1
|
Singh I, Rao STRB, Irving HR, Balani K, Kong I. Advanced alginate/58S bioactive glass inks with enhanced printability, mechanical strength, and cytocompatibility for soft tissue engineering. Int J Biol Macromol 2025; 305:141106. [PMID: 39956239 DOI: 10.1016/j.ijbiomac.2025.141106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 02/01/2025] [Accepted: 02/13/2025] [Indexed: 02/18/2025]
Abstract
Alginate-based hydrogels are promising biomaterials for extrusion-based bioprinting; however, their poor mechanical properties, printability, and shape integrity limit their utility in mimicking complex tissues and organs. In this study, a novel sodium alginate (Alg)/58S bioactive glass (BG)-based ink was developed for soft tissue engineering applications. The inks were characterised for shear-thinning, flowability, and shape integrity by printing various structures, including single filaments (0° and 90° nozzle movement), scaffolds, and rings. The ABG10 ink (10 wt% 58S BG in Alg) exhibited superior printability, achieving a printing accuracy of over 90 %, compared to a printing accuracy of 30-40 % for pure Alg. Fourier transform infrared spectroscopy revealed interactions between 58S BG and the Alg matrix, while scanning electron microscopy characterised the 58S BG morphology within the matrix. The storage modulus increased from 767 (pure Alg) to 13,604 Pa (ABG10), while compressive strength rose from 23 ± 3 to 43 ± 4 kPa (58 % enhancement). The cytocompatibility of the inks was assessed using an MTT assay (with SH-SY5Y cells), which confirmed that ABG10 ink supports cell viability. Overall, ABG10 hydrogel-based inks exhibited enhanced shear-thinning behaviour, printability, mechanical strength, and cytocompatibility, which could help to develop patient-specific soft tissues.
Collapse
Affiliation(s)
- Indrajeet Singh
- Advanced Polymer and Composite Materials Laboratory, Department of Engineering, School of Computing, Engineering and Mathematical Sciences, La Trobe University, Bendigo, VIC 3550, Australia; Department of Materials Science and Engineering, Indian Institute of Technology Kanpur (208016), India
| | - Santosh T R B Rao
- Advanced Polymer and Composite Materials Laboratory, Department of Engineering, School of Computing, Engineering and Mathematical Sciences, La Trobe University, Bendigo, VIC 3550, Australia
| | - Helen R Irving
- Advanced Polymer and Composite Materials Laboratory, Department of Engineering, School of Computing, Engineering and Mathematical Sciences, La Trobe University, Bendigo, VIC 3550, Australia
| | - Kantesh Balani
- Department of Materials Science and Engineering, Indian Institute of Technology Kanpur (208016), India.
| | - Ing Kong
- Advanced Polymer and Composite Materials Laboratory, Department of Engineering, School of Computing, Engineering and Mathematical Sciences, La Trobe University, Bendigo, VIC 3550, Australia.
| |
Collapse
|
2
|
Singh S, Hubert P. High-Performance Polymer Blends: Manufacturing of Polyetherimide (PEI)-Polycarbonate (PC)-Based Filaments for 3D Printing. Polymers (Basel) 2024; 16:3384. [PMID: 39684130 DOI: 10.3390/polym16233384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 11/26/2024] [Accepted: 11/28/2024] [Indexed: 12/18/2024] Open
Abstract
The demand for high-performance polymers in 3D printing continues to grow due to their ability to produce intricate and complex structures. However, commercially available high-temperature 3D printing materials often exhibit limitations such as brittleness, warping, thermal sensitivity, and high costs, highlighting the need for advanced filament development. This study investigates the fabrication of polyetherimide (PEI) and polycarbonate (PC) blends via melt extrusion to enhance material properties for stable additive manufacturing. The addition of PC improved the processability of the blends, enabling successful extrusion at temperatures ranging from 290 to 310 °C. Differential scanning calorimetry (DSC) confirmed a shift in the softening temperature (T) of PEI, indicating effective blending. To further improve the properties of the PEI:PC blends, 1 wt% of a compatibilizer was incorporated, resulting in homogeneous microstructures as observed through scanning electron microscopy (SEM). The optimized PEI:PC (70:30) blend with compatibilizer (1 wt%) demonstrated a 49% higher storage modulus than neat PEI and a 40% greater storage modulus than ULTEM9085. Moreover, reduced melt viscosity facilitated consistent and stable printing, making these materials highly suitable for applications in aerospace and transportation, where performance and reliability are critical.
Collapse
Affiliation(s)
- Shikha Singh
- Department of Mechanical Engineering, McGill University, Montreal, QC H3A 0C3, Canada
- CREPEC-Research Centre for High-Performance Polymer and Composite Systems, Montreal, QC H3A 0C3, Canada
| | - Pascal Hubert
- Department of Mechanical Engineering, McGill University, Montreal, QC H3A 0C3, Canada
- CREPEC-Research Centre for High-Performance Polymer and Composite Systems, Montreal, QC H3A 0C3, Canada
| |
Collapse
|
3
|
Paccione N, Guarnizo-Herrero V, Ramalingam M, Larrarte E, Pedraz JL. Application of 3D printing on the design and development of pharmaceutical oral dosage forms. J Control Release 2024; 373:463-480. [PMID: 39029877 DOI: 10.1016/j.jconrel.2024.07.035] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 07/11/2024] [Accepted: 07/15/2024] [Indexed: 07/21/2024]
Abstract
3D printing technologies confer an unparalleled degree of control over the material distribution on the structures they produce, which has led them to become an extremely attractive research topic in pharmaceutical dosage form development, especially for the design of personalized treatments. With fine tuning in material selection and careful design, these technologies allow to tailor not only the amount of drug administered but the biopharmaceutical behaviour of the dosage forms as well. While fused deposition modelling (FDM) is still the most studied 3D printing technology in this area, others are gaining more relevance, which has led to many new and exciting dosage forms developed during 2022 and 2023. Considering that these technologies, in time, will join the current manufacturing methods and with the ever-increasing knowledge on this topic, our review aims to explore the advantages and limitations of 3D printing technologies employed in the design and development of pharmaceutical oral dosage forms, giving special focus to the most important aspects governing the resulting drug release profiles.
Collapse
Affiliation(s)
- Nicola Paccione
- TECNALIA, Basque Research and Technology Alliance (BRTA), Leonardo Da Vinci 11, 01510 Miñano, Spain; Joint Research Laboratory (JRL) on Advanced Pharma Development, A Joint Venture of TECNALIA and University of the Basque Country, Centro de investigación Lascaray ikergunea, 01006 Vitoria-Gasteiz, Spain; NanoBioCel Group, Department of Pharmacy and Food Science, Faculty of Pharmacy, University of the Basque Country (UPV/ EHU), 01006 Vitoria-Gasteiz, Spain
| | - Víctor Guarnizo-Herrero
- Department of Biomedical Sciences, Faculty of Pharmacy, University of Alcalá de Henares, Ctra Madrid-Barcelona Km 33, 600 28805 Madrid, Spain
| | - Murugan Ramalingam
- Joint Research Laboratory (JRL) on Advanced Pharma Development, A Joint Venture of TECNALIA and University of the Basque Country, Centro de investigación Lascaray ikergunea, 01006 Vitoria-Gasteiz, Spain; NanoBioCel Group, Department of Pharmacy and Food Science, Faculty of Pharmacy, University of the Basque Country (UPV/ EHU), 01006 Vitoria-Gasteiz, Spain; Bioaraba Health Research Institute, Jose Atxotegi, s/n, 01009 Vitoria-Gasteiz, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, 28029 Madrid, Spain.; IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain; School of Basic Medical Sciences, Binzhou Medical University, Yantai 264003, People's Republic of China
| | - Eider Larrarte
- TECNALIA, Basque Research and Technology Alliance (BRTA), Leonardo Da Vinci 11, 01510 Miñano, Spain; Joint Research Laboratory (JRL) on Advanced Pharma Development, A Joint Venture of TECNALIA and University of the Basque Country, Centro de investigación Lascaray ikergunea, 01006 Vitoria-Gasteiz, Spain.
| | - José Luis Pedraz
- Joint Research Laboratory (JRL) on Advanced Pharma Development, A Joint Venture of TECNALIA and University of the Basque Country, Centro de investigación Lascaray ikergunea, 01006 Vitoria-Gasteiz, Spain; NanoBioCel Group, Department of Pharmacy and Food Science, Faculty of Pharmacy, University of the Basque Country (UPV/ EHU), 01006 Vitoria-Gasteiz, Spain; Bioaraba Health Research Institute, Jose Atxotegi, s/n, 01009 Vitoria-Gasteiz, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, 28029 Madrid, Spain..
| |
Collapse
|
4
|
Abdelhamid M, Corzo C, Ocampo AB, Maisriemler M, Slama E, Alva C, Lochmann D, Reyer S, Freichel T, Salar-Behzadi S, Spoerk M. Mechanically promoted lipid-based filaments via composition tuning for extrusion-based 3D-printing. Int J Pharm 2023; 643:123279. [PMID: 37524255 DOI: 10.1016/j.ijpharm.2023.123279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 08/02/2023]
Abstract
Lipid excipients are favorable materials in pharmaceutical formulations owing to their natural, biodegradable, low-toxic and solubility/permeability enhancing properties. The application of these materials with advanced manufacturing platforms, particularly filament-based 3D-printing, is attractive for personalized manufacturing of thermolabile drugs. However, the filament's weak mechanical properties limit their full potential. In this study, highly flexible filaments were extruded using PG6-C16P, a lipid-based excipient belonging to the group of polyglycerol esters of fatty acids (PGFAs), based on tuning the ratio between its major and minor composition fractions. Increasing the percentage of the minor fractions in the system was found to enhance the relevant mechanical filament properties by 50-fold, guaranteeing a flawless 3D-printability. Applying a novel liquid feeding approach further improved the mechanical filament properties at lower percentage of minor fractions, whilst circumventing the issues associated with the standard extrusion approach such as low throughput. Upon drug incorporation, the filaments retained high mechanical properties with a controlled drug release pattern. This work demonstrates PG6-C16 P as an advanced lipid-based material and a competitive printing excipient that can empower filament-based 3D-printing.
Collapse
Affiliation(s)
- Moaaz Abdelhamid
- Research Center Pharmaceutical Engineering GmbH, Graz, Austria; Institute for Process and Particle Engineering, Graz University of Technology, Graz, Austria
| | - Carolina Corzo
- Research Center Pharmaceutical Engineering GmbH, Graz, Austria
| | | | | | - Eyke Slama
- Research Center Pharmaceutical Engineering GmbH, Graz, Austria
| | - Carolina Alva
- Research Center Pharmaceutical Engineering GmbH, Graz, Austria
| | | | | | | | - Sharareh Salar-Behzadi
- Research Center Pharmaceutical Engineering GmbH, Graz, Austria; University of Graz, Institute of Pharmaceutical Sciences, Department of Pharmaceutical, Technology and Biopharmacy, Graz, Austria.
| | - Martin Spoerk
- Research Center Pharmaceutical Engineering GmbH, Graz, Austria; Institute for Process and Particle Engineering, Graz University of Technology, Graz, Austria
| |
Collapse
|
5
|
Farasati Far B, Naimi-Jamal MR, Sedaghat M, Hoseini A, Mohammadi N, Bodaghi M. Combinational System of Lipid-Based Nanocarriers and Biodegradable Polymers for Wound Healing: An Updated Review. J Funct Biomater 2023; 14:jfb14020115. [PMID: 36826914 PMCID: PMC9963106 DOI: 10.3390/jfb14020115] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/12/2023] [Accepted: 02/14/2023] [Indexed: 02/22/2023] Open
Abstract
Skin wounds have imposed serious socioeconomic burdens on healthcare providers and patients. There are just more than 25,000 burn injury-related deaths reported each year. Conventional treatments do not often allow the re-establishment of the function of affected regions and structures, resulting in dehydration and wound infections. Many nanocarriers, such as lipid-based systems or biobased and biodegradable polymers and their associated platforms, are favorable in wound healing due to their ability to promote cell adhesion and migration, thus improving wound healing and reducing scarring. Hence, many researchers have focused on developing new wound dressings based on such compounds with desirable effects. However, when applied in wound healing, some problems occur, such as the high cost of public health, novel treatments emphasizing reduced healthcare costs, and increasing quality of treatment outcomes. The integrated hybrid systems of lipid-based nanocarriers (LNCs) and polymer-based systems can be promising as the solution for the above problems in the wound healing process. Furthermore, novel drug delivery systems showed more effective release of therapeutic agents, suitable mimicking of the physiological environment, and improvement in the function of the single system. This review highlights recent advances in lipid-based systems and the role of lipid-based carriers and biodegradable polymers in wound healing.
Collapse
Affiliation(s)
- Bahareh Farasati Far
- Research Laboratory of Green Organic Synthesis and Polymers, Department of Chemistry, Iran University of Science and Technology, Tehran 1684613114, Iran
| | - Mohammad Reza Naimi-Jamal
- Research Laboratory of Green Organic Synthesis and Polymers, Department of Chemistry, Iran University of Science and Technology, Tehran 1684613114, Iran
- Correspondence: (M.R.N.-J.); (M.B.)
| | - Meysam Sedaghat
- Advanced Materials Research Center, Materials Engineering Department, Najafabad Branch, Islamic Azad University, Najafabad 8514143131, Iran
| | - Alireza Hoseini
- Department of Materials Engineering, Iran University of Science and Technology, Tehran 1684613114, Iran
| | - Negar Mohammadi
- Department of Pharmaceutics, Faculty of Pharmacy, Ahvaz Jundishapur University of Medical Science, Ahvaz 6135733184, Iran
| | - Mahdi Bodaghi
- Department of Engineering, School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK
- Correspondence: (M.R.N.-J.); (M.B.)
| |
Collapse
|
6
|
Abdelhamid M, Koutsamanis I, Corzo C, Maisriemler M, Ocampo AB, Slama E, Alva C, Lochmann D, Reyer S, Freichel T, Salar-Behzadi S, Spoerk M. Filament-based 3D-printing of placebo dosage forms using brittle lipid-based excipients. Int J Pharm 2022; 624:122013. [PMID: 35839981 DOI: 10.1016/j.ijpharm.2022.122013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 07/04/2022] [Accepted: 07/08/2022] [Indexed: 11/28/2022]
Abstract
In order to expand the limited portfolio of available polymer-based excipients for fabricating three-dimensional (3D) printed pharmaceutical products, Lipid-based excipients (LBEs) have yet to be thoroughly investigated. The technical obstacle of LBEs application is, however their crystalline nature that renders them very brittle and challenging for processing via 3D-printing. In this work, we evaluated the functionality of LBEs for filament-based 3D-printing of oral dosage forms. Polyglycerol partial ester of palmitic acid and polyethylene glycols monostearate were selected as LBEs, based on their chemical structure, possessing polar groups for providing hydrogen-bonding sites. A fundamental understanding of structure-function relationship was built to screen the critical material attributes relevant for both extrusion and 3D-printing processes. The thermal behavior of lipids, including the degree of their supercooling, was the critical attribute for their processing. The extrudability of materials was improved through different feeding approaches, including the common powder feeding and a devised liquid feeding setup. Liquid feeding was found to be more efficient, allowing the production of filaments with high flexibility and improved printability. Filaments with superior performance were produced using polyglycerol ester of palmitic acid. In-house designed modifications of the utilized 3D-printer were essential for a flawless processing of the filaments.
Collapse
Affiliation(s)
- Moaaz Abdelhamid
- Research Center Pharmaceutical Engineering GmbH, Graz, Austria; Institute for Process and Particle Engineering, Graz University of Technology, Graz, Austria
| | | | - Carolina Corzo
- Research Center Pharmaceutical Engineering GmbH, Graz, Austria
| | | | | | - Eyke Slama
- Research Center Pharmaceutical Engineering GmbH, Graz, Austria
| | - Carolina Alva
- Research Center Pharmaceutical Engineering GmbH, Graz, Austria
| | | | | | | | - Sharareh Salar-Behzadi
- Research Center Pharmaceutical Engineering GmbH, Graz, Austria; University of Graz, Institute of Pharmaceutical Sciences, Department of Pharmaceutical Technology and Biopharmacy, Graz, Austria.
| | - Martin Spoerk
- Research Center Pharmaceutical Engineering GmbH, Graz, Austria
| |
Collapse
|