1
|
Aryanti PTP, Nugroho FA, Kusmala YY. Heparin and heparin-like modifications in hemodialysis membranes: Current innovations and future directions. Biotechnol Adv 2025; 80:108527. [PMID: 39922509 DOI: 10.1016/j.biotechadv.2025.108527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 01/22/2025] [Accepted: 02/03/2025] [Indexed: 02/10/2025]
Abstract
Heparinized hemodialysis membranes represent a significant advancement in improving the biocompatibility and anticoagulant properties of dialysis treatments. This review explores the current challenges and innovations in developing these membranes, focusing on the incorporation of heparin and heparin-like substances to reduce protein adsorption, platelet adhesion, and clot formation. The methods for heparin immobilization, including covalent bonding, layer-by-layer assembly, and blending, offer promising results in enhancing membrane performance. However, issues such as long-term stability, large-scale production, and cost-effectiveness remain critical barriers to their widespread adoption. The review also highlights the role of surface activation techniques and nanotechnology in improving the functionality of heparinized membranes. Advanced methods like plasma treatment and polymer grafting provide better heparin attachment, while nanomaterial integration allows for improved blood compatibility and controlled heparin release. Despite these innovations, challenges such as heparin degradation, uneven coating, and the complexity of scaling up remain unresolved. Future research should focus on optimizing heparin distribution, enhancing durability, and making the production process more cost-efficient. This paper outlines potential interdisciplinary approaches, such as bioinspired materials and nanotechnology applications, to address these challenges and pave the way for next-generation hemodialysis membranes that are safer, more effective, and more accessible.
Collapse
Affiliation(s)
- Putu Teta Prihartini Aryanti
- Chemical Engineering Dept., Faculty of Engineering, Universitas Jenderal Achmad Yani, Jl. Terusan Jenderal Achmad Yani, Cibeber, Cimahi 40531, Indonesia.
| | - Febrianto Adi Nugroho
- Chemical Engineering Dept., Faculty of Engineering, Universitas Jenderal Achmad Yani, Jl. Terusan Jenderal Achmad Yani, Cibeber, Cimahi 40531, Indonesia
| | - Yudith Yunia Kusmala
- Internal Medicine Dept, Faculty of Medicine, Universitas Jenderal Achmad Yani, Jl. Terusan Jenderal Achmad Yani, Cibeber, Cimahi 40531, Indonesia
| |
Collapse
|
2
|
Zhang Y, Wang X, Yu M, Hadi MK, Zhou S, Wang Y, Ran F. Heparin Doped Polyaniline for Anticoagulation Supercapacitors. Adv Healthc Mater 2025:e2500493. [PMID: 40200895 DOI: 10.1002/adhm.202500493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 03/04/2025] [Indexed: 04/10/2025]
Abstract
With the rapid development of implantable electronic medical devices, supercapacitors have gained significant attention as implantable energy storage devices due to their inherent advantages. However, these devices inevitably direct contact with blood and trigger coagulation or thrombus formation when implanted in the body. In severe cases, these negative effects compromise the functionality of the implantable energy storage system and even jeopardize human health. Herein, a biocompatible electrode material with high anticoagulant activity is designed by doping polyaniline with anticoagulant macromolecule heparin under neutral conditions, which macromolecules as dopants under neutral conditions not only avoids the toxicity of acids to biological tissues and de-doping caused by small molecules, but also imparts high anticoagulant properties to the material. Based on the electrode material and in situ polymerization approach, an all-in-one anticoagulation supercapacitor is employed to manufacture and exhibits good electrochemical performance (energy density of 18.89 µWh cm-2 and a power density of 197.8 µW cm-2), cycling stability (capacitance retention of 70.23% after 2, 000 cycles), anticoagulant performance (APTT is 15.47 s, PT is 16.57 s, TT is 49.47 s, and FIB is 1.12 g L-1), and tissue compatibility. The doping strategy provides a valuable reference for energy supply in implantable bioelectronics.
Collapse
Affiliation(s)
- Yuxia Zhang
- State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Department of Polymeric Materials Engineering, School of Material Science and Engineering, Lanzhou University of Technology, Lanzhou, 730050, China
| | - Xiangya Wang
- State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Department of Polymeric Materials Engineering, School of Material Science and Engineering, Lanzhou University of Technology, Lanzhou, 730050, China
| | - Meimei Yu
- State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Department of Polymeric Materials Engineering, School of Material Science and Engineering, Lanzhou University of Technology, Lanzhou, 730050, China
| | - Mohammed Kamal Hadi
- State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Department of Polymeric Materials Engineering, School of Material Science and Engineering, Lanzhou University of Technology, Lanzhou, 730050, China
| | - Suting Zhou
- State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Department of Polymeric Materials Engineering, School of Material Science and Engineering, Lanzhou University of Technology, Lanzhou, 730050, China
| | - Yumeng Wang
- State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Department of Polymeric Materials Engineering, School of Material Science and Engineering, Lanzhou University of Technology, Lanzhou, 730050, China
| | - Fen Ran
- State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Department of Polymeric Materials Engineering, School of Material Science and Engineering, Lanzhou University of Technology, Lanzhou, 730050, China
| |
Collapse
|
3
|
Singaravelu S, Abrahamse H, Dhilip Kumar SS. Three-dimensional bio-derived materials for biomedical applications: challenges and opportunities. RSC Adv 2025; 15:9375-9397. [PMID: 40161530 PMCID: PMC11951103 DOI: 10.1039/d4ra07531e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 02/28/2025] [Indexed: 04/02/2025] Open
Abstract
Three-dimensional (3D) bio-derived materials are emerging as a promising approach to enhance wound healing therapies. These innovative materials can be tailored to meet the specific needs of various wound types and patients, facilitating the controlled release of therapeutic agents such as growth factors and antibiotics, which promote cell growth and tissue regeneration. Despite their potential, significant challenges remain in achieving optimal biocompatibility, ensuring structural integrity, and maintaining precise release mechanisms. Additionally, issues such as scalability, cost-effectiveness, and regulatory compliance pose substantial barriers to widespread use. However, recent advances in materials science and interdisciplinary research offer new opportunities to overcome these challenges. This review provides a comprehensive analysis of the current state of 3D bio-derived materials in biomedical applications, highlighting the types of materials available, their advantages and limitations, and the progress made in their design and development. It also outlines new directions for future research aimed at bridging the gap between scientific discoveries and their practical applications in injury healing strategies. The findings of this review underscore the significant potential of 3D bio-derived materials in revolutionizing wound healing and advancing personalized therapeutic approaches.
Collapse
Affiliation(s)
- Sivakumar Singaravelu
- Laser Research Centre, University of Johannesburg, Faculty of Health Sciences PO Box 17011, Doornfontein Johannesburg South Africa +27 11 559 6884
| | - Heidi Abrahamse
- Laser Research Centre, University of Johannesburg, Faculty of Health Sciences PO Box 17011, Doornfontein Johannesburg South Africa +27 11 559 6884
| | - Sathish Sundar Dhilip Kumar
- Laser Research Centre, University of Johannesburg, Faculty of Health Sciences PO Box 17011, Doornfontein Johannesburg South Africa +27 11 559 6884
| |
Collapse
|
4
|
Damiri F, Fatimi A, Liu Y, Musuc AM, Fajardo AR, Gowda BHJ, Vora LK, Shavandi A, Okoro OV. Recent advances in 3D bioprinted polysaccharide hydrogels for biomedical applications: A comprehensive review. Carbohydr Polym 2025; 348:122845. [PMID: 39567171 DOI: 10.1016/j.carbpol.2024.122845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 09/18/2024] [Accepted: 10/07/2024] [Indexed: 11/22/2024]
Abstract
Polysaccharide hydrogels, which can mimic the natural extracellular matrix and possess appealing physicochemical and biological characteristics, have emerged as significant bioinks for 3D bioprinting. They are highly promising for applications in tissue engineering and regenerative medicine because of their ability to enhance cell adhesion, proliferation, and differentiation in a manner akin to the natural cellular environment. This review comprehensively examines the fabrication methods, characteristics, and applications of polysaccharide hydrogel-driven 3D bioprinting, underscoring its potential in tissue engineering, drug delivery, and regenerative medicine. To contribute pertinent knowledge for future research in this field, this review critically examines key aspects, including the chemistry of carbohydrates, manufacturing techniques, formulation of bioinks, and characterization of polysaccharide-based hydrogels. Furthermore, this review explores the primary advancements and applications of 3D-printed polysaccharide hydrogels, encompassing drug delivery systems with controlled release kinetics and targeted therapy, along with tissue-engineered constructs for bone, cartilage, skin, and vascular regeneration. The use of these 3D bioprinted hydrogels in innovative research fields, including disease modeling and drug screening, is also addressed. Despite notable progress, challenges, including modulating the chemistry and properties of polysaccharides, enhancing bioink printability and mechanical properties, and achieving long-term in vivo stability, have been highlighted.
Collapse
Affiliation(s)
- Fouad Damiri
- Université Libre de Bruxelles (ULB), École polytechnique de Bruxelles, 3BIO-BioMatter, Avenue F.D. Roosevelt, 50 - CP 165/61, 1050 Brussels, Belgium; Chemical Science and Engineering Research Team (ERSIC), Department of Chemistry, Polydisciplinary Faculty of Beni Mellal (FPBM), Sultan Moulay Slimane University (USMS), Beni Mellal 23000, Morocco.
| | - Ahmed Fatimi
- Chemical Science and Engineering Research Team (ERSIC), Department of Chemistry, Polydisciplinary Faculty of Beni Mellal (FPBM), Sultan Moulay Slimane University (USMS), Beni Mellal 23000, Morocco
| | - Yang Liu
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmacology, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Adina Magdalena Musuc
- "Ilie Murgulescu" Institute of Physical Chemistry, 202 Spl. Independentei, 060021 Bucharest, Romania
| | - André R Fajardo
- Laboratório de Tecnologia e Desenvolvimento de Compósitos e Materiais Poliméricos (LaCoPol), Federal University of Pelotas (UFPel), 96010-900 Pelotas, RS, Brazil
| | - B H Jaswanth Gowda
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, BT9 7BL, United Kingdom
| | - Lalitkumar K Vora
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, BT9 7BL, United Kingdom.
| | - Armin Shavandi
- Université Libre de Bruxelles (ULB), École polytechnique de Bruxelles, 3BIO-BioMatter, Avenue F.D. Roosevelt, 50 - CP 165/61, 1050 Brussels, Belgium
| | - Oseweuba V Okoro
- Université Libre de Bruxelles (ULB), École polytechnique de Bruxelles, 3BIO-BioMatter, Avenue F.D. Roosevelt, 50 - CP 165/61, 1050 Brussels, Belgium
| |
Collapse
|
5
|
Świerczyńska M, Kudzin MH, Chruściel JJ. Poly(lactide)-Based Materials Modified with Biomolecules: A Review. MATERIALS (BASEL, SWITZERLAND) 2024; 17:5184. [PMID: 39517460 PMCID: PMC11546716 DOI: 10.3390/ma17215184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/16/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024]
Abstract
Poly(lactic acid) (PLA) is characterized by unique features, e.g., it is environmentally friendly, biocompatible, has good thermomechanical properties, and is readily available and biodegradable. Due to the increasing pollution of the environment, PLA is a promising alternative that can potentially replace petroleum-derived polymers. Different biodegradable polymers have numerous biomedical applications and are used as packaging materials. Because the pure form of PLA is delicate, brittle, and is characterized by a slow degradation rate and a low thermal resistance and crystallization rate, these disadvantages limit the range of applications of this polymer. However, the properties of PLA can be improved by chemical or physical modification, e.g., with biomolecules. The subject of this review is the modification of PLA properties with three classes of biomolecules: polysaccharides, proteins, and nucleic acids. A quite extensive description of the most promising strategies leading to improvement of the bioactivity of PLA, through modification with these biomolecules, is presented in this review. Thus, this article deals mainly with a presentation of the major developments and research results concerning PLA-based materials modified with different biomolecules (described in the world literature during the last decades), with a focus on such methods as blending, copolymerization, or composites fabrication. The biomedical and unique biological applications of PLA-based materials, especially modified with polysaccharides and proteins, are reviewed, taking into account the growing interest and great practical potential of these new biodegradable biomaterials.
Collapse
Affiliation(s)
- Małgorzata Świerczyńska
- Łukasiewicz Research Network—Lodz Institute of Technology (ŁIT), 19/27 Marii Skłodowskiej-Curie Str., 90-570 Łódź, Poland; (M.Ś.); (M.H.K.)
- Circular Economy Center (BCG), Environmental Protection Engineering Research Group, Łukasiewicz Research Network—Lodz Institute of Technology (ŁIT), Brzezińska 5/15, 92-103 Łódź, Poland
- Institute of Polymer and Dye Technology, Faculty of Chemistry, Lodz University of Technology, Stefanowskiego 16, 90-537 Łódź, Poland
| | - Marcin H. Kudzin
- Łukasiewicz Research Network—Lodz Institute of Technology (ŁIT), 19/27 Marii Skłodowskiej-Curie Str., 90-570 Łódź, Poland; (M.Ś.); (M.H.K.)
- Circular Economy Center (BCG), Environmental Protection Engineering Research Group, Łukasiewicz Research Network—Lodz Institute of Technology (ŁIT), Brzezińska 5/15, 92-103 Łódź, Poland
| | - Jerzy J. Chruściel
- Łukasiewicz Research Network—Lodz Institute of Technology (ŁIT), 19/27 Marii Skłodowskiej-Curie Str., 90-570 Łódź, Poland; (M.Ś.); (M.H.K.)
- Circular Economy Center (BCG), Environmental Protection Engineering Research Group, Łukasiewicz Research Network—Lodz Institute of Technology (ŁIT), Brzezińska 5/15, 92-103 Łódź, Poland
| |
Collapse
|
6
|
Aslam Khan MU, Aslam MA, Bin Abdullah MF, Stojanović GM. Current Perspectives of Protein in Bone Tissue Engineering: Bone Structure, Ideal Scaffolds, Fabrication Techniques, Applications, Scopes, and Future Advances. ACS APPLIED BIO MATERIALS 2024; 7:5082-5106. [PMID: 39007509 DOI: 10.1021/acsabm.4c00362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
In view of their exceptional approach, excellent inherent biocompatibility and biodegradability properties, and interaction with the local extracellular matrix, protein-based polymers have received attention in bone tissue engineering, which is a multidisciplinary field that repairs and regenerates fractured bones. Bone is a multihierarchical complex structure, and it performs several essential biofunctions, including maintaining mineral balance and structural support and protecting soft organs. Protein-based polymers have gained interest in developing ideal scaffolds as emerging biomaterials for bone fractured healing and regeneration, and it is challenging to design ideal bone substitutes as perfect biomaterials. Several protein-based polymers, including collagen, keratin, gelatin, serum albumin, etc., are potential materials due to their inherent cytocompatibility, controlled biodegradability, high biofunctionalization, and tunable mechanical characteristics. While numerous studies have indicated the encouraging possibilities of proteins in BTE, there are still major challenges concerning their biodegradability, stability in physiological conditions, and continuous release of growth factors and bioactive molecules. Robust scaffolds derived from proteins can be used to replace broken or diseased bone with a biocompatible substitute; proteins, being biopolymers, provide excellent scaffolds for bone tissue engineering. Herein, recent developments in protein polymers for cutting-edge bone tissue engineering are addressed in this review within 3-5 years, with a focus on the significant challenges and future perspectives. The first section discusses the structural fundamentals of bone anatomy and ideal scaffolds, and the second section describes the fabrication techniques of scaffolds. The third section highlights the importance of proteins and their applications in BTE. Hence, the recent development of protein polymers for state-of-the-art bone tissue engineering has been discussed, highlighting the significant challenges and future perspectives.
Collapse
Affiliation(s)
- Muhammad Umar Aslam Khan
- Department of Mechanical and Industrial Engineering, Qatar University, Doha 2713, Qatar
- Biomedical Research Center, Qatar University, Doha 2713, Qatar
| | - Muhammad Azhar Aslam
- Department of Physics, University of Engineering and Technology, Lahore 39161, Pakistan
| | - Mohd Faizal Bin Abdullah
- Oral and Maxillofacial Surgery Unit, School of Dental Sciences, Universiti Sains Malaysia, Health Campus Kubang Kerian 16150, Kota Bharu, Kelantan, Malaysia
- Oral and Maxillofacial Surgery Unit, Hospital Universiti Sains Malaysia, Universiti Sains Malaysia, Health Campus Kubang Kerian 16150, Kota Bharu, Kelantan, Malaysia
| | - Goran M Stojanović
- Faculty of Technical Sciences, University of Novi Sad, T. D. Obradovica 6, 21000 Novi Sad, Serbia
| |
Collapse
|
7
|
Mukherjee N, Ghosh S, Roy R, Mukherjee D, Sen S, Nandi D, Sarkar J, Ghosh S. Extracellular Matrix Mimicking Wound Microenvironment Responsive Amyloid-Heparin@TA AgNP Co-Assembled Hydrogel: An Effective Conductive Antibacterial Wound Healing Material. ACS APPLIED MATERIALS & INTERFACES 2024; 16:30929-30957. [PMID: 38832934 DOI: 10.1021/acsami.4c05559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Bioengineered composite hydrogel platforms made of a supramolecular coassembly have recently garnered significant attention as promising biomaterial-based healthcare therapeutics. The mechanical durability of amyloids, in conjunction with the structured charged framework rendered by biologically abundant key ECM component glycosaminoglycan, enables us to design minimalistic customized biomaterial suited for stimuli responsive therapy. In this study, by harnessing the heparin sulfate-binding aptitude of amyloid fibrils, we have constructed a pH-responsive extracellular matrix (ECM) mimicking hydrogel matrix. This effective biocompatible platform comprising heparin sulfate-amyloid coassembled hydrogel embedded with polyphenol functionalized silver nanoparticles not only provide a native skin ECM-like conductive environment but also provide wound-microenvironment responsive on-demand superior antibacterial efficacy for effective diabetic wound healing. Interestingly, both the cytocompatibility and antibacterial properties of this bioinspired matrix can be fine-tuned by controlling the mutual ratio of heparin sulfate-amyloid and incubated silver nanoparticle components, respectively. The designed biomaterial platform exhibits notable effectiveness in the treatment of chronic hyperglycemic wounds infected with multidrug-resistant bacteria, because of the integration of pH-responsive release characteristics of the incubated functionalized AgNP and the antibacterial amyloid fibrils. In addition to this, the aforementioned assemblage shows exceptional hemocompatibility with significant antibiofilm and antioxidant characteristics. Histological evidence of the incised skin tissue sections indicates that the fabricated composite hydrogel is also effective in controlling pro-inflammatory cytokines such as IL6 and TNFα expressions at the wound vicinity with significant upregulation of angiogenesis markers like CD31 and α-SMA.
Collapse
Affiliation(s)
- Nabanita Mukherjee
- Smart Healthcare, Interdisciplinary Research Division, Indian Institute of Technology-Jodhpur, NH 62, Surpura Bypass Road, Karwar, Rajasthan 342030, India
| | - Satyajit Ghosh
- Department of Bioscience & Bioengineering, Indian Institute of Technology-Jodhpur, NH 62, Surpura Bypass Road, Karwar, Rajasthan 342030, India
| | - Rajsekhar Roy
- Department of Bioscience & Bioengineering, Indian Institute of Technology-Jodhpur, NH 62, Surpura Bypass Road, Karwar, Rajasthan 342030, India
| | - Dipro Mukherjee
- Department of Bioscience & Bioengineering, Indian Institute of Technology-Jodhpur, NH 62, Surpura Bypass Road, Karwar, Rajasthan 342030, India
| | - Samya Sen
- iHUB Drishti Foundation, Indian Institute of Technology-Jodhpur, NH 62, Surpura Bypass Road, Karwar, Rajasthan 342030, India
| | - Debasmita Nandi
- Department of Bioscience & Bioengineering, Indian Institute of Technology-Jodhpur, NH 62, Surpura Bypass Road, Karwar, Rajasthan 342030, India
| | - Jayita Sarkar
- Centre for Research and Development for Scientific Instruments, Indian Institute of Technology-Jodhpur, NH 62, Surpura Bypass Road, Karwar, Rajasthan 342030, India
| | - Surajit Ghosh
- Smart Healthcare, Interdisciplinary Research Division, Indian Institute of Technology-Jodhpur, NH 62, Surpura Bypass Road, Karwar, Rajasthan 342030, India
- Department of Bioscience & Bioengineering, Indian Institute of Technology-Jodhpur, NH 62, Surpura Bypass Road, Karwar, Rajasthan 342030, India
| |
Collapse
|
8
|
Wu J, Li J, Mao S, Li B, Zhu L, Jia P, Huang G, Yang X, Xu L, Qiu D, Wang S, Dong Y. Heparin-Functionalized Bioactive Glass to Harvest Endogenous Growth Factors for Pulp Regeneration. ACS APPLIED MATERIALS & INTERFACES 2024; 16:30715-30727. [PMID: 38833722 DOI: 10.1021/acsami.4c03118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Pulp and periapical diseases can lead to the cessation of tooth development, resulting in compromised tooth structure and functions. Despite numerous efforts to induce pulp regeneration, effective strategies are still lacking. Growth factors (GFs) hold considerable promise in pulp regeneration due to their diverse cellular regulatory properties. However, the limited half-lives and susceptibility to degradation of exogenous GFs necessitate the administration of supra-physiological doses, leading to undesirable side effects. In this research, a heparin-functionalized bioactive glass (CaO-P2O5-SiO2-Heparin, abbreviated as PSC-Heparin) with strong bioactivity and a stable neutral pH is developed as a promising candidate to addressing challenges in pulp regeneration. Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, and thermogravimetric analysis reveal the successful synthesis of PSC-Heparin. Scanning electron microscopy and X-ray diffraction show the hydroxyapatite formation can be observed on the surface of PSC-Heparin after soaking in simulated body fluid for 12 h. PSC-Heparin is capable of harvesting various endogenous GFs and sustainably releasing them over an extended duration by the enzyme-linked immunosorbent assay. Cytological experiments show that developed PSC-Heparin can facilitate the adhesion, migration, proliferation, and odontogenic differentiation of stem cells from apical papillae. Notably, the histological analysis of subcutaneous implantation in nude mice demonstrates PSC-Heparin is capable of promoting the odontoblast-like layers and pulp-dentin complex formation without the addition of exogenous GFs, which is vital for clinical applications. This work highlights an effective strategy of harvesting endogenous GFs and avoiding the involvement of exogenous GFs to achieve pulp-dentin complex regeneration, which may open a new horizon for regenerative endodontic therapy.
Collapse
Affiliation(s)
- Jilin Wu
- Department of Cariology and Endodontology, Peking University School and Hospital of Stomatology, Beijing 100081, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing 100081, China
| | - Jingyi Li
- Department of Cariology and Endodontology, Peking University School and Hospital of Stomatology, Beijing 100081, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing 100081, China
| | - Sicong Mao
- Department of General Dentistry, Peking University School and Hospital of Stomatology, Beijing 100081, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing 100081, China
| | - Baokui Li
- Beijing National Laboratory for Molecular Sciences, Laboratory of Polymer Physics and Chemistry CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 10090, China
| | - Lin Zhu
- Department of Cariology and Endodontology, Peking University School and Hospital of Stomatology, Beijing 100081, China
| | - Peipei Jia
- Department of Cariology and Endodontology, Peking University School and Hospital of Stomatology, Beijing 100081, China
| | - Guibin Huang
- Department of Cariology and Endodontology, Peking University School and Hospital of Stomatology, Beijing 100081, China
| | - Xule Yang
- Beijing National Laboratory for Molecular Sciences, Laboratory of Polymer Physics and Chemistry CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Liju Xu
- Beijing National Laboratory for Molecular Sciences, Laboratory of Polymer Physics and Chemistry CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 10090, China
| | - Dong Qiu
- Beijing National Laboratory for Molecular Sciences, Laboratory of Polymer Physics and Chemistry CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 10090, China
| | - Sainan Wang
- Department of Cariology and Endodontology, Peking University School and Hospital of Stomatology, Beijing 100081, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing 100081, China
| | - Yanmei Dong
- Department of Cariology and Endodontology, Peking University School and Hospital of Stomatology, Beijing 100081, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing 100081, China
| |
Collapse
|
9
|
Du J, Zhang X, Li W, Wang M, Zhou X, Ren L. Generalized Multifunctional Coating Strategies Based on Polyphenol-Amine-Inspired Chemistry and Layer-by-Layer Deposition for Blood Contact Catheters. ACS Biomater Sci Eng 2024; 10:3057-3068. [PMID: 38641433 DOI: 10.1021/acsbiomaterials.4c00578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2024]
Abstract
Blood-contacting catheters play a pivotal role in contemporary medical treatments, particularly in the management of cardiovascular diseases. However, these catheters exhibit inappropriate wettability and lack antimicrobial characteristics, which often lead to catheter-related infections and thrombosis. Therefore, there is an urgent need for blood contact catheters with antimicrobial and anticoagulant properties. In this study, we employed tannic acid (TA) and 3-aminopropyltriethoxysilane (APTES) to create a stable hydrophilic coating under mild conditions. Heparin (Hep) and poly(lysine) (PL) were then modified on the TA-APTES coating surface using the layer-by-layer (LBL) technique to create a superhydrophilic TA/APTES/(LBL)4 coating on silicone rubber (SR) catheters. Leveraging the superhydrophilic nature of this coating, it can be effectively applied to blood-contacting catheters to impart antibacterial, antiprotein adsorption, and anticoagulant properties. Due to Hep's anticoagulant attributes, the activated partial thromboplastin time and thrombin time tests conducted on SR/TA-APTES/(LBL)4 catheters revealed remarkable extensions of 276 and 103%, respectively, when compared to uncoated commercial SR catheters. Furthermore, the synergistic interaction between PL and TA serves to enhance the resistance of SR/TA-APTES/(LBL)4 catheters against bacterial adherence, reducing it by up to 99.9% compared to uncoated commercial SR catheters. Remarkably, the SR/TA-APTES/(LBL)4 catheter exhibits good biocompatibility with human umbilical vein endothelial cells in culture, positioning it as a promising solution to address the current challenges associated with blood-contact catheters.
Collapse
Affiliation(s)
- Jiahao Du
- Department of Biomaterials, College of Materials, Xiamen University, 422 Siming Nan Road, Xiamen 361005, China
| | - Xiaoting Zhang
- Department of Biomaterials, College of Materials, Xiamen University, 422 Siming Nan Road, Xiamen 361005, China
| | - Wenlong Li
- Department of Biomaterials, College of Materials, Xiamen University, 422 Siming Nan Road, Xiamen 361005, China
| | - Miao Wang
- Department of Biomaterials, College of Materials, Xiamen University, 422 Siming Nan Road, Xiamen 361005, China
| | - Xi Zhou
- Department of Biomaterials, College of Materials, Xiamen University, 422 Siming Nan Road, Xiamen 361005, China
| | - Lei Ren
- Department of Biomaterials, College of Materials, Xiamen University, 422 Siming Nan Road, Xiamen 361005, China
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
10
|
Li Z, Song P, Li G, Han Y, Ren X, Bai L, Su J. AI energized hydrogel design, optimization and application in biomedicine. Mater Today Bio 2024; 25:101014. [PMID: 38464497 PMCID: PMC10924066 DOI: 10.1016/j.mtbio.2024.101014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 02/26/2024] [Accepted: 02/28/2024] [Indexed: 03/12/2024] Open
Abstract
Traditional hydrogel design and optimization methods usually rely on repeated experiments, which is time-consuming and expensive, resulting in a slow-moving of advanced hydrogel development. With the rapid development of artificial intelligence (AI) technology and increasing material data, AI-energized design and optimization of hydrogels for biomedical applications has emerged as a revolutionary breakthrough in materials science. This review begins by outlining the history of AI and the potential advantages of using AI in the design and optimization of hydrogels, such as prediction and optimization of properties, multi-attribute optimization, high-throughput screening, automated material discovery, optimizing experimental design, and etc. Then, we focus on the various applications of hydrogels supported by AI technology in biomedicine, including drug delivery, bio-inks for advanced manufacturing, tissue repair, and biosensors, so as to provide a clear and comprehensive understanding of researchers in this field. Finally, we discuss the future directions and prospects, and provide a new perspective for the research and development of novel hydrogel materials for biomedical applications.
Collapse
Affiliation(s)
- Zuhao Li
- Department of Orthopedics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
- Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China
| | - Peiran Song
- Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China
| | - Guangfeng Li
- Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China
| | - Yafei Han
- Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China
| | - Xiaoxiang Ren
- Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China
| | - Long Bai
- Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China
| | - Jiacan Su
- Department of Orthopedics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
- Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China
| |
Collapse
|
11
|
Serebrennikova KV, Samokhvalov AV, Zherdev AV, Dzantiev BB. A Fluorescence Resonance Energy Transfer Aptasensor for Aflatoxin B1 Based on Ligand-Induced ssDNA Displacement. Molecules 2023; 28:7889. [PMID: 38067619 PMCID: PMC10707992 DOI: 10.3390/molecules28237889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/27/2023] [Accepted: 11/29/2023] [Indexed: 12/18/2023] Open
Abstract
In this study, a fluorescence resonance energy transfer (FRET)-based aptasensor for the detection of aflatoxin B1 (AFB1) was designed using a carboxyfluorescein (FAM)-labeled aptamer and short complementary DNA (cDNA) labeled with low molecular quencher RTQ1. The sensing principle was based on the detection of restored FAM-aptamer fluorescence due to the ligand-induced displacement of cDNA in the presence of AFB1, leading to the destruction of the aptamer/cDNA duplex and preventing the convergence of FAM and RTQ1 at the effective FRET distance. Under optimal sensing conditions, a linear correlation was obtained between the fluorescence intensity of the FAM-aptamer and the AFB1 concentration in the range of 2.5-208.3 ng/mL with the detection limit of the assay equal to 0.2 ng/mL. The assay time was 30 min. The proposed FRET aptasensor has been successfully validated by analyzing white wine and corn flour samples, with recovery ranging from 76.7% to 91.9% and 84.0% to 86.5%, respectively. This work demonstrates the possibilities of labeled cDNA as an effective and easily accessible tool for sensitive AFB1 detection. The homogeneous FRET aptasensor is an appropriate choice for contaminant screening in complex matrices.
Collapse
Affiliation(s)
| | | | | | - Boris B. Dzantiev
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prospect 33, Moscow 119071, Russia; (K.V.S.); (A.V.S.); (A.V.Z.)
| |
Collapse
|
12
|
Deng L, Xiong J, Liu W, Wu L, Hu H, Wu J, Liu Y, Yu L, Zhou Y, Gao W, He H, Yin W. A Novel Fluorescence Sensor for Iodide Detection Based on the 1,3-Diaryl Pyrazole Unit with AIE and Mechanochromic Fluorescence Behavior. Molecules 2023; 28:7111. [PMID: 37894590 PMCID: PMC10609397 DOI: 10.3390/molecules28207111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/03/2023] [Accepted: 10/04/2023] [Indexed: 10/29/2023] Open
Abstract
A D-A type of luminophore, TPA-CDP, was designed and synthesized by using triphenylamine (TPA) as D (electron donor), 1,3-diaryl pyrazole with cyano groups (CDP) as A (electron acceptor) and employing a cyanovinyl segment as a recognition group. Firstly, TPA-CDP demonstrates effective fluorescence quenching as a sensor for I- by the nucleophilic addition reaction of the cyanovinyl segment with a high level of sensitivity, selectivity and a low determination limit of 4.43 μM. Interestingly, TPA-CDP exhibited an AIE phenomenon with the fw value reaching 50%. In addition, TPA-CDP displayed distinct mechanochromic fluorescence behavior with 70 nm red shift, which was observed over four repeated cycles. Furthermore, the mechanochromic fluorescence behavior of TPA-CDP, as observed in powder XRD experiments, was found to be associated with the morphological transition from a crystalline state to an amorphous state. These results confirm the significant potential of CDP as a powerful electron-deficient component in the creation of D-A-type mechanochromic fluorescence materials and biosensors for detecting I-.
Collapse
Affiliation(s)
- Lili Deng
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang 330013, China; (L.D.); (J.X.); (W.L.); (L.W.); (H.H.); (J.W.); (Y.L.); (W.G.)
- Jiangxi Provincial Engineering Research Center for Waterborne Coatings, School of Chemistry and Chemical Engineering, Jiangxi Science and Technology Normal University, Nanchang 330013, China;
| | - Jian Xiong
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang 330013, China; (L.D.); (J.X.); (W.L.); (L.W.); (H.H.); (J.W.); (Y.L.); (W.G.)
| | - Wenqin Liu
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang 330013, China; (L.D.); (J.X.); (W.L.); (L.W.); (H.H.); (J.W.); (Y.L.); (W.G.)
| | - Lixue Wu
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang 330013, China; (L.D.); (J.X.); (W.L.); (L.W.); (H.H.); (J.W.); (Y.L.); (W.G.)
| | - Huiyi Hu
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang 330013, China; (L.D.); (J.X.); (W.L.); (L.W.); (H.H.); (J.W.); (Y.L.); (W.G.)
| | - Jiaqing Wu
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang 330013, China; (L.D.); (J.X.); (W.L.); (L.W.); (H.H.); (J.W.); (Y.L.); (W.G.)
| | - Yue Liu
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang 330013, China; (L.D.); (J.X.); (W.L.); (L.W.); (H.H.); (J.W.); (Y.L.); (W.G.)
| | - Lide Yu
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang 330013, China; (L.D.); (J.X.); (W.L.); (L.W.); (H.H.); (J.W.); (Y.L.); (W.G.)
| | - Yuling Zhou
- Key Laboratory of Tropical Fruits and Vegetables Quality and Safety for State Market Regulation, Hainan Institute for Food Control, Haikou 570314, China
| | - Wenjun Gao
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang 330013, China; (L.D.); (J.X.); (W.L.); (L.W.); (H.H.); (J.W.); (Y.L.); (W.G.)
| | - Haifeng He
- Jiangxi Provincial Engineering Research Center for Waterborne Coatings, School of Chemistry and Chemical Engineering, Jiangxi Science and Technology Normal University, Nanchang 330013, China;
| | - Weiyan Yin
- Hubei Key Laboratory of Biomass Fibers and Eco-Dyeing & Finishing, School of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan 430073, China;
| |
Collapse
|