarker analysis via ELISA. Diagnostic efficacy was evaluated using ROC curve analysis. Results Baseline serum levels of ACSL4, GPX4, PTGS2, CL-11, IL-6, IL-8, PCT, and hs-CRP significantly differed among sepsis, non-septic, and healthy individuals (all p-value < 0.01). ACSL4, GPX4, PTGS2, IL-6, IL-8, PCT, and hs-CRP demonstrated high diagnostic and differential diagnostic performance (AUC: 0.6688 to 0.9945). IL-10 and TNF-α showed good diagnostic performance (AUC = 0.8955 and 0.7657, respectively). ACSL4 (AUC = 0.7127) was associated with predicting sepsis mortality. Serum levels of ACSL4, CL-11, and IL-6 above the cut-off value were associated with shorter survival times. ACSL4 levels were positively correlated with SOFA (Rho = 0.354, p-value < 0.0001), APACHE II (Rho = 0.317, p-value < 0.0001), and septic shock (Rho = 0.274, p-value = 0.003) scores but negatively correlated with the GCS score (Rho = -0.218, p-value = 0.018). GPX4 levels were positively correlated with SOFA (Rho = 0.204, p-value = 0.027) and APACHE II (Rho = 0.233, p-value = 0.011) scores. Conclusion ACSL4 and GPX4 have strong diagnostic and differential diagnostic value in sepsis, including the ability to predict 28-day mortality in sepsis patients, and may become new potential serum markers for the diagnostic and differential diagnostic of sepsis.
Collapse
Affiliation(s)
- Zhangrui Zeng
- Department of Critical Care Medicine, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Core Research Laboratory, The Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an, China
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jie Deng
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Sichuan Province Engineering Technology Research Center of Clinical Diseases Molecular Diagnosis, Luzhou, China
- Clinical Diseases Molecular Diagnosis Key Laboratory of LuZhou, Luzhou, China
| | - Gang Wang
- Department of Critical Care Medicine, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Core Research Laboratory, The Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Zixiang Luo
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Sichuan Province Engineering Technology Research Center of Clinical Diseases Molecular Diagnosis, Luzhou, China
- Clinical Diseases Molecular Diagnosis Key Laboratory of LuZhou, Luzhou, China
| | - Weijia Xiao
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Sichuan Province Engineering Technology Research Center of Clinical Diseases Molecular Diagnosis, Luzhou, China
- Clinical Diseases Molecular Diagnosis Key Laboratory of LuZhou, Luzhou, China
| | - Wenchao Xie
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Sichuan Province Engineering Technology Research Center of Clinical Diseases Molecular Diagnosis, Luzhou, China
- Clinical Diseases Molecular Diagnosis Key Laboratory of LuZhou, Luzhou, China
| | - Jinbo Liu
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Sichuan Province Engineering Technology Research Center of Clinical Diseases Molecular Diagnosis, Luzhou, China
- Clinical Diseases Molecular Diagnosis Key Laboratory of LuZhou, Luzhou, China
| | - Ke Li
- Department of Critical Care Medicine, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Core Research Laboratory, The Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
7
|
Yang Y, Deng X, Li W, Leng Y, Xiong Y, Wang B, Gong S, Wang Y, Yang B, Li W. Targeting the epigenetic regulation of ferroptosis: a potential therapeutic approach for sepsis-associated acute kidney injury. Clin Epigenetics 2025; 17:57. [PMID: 40189571 PMCID: PMC11974148 DOI: 10.1186/s13148-025-01861-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 03/13/2025] [Indexed: 04/09/2025] Open
Abstract
Sepsis is a syndrome of organ dysfunction caused by the invasion of pathogenic microorganisms. In clinical practice, patients with sepsis are prone to concurrent acute kidney injury, which has high morbidity and mortality rates. Thus, understanding the pathogenesis of sepsis-associated acute kidney injury is of significant clinical importance. Ferroptosis is an iron-dependent programmed cell death pathway, which is proved to play a critical role in the process of sepsis-associated acute kidney injury through various mechanisms. Epigenetic regulation modulates the content and function of nucleic acids and proteins within cells through various modifications. Its impact on ferroptosis has garnered increasing attention; however, the role of epigenetic regulation targeting ferroptosis in sepsis-associated acute kidney injury has not been fully elucidated. Growing evidence suggests that epigenetic regulation can modulate ferroptosis through complex pathway networks, thereby affecting the development and prognosis of sepsis-associated acute kidney injury. This paper summarizes the impact of ferroptosis on sepsis-associated acute kidney injury and the regulatory mechanisms of epigenetic regulation on ferroptosis, providing new insights for the targeted therapy of sepsis-associated acute kidney injury.
Collapse
Affiliation(s)
- Yuhang Yang
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Xinqi Deng
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Wenyuan Li
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Yan Leng
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Yonghong Xiong
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Bihan Wang
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Siyuan Gong
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Yunhao Wang
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Baichuan Yang
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Wei Li
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China.
| |
Collapse
|
8
|
Jiang C, Hou M, Sun S, Chen G, Bai F, Wang S. Targeting Lcn2 to Inhibit Myocardial Cell Ferroptosis is a Potential Therapy for Alleviating Septic Cardiomyopathy. Inflammation 2025:10.1007/s10753-025-02250-3. [PMID: 39899131 DOI: 10.1007/s10753-025-02250-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 01/16/2025] [Indexed: 02/04/2025]
Abstract
Septic cardiomyopathy (SCM) represents a key feature of sepsis-associated cardiovascular failure, and ferroptosis is one of the essential causes of septic cardiac dysfunction. In this study, combined with omics analysis and in vivo experiments, we verified the damage of ferroptosis on cardiac tissue in septic mice and mined the target genes that can inhibit ferroptosis in cardiomyocytes. Lipocalin-2 (Lcn2) was identified to be associated with SCM progression via integrated transcriptomic and proteomic analyses. Sepsis was induced by cecal ligation and perforation (CLP) in mice. Ferroptosis and cardiac dysfunction were detected by pathological tissue staining and ELISA. However, after the knockout of Lcn2, cardiomyocyte ferroptosis was significantly suppressed, inflammatory infiltrates were reduced, reactive oxygen species (ROS) levels were lowered, mitochondrial damage was alleviated, and cardiac function was restored in CLP mice. In summary, this study found that Lcn2 can be a potential target for inhibiting ferroptosis in SCM. Targeting Lcn2 can effectively inhibit inflammation, improve mitochondrial dysfunction, inhibit cardiomyocyte ferroptosis, and alleviate SCM.
Collapse
Affiliation(s)
- Cheng Jiang
- Cardiology Department of Lanzhou, University Second Hospital, Lanzhou, China
| | - MingTong Hou
- The Second Hospital &Clinical Medical School, Lanzhou University, Lanzhou, China
| | - Shougang Sun
- Cardiology Department of Lanzhou, University Second Hospital, Lanzhou, China
| | - Gang Chen
- Cardiology Department of Lanzhou, University Second Hospital, Lanzhou, China
| | - Feng Bai
- Cardiology Department of Lanzhou, University Second Hospital, Lanzhou, China
| | - Shengbao Wang
- Emergency Department of Lanzhou, University Second Hospital, Lanzhou, China.
- The Second Hospital of Lanzhou University, No.82, Zuiyingmen, Chengguan District, Lanzhou City, Gansu Province, China.
| |
Collapse
|
9
|
Liu H, Xu C, Hu Q, Wang Y. Sepsis-induced cardiomyopathy: understanding pathophysiology and clinical implications. Arch Toxicol 2025; 99:467-480. [PMID: 39601874 DOI: 10.1007/s00204-024-03916-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 11/20/2024] [Indexed: 11/29/2024]
Abstract
Sepsis is a life-threatening form of organ dysfunction resulting from a dysregulated response to infection. The complex pathogenesis of sepsis poses challenges because of the lack of reliable biomarkers for early identification and effective treatments. As sepsis progresses to severe forms, cardiac dysfunction becomes a major concern, often manifesting as ventricular dilation, a reduced ejection fraction, and a diminished contractile capacity, known as sepsis-induced cardiomyopathy (SIC). The absence of standardized diagnostic and treatment protocols for SIC leads to varied criteria being used across medical institutions and studies, resulting in significant outcome disparities. Despite the high prevalence of SIC, accurate statistical data are lacking. To understand how SIC affects sepsis prognosis, a thorough exploration of its pathophysiological mechanisms, including systemic factors and complex signalling within myocardial and immune cells, is required. Identifying the factors influencing SIC occurrence and progression is crucial and must be conducted within specific clinical contexts. In this review, the clinical manifestations, pathophysiological mechanisms, and treatment strategies for SIC are discussed, along with the clinical background. We aim to connect current practices with future research challenges, providing clear guidance for clinicians and researchers.
Collapse
Affiliation(s)
- Haoran Liu
- Emergency and Trauma College, Hainan Medical University, Haikou, People's Republic of China
| | - Chaoqun Xu
- School of Medicine, Jiangsu University, Zhenjiang, 212001, Jiangsu Province, People's Republic of China
- Division of Cardiology, Department of Medicine, The Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| | - Qin Hu
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, People's Republic of China
| | - Yang Wang
- Emergency Medicine Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, People's Republic of China.
| |
Collapse
|
10
|
Jing X, Chen Z, Zhang M, Luo C, Yang B, Lv Y, Li Y, Zeng L, Lin W. Melatonin mitigates the lipopolysaccharide-induced myocardial injury in rats by blocking the p53/xCT pathway-mediated ferroptosis. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:1653-1663. [PMID: 39153053 DOI: 10.1007/s00210-024-03367-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 08/08/2024] [Indexed: 08/19/2024]
Abstract
This article examined the therapeutic effect of melatonin (MT) on the lipopolysaccharide (LPS)-induced myocardial injury, and the mechanisms involved. Septic rat model was constructed by exposing to lipopolysaccharide (LPS), and treated by MT, Ferrostatin-1 (Fer-1) and Erastin (Era). Hematoxylin-eosin staining was executed to appraise myocardial injury. H9c2 cells that exposed to LPS to induce in vitro sepsis cell model were treated by MT. p53 overexpression vectors were transfected into H9c2 cells. Inflammation- and ferroptosis-related indicators were examined by enzyme-linked immunosorbent assay. Expression of p53, xCT and GPX4 was scrutinized by quantitative real-time polymerase chain reaction and Western blot. MT relieved myocardial injury in septic rats. It decreased IL-6 and TNF-α, elevated GPX4 and GSH, and reduced MDA and Fe2+ in myocardial tissues of septic rats. LPS induced p53 elevation and xCT reduction in rats' myocardial tissues. Nevertheless, MT treatment declined p53 and increased xCT in myocardial tissues of septic rats. Interestingly, the relieving effect of MT on myocardial injury in septic rats was enhanced by Fer-1, but reversed by Era. The LPS-induced H9c2 cell damage was relieved by MT treatment. Besides, MT decreased LDH, IL-6 and TNF-α, elevated xCT, GPX4 and GSH, and reduced MDA and Fe2+ in the LPS-induced H9c2 cells. Conversely, these influences of MT on the LPS-induced H9c2 cells were reversed by p53 overexpression. MT is proposed to be a promising agent for treating the LPS-induced myocardial injury, as it relieves myocardial injury by hindering the p53/xCT-mediated ferroptosis in the LPS-induced septic rats.
Collapse
Affiliation(s)
- Xin Jing
- Department of Intensive Care Medicine, Cardio-Cerebrovascular Hospital, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Zhida Chen
- Department of Intensive Care Medicine, Shenzhen Qianhai Shekou Free Trade Zone Hospital, Shenzhen, China
| | - Mingdao Zhang
- Department of Intensive Care Medicine, Shenzhen Qianhai Shekou Free Trade Zone Hospital, Shenzhen, China
| | - Caiqin Luo
- Department of Intensive Care Medicine, Cardio-Cerebrovascular Hospital, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Bo Yang
- Department of Intensive Care Medicine, Cardio-Cerebrovascular Hospital, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Yanlan Lv
- Department of Intensive Care Medicine, Shenzhen Qianhai Shekou Free Trade Zone Hospital, Shenzhen, China
| | - Yue Li
- Department of Intensive Care Medicine, Shenzhen Qianhai Shekou Free Trade Zone Hospital, Shenzhen, China
| | - Lina Zeng
- Department of Intensive Care Medicine, Shenzhen Qianhai Shekou Free Trade Zone Hospital, Shenzhen, China
| | - Wenji Lin
- Emergency Department, Shenzhen Qianhai Shekou Free Trade Zone Hospital, Shenzhen, China.
| |
Collapse
|
11
|
Sun Y, Zou Q, Yu H, Yi X, Dou X, Yang Y, Liu Z, Yang H, Jia J, Chen Y, Sun SK, Zhang L. Melanin-like nanoparticles slow cyst growth in ADPKD by dual inhibition of oxidative stress and CREB. EMBO Mol Med 2025; 17:169-192. [PMID: 39567834 PMCID: PMC11730739 DOI: 10.1038/s44321-024-00167-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/18/2024] [Accepted: 10/18/2024] [Indexed: 11/22/2024] Open
Abstract
Melanin-like nanoparticles (MNPs) have recently emerged as valuable agents in antioxidant therapy due to their excellent biocompatibility and potent capacity to scavenge various reactive oxygen species (ROS). However, previous studies have mainly focused on acute ROS-related diseases, leaving a knowledge gap regarding their potential in chronic conditions. Furthermore, apart from their well-established antioxidant effects, it remains unclear whether MNPs target other intracellular molecular pathways. In this study, we synthesized ultra-small polyethylene glycol-incorporated Mn2+-chelated MNP (MMPP). We found that MMPP traversed the glomerular filtration barrier and specifically accumulated in renal tubules. Autosomal dominant polycystic kidney disease (ADPKD) is a chronic genetic disorder closely associated with increased oxidative stress and featured by the progressive enlargement of cysts originating from various segments of the renal tubules. Treatment with MMPP markedly attenuated oxidative stress levels, inhibited cyst growth, thereby improving renal function. Interestingly, we found that MMPP effectively inhibits a cyst-promoting gene program downstream of the cAMP-CREB pathway, a crucial signaling pathway implicated in ADPKD progression. Mechanistically, we observed that MMPP directly binds to the bZIP DNA-binding domain of CREB, leading to competitive inhibition of CREB's DNA binding ability and subsequent reduction in CREB target gene expression. In summary, our findings identify an intracellular target of MMPP and demonstrate its potential for treating ADPKD by simultaneously targeting oxidative stress and CREB transcriptional activity.
Collapse
Affiliation(s)
- Yongzhan Sun
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), State Key Laboratory of Experimental Hematology, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
- School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin, China
| | - Quan Zou
- Department of Radiology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Huizheng Yu
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), State Key Laboratory of Experimental Hematology, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Xiaoping Yi
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), State Key Laboratory of Experimental Hematology, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Xudan Dou
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), State Key Laboratory of Experimental Hematology, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Yu Yang
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Zhiheng Liu
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), State Key Laboratory of Experimental Hematology, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Hong Yang
- Department of Pharmacology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Junya Jia
- Department of Nephrology, Tianjin Medical University General Hospital, Tianjin, China
| | - Yupeng Chen
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), State Key Laboratory of Experimental Hematology, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China.
| | - Shao-Kai Sun
- School of Medical Imaging, Tianjin Medical University, Tianjin, China.
| | - Lirong Zhang
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), State Key Laboratory of Experimental Hematology, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.
| |
Collapse
|
12
|
Li JM, Zhang L, Pei SL, Guo L, Shen HL, He J, Guo YY, Zhang WQ, Lin F. Copper-Based Nanoparticles for Effective Treatment Against Sepsis-Induced Lung Injury in Mice Model. Int J Nanomedicine 2024; 19:13507-13524. [PMID: 39713221 PMCID: PMC11662683 DOI: 10.2147/ijn.s488357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 12/06/2024] [Indexed: 12/24/2024] Open
Abstract
Introduction Lung injury, a common complication of sepsis, arises from elevated reactive oxygen species (ROS), mitochondrial dysfunction, and cell death driven by inflammation. In this study, a novel class of ultrasmall nanoparticles (Cu4.5O USNPs) was developed to address sepsis-induced lung injury (SILI). Methods The synthesized nanoparticles were thoroughly characterized to assess their properties. In vitro experiments were conducted to determine the biologically effective concentration and elucidate the anti-inflammatory mechanism of action. These findings were further supported by in vivo studies, showcasing the material's efficacy in mitigating SILI. Results The Cu4.5O USNPs demonstrated remarkable scavenging capabilities for hydrogen peroxide (H2O2), superoxide anions (O2 -), and hydroxyl radicals (·OH), attributed to their catalase (CAT)- and superoxide dismutase (SOD)-like activities. Additionally, the nanoparticles exhibited strong anti-inflammatory effects, preserved mitochondrial homeostasis through potent ROS scavenging, and significantly reduced cell death. In vivo studies on mice further validated their protective role against SILI. The conclusion This study highlights the therapeutic potential of Cu4.5O USNPs in treating sepsis-induced lung injury by effectively scavenging ROS and reducing cell death. These findings provide compelling evidence for the future use of copper-based nanoparticles as antioxidant therapeutics.
Collapse
Affiliation(s)
- Jie-Mei Li
- Department of Anesthesiology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, People’s Republic of China
- Guangxi Health Commission Key Laboratory of Basic Science and Prevention of Perioperative Organ Disfunction, Nanning, Guangxi, People’s Republic of China
| | - Lu Zhang
- Department of Anesthesiology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, People’s Republic of China
- Guangxi Health Commission Key Laboratory of Basic Science and Prevention of Perioperative Organ Disfunction, Nanning, Guangxi, People’s Republic of China
| | - Sheng-Lin Pei
- Department of Anesthesiology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, People’s Republic of China
- Guangxi Clinical Research Center for Anesthesiology, Nanning, Guangxi, People’s Republic of China
| | - Liang Guo
- Department of Anesthesiology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, People’s Republic of China
- Guangxi Clinical Research Center for Anesthesiology, Nanning, Guangxi, People’s Republic of China
| | - Hong-Lei Shen
- Department of Anesthesiology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, People’s Republic of China
- Guangxi Health Commission Key Laboratory of Basic Science and Prevention of Perioperative Organ Disfunction, Nanning, Guangxi, People’s Republic of China
| | - Jing He
- Department of Anesthesiology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, People’s Republic of China
- Guangxi Health Commission Key Laboratory of Basic Science and Prevention of Perioperative Organ Disfunction, Nanning, Guangxi, People’s Republic of China
| | - You-Yuan Guo
- Department of Anesthesiology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, People’s Republic of China
- Guangxi Health Commission Key Laboratory of Basic Science and Prevention of Perioperative Organ Disfunction, Nanning, Guangxi, People’s Republic of China
| | - Wei-Qing Zhang
- Department of Experimental Research, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, People’s Republic of China
| | - Fei Lin
- Department of Anesthesiology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, People’s Republic of China
- Guangxi Health Commission Key Laboratory of Basic Science and Prevention of Perioperative Organ Disfunction, Nanning, Guangxi, People’s Republic of China
| |
Collapse
|
13
|
Zhou X, Wang H, Yan B, Nie X, Chen Q, Yang X, Lei M, Guo X, Ouyang C, Ren Z. Ferroptosis in Cardiovascular Diseases and Ferroptosis-Related Intervention Approaches. Cardiovasc Drugs Ther 2024:10.1007/s10557-024-07642-5. [PMID: 39641901 DOI: 10.1007/s10557-024-07642-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/08/2024] [Indexed: 12/07/2024]
Abstract
OBJECTIVE Cardiovascular diseases (CVDs) are major public health problems that threaten the lives and health of individuals. The article has reviewed recent progresses about ferroptosis and ferroptosis-related intervention approaches for the treatment of CVDs and provided more references and strategies for targeting ferroptosis to prevent and treat CVDs. METHODS A comprehensive review was conducted using the literature researches. RESULTS AND DISCUSSION Many ferroptosis-targeted compounds and ferroptosis-related genes may be prospective targets for treating CVDs and our review provides a solid foundation for further studies about the detailed pathological mechanisms of CVDs. CONCLUSION There are challenges and limitations about the translation of ferroptosis-targeted potential therapies from experimental research to clinical practice. It warrants further exploration to pursure safer and more effective ferroptosis-targeted thereapeutic approaches for CVDs.
Collapse
Affiliation(s)
- Xianpeng Zhou
- Hubei University of Science and Technology, Xianning, 437100, Hubei, People's Republic of China
| | - Hao Wang
- Hubei University of Science and Technology, Xianning, 437100, Hubei, People's Republic of China
| | - Biao Yan
- Hubei University of Science and Technology, Xianning, 437100, Hubei, People's Republic of China
| | - Xinwen Nie
- Hubei University of Science and Technology, Xianning, 437100, Hubei, People's Republic of China
| | - Qingjie Chen
- Hubei University of Science and Technology, Xianning, 437100, Hubei, People's Republic of China
| | - Xiaosong Yang
- Hubei University of Science and Technology, Xianning, 437100, Hubei, People's Republic of China
| | - Min Lei
- Hubei University of Science and Technology, Xianning, 437100, Hubei, People's Republic of China
| | - Xiying Guo
- Hubei University of Science and Technology, Xianning, 437100, Hubei, People's Republic of China
| | - Changhan Ouyang
- Hubei University of Science and Technology, Xianning, 437100, Hubei, People's Republic of China
| | - Zhanhong Ren
- Hubei University of Science and Technology, Xianning, 437100, Hubei, People's Republic of China.
| |
Collapse
|
14
|
Zhao Q, Kong C, Wu X, Ling Y, Shi J, Li S, Zhu Y, Yu J. Ciprofol prevents ferroptosis in LPS induced acute lung injury by activating the Nrf2 signaling pathway. BMC Pulm Med 2024; 24:591. [PMID: 39609781 PMCID: PMC11606060 DOI: 10.1186/s12890-024-03415-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 11/25/2024] [Indexed: 11/30/2024] Open
Abstract
BACKGROUND Patients who suffered from sepsis-induced acute lung injury (ALI) always need sedation for mechanical ventilation in intensive care unit (ICU). Ciprofol(Cip), a novel intravenous anesthetic, was revealed to have anti-inflammatory and antioxidative properties. Ferroptosis, categorized as a type of newly non-apoptotic cell death, participates in the development of lung injury. This study aimed to identify the effect of ciprofol on sepsis-induced ALI and to determine whether ferroptosis is involved. METHODS AND RESULTS To create ALI models, MLE12 alveolar epithelial. Cells and lipopolysaccharide (LPS)-stimulated C57BL/6J mice were used. Our results displyed that Cip reduced lung injury and ferroptosis. In the LPS-induced sepsis mice model, Cip pretreatment partially reduced respiratory system damage, as evaluated by HE, TUNEL and inflammatory factors. By raising GSH levels, ciprofol activated the Nrf2 antioxidative pathway, blocked ferroptosis, increased ferroptosis-related protein (GPX4 and SLC7A11) expressions, and reduced Fe2+ content, as well as MDA and 4-HNE levels. However, the protective effects of Cip on lung injury and ferroptosis diminished in Nrf2-KO mice. Additionally, Cip activated the Nrf2 pathway and reduced cell death by preventing detrimental lipid peroxidation and ferroptosis in vitro. However, these effects were not observed in siNrf2-treated cells. CONCLUSION Our study demonstrated that Cip may prevent septic lung injury by suppressing ferroptosis through the Nrf2 pathway.
Collapse
Affiliation(s)
- Qin Zhao
- Tianjin NanKai Hospital, Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Tianjin, China
- Institute of Integrative Medicine for Acute Abdominal Diseases, Tianjin, China
| | - Chang Kong
- Tianjin NanKai Hospital, Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Tianjin, China
- Institute of Integrative Medicine for Acute Abdominal Diseases, Tianjin, China
| | - Xiuyun Wu
- Department of Anesthesiology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Yong Ling
- Department of Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Jia Shi
- Tianjin NanKai Hospital, Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Tianjin, China
- Institute of Integrative Medicine for Acute Abdominal Diseases, Tianjin, China
| | - Shaona Li
- Department of Anesthesiology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Youzhuang Zhu
- Department of Anesthesiology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Jianbo Yu
- Tianjin NanKai Hospital, Tianjin Medical University, Tianjin, China.
- Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Tianjin, China.
- Institute of Integrative Medicine for Acute Abdominal Diseases, Tianjin, China.
- Department of Anesthesiology and Critical Care Medicine, Tianjin Nankai Hospital, Tianjin Medical University, Changjiang street, Nankai district, Tianjin, 300000, China.
| |
Collapse
|
15
|
Dai Y, Chen J, Duan Q. Epigenetic mechanism of EZH2-mediated histone methylation modification in regulating ferroptosis of alveolar epithelial cells in sepsis-induced acute lung injury. Drug Dev Res 2024; 85:e22263. [PMID: 39344139 DOI: 10.1002/ddr.22263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 07/05/2024] [Accepted: 09/12/2024] [Indexed: 10/01/2024]
Abstract
Sepsis-induced acute lung injury (SI-ALI) leads to significant deaths in critically ill patients worldwide. This study explores the mechanism of EZH2 regulating ferroptosis of alveolar epithelial cells (AECs) in SI-ALI. In vitro cell model and in vivo mouse lung injury model of sepsis were established. EZH2 expression in lung tissues was intervened by sh-EZH2, followed by H&E staining observation of lung tissue pathological changes. EZH2, H3K27me3, USP10, GPX4, and ACSL4 expressions were determined by qRT-PCR or Western blot. ROS, GSH, and iron ion levels were detected using fluorescent labeling and reagent kits, respectively. ChIP analyzed the enrichment of EZH2 and H3K27me3 on USP10 promoter. The binding between USP10 and GPX4, and the ubiquitination level of GPX4 were detected using Co-IP. EZH2 was highly expressed in lung tissues of SI-ALI mice. EZH2 silencing alleviated ALI and ferroptosis of AECs; EZH2 increased the H3K27me3 level on USP10 promoter through histone methylation. USP10 stabilized GPX4 protein expression through ubiquitination; inhibition of USP10 partially reversed the inhibitory effect of EZH2 silencing on ferroptosis of AECs. In conclusion, EZH2 depresses USP10 expression by promoting histone H3K27me3 modification on USP10 promoter, thereby enhancing ubiquitination degradation of GPX4 and ultimately facilitating ferroptosis of AECs in sepsis.
Collapse
Affiliation(s)
- Ying Dai
- Department of General Pediatrics, Taizhou People's Hospital, Taizhou, 225300, China
| | - Jiebin Chen
- Department of General Pediatrics, Taizhou People's Hospital, Taizhou, 225300, China
| | - Qingning Duan
- Department of General Pediatrics, Taizhou People's Hospital, Taizhou, 225300, China
| |
Collapse
|
16
|
Guan H, Fang J. BMP10 Knockdown Modulates Endothelial Cell Immunoreactivity by Inhibiting the HIF-1α Pathway in the Sepsis-Induced Myocardial Injury. J Cell Mol Med 2024; 28:e70232. [PMID: 39611400 PMCID: PMC11605482 DOI: 10.1111/jcmm.70232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 10/23/2024] [Accepted: 11/11/2024] [Indexed: 11/30/2024] Open
Abstract
Sepsis is a life-threatening syndrome triggered by a cascade of dysregulated immune responses. Sepsis-induced myocardial injury (SIMI) substantially impacts the survival time of septic patients. However, the molecular mechanisms underlying the pathology of SIMI remain unclear. Immune-related differentially expressed genes in SIMI were identified through RNA sequencing and bioinformatics analysis. The expression levels of hub genes were detected using reverse transcription quantitative PCR. BMP10 was knocked down in the lipopolysaccharide-induced mouse and cardiac microvascular endothelial cell (CMEC) models, and its functions were assessed by a series of in vitro and in vivo assays. Cell adhesion and HIF-1 pathway-associated protein expressions were measured by western blot. Fenbendazole-d3 was used to investigate whether BMP10 influenced SIMI development by modulating the HIF-1 pathway. Six key genes were screened, of which BMP10, HAMP, TRIM5, and MLANA were highly expressed, and PTPRN2 and AVP were lowly expressed. BMP10 knockdown ameliorated histopathological changes and inhibited apoptosis and CMEC immune infiltration in SIMI. BMP10 knockdown reduced inflammatory factor (IL-6, MCP-1, IFN-β, and CCL11) levels and protein expressions of cell adhesion-related molecules (VCAM-1 and ICAM-1). Mechanistically, the HIF-1 pathway agonist, Fenbendazole-d3, significantly reversed the inhibitory effects of BMP10 knockdown on SIMI in vitro, indicating that BMP10 knockdown impeded the development of SIMI by suppressing the HIF-1α pathway. BMP10 knockdown blocks SIMI progression by inhibiting the HIF-1α pathway, which provides a new potential therapeutic strategy for SIMI treatment.
Collapse
Affiliation(s)
- Huan Guan
- Department of EmergencyGanzhou People's HospitalGanzhouJiangxiChina
| | - Jingyun Fang
- Department of EmergencyGanzhou People's HospitalGanzhouJiangxiChina
| |
Collapse
|
17
|
Xing C, Sheng Y, Wu Y, Huang Y, Lv L, Chen F, Yan B. Carrier-Free Small Molecule-Assembled Nanoparticles for Treatment of Sepsis. ACS APPLIED NANO MATERIALS 2024; 7:24049-24060. [DOI: 10.1021/acsanm.4c04630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Affiliation(s)
- Chengyuan Xing
- Institute of Sports Medicine and Health, Chengdu Sport University, Chengdu 610041, China
- The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
| | - Yiyu Sheng
- The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
| | - Yu Wu
- Institute of Sports Medicine and Health, Chengdu Sport University, Chengdu 610041, China
| | - Yao Huang
- Institute of Sports Medicine and Health, Chengdu Sport University, Chengdu 610041, China
| | - Lei Lv
- Institute of Sports Medicine and Health, Chengdu Sport University, Chengdu 610041, China
| | - Feilong Chen
- Institute of Sports Medicine and Health, Chengdu Sport University, Chengdu 610041, China
| | - Binyuan Yan
- The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
| |
Collapse
|
18
|
Wang YE, Chen J, Yang H, He J, Varier KM, Chen Y, Wu X, Guo Q, Liang Y, Shen X, Wei M, Li W, Tao L. Polysialic acid driving cardiovascular targeting co-delivery 1,8-cineole and miR-126 to synergistically alleviate lipopolysaccharide-induced acute cardiovascular injury. Int J Biol Macromol 2024; 280:135970. [PMID: 39332566 DOI: 10.1016/j.ijbiomac.2024.135970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 09/20/2024] [Accepted: 09/21/2024] [Indexed: 09/29/2024]
Abstract
Infection-induced cardiovascular damage is the primary pathological mechanism underlying septic cardiac dysfunction. This condition affects the majority of patients in intensive care unit and has an unfavorable prognosis due to the lack of effective therapies available. Vascular cell adhesion molecule-1 (VCAM-1) plays a vital role in coordinating the inflammatory response and recruitment of leukocytes in cardiac tissue, making it a potential target for developing novel therapies. MicroRNA-126 (miR-126) has been shown to downregulate VCAM-1 expression in endothelial cells, reducing leukocyte adhesion and exerting anti-inflammatory effects. Therefore, this work described a polysialic acid (PSA) modified ROS-responsive nanosystem to targeted co-delivery 1,8-Cineole and miR-126 for mitigating septic cardiac dysfunction. The nanosystem consists of 1,8-Cineole nanoemulsion (CNE) conjugated with PEI/miR126 complex by a ROS-sensitive linker, with PSA on its surface to facilitate targeted delivery via specific interactions with selectins on endothelial cells. CNE has demonstrated protective effects against inflammation in the cardiovascular system and synergistic anti-inflammatory effects when combined with miR-126. The targeted nanosystem successfully delivered miR-126 and 1,8-Cineole to the injured heart tissues and vessels, reducing inflammatory responses and improving cardiac function. In summary, this work provides a promising therapy for alleviating the inflammatory response in sepsis while boosting cardiovascular protection.
Collapse
Affiliation(s)
- Yu-E Wang
- Department of Cardiovascular medicine, Affiliated Hospital of Guizhou Medical University, Beijing Road, Yunyan District, Guiyang 550025, China; The State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmaceutical Sciences, Guizhou Medical University, NO. 6 Ankang avenue, Guian New District, 561113, Guizhou, China; The Department of Pharmacology (the High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, the Key Laboratory of Optimal Utilization of Natural Medicine Resources), Guizhou Medical University, No. 6 Ankang avenue, Guian New District, 561113, Guizhou, China
| | - Jianbo Chen
- The State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmaceutical Sciences, Guizhou Medical University, NO. 6 Ankang avenue, Guian New District, 561113, Guizhou, China; The Department of Pharmacology (the High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, the Key Laboratory of Optimal Utilization of Natural Medicine Resources), Guizhou Medical University, No. 6 Ankang avenue, Guian New District, 561113, Guizhou, China
| | - Hong Yang
- The State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmaceutical Sciences, Guizhou Medical University, NO. 6 Ankang avenue, Guian New District, 561113, Guizhou, China; The Department of Pharmacology (the High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, the Key Laboratory of Optimal Utilization of Natural Medicine Resources), Guizhou Medical University, No. 6 Ankang avenue, Guian New District, 561113, Guizhou, China
| | - Jinggang He
- The State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmaceutical Sciences, Guizhou Medical University, NO. 6 Ankang avenue, Guian New District, 561113, Guizhou, China; The Department of Pharmacology (the High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, the Key Laboratory of Optimal Utilization of Natural Medicine Resources), Guizhou Medical University, No. 6 Ankang avenue, Guian New District, 561113, Guizhou, China
| | - Krishnapriya M Varier
- The State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmaceutical Sciences, Guizhou Medical University, NO. 6 Ankang avenue, Guian New District, 561113, Guizhou, China; The Department of Pharmacology (the High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, the Key Laboratory of Optimal Utilization of Natural Medicine Resources), Guizhou Medical University, No. 6 Ankang avenue, Guian New District, 561113, Guizhou, China
| | - Ying Chen
- The State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmaceutical Sciences, Guizhou Medical University, NO. 6 Ankang avenue, Guian New District, 561113, Guizhou, China; The Department of Pharmacology (the High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, the Key Laboratory of Optimal Utilization of Natural Medicine Resources), Guizhou Medical University, No. 6 Ankang avenue, Guian New District, 561113, Guizhou, China
| | - Xingjie Wu
- The State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmaceutical Sciences, Guizhou Medical University, NO. 6 Ankang avenue, Guian New District, 561113, Guizhou, China; The Department of Pharmacology (the High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, the Key Laboratory of Optimal Utilization of Natural Medicine Resources), Guizhou Medical University, No. 6 Ankang avenue, Guian New District, 561113, Guizhou, China
| | - Qianqian Guo
- The State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmaceutical Sciences, Guizhou Medical University, NO. 6 Ankang avenue, Guian New District, 561113, Guizhou, China; The Department of Pharmacology (the High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, the Key Laboratory of Optimal Utilization of Natural Medicine Resources), Guizhou Medical University, No. 6 Ankang avenue, Guian New District, 561113, Guizhou, China
| | - Yuanxian Liang
- School of Clinical Medicine, Guizhou Medical University, No. 6 Ankang avenue, Guian New District, 561113, Guizhou, China
| | - Xiangchun Shen
- The State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmaceutical Sciences, Guizhou Medical University, NO. 6 Ankang avenue, Guian New District, 561113, Guizhou, China; The Department of Pharmacology (the High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, the Key Laboratory of Optimal Utilization of Natural Medicine Resources), Guizhou Medical University, No. 6 Ankang avenue, Guian New District, 561113, Guizhou, China.
| | - Maochen Wei
- The State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmaceutical Sciences, Guizhou Medical University, NO. 6 Ankang avenue, Guian New District, 561113, Guizhou, China; The Department of Pharmacology (the High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, the Key Laboratory of Optimal Utilization of Natural Medicine Resources), Guizhou Medical University, No. 6 Ankang avenue, Guian New District, 561113, Guizhou, China.
| | - Wei Li
- Department of Cardiovascular medicine, Affiliated Hospital of Guizhou Medical University, Beijing Road, Yunyan District, Guiyang 550025, China.
| | - Ling Tao
- The State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmaceutical Sciences, Guizhou Medical University, NO. 6 Ankang avenue, Guian New District, 561113, Guizhou, China; The Department of Pharmacology (the High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, the Key Laboratory of Optimal Utilization of Natural Medicine Resources), Guizhou Medical University, No. 6 Ankang avenue, Guian New District, 561113, Guizhou, China.
| |
Collapse
|
19
|
Cao S, Wei Y, Yue Y, Wang D, Yang J, Xiong A, Zeng H. Mapping the evolution and research landscape of ferroptosis-targeted nanomedicine: insights from a scientometric analysis. Front Pharmacol 2024; 15:1477938. [PMID: 39386034 PMCID: PMC11461269 DOI: 10.3389/fphar.2024.1477938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 09/12/2024] [Indexed: 10/12/2024] Open
Abstract
Objective Notable progress has been made in "ferroptosis-based nano drug delivery systems (NDDSs)" over the past 11 years. Despite the ongoing absence of a comprehensive scientometric overview and up-to-date scientific mapping research, especially regarding the evolution, critical research pathways, current research landscape, central investigative themes, and future directions. Methods Data ranging from 1 January 2012, to 30 November 2023, were obtained from the Web of Science database. A variety of advanced analytical tools were employed for detailed scientometric and visual analyses. Results The results show that China significantly led the field, contributing 82.09% of the total publications, thereby largely shaping the research domain. Chen Yu emerged as the most productive author in this field. Notably, the journal ACS Nano had the greatest number of relevant publications. The study identified liver neoplasms, pancreatic neoplasms, gliomas, neoplasm metastases, and melanomas as the top five crucial disorders in this research area. Conclusion This research provides a comprehensive scientometric assessment, enhancing our understanding of NDDSs focused on ferroptosis. Consequently, it enables rapid access to essential information and facilitates the extraction of novel ideas in the field of ferroptotic nanomedicine for both experienced and emerging researchers.
Collapse
Affiliation(s)
- Siyang Cao
- National and Local Joint Engineering Research Centre of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Yihao Wei
- National and Local Joint Engineering Research Centre of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- Department of Rehabilitation Science, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, Hong Kong, China
- Faculty of Pharmaceutical Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences (CAS), Shenzhen, Guangdong, China
| | - Yaohang Yue
- National and Local Joint Engineering Research Centre of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Deli Wang
- National and Local Joint Engineering Research Centre of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Jun Yang
- Department of Radiology, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Ao Xiong
- National and Local Joint Engineering Research Centre of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Hui Zeng
- National and Local Joint Engineering Research Centre of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- Department of Orthopedics, Shenzhen Second People’s Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, China
| |
Collapse
|
20
|
Xiao X, Li JX, Li HH, Teng F. ACE2 alleviates sepsis-induced cardiomyopathy through inhibiting M1 macrophage via NF-κB/STAT1 signals. Cell Biol Toxicol 2024; 40:82. [PMID: 39320524 PMCID: PMC11424656 DOI: 10.1007/s10565-024-09923-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 09/18/2024] [Indexed: 09/26/2024]
Abstract
Angiotensin-converting enzyme 2 (ACE2), a crucial element of the renin-angiotensin system (RAS), metabolizes angiotensin II into Ang (1-7), which then combines with the Mas receptor (MasR) to fulfill its protective role in various diseases. Nevertheless, the involvement of ACE2 in sepsis-induced cardiomyopathy (SIC) is still unexplored. In this study, our results revealed that CLP surgery dramatically impaired cardiac function accompanied with disruption of the balance between ACE2-Ang (1-7) and ACE-Ang II axis in septic heart tissues. Moreover, ACE2 knockin markedly alleviated sepsis induced RAS disorder, cardiac dysfunction and improved survival rate in mice, while ACE2 knockout significantly exacerbates these outcomes. Adoptive transfer of bone marrow cells and in vitro experiments showed the positive role of myeloid ACE2 by mitigating oxidative stress, inflammatory response, macrophage polarization and cardiomyocyte apoptosis by blocking NF-κB and STAT1 signals. However, the beneficial impacts were nullified by MasR antagonist A779. Collectively, these findings showed that ACE2 alleviated SIC by inhibiting M1 macrophage via activating the Ang (1-7)-MasR axis, highlight that ACE2 might be a promising target for the management of sepsis and SIC patients.
Collapse
Affiliation(s)
- Xue Xiao
- Department of Emergency Medicine, Beijing Key Laboratory of Cardiopulmonary Cerebral Resuscitation, Beijing Chao-Yang Hospital, Capital Medical University, No. 8 Worker's Stadium South Roud, Beijing, 100020, China
| | - Jia-Xin Li
- Department of Emergency Medicine, Beijing Key Laboratory of Cardiopulmonary Cerebral Resuscitation, Beijing Chao-Yang Hospital, Capital Medical University, No. 8 Worker's Stadium South Roud, Beijing, 100020, China
| | - Hui-Hua Li
- Department of Emergency Medicine, Beijing Key Laboratory of Cardiopulmonary Cerebral Resuscitation, Beijing Chao-Yang Hospital, Capital Medical University, No. 8 Worker's Stadium South Roud, Beijing, 100020, China.
| | - Fei Teng
- Department of Emergency Medicine, Beijing Key Laboratory of Cardiopulmonary Cerebral Resuscitation, Beijing Chao-Yang Hospital, Capital Medical University, No. 8 Worker's Stadium South Roud, Beijing, 100020, China.
| |
Collapse
|
21
|
Jiang C, Shi Q, Yang J, Ren H, Zhang L, Chen S, Si J, Liu Y, Sha D, Xu B, Ni J. Ceria nanozyme coordination with curcumin for treatment of sepsis-induced cardiac injury by inhibiting ferroptosis and inflammation. J Adv Res 2024; 63:159-170. [PMID: 37871772 PMCID: PMC11380017 DOI: 10.1016/j.jare.2023.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/12/2023] [Accepted: 10/20/2023] [Indexed: 10/25/2023] Open
Abstract
INTRODUCTION Sepsis-induced cardiac injury is the leading cause of death in patients. Recent studies have reported that reactive oxygen species (ROS)-mediated ferroptosis and macrophage-induced inflammation are the two main key roles in the process of cardiac injury. The combination of ferroptosis and inflammation inhibition is a feasible strategy in the treatment of sepsis-induced cardiac injury. OBJECTIVES In the present study, ceria nanozyme coordination with curcumin (CeCH) was designed by a self-assembled method with human serum albumin (HSA) to inhibit ferroptosis and inflammation of sepsis-induced cardiac injury. METHODS AND RESULTS The formed CeCH obtained the superoxide dismutase (SOD)-like and catalase (CAT)-like activities from ceria nanozyme to scavenge ROS, which showed a protective effect on cardiomyocytes in vitro. Furthermore, it also showed ferroptosis inhibition to reverse cell death from RSL3-induced cardiomyocytes, denoted from curcumin. Due to the combination therapy of ceria nanozyme and curcumin, the formed CeCH NPs could also promote M2 macrophage polarization to reduce inflammation in vitro. In the lipopolysaccharide (LPS)-induced sepsis model, the CeCH NPs could effectively inhibit ferroptosis, reverse inflammation, and reduce the release of pro-inflammatory factors, which markedly alleviated the myocardial injury and recover the cardiac function. CONCLUSION Overall, the simple self-assembled strategy with ceria nanozyme and curcumin showed a promising clinical application for sepsis-induced cardiac injury by inhibiting ferroptosis and inflammation.
Collapse
Affiliation(s)
- Chenxiao Jiang
- Department of Pharmacy, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu 210008, China
| | - Qianzhi Shi
- Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210008, China
| | - Jing Yang
- School of Pharmaceutical Science, Nanjing Tech University, Nanjing, Jiangsu 211816, China
| | - Hao Ren
- School of Pharmaceutical Science, Nanjing Tech University, Nanjing, Jiangsu 211816, China
| | - Lu Zhang
- Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210008, China
| | - Shan Chen
- Department of General Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu 210008, China
| | - Jiayi Si
- Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210008, China
| | - Yihai Liu
- Department of Cardiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu 210008, China
| | - Dujuan Sha
- Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210008, China; Department of General Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu 210008, China.
| | - Biao Xu
- Department of Cardiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu 210008, China.
| | - Jie Ni
- Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210008, China; Department of Emergency Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu 210008, China.
| |
Collapse
|
22
|
Shi Y, Yang X, Jiang H, Wu S, Hong Y, Su W, Wang X. Alpinia officinarum Hance extract relieved sepsis-induced myocardial ferroptosis and inflammation by inhibiting lncRNA MIAT/TRAF6/NF-κB axis. Allergol Immunopathol (Madr) 2024; 52:21-28. [PMID: 39278847 DOI: 10.15586/aei.v52i5.1035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 08/12/2024] [Indexed: 09/18/2024]
Abstract
Sepsis is generally triggered by a dysfunctional host response to infection, and it can result in life-threatening organ dysfunction. Alpinia officinarum Hance (AO) exhibits regulatory functions in some diseases. However, whether AO extract (AOE) plays a promoting role in sepsis--triggered myocardial injury is unclear. This study was aimed at investigating the regulatory effects of AOE on myocardial ferroptosis and inflammation in sepsis, and the regulation effects on the lncRNA MIAT/TRAF6/NF-κB axis. Lipopolysaccharide (LPS) was used to treat mice for establishing an in vivo sepsis model. The pathological changes in heart tissues were observed through hematoxylin-eosin (HE) staining. The levels of CK-MB, cTnl, MDA, SOD, IL-1β, IL-18, IL-6, and TNF-α in serum were detected through enzyme-linked immunosorbent assay (ELISA). The level of Fe2+ was assessed, and the protein expressions (ACSL4, GPX4, TRAF6, p-P65, and P65) were examined through western blot. The expressions of lncRNA MIAT and TRAF6 were measured through real-time quantitative polymerase chain reaction (RT-qPCR). Our results demonstrated that AOE treatment ameliorated sepsis-triggered myocardial damage by reducing the disordered cardiomyocytes, the destroyed sarcolemma, and the CK-MB and cTnl levels. In addition, AOE treatment inhibited sepsis-induced myocardial ferroptosis and inflammation by regulating Fe2+, ACSL4, GPX4, IL-1β, IL-18, IL-6, and TNF-α levels. Moreover, the improvement effect of AOE was strengthened with the increase in the dose of AOE (25, 50, 100 mg/kg). It was also revealed that AOE treatment retarded the lncRNA MIAT/TRAF6/NF-κB axis. Rescue assays manifested that overexpression of MIAT reduced the cardioprotective effect of AOE. In conclusion, AOE relieved sepsis-induced myocardial ferroptosis and inflammation by inhibiting lncRNA MIAT/TRAF6/NF-κB axis. These findings may provide a potential therapeutic drug for the treatment of sepsis.
Collapse
Affiliation(s)
- Yao Shi
- Department of Pediatrics, Key Laboratory for Molecular Diagnosis of Hubei Province, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaobo Yang
- Department of Ophthalmology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China;
| | - Hong Jiang
- Department of Pediatrics, Key Laboratory for Molecular Diagnosis of Hubei Province, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shanxia Wu
- Department of Pediatrics, Key Laboratory for Molecular Diagnosis of Hubei Province, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yan Hong
- Department of Pediatrics, Key Laboratory for Molecular Diagnosis of Hubei Province, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Su
- Department of Pediatrics, Key Laboratory for Molecular Diagnosis of Hubei Province, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xuan Wang
- Department of Pediatrics, Key Laboratory for Molecular Diagnosis of Hubei Province, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
23
|
Yang Z, Gao Y, Zhao L, Lv X, Du Y. Molecular mechanisms of Sepsis attacking the immune system and solid organs. Front Med (Lausanne) 2024; 11:1429370. [PMID: 39267971 PMCID: PMC11390691 DOI: 10.3389/fmed.2024.1429370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 08/15/2024] [Indexed: 09/15/2024] Open
Abstract
Remarkable progress has been achieved in sepsis treatment in recent times, the mortality rate of sepsis has experienced a gradual decline as a result of the prompt administration of antibiotics, fluid resuscitation, and the implementation of various therapies aimed at supporting multiple organ functions. However, there is still significant mortality and room for improvement. The mortality rate for septic patients, 22.5%, is still unacceptably high, accounting for 19.7% of all global deaths. Therefore, it is crucial to thoroughly comprehend the pathogenesis of sepsis in order to enhance clinical diagnosis and treatment methods. Here, we summarized classic mechanisms of sepsis progression, activation of signal pathways, mitochondrial quality control, imbalance of pro-and anti- inflammation response, diseminated intravascular coagulation (DIC), cell death, presented the latest research findings for each mechanism and identify potential therapeutic targets within each mechanism.
Collapse
Affiliation(s)
- Zhaoyun Yang
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Jilin University, Changchun, China
- Department of Rehabilitation, School of Nursing, Jilin University, Changchun, China
| | - Yan Gao
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biomedical Sciences, College of Chemistry and Chemical Engineering, Hunan University, Changsha, China
| | - Lijing Zhao
- Department of Rehabilitation, School of Nursing, Jilin University, Changchun, China
| | - Xuejiao Lv
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Jilin University, Changchun, China
| | - Yanwei Du
- Department of Rehabilitation, School of Nursing, Jilin University, Changchun, China
| |
Collapse
|
24
|
Song L, Jia K, Yang F, Wang J. Advanced Nanomedicine Approaches for Myocardial Infarction Treatment. Int J Nanomedicine 2024; 19:6399-6425. [PMID: 38952676 PMCID: PMC11215519 DOI: 10.2147/ijn.s467219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 06/04/2024] [Indexed: 07/03/2024] Open
Abstract
Myocardial infarction, usually caused by the rupture of atherosclerotic plaque, leads to irreversible ischemic cardiomyocyte death within hours followed by impaired cardiac performance or even heart failure. Current interventional reperfusion strategies for myocardial infarction still face high mortality with the development of heart failure. Nanomaterial-based therapy has made great progress in reducing infarct size and promoting cardiac repair after MI, although most studies are preclinical trials. This review focuses primarily on recent progress (2016-now) in the development of various nanomedicines in the treatment of myocardial infarction. We summarize these applications with the strategy of mechanism including anti-cardiomyocyte death strategy, activation of neovascularization, antioxidants strategy, immunomodulation, anti-cardiac remodeling, and cardiac repair.
Collapse
Affiliation(s)
- Lin Song
- School of Basic Medicine, Qingdao University, Qingdao, People’s Republic of China
| | - Kangwei Jia
- School of Basic Medicine, Qingdao University, Qingdao, People’s Republic of China
| | - Fuqing Yang
- School of Basic Medicine, Qingdao University, Qingdao, People’s Republic of China
| | - Jianxun Wang
- School of Basic Medicine, Qingdao University, Qingdao, People’s Republic of China
| |
Collapse
|
25
|
Chen F, Kang R, Tang D, Liu J. Ferroptosis: principles and significance in health and disease. J Hematol Oncol 2024; 17:41. [PMID: 38844964 PMCID: PMC11157757 DOI: 10.1186/s13045-024-01564-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 06/02/2024] [Indexed: 06/09/2024] Open
Abstract
Ferroptosis, an iron-dependent form of cell death characterized by uncontrolled lipid peroxidation, is governed by molecular networks involving diverse molecules and organelles. Since its recognition as a non-apoptotic cell death pathway in 2012, ferroptosis has emerged as a crucial mechanism in numerous physiological and pathological contexts, leading to significant therapeutic advancements across a wide range of diseases. This review summarizes the fundamental molecular mechanisms and regulatory pathways underlying ferroptosis, including both GPX4-dependent and -independent antioxidant mechanisms. Additionally, we examine the involvement of ferroptosis in various pathological conditions, including cancer, neurodegenerative diseases, sepsis, ischemia-reperfusion injury, autoimmune disorders, and metabolic disorders. Specifically, we explore the role of ferroptosis in response to chemotherapy, radiotherapy, immunotherapy, nanotherapy, and targeted therapy. Furthermore, we discuss pharmacological strategies for modulating ferroptosis and potential biomarkers for monitoring this process. Lastly, we elucidate the interplay between ferroptosis and other forms of regulated cell death. Such insights hold promise for advancing our understanding of ferroptosis in the context of human health and disease.
Collapse
Affiliation(s)
- Fangquan Chen
- DAMP Laboratory, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, Guangdong, China
| | - Rui Kang
- Department of Surgery, UT Southwestern Medical Center, Dallas, Texas, 75390, USA
| | - Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, Texas, 75390, USA.
| | - Jiao Liu
- DAMP Laboratory, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, Guangdong, China.
| |
Collapse
|
26
|
Feng W, Zhu N, Xia Y, Huang Z, Hu J, Guo Z, Li Y, Zhou S, Liu Y, Liu D. Melanin-like nanoparticles alleviate ischemia-reperfusion injury in the kidney by scavenging reactive oxygen species and inhibiting ferroptosis. iScience 2024; 27:109504. [PMID: 38632989 PMCID: PMC11022057 DOI: 10.1016/j.isci.2024.109504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 01/13/2024] [Accepted: 03/13/2024] [Indexed: 04/19/2024] Open
Abstract
Kidney transplantation is essential for patients with end-stage renal disease; however, ischemia-reperfusion injury (IRI) during transplantation can lead to acute kidney damage and compromise survival. Recent studies have reported that antiferroptotic agents may be a potential therapeutic strategy, by reducing production of reactive oxygen species (ROS). Therefore, we constructed rutin-loaded polydopamine nanoparticles (PEG-PDA@rutin NPs, referred to as PPR NPs) to eliminate ROS resulting from IRI. Physicochemical characterization showed that the PPR NPs were ∼100 nm spherical particles with good ROS scavenging ability. Notably, PPR NPs could effectively enter lipopolysaccharide (LPS)-treated renal tubular cells, then polydopamine (PDA) released rutin to eliminate ROS, repair mitochondria, and suppress ferroptosis. Furthermore, in vivo imaging revealed that PPR NPs efficiently accumulated in the kidneys after IRI and effectively protected against IRI damage. In conclusion, PPR NPs demonstrated an excellent ability to eliminate ROS, suppress ferroptosis, and protect kidneys from IRI.
Collapse
Affiliation(s)
- Wenxiang Feng
- Department of Organ Transplantation, Zhujiang Hospital, The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Nan Zhu
- Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Yubin Xia
- Department of Nephrology, First Affiliated Hospital of Shantou University Medical College, No. 57, Changping Rd, Shantou, Guangdong Province 515000, China
| | - Zehai Huang
- Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Jianmin Hu
- Department of Organ Transplantation, Zhujiang Hospital, The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Zefeng Guo
- Department of Organ Transplantation, Zhujiang Hospital, The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Yuzhuz Li
- Department of Organ Transplantation, Zhujiang Hospital, The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Song Zhou
- Department of Organ Transplantation, Zhujiang Hospital, The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Yongguang Liu
- Department of Organ Transplantation, Zhujiang Hospital, The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Ding Liu
- Department of Organ Transplantation, Zhujiang Hospital, The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| |
Collapse
|
27
|
Fang W, Xie S, Deng W. Ferroptosis mechanisms and regulations in cardiovascular diseases in the past, present, and future. Cell Biol Toxicol 2024; 40:17. [PMID: 38509409 PMCID: PMC10955039 DOI: 10.1007/s10565-024-09853-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 02/27/2024] [Indexed: 03/22/2024]
Abstract
Cardiovascular diseases (CVDs) are the main diseases that endanger human health, and their risk factors contribute to high morbidity and a high rate of hospitalization. Cell death is the most important pathophysiology in CVDs. As one of the cell death mechanisms, ferroptosis is a new form of regulated cell death (RCD) that broadly participates in CVDs (such as myocardial infarction, heart transplantation, atherosclerosis, heart failure, ischaemia/reperfusion (I/R) injury, atrial fibrillation, cardiomyopathy (radiation-induced cardiomyopathy, diabetes cardiomyopathy, sepsis-induced cardiac injury, doxorubicin-induced cardiac injury, iron overload cardiomyopathy, and hypertrophic cardiomyopathy), and pulmonary arterial hypertension), involving in iron regulation, metabolic mechanism and lipid peroxidation. This article reviews recent research on the mechanism and regulation of ferroptosis and its relationship with the occurrence and treatment of CVDs, aiming to provide new ideas and treatment targets for the clinical diagnosis and treatment of CVDs by clarifying the latest progress in CVDs research.
Collapse
Affiliation(s)
- Wenxi Fang
- Department of Cardiology, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan, 430060, People's Republic of China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, People's Republic of China
| | - Saiyang Xie
- Department of Cardiology, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan, 430060, People's Republic of China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, People's Republic of China
| | - Wei Deng
- Department of Cardiology, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan, 430060, People's Republic of China.
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, People's Republic of China.
| |
Collapse
|
28
|
Liu AB, Li SJ, Yu YY, Zhang JF, Ma L. Current insight on the mechanisms of programmed cell death in sepsis-induced myocardial dysfunction. Front Cell Dev Biol 2023; 11:1309719. [PMID: 38161332 PMCID: PMC10754983 DOI: 10.3389/fcell.2023.1309719] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 12/04/2023] [Indexed: 01/03/2024] Open
Abstract
Sepsis is a clinical syndrome characterized by a dysregulated host response to infection, leading to life-threatening organ dysfunction. It is a high-fatality condition associated with a complex interplay of immune and inflammatory responses that can cause severe harm to vital organs. Sepsis-induced myocardial injury (SIMI), as a severe complication of sepsis, significantly affects the prognosis of septic patients and shortens their survival time. For the sake of better administrating hospitalized patients with sepsis, it is necessary to understand the specific mechanisms of SIMI. To date, multiple studies have shown that programmed cell death (PCD) may play an essential role in myocardial injury in sepsis, offering new strategies and insights for the therapeutic aspects of SIMI. This review aims to elucidate the role of cardiomyocyte's programmed death in the pathophysiological mechanisms of SIMI, with a particular focus on the classical pathways, key molecules, and signaling transduction of PCD. It will explore the role of the cross-interaction between different patterns of PCD in SIMI, providing a new theoretical basis for multi-target treatments for SIMI.
Collapse
Affiliation(s)
- An-Bu Liu
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Shu-Jing Li
- Department of Pediatrics Medical, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Yuan-Yuan Yu
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Jun-Fei Zhang
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Lei Ma
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| |
Collapse
|
29
|
Wang C, Shang H, Zhang S, Wang X, Shen M, Li N, Liu D, Jiang Y, Wei K, Zhu R. Inhibitions inflammatory response in clicks alleviates LPS induced myocardial injury by total polysaccharides of Pinus massoniana Lamb. pollen. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2023; 6:100372. [DOI: 10.1016/j.carpta.2023.100372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025] Open
|
30
|
Kang XF, Lu XL, Bi CF, Hu XD, Li Y, Li JK, Yang LS, Liu J, Ma L, Zhang JF. Xuebijing injection protects sepsis induced myocardial injury by mediating TLR4/NF-κB/IKKα and JAK2/STAT3 signaling pathways. Aging (Albany NY) 2023; 15:8501-8517. [PMID: 37650558 PMCID: PMC10496990 DOI: 10.18632/aging.204990] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 07/20/2023] [Indexed: 09/01/2023]
Abstract
OBJECTIVE Compelling evidence has demonstrated that Xuebijing (XBJ) exerted protective effects against SIMI. The aims of this study were to investigate whether TLR4/IKKα-mediated NF-κB and JAK2/STAT3 pathways were involved in XBJ's cardio-protection during sepsis and the mechanisms. METHODS In this study, rats were randomly assigned to three groups: Sham group; CLP group; XBJ group. Rats were treated with XBJ or sanitary saline after CLP. Echocardiography, myocardial enzymes and HE were used to detect cardiac function. IL-1β, IL-6 and TNF-α in serum were measured using ELISA kits. Cardiomyocyte apoptosis were tested by TUNEL staining. The protein levels of Bax, Bcl-2, Bcl-xl, Cleaved-Caspase 3, Cleaved-Caspase 9, Cleaved-PARP, TLR4, p-NF-κB, p-IKKα, p-JAK2 and p-STAT3 in the myocardium were assayed by western blotting. And finally, immunofluorescence was used to assess the level of p-JAK2 and p-STAT3 in heart tissue. RESULTS The results of echocardiography, myocardial enzyme and HE test showed that XBJ could significantly improve SIMI. The IL-1β, IL-6 and TNF-α levels in the serum were markedly lower in the XBJ group than in the CLP group (p<0.05). TUNEL staining's results showed that XBJ ameliorated CLP-induced cardiomyocyte apoptosis. Meanwhile, XBJ downregulated the protein levels of Bax, Cleaved-Caspase 3, Cleaved-Caspase 9, Cleaved-PARP, TLR4, p-NF-κB, p-IKKα, p-JAK2 and p-STAT3, as well as upregulated the protein levels of Bcl-2, Bcl-xl (p <0.05). CONCLUSIONS In here, we observed that XBJ's cardioprotective advantages may be attributable to its ability to suppress inflammation and apoptosis via inhibiting the TLR4/ IKKα-mediated NF-κB and JAK2/STAT3 pathways during sepsis.
Collapse
Affiliation(s)
- Xiang-Fei Kang
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan 750000, Ningxia, China
| | - Xiao-Li Lu
- Laboratory Animal Centre, Ningxia Medical University, Yinchuan 750000, Ningxia, China
| | - Cheng-Fei Bi
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan 750000, Ningxia, China
- School of Clinical Medicine, Ningxia Medical University, Yinchuan 750000, Ningxia, China
| | - Xiao-Dong Hu
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan 750000, Ningxia, China
| | - Ying Li
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan 750000, Ningxia, China
| | - Jin-Kui Li
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan 750000, Ningxia, China
| | - Li-Shan Yang
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan 750000, Ningxia, China
| | - Jia Liu
- Medical Experimental Center, General Hospital of Ningxia Medical University, Yinchuan 750000, Ningxia, China
| | - Lei Ma
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan 750000, Ningxia, China
| | - Jun-Fei Zhang
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan 750000, Ningxia, China
- School of Clinical Medicine, Ningxia Medical University, Yinchuan 750000, Ningxia, China
| |
Collapse
|
31
|
Laukaitiene J, Gujyte G, Kadusevicius E. Cardiomyocyte Damage: Ferroptosis Relation to Ischemia-Reperfusion Injury and Future Treatment Options. Int J Mol Sci 2023; 24:12846. [PMID: 37629039 PMCID: PMC10454599 DOI: 10.3390/ijms241612846] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/31/2023] [Accepted: 07/31/2023] [Indexed: 08/27/2023] Open
Abstract
About half a century ago, Eugene Braunwald, a father of modern cardiology, shared a revolutionary belief that "time is muscle", which predetermined never-ending effort to preserve the unaffected myocardium. In connection to that, researchers are constantly trying to better comprehend the ongoing changes of the ischemic myocardium. As the latest studies show, metabolic changes after acute myocardial infarction (AMI) are inconsistent and depend on many constituents, which leads to many limitations and lack of unification. Nevertheless, one of the promising novel mechanistic approaches related to iron metabolism now plays an invaluable role in the ischemic heart research field. The heart, because of its high levels of oxygen consumption, is one of the most susceptible organs to iron-induced damage. In the past few years, a relatively new form of programmed cell death, called ferroptosis, has been gaining much attention in the context of myocardial infarction. This review will try to summarize the main novel metabolic pathways and show the pivotal limitations of the affected myocardium metabolomics.
Collapse
Affiliation(s)
- Jolanta Laukaitiene
- Faculty of Medicine, Medical Academy, Lithuanian University of Health Sciences, 9 A. Mickeviciaus Street, LT-44307 Kaunas, Lithuania;
- Cardiology Clinic, University Hospital, Lithuanian University of Health Sciences, Eiveniu Str. 2, LT-50161 Kaunas, Lithuania;
| | - Greta Gujyte
- Cardiology Clinic, University Hospital, Lithuanian University of Health Sciences, Eiveniu Str. 2, LT-50161 Kaunas, Lithuania;
| | - Edmundas Kadusevicius
- Institute of Physiology and Pharmacology, Medical Academy, Lithuanian University of Health Sciences, 9 A. Mickeviciaus Street, LT-44307 Kaunas, Lithuania
| |
Collapse
|
32
|
Zhang Y, Xu S, Xu J, Xu F, Lu G, Zhou J, Gu S, Wang J. Prognostic value of plasma 7-ketocholesterol in sepsis. Clin Chim Acta 2023; 548:117467. [PMID: 37399884 DOI: 10.1016/j.cca.2023.117467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 06/21/2023] [Accepted: 06/30/2023] [Indexed: 07/05/2023]
Abstract
BACKGROUND Early evaluation of the severity of sepsis and estimation of its prognosis remains one of the main challenges in current therapeutic strategies. This study aimed to evaluate the prognostic value of plasma 7-ketocholesterol (7-KC) in sepsis. METHODS We retrospectively measured by liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) the plasma 7-KC concentration in 176 patients with sepsis and 90 healthy volunteers. A multivariate Cox proportional hazard model was introduced to identify independent factors, including plasma 7-KC and clinical features, for the 28-day mortality of sepsis, and a nomogram for predicting the 28-day mortality of sepsis was established. Decision curve analysis (DCA) was performed to assess the prediction model of death risk of sepsis. RESULTS The area under the curve (AUC) of plasma 7-KC in diagnosing sepsis was 0.899 (95% CI = 0.862-0.935, P < 0.001), while it was 0.830 (95% CI = 0.764-0.894, P < 0.001) in diagnosing septic shock. The AUCs of plasma 7-KC in predicting the survival of sepsis patients in the training cohort and the test cohort were 0.770 (95% CI = 0.692-0.848, P < 0.05) and 0.869 (95% CI = 0.763-0.974, P < 0.05), respectively. In addition, high plasma 7-KC expression predicts poor prognosis in sepsis. Then, 7-KC and platelet count were identified as the two factors with significant differences by a multivariate Cox proportional hazard model, and the 28-day mortality probability ranged from 0.002 to 0.985 and was assessed using a nomogram. DCA results revealed that the combination of plasma 7-KC and platelet count showed the best prognostic efficiency of the risk threshold compared to a single factor in both the training cohort and test cohort. CONCLUSIONS Collectively, the elevated plasma 7-KC level is an indicator of sepsis and was identified as a prognostic indicator for sepsis patients, providing a landscape for predicting survival in early sepsis with potential clinical utility.
Collapse
Affiliation(s)
- Yueyuan Zhang
- Department of Emergency, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing 210000, China
| | - Sha Xu
- Department of Emergency, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing 210000, China
| | - Jianxin Xu
- Department of Emergency, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing 210000, China
| | - Fuchao Xu
- Department of Emergency, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing 210000, China
| | - Geng Lu
- Department of Emergency, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210000, China
| | - Jiawei Zhou
- Department of Emergency, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210000, China
| | - Shuangshuang Gu
- Department of Emergency, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing 210000, China; Department of Emergency, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210000, China.
| | - Jun Wang
- Department of Emergency, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing 210000, China; Department of Emergency, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210000, China.
| |
Collapse
|
33
|
Fang X, Fu W, Zou B, Zhang F. Tectorigenin relieved sepsis-induced myocardial ferroptosis by inhibiting the expression of Smad3. Toxicol Res (Camb) 2023; 12:520-526. [PMID: 37397920 PMCID: PMC10311157 DOI: 10.1093/toxres/tfad038] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/08/2023] [Accepted: 05/14/2023] [Indexed: 07/04/2023] Open
Abstract
Background Myocardial injury is a serious consequence of sepsis that contributes to high rates of death. Currently, the pathophysiology of cardiac damage in sepsis is still unknown, and treatment approaches are limited. Methods The sepsis mouse model was established inducing by Lipopolysaccharide (LPS) in vivo and Tectorigenin was pretreated to explore whether it contributed to alleviated myocardial injury. Hematoxylin-eosin (HE) stain was employed to evaluate the myocardial injury severity. TUNEL assay measured the number of apoptosis cells and the levels of B-cell lymphoma-2 associated X (Bax) and Cleaved Caspase-3 were assessed by western blot. The contents of iron and related ferroptosis molecules (acyl-CoA synthetase long-chain family (ACSL4), Glutathione Peroxidase 4 (GPX4)) were assessed. Then, interleukin-1β (IL-1β), IL-18, IL-6, tumor necrosis factor-α (TNF-α), and other inflammatory-related cytokines were detected by ELISA. The expression of the mother against decapentaplegic homolog 3 (Smad3) in heart tissues was evaluated by western blot and immunofluorescence. Results Tectorigenin alleviated myocardial dysfunction and myofibrillar disruption in LPS-related sepsis groups. Tectorigenin ameliorated cardiomyocyte apoptosis and myocardial ferroptosis in LPS-stimulated sepsis mice. Tectorigenin reduced inflammatory-relevant cytokines in the cardiac tissues of LPS stimuli mice. In addition, we further confirm that Tectorigenin relieved myocardial ferroptosis by inhibiting the expression of Smad3. Discussion Tectorigenin ameliorates myocardial damage stimulated by LPS and this effect exerts by inhibiting ferroptosis and the inflammation of the myocardium. Furthermore, the inhibitory effect of Tectorigenin on ferroptosis may deregulate Smad3 expression. Taken together, Tectorigenin may be a viable method for alleviating myocardial damage in sepsis.
Collapse
Affiliation(s)
- Xiaowei Fang
- Department of Emergency, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330000, China
| | - Wei Fu
- Department of Emergency, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330000, China
| | - Bing Zou
- Department of Emergency, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330000, China
| | - Fei Zhang
- Department of Emergency, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330000, China
| |
Collapse
|
34
|
Huo L, Liu C, Yuan Y, Liu X, Cao Q. Pharmacological inhibition of ferroptosis as a therapeutic target for sepsis-associated organ damage. Eur J Med Chem 2023; 257:115438. [PMID: 37269668 DOI: 10.1016/j.ejmech.2023.115438] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/28/2023] [Accepted: 04/29/2023] [Indexed: 06/05/2023]
Abstract
Sepsis is a complex clinical syndrome caused by dysfunctional host response to infection, which contributes to excess mortality and morbidity worldwide. The development of life-threatening sepsis-associated organ injury to the brain, heart, kidneys, lungs, and liver is a major concern for sepsis patients. However, the molecular mechanisms underlying sepsis-associated organ injury remain incompletely understood. Ferroptosis, an iron-dependent non-apoptotic form of cell death characterized by lipid peroxidation, is involved in sepsis and sepsis-related organ damage, including sepsis-associated encephalopathy, septic cardiomyopathy, sepsis-associated acute kidney injury, sepsis-associated acute lung injury, and sepsis-induced acute liver injury. Moreover, compounds that inhibit ferroptosis exert potential therapeutic effects in the context of sepsis-related organ damage. This review summarizes the mechanism by which ferroptosis contributes to sepsis and sepsis-related organ damage. We focus on the emerging types of therapeutic compounds that can inhibit ferroptosis and delineate their beneficial pharmacological effects for the treatment of sepsis-related organ damage. The present review highlights pharmacologically inhibiting ferroptosis as an attractive therapeutic strategy for sepsis-related organ damage.
Collapse
Affiliation(s)
- Liang Huo
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang 110004, China.
| | - Chunfeng Liu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Yujun Yuan
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Xueyan Liu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Qingjun Cao
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang 110004, China.
| |
Collapse
|
35
|
Li Y, Feng L, Bai L, Jiang H. Study of Therapeutic Mechanisms of Puerarin against Sepsis-Induced Myocardial Injury by Integrating Network Pharmacology, Bioinformatics Analysis, and Experimental Validation. Crit Rev Immunol 2023; 43:25-42. [PMID: 37824375 DOI: 10.1615/critrevimmunol.2023050050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
Myocardial injury is the most prevalent and serious complication of sepsis. The potential of puerarin (Pue) to treat sepsis-induced myocardial injury (SIMI) has been recently reported. Nevertheless, the specific anti-SIMI mechanisms of Pue remain largely unclear. Integrating network pharmacology, bioinformatics analysis, and experimental validation, we aimed to clarify the anti-SIMI mechanisms of Pue, thereby furnishing novel therapeutic targets. Pue-associated targets were collected from HIT, GeneCards, SwissTargetPrediction, SuperPred, and CTD databases. SIMI-associated targets were acquired from GeneCards and DisGeNET. Differentially expressed genes (DEGs) were identified from GEO database. Potential anti-SIMI targets of Pue were determined using VennDiagram. ClusterProfiler was employed for GO and KEGG analyses. STRING database and Cytoscape were used for protein-protein interaction (PPI) network construction, and cytoHubba was used for hub target screening. PyMOL and AutoDock were utilized for molecular docking. An in vitro SIMI model was built to further verify the therapeutic mechanisms of Pue. Seventy-three Pue-SIMI-DEG intersecting target genes were obtained. GO and KEGG analyses revealed that the targets were principally concentrated in cellular response to chemical stress, response to oxidative stress (OS), and insulin and neurotrophin signaling pathways. Through PPI analysis and molecular docking, AKT1, CASP3, TP53, and MAPK3 were identified as the pivotal targets. In vivo experiments indicated that Pue promoted cell proliferation, downregulated AKT1, CASP3, TP53, and MAPK3, and inhibited inflammation, myocardial injury, OS, and apoptosis in the cell model. Pue might inhibit inflammation, myocardial injury, OS, and apoptosis to treat SIMI by reducing AKT1, CASP3, TP53, and MAPK3.
Collapse
Affiliation(s)
- Yin Li
- Department of Emergency, Huadong Hospital Fudan University, Shanghai 200040, China
| | - Lei Feng
- Department of Emergency, Huadong Hospital Fudan University, Shanghai 200040, China
| | - Lin Bai
- Department of Emergency, Huadong Hospital Fudan University, Shanghai 200040, China
| | - Hao Jiang
- Department of Emergency, Huadong Hospital Fudan University, Shanghai 200040, China
| |
Collapse
|