1
|
Chen R, Gong J, Yu Z, Wu X, Li C, Ruan Y, Wang S, Sun X. X-ray triggered bimetallic nanoassemblies as radiosensitizers and STING agonists for a CDT/radio-immunotherapy strategy. Acta Biomater 2025; 192:366-376. [PMID: 39674242 DOI: 10.1016/j.actbio.2024.12.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 12/01/2024] [Accepted: 12/11/2024] [Indexed: 12/16/2024]
Abstract
Radiotherapy (RT) is a cornerstone of cancer therapy, but its effectiveness is constrained by dose-limiting toxicity and inadequate systemic immune activation. To overcome these limitations, we have engineered an X-ray-responsive nanoassembly (sMnAu NAs) by cross-linking monodisperse MnAu nanoparticles (NPs) with radiation-responsive diselenide-containing linkers. MnAu alloy NPs not only provide Au NPs for radiosensitization, but also control Mn (0) release, which stimulates Fenton-like reaction for chemodynamic therapy and is transferred into Mn2+ to activate the STING pathway for immunotherapy. The responsive design not only improves tumor accumulation via EPR effect during circulation, but also achieves deep penetration of MnAu NPs following X-ray induced disassembly. The synergistic combination of chemodynamic therapy, radiotherapy and immunotherapy exhibits remarkable inhibition of tumor growth and metastasis. Overall, our sMnAu NAs represent a promising radiosensitizer for chemodynamic therapy and radiotherapy to enhance immunotherapy. STATEMENT OF SIGNIFICANCE: As a principal treatment modality in cancer management, RT is limited due to the co-irradiation of organs at risk and subsequent normal tissue toxicities. This study reported an X-ray responsive radiosensitizer prepared by cross-linking monodisperse MnAu NPs with diselenide-containing linkers. Upon X-ray irradiation, sMnAu NAs accumulate in tumors and disassemble into MnAu NPs, enabling deeper penetration. The increased surface area of MnAu NPs enhances the exposure of Mn(0), which reacts into Mn2+ and enhances ROS generation. The released Mn2+ activates the STING pathway, potentiating the X-ray-induced immune response. The synergistic integration of CDT, RT, and immunotherapy results in a potent suppression of tumor growth and metastasis. Collectively, this X-ray activatable CDT/radio-immunotherapy strategy holds great potential for effective cancer treatment.
Collapse
Affiliation(s)
- Ruifang Chen
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Quality Control and Pharmacovigilance, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China
| | - Jinglang Gong
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Quality Control and Pharmacovigilance, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China
| | - Ziyi Yu
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Quality Control and Pharmacovigilance, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China
| | - Xiyao Wu
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Quality Control and Pharmacovigilance, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China
| | - Changjun Li
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Quality Control and Pharmacovigilance, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China
| | - Yiling Ruan
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Quality Control and Pharmacovigilance, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China
| | - Shouju Wang
- Laboratory of Molecular Imaging, Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210000, PR China.
| | - Xiaolian Sun
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Quality Control and Pharmacovigilance, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China.
| |
Collapse
|
2
|
Bo Y, Wang H. Biomaterial-Based In Situ Cancer Vaccines. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2210452. [PMID: 36649567 PMCID: PMC10408245 DOI: 10.1002/adma.202210452] [Citation(s) in RCA: 34] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/06/2023] [Indexed: 06/17/2023]
Abstract
Cancer immunotherapies have reshaped the paradigm for cancer treatment over the past decade. Among them, therapeutic cancer vaccines that aim to modulate antigen-presenting cells and subsequent T cell priming processes are among the first FDA-approved cancer immunotherapies. However, despite showing benign safety profiles and the capability to generate antigen-specific humoral and cellular responses, cancer vaccines have been limited by the modest therapeutic efficacy, especially for immunologically cold solid tumors. One key challenge lies in the identification of tumor-specific antigens, which involves a costly and lengthy process of tumor cell isolation, DNA/RNA extraction, sequencing, mutation analysis, epitope prediction, peptide synthesis, and antigen screening. To address these issues, in situ cancer vaccines have been actively pursued to generate endogenous antigens directly from tumors and utilize the generated tumor antigens to elicit potent cytotoxic T lymphocyte (CTL) response. Biomaterials-based in situ cancer vaccines, in particular, have achieved significant progress by taking advantage of biomaterials that can synergize antigens and adjuvants, troubleshoot delivery issues, home, and manipulate immune cells in situ. This review will provide an overview of biomaterials-based in situ cancer vaccines, either living or artificial materials, under development or in the clinic, and discuss the design criteria for in situ cancer vaccines.
Collapse
Affiliation(s)
- Yang Bo
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Hua Wang
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Cancer Center at Illinois (CCIL), Urbana, IL, 61801, USA
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Carle College of Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| |
Collapse
|
3
|
Jiang Y, Zhao J, Zhang D. Manganese Dioxide-Based Nanomaterials for Medical Applications. ACS Biomater Sci Eng 2024; 10:2680-2702. [PMID: 38588342 DOI: 10.1021/acsbiomaterials.3c01852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
Manganese dioxide (MnO2) nanomaterials can react with trace hydrogen peroxide (H2O2) to produce paramagnetic manganese (Mn2+) and oxygen (O2), which can be used for magnetic resonance imaging and alleviate the hypoxic environment of tumors, respectively. MnO2 nanomaterials also can oxidize glutathione (GSH) to produce oxidized glutathione (GSSG) to break the balance of intracellular redox reactions. As a consequence of the sensitivity of the tumor microenvironment to MnO2-based nanomaterials, these materials can be used as multifunctional diagnostic and therapeutic platforms for tumor imaging and treatment. Importantly, when MnO2 nanomaterials are implanted along with other therapeutics, synergetic tumor therapy can be achieved. In addition to tumor treatment, MnO2-based nanomaterials display promising prospects for tissue repair, organ protection, and the treatment of other diseases. Herein, we provide a thorough review of recent progress in the use of MnO2-based nanomaterials for biomedical applications, which may be helpful for the design and clinical translation of next-generation MnO2 nanomaterials.
Collapse
Affiliation(s)
- Yuting Jiang
- Department of Chemistry, College of Basic Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Jiayi Zhao
- Department of Chemistry, College of Basic Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Dinglin Zhang
- Department of Chemistry, College of Basic Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China
| |
Collapse
|
4
|
Pan S, Sun Z, Zhao B, Miao L, Zhou Q, Chen T, Zhu X. Therapeutic application of manganese-based nanosystems in cancer radiotherapy. Biomaterials 2023; 302:122321. [PMID: 37722183 DOI: 10.1016/j.biomaterials.2023.122321] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 09/05/2023] [Accepted: 09/09/2023] [Indexed: 09/20/2023]
Abstract
Radiotherapy is an important therapeutic modality in the treatment of cancers. Nevertheless, the characteristics of the tumor microenvironment (TME), such as hypoxia and high glutathione (GSH), limit the efficacy of radiotherapy. Manganese-based (Mn-based) nanomaterials offer a promising prospect for sensitizing radiotherapy due to their good responsiveness to the TME. In this review, we focus on the mechanisms of radiosensitization of Mn-based nanosystems, including alleviating tumor hypoxia, increasing reactive oxygen species production, increasing GSH conversion, and promoting antitumor immunity. We further illustrate the applications of these mechanisms in cancer radiotherapy, including the development and delivery of radiosensitizers, as well as their combination with other therapeutic modalities. Finally, we summarize the application of Mn-based nanosystems as contrast agents in realizing precision therapy. Hopefully, the present review will provide new insights into the biological mechanisms of Mn-based nanosystems, as well as their applications in radiotherapy, in order to address the difficulties and challenges that remain in their clinical application in the future.
Collapse
Affiliation(s)
- Shuya Pan
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, China
| | - Zhengwei Sun
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, China
| | - Bo Zhao
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, China
| | - Liqing Miao
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, China
| | - Qingfeng Zhou
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, China
| | - Tianfeng Chen
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, China; Department of Chemistry, Jinan University, China.
| | - Xueqiong Zhu
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, China.
| |
Collapse
|
5
|
Dong Q, Xue T, Yan H, Liu F, Liu R, Zhang K, Chong Y, Du J, Zhang H. Radiotherapy combined with nano-biomaterials for cancer radio-immunotherapy. J Nanobiotechnology 2023; 21:395. [PMID: 37899463 PMCID: PMC10614396 DOI: 10.1186/s12951-023-02152-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 10/09/2023] [Indexed: 10/31/2023] Open
Abstract
Radiotherapy (RT) plays an important role in tumor therapy due to its noninvasiveness and wide adaptation. In recent years, radiation therapy has been discovered to induce an anti-tumor immune response, which arouses widespread concern among scientists and clinicians. In this review, we highlight recent advances in the applications of nano-biomaterials for radiotherapy-activated immunotherapy. We first discuss the combination of different radiosensitizing nano-biomaterials and immune checkpoint inhibitors to enhance tumor immune response and improve radiotherapy efficacy. Subsequently, various nano-biomaterials-enabled tumor oxygenation strategies are introduced to alleviate the hypoxic tumor environment and amplify the immunomodulatory effect. With the aid of nano-vaccines and adjuvants, radiotherapy refreshes the host's immune system. Additionally, ionizing radiation responsive nano-biomaterials raise innate immunity-mediated anti-tumor immunity. At last, we summarize the rapid development of immune modulatable nano-biomaterials and discuss the key challenge in the development of nano-biomaterials for tumor radio-immunotherapy. Understanding the nano-biomaterials-assisted radio-immunotherapy will maximize the benefits of clinical radiotherapy and immunotherapy and facilitate the development of new combinational therapy modality.
Collapse
Affiliation(s)
- Qingrong Dong
- Department of Medical Imaging, First Hospital of Shanxi Medical University, Intelligent Imaging Big Data and Functional Nano-Imaging Engineering Research Center of Shanxi Province, Taiyuan, 030001, People's Republic of China
| | - Tingyu Xue
- Department of Medical Imaging, First Hospital of Shanxi Medical University, Intelligent Imaging Big Data and Functional Nano-Imaging Engineering Research Center of Shanxi Province, Taiyuan, 030001, People's Republic of China
| | - Haili Yan
- Department of Medical Imaging, First Hospital of Shanxi Medical University, Intelligent Imaging Big Data and Functional Nano-Imaging Engineering Research Center of Shanxi Province, Taiyuan, 030001, People's Republic of China
| | - Fang Liu
- College of Pharmacy, Shanxi Medical University, Jinzhong, 030619, People's Republic of China
| | - Ruixue Liu
- Department of Medical Imaging, First Hospital of Shanxi Medical University, Intelligent Imaging Big Data and Functional Nano-Imaging Engineering Research Center of Shanxi Province, Taiyuan, 030001, People's Republic of China
| | - Kun Zhang
- College of Pharmacy, Shanxi Medical University, Jinzhong, 030619, People's Republic of China
| | - Yu Chong
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection School for Radiological and Interdisciplinary Sciences (RAD-X) Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, People's Republic of China.
| | - Jiangfeng Du
- Department of Medical Imaging, First Hospital of Shanxi Medical University, Intelligent Imaging Big Data and Functional Nano-Imaging Engineering Research Center of Shanxi Province, Taiyuan, 030001, People's Republic of China.
- College of Pharmacy, Shanxi Medical University, Jinzhong, 030619, People's Republic of China.
- Collaborative Innovation Center for Molecular Imaging of Precision Medicine, Shanxi Medical University, Taiyuan, 030001, People's Republic of China.
| | - Hui Zhang
- Department of Medical Imaging, First Hospital of Shanxi Medical University, Intelligent Imaging Big Data and Functional Nano-Imaging Engineering Research Center of Shanxi Province, Taiyuan, 030001, People's Republic of China.
| |
Collapse
|
6
|
Xiao M, Tang Q, Zeng S, Yang Q, Yang X, Tong X, Zhu G, Lei L, Li S. Emerging biomaterials for tumor immunotherapy. Biomater Res 2023; 27:47. [PMID: 37194085 PMCID: PMC10189985 DOI: 10.1186/s40824-023-00369-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 03/23/2023] [Indexed: 05/18/2023] Open
Abstract
BACKGROUND The immune system interacts with cancer cells in various intricate ways that can protect the individual from overproliferation of cancer cells; however, these interactions can also lead to malignancy. There has been a dramatic increase in the application of cancer immunotherapy in the last decade. However, low immunogenicity, poor specificity, weak presentation efficiency, and off-target side effects still limit its widespread application. Fortunately, advanced biomaterials effectively contribute immunotherapy and play an important role in cancer treatment, making it a research hotspot in the biomedical field. MAIN BODY This review discusses immunotherapies and the development of related biomaterials for application in the field. The review first summarizes the various types of tumor immunotherapy applicable in clinical practice as well as their underlying mechanisms. Further, it focuses on the types of biomaterials applied in immunotherapy and related research on metal nanomaterials, silicon nanoparticles, carbon nanotubes, polymer nanoparticles, and cell membrane nanocarriers. Moreover, we introduce the preparation and processing technologies of these biomaterials (liposomes, microspheres, microneedles, and hydrogels) and summarize their mechanisms when applied to tumor immunotherapy. Finally, we discuss future advancements and shortcomings related to the application of biomaterials in tumor immunotherapy. CONCLUSION Research on biomaterial-based tumor immunotherapy is booming; however, several challenges remain to be overcome to transition from experimental research to clinical application. Biomaterials have been optimized continuously and nanotechnology has achieved continuous progression, ensuring the development of more efficient biomaterials, thereby providing a platform and opportunity for breakthroughs in tumor immunotherapy.
Collapse
Affiliation(s)
- Minna Xiao
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Qinglai Tang
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Shiying Zeng
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Qian Yang
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Xinming Yang
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Xinying Tong
- Department of Hemodialysis, the Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Gangcai Zhu
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Lanjie Lei
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China.
| | - Shisheng Li
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China.
| |
Collapse
|
7
|
Yu X, Wang X, Yamazaki A. Mn-Si-based nanoparticles-enhanced inhibitory effect on tumor growth and metastasis in photo-immunotherapy. Colloids Surf B Biointerfaces 2023; 226:113314. [PMID: 37060652 DOI: 10.1016/j.colsurfb.2023.113314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/07/2023] [Accepted: 04/11/2023] [Indexed: 04/17/2023]
Abstract
The anticancer effect of phototherapy has been limited by some factors, including the easy degradation of photo agents, the complex tumor microenvironment, and the limited immune activation capacity, which impedes its efficiency in inhibiting tumor growth and tumor metastasis. Herein, Mn-doped mesoporous silica nanoparticles were synthesized to load the photo agent of IR 780, which were further coated with Mn (IMM). Notably, the combination of IMM and an 808 nm laser irradiation simultaneously inhibited the growth of primary tumors and distant untreated tumors in a bilateral animal model, which could be attributed to the protection of IMM to IR 780, the regulation functions to the tumor microenvironment, as well as the enhanced immune activation capacity. This work highlighted an alternative strategy for enhancing the inhibitory effect on both tumor growth and tumor metastasis in the combinational anticancer therapy of phototherapy and immunotherapy (photo-immunotherapy).
Collapse
Affiliation(s)
- Xueping Yu
- Graduate School of Creative Science and Engineering, Waseda University, 3-4-1 Shin-Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Xiupeng Wang
- Health and Medical Research Institute, Department of Life Science and Biotechnology, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan.
| | - Atsushi Yamazaki
- Graduate School of Creative Science and Engineering, Waseda University, 3-4-1 Shin-Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| |
Collapse
|