1
|
Rafiei M, Eivaz Mohammadloo H, Khorasani M, Kargaran F, Khonakdar H. Hydroxyapatite-based coatings on Mg and Ti-based implants: A detailed examination of various coating methodologies. Heliyon 2025; 11:e41813. [PMID: 39897808 PMCID: PMC11786668 DOI: 10.1016/j.heliyon.2025.e41813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 01/06/2025] [Accepted: 01/07/2025] [Indexed: 02/04/2025] Open
Abstract
Metallic implants have been considered as promising alternatives to traditional implants due to their biocompatibility and favorable biodegradability properties. However, one of the major challenges in using these implants is the relatively fast degradation rate of metal alloys in the body's electrolyte environment, which can lead to early loss of performance and the release of undesirable degradation products. Applying appropriate coatings with suitable performance on the surface of metal implants can be an effective solution to control the rate of deterioration and increase their stability in the body environment. In this comprehensive study, various methods of coating metal implants with calcium phosphate or hydroxyapatite structures, including sol-gel, chemical deposition (such as hydrothermal deposition), and thermal spraying (such as plasma spray) methods have been fully investigated. The benefits and drawbacks of each of these techniques in relation to the properties of the resulting coating such as surface morphology, chemical composition, adhesion to the substrate, porosity and crystal structure, anti-corrosion performance, their impact on the biological performance of the implant in terms of biocompatibility, degradation rate control, and mechanical properties, as well as limitations related to the coating process are described. The results of this comprehensive study provide valuable and key guidance for choosing the most suitable coating and coating method according to the type of medical application considered for metal implants.
Collapse
Affiliation(s)
- M. Rafiei
- Department of Polymer Engineering and Color Technology, Amirkabir University of Technology, Tehran, Iran
| | | | - M. Khorasani
- Department of Polymer Engineering and Color Technology, Amirkabir University of Technology, Tehran, Iran
| | - F. Kargaran
- Iran Polymer and Petrochemical Institute, Tehran, Iran
| | | |
Collapse
|
2
|
Kircheva N, Dobrev S, Petkova V, Yocheva L, Angelova S, Dudev T. In Silico Analysis of the Ga 3+/Fe 3+ Competition for Binding the Iron-Scavenging Siderophores of P. aeruginosa-Implementation of Three Gallium-Based Complexes in the "Trojan Horse" Antibacterial Strategy. Biomolecules 2024; 14:487. [PMID: 38672503 PMCID: PMC11048449 DOI: 10.3390/biom14040487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/11/2024] [Accepted: 04/13/2024] [Indexed: 04/28/2024] Open
Abstract
The emergence of multidrug-resistant (MDR) microorganisms combined with the ever-draining antibiotic pipeline poses a disturbing and immensely growing public health challenge that requires a multidisciplinary approach and the application of novel therapies aimed at unconventional targets and/or applying innovative drug formulations. Hence, bacterial iron acquisition systems and bacterial Fe2+/3+-containing enzymes have been identified as a plausible target of great potential. The intriguing "Trojan horse" approach deprives microorganisms from the essential iron. Recently, gallium's potential in medicine as an iron mimicry species has attracted vast attention. Different Ga3+ formulations exhibit diverse effects upon entering the cell and thus supposedly have multiple targets. The aim of the current study is to specifically distinguish characteristics of great significance in regard to the initial gallium-based complex, allowing the alien cation to effectively compete with the native ferric ion for binding the siderophores pyochelin and pyoverdine secreted by the bacterium P. aeruginosa. Therefore, three gallium-based formulations were taken into consideration: the first-generation gallium nitrate, Ga(NO3)3, metabolized to Ga3+-hydrated forms, the second-generation gallium maltolate (tris(3-hydroxy-2-methyl-4-pyronato)gallium), and the experimentally proven Ga carrier in the bloodstream-the protein transferrin. We employed a reliable in silico approach based on DFT computations in order to understand the underlying biochemical processes that govern the Ga3+/Fe3+ rivalry for binding the two bacterial siderophores.
Collapse
Affiliation(s)
- Nikoleta Kircheva
- Institute of Optical Materials and Technologies “Acad. J. Malinowski”, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (N.K.); (S.D.); (V.P.); (S.A.)
| | - Stefan Dobrev
- Institute of Optical Materials and Technologies “Acad. J. Malinowski”, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (N.K.); (S.D.); (V.P.); (S.A.)
| | - Vladislava Petkova
- Institute of Optical Materials and Technologies “Acad. J. Malinowski”, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (N.K.); (S.D.); (V.P.); (S.A.)
| | - Lyubima Yocheva
- Faculty of Chemistry and Pharmacy, Sofia University “St. Kliment Ohridski”, 1164 Sofia, Bulgaria;
| | - Silvia Angelova
- Institute of Optical Materials and Technologies “Acad. J. Malinowski”, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (N.K.); (S.D.); (V.P.); (S.A.)
- University of Chemical Technology and Metallurgy, 1756 Sofia, Bulgaria
| | - Todor Dudev
- Faculty of Chemistry and Pharmacy, Sofia University “St. Kliment Ohridski”, 1164 Sofia, Bulgaria;
| |
Collapse
|
3
|
Wen X, Liu Y, Xi F, Zhang X, Kang Y. Micro-arc oxidation (MAO) and its potential for improving the performance of titanium implants in biomedical applications. Front Bioeng Biotechnol 2023; 11:1282590. [PMID: 38026886 PMCID: PMC10662315 DOI: 10.3389/fbioe.2023.1282590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 10/18/2023] [Indexed: 12/01/2023] Open
Abstract
Titanium (Ti) and its alloys have good biocompatibility, mechanical properties and corrosion resistance, making them attractive for biomedical applications. However, their biological inertness and lack of antimicrobial properties may compromise the success of implants. In this review, the potential of micro-arc oxidation (MAO) technology to create bioactive coatings on Ti implants is discussed. The review covers the following aspects: 1) different factors, such as electrolyte, voltage and current, affect the properties of MAO coatings; 2) MAO coatings affect biocompatibility, including cytocompatibility, hemocompatibility, angiogenic activity, corrosion resistance, osteogenic activity and osseointegration; 3) antibacterial properties can be achieved by adding copper (Cu), silver (Ag), zinc (Zn) and other elements to achieve antimicrobial properties; and 4) MAO can be combined with other physical and chemical techniques to enhance the performance of MAO coatings. It is concluded that MAO coatings offer new opportunities for improving the use of Ti and its alloys in biomedical applications, and some suggestions for future research are provided.
Collapse
Affiliation(s)
- Xueying Wen
- School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Yan Liu
- School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Fangquan Xi
- School of Mechanical Engineering and Automation, Northeastern University, Shenyang, China
| | - Xingwan Zhang
- School of Mechanical Engineering and Automation, Northeastern University, Shenyang, China
| | - Yuanyuan Kang
- School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| |
Collapse
|
4
|
Kashin AD, Sedelnikova MB, Uvarkin PV, Ugodchikova AV, Luginin NA, Sharkeev YP, Khimich MA, Bakina OV. Functionalizing Diatomite-Based Micro-Arc Coatings for Orthopedic Implants: Influence of TiO 2 Addition. Biomimetics (Basel) 2023; 8:280. [PMID: 37504168 PMCID: PMC10377051 DOI: 10.3390/biomimetics8030280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/20/2023] [Accepted: 06/27/2023] [Indexed: 07/29/2023] Open
Abstract
The method of micro-arc oxidation has been utilized to synthesize a protective biocompatible coating for a bioresorbable orthopedic Mg implant. This paper presents the results of comprehensive research of micro-arc coatings based on diatomite-a biogenic material consisting of shells of diatom microalgae. The main focus of this study was the functionalization of diatomite-based micro-arc coatings by incorporating particles of titania (TiO2) into them. Various properties of the resulting coatings were examined and evaluated. XRD analysis revealed the formation of a new magnesium orthosilicate phase-forsterite (Mg2SiO4). It was established that the corrosion current density of the coatings decreased by 1-2 orders of magnitude after the inclusion of TiO2 particles, depending on the coating process voltage. The adhesion strength of the coatings increased following the particle incorporation. The processes of dissolution of both coated and uncoated samples in a sodium chloride solution were studied. The in vitro cell viability was assessed, which showed that the coatings significantly reduced the cytotoxicity of Mg samples.
Collapse
Affiliation(s)
- Alexander D Kashin
- Laboratory of Physics of Nanostructured Biocomposites, Institute of Strength Physics and Materials Science of SB RAS, Tomsk 634055, Russia
| | - Mariya B Sedelnikova
- Laboratory of Physics of Nanostructured Biocomposites, Institute of Strength Physics and Materials Science of SB RAS, Tomsk 634055, Russia
| | - Pavel V Uvarkin
- Laboratory of Physics of Nanostructured Biocomposites, Institute of Strength Physics and Materials Science of SB RAS, Tomsk 634055, Russia
| | - Anna V Ugodchikova
- Laboratory of Physics of Nanostructured Biocomposites, Institute of Strength Physics and Materials Science of SB RAS, Tomsk 634055, Russia
- Laboratory of Plasma Synthesis of Materials, Troitsk Institute for Innovation & Fusion Research, Moscow Region, Troitsk 108840, Russia
| | - Nikita A Luginin
- Laboratory of Physics of Nanostructured Biocomposites, Institute of Strength Physics and Materials Science of SB RAS, Tomsk 634055, Russia
| | - Yurii P Sharkeev
- Laboratory of Physics of Nanostructured Biocomposites, Institute of Strength Physics and Materials Science of SB RAS, Tomsk 634055, Russia
- Research School of High-Energy Physics, National Research Tomsk Polytechnic University, Tomsk 634050, Russia
| | - Margarita A Khimich
- Laboratory of Nanobioengineering, Institute of Strength Physics and Materials Science of SB RAS, Tomsk 634055, Russia
| | - Olga V Bakina
- Laboratory of Nanobioengineering, Institute of Strength Physics and Materials Science of SB RAS, Tomsk 634055, Russia
| |
Collapse
|
5
|
Pawłowski Ł, Rościszewska M, Majkowska-Marzec B, Jażdżewska M, Bartmański M, Zieliński A, Tybuszewska N, Samsel P. Influence of Surface Modification of Titanium and Its Alloys for Medical Implants on Their Corrosion Behavior. MATERIALS (BASEL, SWITZERLAND) 2022; 15:7556. [PMID: 36363148 PMCID: PMC9655659 DOI: 10.3390/ma15217556] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/22/2022] [Accepted: 10/24/2022] [Indexed: 06/16/2023]
Abstract
Titanium and its alloys are often used for long-term implants after their surface treatment. Such surface modification is usually performed to improve biological properties but seldom to increase corrosion resistance. This paper presents research results performed on such metallic materials modified by a variety of techniques: direct voltage anodic oxidation in the presence of fluorides, micro-arc oxidation (MAO), pulse laser treatment, deposition of chitosan, biodegradable Eudragit 100 and poly(4-vinylpyridine (P4VP), carbon nanotubes, nanoparticles of TiO2, and chitosan with Pt (nano Pt) and polymeric dispersant. The open circuit potential, corrosion current density, and potential values were determined by potentiodynamic technique, and microstructures of the surface layers and coatings were characterized by scanning electron microscopy. The results show that despite the applied modifications, the corrosion current density still appears in the region of very low values of some nA/cm2. However, almost all surface modifications, designed principally for the improvement of biological properties, negatively influence corrosion resistance. The reasons for observed effects can vary, such as imperfections and permeability of some coatings or accelerated degradation of biodegradable deposits in simulated body fluids during electrochemical testing. Despite that, all coatings can be accepted for biological applications, and such corrosion testing results are presumed not to be of major importance for their applications in medicine.
Collapse
Affiliation(s)
- Łukasz Pawłowski
- Department of Construction Materials, Institute of Manufacturing and Materials Technology, Faculty of Mechanical Engineering and Ship Technology, Gdańsk University of Technology, 80-233 Gdańsk, Poland
| | - Magda Rościszewska
- Department of Biomaterials Technology, Institute of Manufacturing and Materials Technology, Faculty of Mechanical Engineering and Ship Technology, Gdańsk University of Technology, 80-233 Gdańsk, Poland
| | - Beata Majkowska-Marzec
- Department of Biomaterials Technology, Institute of Manufacturing and Materials Technology, Faculty of Mechanical Engineering and Ship Technology, Gdańsk University of Technology, 80-233 Gdańsk, Poland
| | - Magdalena Jażdżewska
- Department of Biomaterials Technology, Institute of Manufacturing and Materials Technology, Faculty of Mechanical Engineering and Ship Technology, Gdańsk University of Technology, 80-233 Gdańsk, Poland
| | - Michał Bartmański
- Department of Biomaterials Technology, Institute of Manufacturing and Materials Technology, Faculty of Mechanical Engineering and Ship Technology, Gdańsk University of Technology, 80-233 Gdańsk, Poland
| | - Andrzej Zieliński
- Department of Biomaterials Technology, Institute of Manufacturing and Materials Technology, Faculty of Mechanical Engineering and Ship Technology, Gdańsk University of Technology, 80-233 Gdańsk, Poland
| | - Natalia Tybuszewska
- Department of Biomaterials Technology, Institute of Manufacturing and Materials Technology, Faculty of Mechanical Engineering and Ship Technology, Gdańsk University of Technology, 80-233 Gdańsk, Poland
| | - Pamela Samsel
- Department of Biomaterials Technology, Institute of Manufacturing and Materials Technology, Faculty of Mechanical Engineering and Ship Technology, Gdańsk University of Technology, 80-233 Gdańsk, Poland
| |
Collapse
|
6
|
Wan R, Wang X, Lei L, Hu G, Tang H, Gu H. Enhanced anti-microbial activity and osseointegration of Ta/Cu co-implanted polyetheretherketone. Colloids Surf B Biointerfaces 2022; 218:112719. [PMID: 35917690 DOI: 10.1016/j.colsurfb.2022.112719] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 07/18/2022] [Accepted: 07/22/2022] [Indexed: 11/25/2022]
Abstract
Polyetheretherketone (PEEK) has been widely applied for orthopedic and oral implants due to its excellent mechanical properties, biocompatibility, and radiolucency. However, its bioinert and the lack of anti-microbial activity limit its application. We modified the PEEK surface with Ta/Cu co-implantation using plasma immersion ion-implantation technology. After implantation of Ta/Cu ions, the morphology and roughness of the PEEK surface were not significantly changed at micron level. We estimated the cytocompatibility, anti-microbial ability, and osteogenic differentiation of rat bone mesenchymal stem cells (BMSCs) of the modified surfaces in vitro. Compared to the untreated surfaces, the Ta ion-treated surface showed improved adhesion, proliferation, ALP activity, ECM mineralization, and osteogenic gene expression of BMSCs. Further, the Cu ion-treated surface showed reduced initial adhesion and proliferation of Escherichia coli and Staphylococcus aureus in vitro and proliferation of Staphylococcus aureus in the mouse subcutaneous implant-associated infection model. According to a rat bone repair model, all Ta ion-implanted groups demonstrated improved new bone formation. In summary, Ta/Cu ion co-impanation improved anti-microbial activity and promoted osseointegration of the PEEK surface.
Collapse
Affiliation(s)
- Rongxin Wan
- Central Laboratory, the Second Hospital of Tianjin Medical University, Tianjin 300211, China.
| | - Xiaojuan Wang
- Central Laboratory, the Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Li Lei
- Central Laboratory, the Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Guoying Hu
- Central Laboratory, the Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Huiqing Tang
- Central Laboratory, the Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Hanqing Gu
- Central Laboratory, the Second Hospital of Tianjin Medical University, Tianjin 300211, China.
| |
Collapse
|