1
|
Bhilkar PR, Burade N, Yerpude ST, Potbhare AK, Ahmed MZ, Dadure KM, Singh RP, Rai AR, Chaudhary RG. Tetradesmus obliquus-mediated platinum nanoparticles: Sustainable approach, molecular docking and antibacterial assessment. Microb Pathog 2025; 200:107342. [PMID: 39884475 DOI: 10.1016/j.micpath.2025.107342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 01/16/2025] [Accepted: 01/27/2025] [Indexed: 02/01/2025]
Abstract
Microalgae are a valuable source of renewable biomass that contains lipids, proteins, and bioactive compounds. It is a promising sustainable candidate for green synthesis of nanomaterials (NMs). The present work announces a novel biogenic approach for synthesis of platinum nanoparticles (Pt NPs) employing Tetradesmus obliquus (green microalgae) as a green reducer and surfactant. This is revolutionary breakthrough in the field of bionanotechnology by employing a unique, cheaper, biocompatible, and non-toxic method for the production of Pt NPs. This investigation consists of isolating and purifying algae in a flask with incorporating a metal precursor into the microalgae culture. As-synthesized Pt NPs were examined by various spectroscopic techniques viz. XRD, EDS, FTIR, DLS, SEM and TEM to confirm its phase, crystallinity, purity, shape, and size. The XRD pattern revealed crystal structure of Pt NPs with crystallite sizes 26.75 nm, while TEM discloses spherical shape with particles sizes around 21.25 nm-31.50 nm. The zeta potential value of algae-mediated Pt NPs found to be -15.8 mV which suggested higher stability of synthesized NPs. Before an antibacterial evaluation of biosynthesized Pt NPs, its molecular docking was assessed by taking suitable amino acid. Further, executed an antibacterial activity of biosynthesized NPs against gram-positive and gram-negative bacteria. With its affordability and eco-friendly attributes, it sets a new standard technique in NPs fabrication.
Collapse
Affiliation(s)
- Pavan R Bhilkar
- Department of Chemistry, Seth Kesarimal Porwal College, Kamptee, R.T.M. Nagpur University Nagpur, 441001, India
| | - Nishant Burade
- Department of Microbiology, Seth Kesarimal Porwal College, Kamptee, R.T.M. Nagpur University Nagpur, 441001, India
| | - Sachin T Yerpude
- Department of Microbiology, Seth Kesarimal Porwal College, Kamptee, R.T.M. Nagpur University Nagpur, 441001, India
| | - Ajay K Potbhare
- Department of Chemistry, Seth Kesarimal Porwal College, Kamptee, R.T.M. Nagpur University Nagpur, 441001, India
| | - Mohammad Z Ahmed
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Kanhaiya M Dadure
- Department of Chemistry, Bajaj College of Science, Wardha, R.T.M. Nagpur University Nagpur, 442001, India
| | - Raghvendra P Singh
- Azoth Biotech Pvt. Ltd., Sector 80, Noida, Uttar Pradesh, India; Uttaranchal University, Prem Nagar, Dehradun, Uttarakhand, 248007, India
| | - Alok R Rai
- Department of Microbiology, Seth Kesarimal Porwal College, Kamptee, R.T.M. Nagpur University Nagpur, 441001, India.
| | - Ratiram G Chaudhary
- Department of Chemistry, Seth Kesarimal Porwal College, Kamptee, R.T.M. Nagpur University Nagpur, 441001, India.
| |
Collapse
|
2
|
Kumar H, Kimta N, Guleria S, Cimler R, Sethi N, Dhanjal DS, Singh R, Duggal S, Verma R, Prerna P, Pathera AK, Alomar SY, Kuca K. Valorization of non-edible fruit seeds into valuable products: A sustainable approach towards circular bioeconomy. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 922:171142. [PMID: 38387576 DOI: 10.1016/j.scitotenv.2024.171142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 02/03/2024] [Accepted: 02/19/2024] [Indexed: 02/24/2024]
Abstract
Global imperatives have recently shown a paradigm shift in the prevailing resource utilization model from a linear approach to a circular bioeconomy. The primary goal of the circular bioeconomy model is to minimize waste by effective re-usage of organic waste and efficient nutrient recycling. In essence, circular bioeconomy integrates the fundamental concept of circular economy, which strives to offer sustainable goods and services by leveraging biological resources and processes. Notably, the circular bioeconomy differs from conventional waste recycling by prioritizing the safeguarding and restoration of production ecosystems, focusing on harnessing renewable biological resources and their associated waste streams to produce value-added products like food, animal feed, and bioenergy. Amidst these sustainability efforts, fruit seeds are getting considerable attention, which were previously overlooked and commonly discarded but were known to comprise diverse chemicals with significant industrial applications, not limited to cosmetics and pharmaceutical industries. While, polyphenols in these seeds offer extensive health benefits, the inadequate conversion of fruit waste into valuable products poses substantial environmental challenges and resource wastage. This review aims to comprehend the known information about the application of non-edible fruit seeds for synthesising metallic nanoparticles, carbon dots, biochar, biosorbent, and biodiesel. Further, this review sheds light on the potential use of these seeds as functional foods and feed ingredients; it also comprehends the safety aspects associated with their utilization. Overall, this review aims to provide a roadmap for harnessing the potential of non-edible fruit seeds by adhering to the principles of a sustainable circular bioeconomy.
Collapse
Affiliation(s)
- Harsh Kumar
- Centre of Advanced Technologies, Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, 50003 Hradec Kralove, Czech Republic
| | - Neetika Kimta
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan 173229, India
| | - Shivani Guleria
- Department of Biotechnology, TIFAC-Centre of Relevance and Excellence in Agro and Industrial Biotechnology (CORE), Thapar Institute of Engineering and Technology, Patiala 147001, India
| | - Richard Cimler
- Centre of Advanced Technologies, Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, 50003 Hradec Kralove, Czech Republic
| | - Nidhi Sethi
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar 143005, India
| | - Daljeet Singh Dhanjal
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Reena Singh
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Sampy Duggal
- Department of Ayurveda & Health Sciences, Abhilashi University, Mandi 175028, India
| | - Rachna Verma
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan 173229, India.
| | - Prerna Prerna
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala 147001, India
| | | | - Suliman Y Alomar
- Zoology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, 50003 Hradec Kralove, Czech Republic; Biomedical Research Center, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic.
| |
Collapse
|
3
|
Li K, Chen W, Ma L, Yan L, Wang B. Approaches for reducing chemo/radiation-induced cardiotoxicity by nanoparticles. ENVIRONMENTAL RESEARCH 2024; 244:117264. [PMID: 37776941 DOI: 10.1016/j.envres.2023.117264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 09/13/2023] [Accepted: 09/27/2023] [Indexed: 10/02/2023]
Abstract
Nanoparticles are fascinating and encouraging carriers for cancer treatment due to their extraordinary properties and potential applications in targeted drug delivery, treatment, and diagnosis. Experimental studies including in vitro and in vivo examinations show that nanoparticles can cause a revolution in different aspects of cancer therapy. Normal tissue toxicity and early and late consequences are the major limitations of cancer therapy by radiotherapy and chemotherapy. However, the delivery of drugs into tumors or reducing the accumulation of drugs in normal tissues can permit a more satisfactory response of malignancies to therapy with more inferior side effects. Cardiac toxicity is one of the major problems for chemotherapy and radiotherapy. Therefore, several experimental studies have been performed to minimize the degenerative impacts of cancer treatment on the heart and also enhance the influences of radiotherapy and chemotherapy agents in cancers. This review article emphasizes the benefits of nanoparticle-based drug delivery techniques, including minimizing the exposure of the heart to anticancer drugs, enhancing the accumulation of drugs in cancers, and expanding the effectiveness of radiotherapy. The article also discusses the challenges and problems accompanied with nanoparticle-based drug delivery techniques such as toxicity, which need to be addressed through further research. Moreover, the article emphasizes the importance of developing safe and effective nanoparticle-based therapies that can be translated into clinical practice.
Collapse
Affiliation(s)
- Ketao Li
- Department of Cardiology, Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou, Zhejiang, 310022, China
| | - Wan Chen
- Department of Cardiology, Jiulongpo First People's Hospital, Chongqing, 400051, China
| | - Liping Ma
- Department of Cardiology, Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou, Zhejiang, 310022, China
| | - Laixing Yan
- Department of Cardiology, Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou, Zhejiang, 310022, China
| | - Bing Wang
- Department of Cardiology, Zouping People's Hospital, Zouping, shandong, 256299, China.
| |
Collapse
|
4
|
Ali S, Ulhassan Z, Shahbaz H, Kaleem Z, Yousaf MA, Ali S, Sheteiwy MS, Waseem M, Ali S, Zhou W. Application of magnesium oxide nanoparticles as a novel sustainable approach to enhance crop tolerance to abiotic and biotic stresses. ENVIRONMENTAL SCIENCE: NANO 2024; 11:3250-3267. [DOI: 10.1039/d4en00417e] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Abiotic stresses (heavy metals, drought, salinity, etc.) or biotic pathogens (bacteria, fungi, nematodes, etc.) contribute to major losses in crop yields.
Collapse
Affiliation(s)
- Sharafat Ali
- Institute of Crop Science, Ministry of Agriculture and Rural Affairs Key Laboratory of Spectroscopy Sensing, Zhejiang University, Hangzhou 310058, China
| | - Zaid Ulhassan
- Institute of Crop Science, Ministry of Agriculture and Rural Affairs Key Laboratory of Spectroscopy Sensing, Zhejiang University, Hangzhou 310058, China
| | - Hafsah Shahbaz
- School of Environment and Safety Engineering, School of Emergency Management, Jiangsu Province Engineering Research Center of Green Technology and Contingency Management for Emerging Pollutants, Jiangsu University, Zhenjiang, China
| | - Zohaib Kaleem
- Institute of Crop Science, Ministry of Agriculture and Rural Affairs Key Laboratory of Spectroscopy Sensing, Zhejiang University, Hangzhou 310058, China
| | - Muhammad Arslan Yousaf
- Institute of Crop Science, Ministry of Agriculture and Rural Affairs Key Laboratory of Spectroscopy Sensing, Zhejiang University, Hangzhou 310058, China
| | - Skhawat Ali
- Institute of Crop Science, Ministry of Agriculture and Rural Affairs Key Laboratory of Spectroscopy Sensing, Zhejiang University, Hangzhou 310058, China
| | - Mohamed S. Sheteiwy
- Department of Integrative Agriculture, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al-Ain, Abu-Dhabi, United Arab Emirates
- Department of Agronomy, Faculty of Agriculture, Mansoura University, Mansoura, Egypt
| | - Muhammad Waseem
- Department of Environmental Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Shafaqat Ali
- Department of Environmental Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan
- Department of Biological Sciences and Technology, China Medical University, Taichung 40402, Taiwan
| | - Weijun Zhou
- Institute of Crop Science, Ministry of Agriculture and Rural Affairs Key Laboratory of Spectroscopy Sensing, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
5
|
Li X. Doxorubicin-mediated cardiac dysfunction: Revisiting molecular interactions, pharmacological compounds and (nano)theranostic platforms. ENVIRONMENTAL RESEARCH 2023; 234:116504. [PMID: 37356521 DOI: 10.1016/j.envres.2023.116504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 06/17/2023] [Accepted: 06/23/2023] [Indexed: 06/27/2023]
Abstract
Although chemotherapy drugs are extensively utilized in cancer therapy, their administration for treatment of patients has faced problems that regardless of chemoresistance, increasing evidence has shown concentration-related toxicity of drugs. Doxorubicin (DOX) is a drug used in treatment of solid and hematological tumors, and its function is based on topoisomerase suppression to impair cancer progression. However, DOX can also affect the other organs of body and after chemotherapy, life quality of cancer patients decreases due to the side effects. Heart is one of the vital organs of body that is significantly affected by DOX during cancer chemotherapy, and this can lead to cardiac dysfunction and predispose to development of cardiovascular diseases and atherosclerosis, among others. The exposure to DOX can stimulate apoptosis and sometimes, pro-survival autophagy stimulation can ameliorate this condition. Moreover, DOX-mediated ferroptosis impairs proper function of heart and by increasing oxidative stress and inflammation, DOX causes cardiac dysfunction. The function of DOX in mediating cardiac toxicity is mediated by several pathways that some of them demonstrate protective function including Nrf2. Therefore, if expression level of such protective mechanisms increases, they can alleviate DOX-mediated cardiac toxicity. For this purpose, pharmacological compounds and therapeutic drugs in preventing DOX-mediated cardiotoxicity have been utilized and they can reduce side effects of DOX to prevent development of cardiovascular diseases in patients underwent chemotherapy. Furthermore, (nano)platforms are used comprehensively in treatment of cardiovascular diseases and using them for DOX delivery can reduce side effects by decreasing concentration of drug. Moreover, when DOX is loaded on nanoparticles, it is delivered into cells in a targeted way and its accumulation in healthy organs is prevented to diminish its adverse impacts. Hence, current paper provides a comprehensive discussion of DOX-mediated toxicity and subsequent alleviation by drugs and nanotherapeutics in treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Xiaofeng Li
- Department of Emergency, Shanghai Tenth People's Hospital, School of Medicine Tongji University, Shanghai, 200072, China.
| |
Collapse
|