1
|
Zeng D, Chen B, Wang H, Xu S, Liu S, Yu Z, Pan X, Tang X, Qin Y. The mediating role of inflammatory biomarkers in the association between serum copper and sarcopenia. Sci Rep 2025; 15:1673. [PMID: 39799188 PMCID: PMC11724950 DOI: 10.1038/s41598-024-84011-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 12/19/2024] [Indexed: 01/15/2025] Open
Abstract
This study aims to investigate the association between serum copper (Cu), selenium (Se), zinc (Zn), Se/Cu and Zn/Cu ratios and the risk of sarcopenia. In this study, which involved 2766 adults aged ≥ 20 years enrolled in the National Health and Nutrition Examination Survey (NHANES) from 2011 to 2016, multivariable logistic regression, restricted cubic spline (RCS) models and mediation analyses were used. After full adjustment, multivariable logistic regression revealed that higher serum copper levels were correlated with an increased risk of sarcopenia. Conversely, higher serum Se/Cu (OR 0.45, 95% CI 0.23-0.89, P = 0.023) and Zn/Cu (OR 0.49, 95% CI 0.27-0.90, P = 0.024) were associated with a decreased risk of sarcopenia. The RCS curve indicated a non-linear, roughly inverted L-shaped relationship between serum Cu and sarcopenia risk (P non-linear < 0.001). Additionally, Se/Cu (P non-linear = 0.179) and Zn/Cu (P non-linear = 0.786) showed negative linear associations with sarcopenia risk. Furthermore, white blood cell (WBC) count, neutrophil count, and systemic inflammation index (SII) were identified as significant mediators in the relationship between serum Cu and the risk of sarcopenia, with mediation proportions of 6.34%, 6.20%, and 4.37%, respectively (all P < 0.05). Therefore, balancing essential trace metals is crucial for maintaining muscle health.
Collapse
Affiliation(s)
- Dapeng Zeng
- The Orthopaedic Medical Center, Second Hospital of Jilin University, Changchun, Jilin Province, China
- Joint International Research Laboratory of Ageing Active Strategy and Bionic Health in Northeast Asia of Ministry of Education, Changchun, Jilin Province, China
| | - Bo Chen
- The Orthopaedic Medical Center, Second Hospital of Jilin University, Changchun, Jilin Province, China
- Joint International Research Laboratory of Ageing Active Strategy and Bionic Health in Northeast Asia of Ministry of Education, Changchun, Jilin Province, China
| | - Hao Wang
- The Orthopaedic Medical Center, Second Hospital of Jilin University, Changchun, Jilin Province, China
- Joint International Research Laboratory of Ageing Active Strategy and Bionic Health in Northeast Asia of Ministry of Education, Changchun, Jilin Province, China
| | - Shenghao Xu
- The Orthopaedic Medical Center, Second Hospital of Jilin University, Changchun, Jilin Province, China
- Joint International Research Laboratory of Ageing Active Strategy and Bionic Health in Northeast Asia of Ministry of Education, Changchun, Jilin Province, China
| | - Shibo Liu
- The Orthopaedic Medical Center, Second Hospital of Jilin University, Changchun, Jilin Province, China
- Joint International Research Laboratory of Ageing Active Strategy and Bionic Health in Northeast Asia of Ministry of Education, Changchun, Jilin Province, China
| | - Zehao Yu
- The Orthopaedic Medical Center, Second Hospital of Jilin University, Changchun, Jilin Province, China
- Joint International Research Laboratory of Ageing Active Strategy and Bionic Health in Northeast Asia of Ministry of Education, Changchun, Jilin Province, China
| | - Xiangjun Pan
- The Orthopaedic Medical Center, Second Hospital of Jilin University, Changchun, Jilin Province, China
- Joint International Research Laboratory of Ageing Active Strategy and Bionic Health in Northeast Asia of Ministry of Education, Changchun, Jilin Province, China
| | - Xiongfeng Tang
- The Orthopaedic Medical Center, Second Hospital of Jilin University, Changchun, Jilin Province, China.
- Joint International Research Laboratory of Ageing Active Strategy and Bionic Health in Northeast Asia of Ministry of Education, Changchun, Jilin Province, China.
| | - Yanguo Qin
- The Orthopaedic Medical Center, Second Hospital of Jilin University, Changchun, Jilin Province, China.
- Joint International Research Laboratory of Ageing Active Strategy and Bionic Health in Northeast Asia of Ministry of Education, Changchun, Jilin Province, China.
| |
Collapse
|
2
|
Alves PKN, Schauer A, Augstein A, Prieto Jarabo ME, Männel A, Barthel P, Vahle B, Moriscot AS, Linke A, Adams V. Leucine Supplementation Prevents the Development of Skeletal Muscle Dysfunction in a Rat Model of HFpEF. Cells 2024; 13:502. [PMID: 38534346 PMCID: PMC10969777 DOI: 10.3390/cells13060502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/07/2024] [Accepted: 03/12/2024] [Indexed: 03/28/2024] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF) is associated with exercise intolerance due to alterations in the skeletal muscle (SKM). Leucine supplementation is known to alter the anabolic/catabolic balance and to improve mitochondrial function. Thus, we investigated the effect of leucine supplementation in both a primary and a secondary prevention approach on SKM function and factors modulating muscle function in an established HFpEF rat model. Female ZSF1 obese rats were randomized to an untreated, a primary prevention, and a secondary prevention group. For primary prevention, leucine supplementation was started before the onset of HFpEF (8 weeks of age) and for secondary prevention, leucine supplementation was started after the onset of HFpEF (20 weeks of age). SKM function was assessed at an age of 32 weeks, and SKM tissue was collected for the assessment of mitochondrial function and histological and molecular analyses. Leucine supplementation prevented the development of SKM dysfunction whereas it could not reverse it. In the primary prevention group, mitochondrial function improved and higher expressions of mitofilin, Mfn-2, Fis1, and miCK were evident in SKM. The expression of UCP3 was reduced whereas the mitochondrial content and markers for catabolism (MuRF1, MAFBx), muscle cross-sectional area, and SKM mass did not change. Our data show that leucine supplementation prevented the development of skeletal muscle dysfunction in a rat model of HFpEF, which may be mediated by improving mitochondrial function through modulating energy transfer.
Collapse
Affiliation(s)
- Paula Ketilly Nascimento Alves
- Heart Center Dresden, Laboratory of Molecular and Experimental Cardiology, TU Dresden, 01307 Dresden, Germany; (P.K.N.A.); (A.S.); (A.A.); (M.-E.P.J.); (A.M.); (B.V.); (A.L.)
- Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, São Paulo 05508000, Brazil;
| | - Antje Schauer
- Heart Center Dresden, Laboratory of Molecular and Experimental Cardiology, TU Dresden, 01307 Dresden, Germany; (P.K.N.A.); (A.S.); (A.A.); (M.-E.P.J.); (A.M.); (B.V.); (A.L.)
| | - Antje Augstein
- Heart Center Dresden, Laboratory of Molecular and Experimental Cardiology, TU Dresden, 01307 Dresden, Germany; (P.K.N.A.); (A.S.); (A.A.); (M.-E.P.J.); (A.M.); (B.V.); (A.L.)
| | - Maria-Elisa Prieto Jarabo
- Heart Center Dresden, Laboratory of Molecular and Experimental Cardiology, TU Dresden, 01307 Dresden, Germany; (P.K.N.A.); (A.S.); (A.A.); (M.-E.P.J.); (A.M.); (B.V.); (A.L.)
| | - Anita Männel
- Heart Center Dresden, Laboratory of Molecular and Experimental Cardiology, TU Dresden, 01307 Dresden, Germany; (P.K.N.A.); (A.S.); (A.A.); (M.-E.P.J.); (A.M.); (B.V.); (A.L.)
| | - Peggy Barthel
- Heart Center Dresden, Laboratory of Molecular and Experimental Cardiology, TU Dresden, 01307 Dresden, Germany; (P.K.N.A.); (A.S.); (A.A.); (M.-E.P.J.); (A.M.); (B.V.); (A.L.)
| | - Beatrice Vahle
- Heart Center Dresden, Laboratory of Molecular and Experimental Cardiology, TU Dresden, 01307 Dresden, Germany; (P.K.N.A.); (A.S.); (A.A.); (M.-E.P.J.); (A.M.); (B.V.); (A.L.)
| | - Anselmo S. Moriscot
- Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, São Paulo 05508000, Brazil;
| | - Axel Linke
- Heart Center Dresden, Laboratory of Molecular and Experimental Cardiology, TU Dresden, 01307 Dresden, Germany; (P.K.N.A.); (A.S.); (A.A.); (M.-E.P.J.); (A.M.); (B.V.); (A.L.)
| | - Volker Adams
- Heart Center Dresden, Laboratory of Molecular and Experimental Cardiology, TU Dresden, 01307 Dresden, Germany; (P.K.N.A.); (A.S.); (A.A.); (M.-E.P.J.); (A.M.); (B.V.); (A.L.)
| |
Collapse
|
3
|
Dombrecht D, Van Daele U, Van Asbroeck B, Schieffelers DR, Guns PJ, van Breda E. Skeletal muscle wasting after burn is regulated by a decrease in anabolic signaling in the early flow phase. Burns 2023; 49:1574-1584. [PMID: 37833149 DOI: 10.1016/j.burns.2023.08.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 06/14/2023] [Accepted: 08/10/2023] [Indexed: 10/15/2023]
Abstract
Following burns a sustained catabolic stress response is activated, resulting in skeletal muscle wasting. A better understanding of the underlying mechanisms of postburn skeletal muscle wasting is essential for the development of preventive and/or therapeutic strategies. Six weeks old female rats underwent a sham, 10% or 40% total body surface area scald burn. Ten days post-injury, severely burned animals gained significantly less weight compared to sham treated and minor burned animals, reflected in a significantly lower ratio of muscle to total body weight for Soleus (SOL) and Extensor Digitorum Longus (EDL) in the severely burned group. Postburn, total fiber number was significantly lower in EDL, while in SOL the amount of type1 fibers significantly increased and type2 fibers significantly decreased. No signs of mitochondrial dysfunction (COX/SDH) or apoptosis (caspase-3) were found. In SOL and EDL, eEF2 and pAKT expression was significantly lower after severe burn. MURF1,2,3 and Atrogin-1 was significantly higher in SOL, whilst in EDL MURF1,2,3 was significantly lower postburn. In both muscles, FOXO3A was significantly lower postburn. This study identified postburn changes in muscle anthropomorphology and proteins involved in pathways regulating protein synthesis and breakdown, with more pronounced catabolic effects in SOL.
Collapse
Affiliation(s)
- Dorien Dombrecht
- Department of Rehabilitation Sciences & Physiotherapy, Research Group MOVANT, University of Antwerp, Universiteitsplein 1, B-2610 Antwerp, Belgium
| | - Ulrike Van Daele
- Department of Rehabilitation Sciences & Physiotherapy, Research Group MOVANT, University of Antwerp, Universiteitsplein 1, B-2610 Antwerp, Belgium; Oscare, Organisation for Burns, Scar After-Care and Research, 2170 Antwerp, Belgium.
| | - Birgit Van Asbroeck
- Department of Rehabilitation Sciences & Physiotherapy, Research Group MOVANT, University of Antwerp, Universiteitsplein 1, B-2610 Antwerp, Belgium
| | - David R Schieffelers
- Department of Rehabilitation Sciences & Physiotherapy, Research Group MOVANT, University of Antwerp, Universiteitsplein 1, B-2610 Antwerp, Belgium
| | - Pieter-Jan Guns
- Laboratory of Physiopharmacology, University of Antwerp, Universiteitsplein 1, B-2610 Antwerp, Belgium
| | - Eric van Breda
- Department of Rehabilitation Sciences & Physiotherapy, Research Group MOVANT, University of Antwerp, Universiteitsplein 1, B-2610 Antwerp, Belgium.
| |
Collapse
|
4
|
Dombrecht D, Van Daele U, Van Asbroeck B, Schieffelers D, Guns PJ, Gebruers N, Meirte J, van Breda E. Molecular mechanisms of post-burn muscle wasting and the therapeutic potential of physical exercise. J Cachexia Sarcopenia Muscle 2023; 14:758-770. [PMID: 36760077 PMCID: PMC10067483 DOI: 10.1002/jcsm.13188] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 01/03/2023] [Accepted: 01/16/2023] [Indexed: 02/11/2023] Open
Abstract
After a severe burn injury, a systemic stress response activates metabolic and inflammatory derangements that, among other, leads to muscle mass loss (muscle wasting). These negative effects on skeletal muscle continue for several months or years and are aggravated by short-term and long-term disuse. The dynamic balance between muscle protein synthesis and muscle protein breakdown (proteolysis) is regulated by complex signalling pathways that leads to an overall negative protein balance in skeletal muscle after a burn injury. Research concerning these molecular mechanisms is still scarce and inconclusive, understanding of which, if any, molecular mechanisms contribute to muscle wasting is of fundamental importance in designing of therapeutic interventions for burn patients as well. This review not only summarizes our present knowledge of the molecular mechanisms that underpin muscle protein balance but also summarizes the effects of exercise on muscle wasting post-burn as promising strategy to counteract the detrimental effects on skeletal muscle. Future research focusing on the pathways causing post-burn muscle wasting and the different effects of exercise on them is needed to confirm this hypothesis and to lay the foundation of therapeutic strategies.
Collapse
Affiliation(s)
- Dorien Dombrecht
- Department of Rehabilitation Sciences & Physiotherapy, Research group MOVANT, Multidisciplinary Metabolic Research Unit (M2RUN), University of Antwerp, Antwerp, Belgium
| | - Ulrike Van Daele
- Department of Rehabilitation Sciences & Physiotherapy, Research group MOVANT, Multidisciplinary Metabolic Research Unit (M2RUN), University of Antwerp, Antwerp, Belgium.,Oscare, Organisation for Burns, Scar After-Care and Research, Antwerp, Belgium
| | - Birgit Van Asbroeck
- Department of Rehabilitation Sciences & Physiotherapy, Research group MOVANT, Multidisciplinary Metabolic Research Unit (M2RUN), University of Antwerp, Antwerp, Belgium
| | - David Schieffelers
- Department of Rehabilitation Sciences & Physiotherapy, Research group MOVANT, Multidisciplinary Metabolic Research Unit (M2RUN), University of Antwerp, Antwerp, Belgium
| | - Pieter-Jan Guns
- Laboratory of Physiopharmacology, University of Antwerp, Antwerp, Belgium
| | - Nick Gebruers
- Department of Rehabilitation Sciences & Physiotherapy, Research group MOVANT, Multidisciplinary Metabolic Research Unit (M2RUN), University of Antwerp, Antwerp, Belgium.,Multidisciplinary Edema Clinic, Antwerp University Hospital, Edegem, Belgium
| | - Jill Meirte
- Department of Rehabilitation Sciences & Physiotherapy, Research group MOVANT, Multidisciplinary Metabolic Research Unit (M2RUN), University of Antwerp, Antwerp, Belgium.,Oscare, Organisation for Burns, Scar After-Care and Research, Antwerp, Belgium
| | - Eric van Breda
- Department of Rehabilitation Sciences & Physiotherapy, Research group MOVANT, Multidisciplinary Metabolic Research Unit (M2RUN), University of Antwerp, Antwerp, Belgium
| |
Collapse
|
5
|
Son DH, Song SA, Lee YJ. Association Between C-Reactive Protein and Relative Handgrip Strength in Postmenopausal Korean Women Aged 45-80 Years: A Cross-Sectional Study. Clin Interv Aging 2022; 17:971-978. [PMID: 35747693 PMCID: PMC9211077 DOI: 10.2147/cia.s356947] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 05/16/2022] [Indexed: 01/08/2023] Open
Abstract
Background Chronic inflammation plays a key role in the pathophysiology of frailty and loss of physical performance, which are closely associated with sarcopenia. In women, the decline in muscle mass and strength is accelerated after menopause. Thus, we examined the association between high sensitivity C-reactive protein (hs-CRP) and relative handgrip strength (HGS) in postmenopausal women. Methods This cross-sectional study included 2171 postmenopausal women aged ≥45 years who participated in the Korean National Health and Nutrition Survey (KNHNES) between 2015 and 2018. Relative HGS was categorized into quartiles as follows: Q1, <0.810 (kg/BMI); Q2, 0.810–0.968 (kg/BMI); Q3, 0.969–1.119 (kg/BMI); Q4, >1.119 (kg/BMI). The odds ratios (ORs) and 95% confidence intervals (95% CIs) for high hs-CRP (>1.0 mg/L, 75 percentile of the current samples) were calculated across relative HGS quartiles using multiple logistic regression analysis. Results The prevalence of high hs-CRP decreased with relative HGS quartiles. Compared to the highest quartile, the OR (95% CI) of the lowest relative HGS quartile for high hs-CRP was 3.266 (2.227–4.789) after adjusting for age, hypertension, diabetes mellitus, dyslipidemia, education, household income, physical activity, strength exercise, smoking, and alcohol ingestion. Conclusion Serum hs-CRP level was inversely and independently associated with relative HGS. Our findings indicate that low-grade inflammation is inversely associated with muscle strength in postmenopausal women.
Collapse
Affiliation(s)
- Da-Hye Son
- Department of Family Medicine, Yonsei University College of Medicine, Seoul, Korea.,Department of Integrative Medicine, Yonsei University Graduate School, Seoul, Korea
| | - Seung-Ah Song
- Department of Family Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Yong-Jae Lee
- Department of Family Medicine, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
6
|
Roles of Cullin-RING Ubiquitin Ligases in Cardiovascular Diseases. Biomolecules 2022; 12:biom12030416. [PMID: 35327608 PMCID: PMC8946067 DOI: 10.3390/biom12030416] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/03/2022] [Accepted: 03/04/2022] [Indexed: 12/18/2022] Open
Abstract
Maintenance of protein homeostasis is crucial for virtually every aspect of eukaryotic biology. The ubiquitin-proteasome system (UPS) represents a highly regulated quality control machinery that protects cells from a variety of stress conditions as well as toxic proteins. A large body of evidence has shown that UPS dysfunction contributes to the pathogenesis of cardiovascular diseases. This review highlights the latest findings regarding the physiological and pathological roles of cullin-RING ubiquitin ligases (CRLs), an essential player in the UPS, in the cardiovascular system. To inspire potential therapeutic invention, factors regulating CRL activities are also discussed.
Collapse
|
7
|
Abrigo J, Simon F, Cabrera D, Vilos C, Cabello-Verrugio C. Combined Administration of Andrographolide and Angiotensin- (1-7) Synergically Increases the Muscle Function and Strength in Aged Mice. Curr Mol Med 2021; 22:908-918. [PMID: 34875988 DOI: 10.2174/1566524021666211207112106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 05/13/2021] [Accepted: 05/15/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Sarcopenia is a progressive and generalized skeletal muscle disorder characterized by muscle weakness, loss of muscle mass, and decline in the capacity of force generation. Aging can cause sarcopenia. Several therapeutic strategies have been evaluated to prevent or alleviate this disorder. One of them is angiotensin 1-7 [Ang-(1-7)], an anti-atrophic peptide for skeletal muscles that regulates decreased muscle mass for several causes, including aging. Another regulator of muscle mass and function is andrographolide, a bicyclic diterpenoid lactone that decreases the nuclear factor kappa B (NF-κB) signaling and attenuates the severity of some muscle diseases. OBJECTIVE Evaluate the effect of combined administration of Ang-(1-7) with andrographolide on the physical performance, muscle strength, and fiber´s diameter in a murine model of sarcopenia by aging. METHODS Aged male mice of the C57BL/6J strain were treated with Andrographolide, Ang-(1-7), or combined for three months. The physical performance, muscle strength, and fiber´s diameter were measured. RESULTS The results showed that aged mice (24 months old) treated with Ang-(1-7) or Andrographolide improved their performance on a treadmill test, muscle strength, and their fiber´s diameter compared to aged mice without treatment. The combined administration of Ang-(1-7) with andrographolide to aged mice has an enhanced synergically effect on physical performance, muscle strength, and fiber´s diameter. CONCLUSION Our results indicated that in aged mice, the effects of andrographolide and Ang-(1-7) on muscle function, strength, and fiber´s diameter are potentiated.
Collapse
Affiliation(s)
- Johanna Abrigo
- Laboratory of Muscle Pathology, Fragility and Aging, Department of Biological Sciences, Faculty of Life Sciences, Universidad Andres Bello. Santiago. Chile
| | - Felipe Simon
- Millennium Institute on Immunology and Immunotherapy. Santiago. Chile
| | - Daniel Cabrera
- Departamento de Gastroenterología, Facultad de Medicina, Pontificia Universidad Católica de Chile. Santiago. Chile
| | - Cristian Vilos
- Center for the Development of Nanoscience and Nanotechnology (CEDENNA), Universidad de Santiago de Chile. Santiago. Chile
| | - Claudio Cabello-Verrugio
- Laboratory of Muscle Pathology, Fragility and Aging, Department of Biological Sciences, Faculty of Life Sciences, Universidad Andres Bello. Santiago. Chile
| |
Collapse
|
8
|
Mutation in FBXO32 causes dilated cardiomyopathy through up-regulation of ER-stress mediated apoptosis. Commun Biol 2021; 4:884. [PMID: 34272480 PMCID: PMC8285540 DOI: 10.1038/s42003-021-02391-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 06/23/2021] [Indexed: 02/06/2023] Open
Abstract
Endoplasmic reticulum (ER) stress induction of cell death is implicated in cardiovascular diseases. Sustained activation of ER-stress induces the unfolded protein response (UPR) pathways, which in turn activate three major effector proteins. We previously reported a missense homozygous mutation in FBXO32 (MAFbx, Atrogin-1) causing advanced heart failure by impairing autophagy. In the present study, we performed transcriptional profiling and biochemical assays, which unexpectedly revealed a reduced activation of UPR effectors in patient mutant hearts, while a strong up-regulation of the CHOP transcription factor and of its target genes are observed. Expression of mutant FBXO32 in cells is sufficient to induce CHOP-associated apoptosis, to increase the ATF2 transcription factor and to impair ATF2 ubiquitination. ATF2 protein interacts with FBXO32 in the human heart and its expression is especially high in FBXO32 mutant hearts. These findings provide a new underlying mechanism for FBXO32-mediated cardiomyopathy, implicating abnormal activation of CHOP. These results suggest alternative non-canonical pathways of CHOP activation that could be considered to develop new therapeutic targets for the treatment of FBXO32-associated DCM. Al-Yacoub et al. investigate the consequences of FBXO32 mutation on dilated cardiomyopathy. ER stress, abnormal CHOP activation and CHOP-induced apoptosis with no UPR effector activation are found to underlie the FBXO32 mutation induced cardiomyopathy, suggesting an alternative pathway that can be considered to develop new therapeutic targets for its treatment.
Collapse
|
9
|
Xia Q, Huang X, Huang J, Zheng Y, March ME, Li J, Wei Y. The Role of Autophagy in Skeletal Muscle Diseases. Front Physiol 2021; 12:638983. [PMID: 33841177 PMCID: PMC8027491 DOI: 10.3389/fphys.2021.638983] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 02/22/2021] [Indexed: 12/13/2022] Open
Abstract
Skeletal muscle is the most abundant type of tissue in human body, being involved in diverse activities and maintaining a finely tuned metabolic balance. Autophagy, characterized by the autophagosome–lysosome system with the involvement of evolutionarily conserved autophagy-related genes, is an important catabolic process and plays an essential role in energy generation and consumption, as well as substance turnover processes in skeletal muscles. Autophagy in skeletal muscles is finely tuned under the tight regulation of diverse signaling pathways, and the autophagy pathway has cross-talk with other pathways to form feedback loops under physiological conditions and metabolic stress. Altered autophagy activity characterized by either increased formation of autophagosomes or inhibition of lysosome-autophagosome fusion can lead to pathological cascades, and mutations in autophagy genes and deregulation of autophagy pathways have been identified as one of the major causes for a variety of skeleton muscle disorders. The advancement of multi-omics techniques enables further understanding of the molecular and biochemical mechanisms underlying the role of autophagy in skeletal muscle disorders, which may yield novel therapeutic targets for these disorders.
Collapse
Affiliation(s)
- Qianghua Xia
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Xubo Huang
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Jieru Huang
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Yongfeng Zheng
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Michael E March
- Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Jin Li
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Yongjie Wei
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
10
|
Hughes DC, Turner DC, Baehr LM, Seaborne RA, Viggars M, Jarvis JC, Gorski PP, Stewart CE, Owens DJ, Bodine SC, Sharples AP. Knockdown of the E3 ubiquitin ligase UBR5 and its role in skeletal muscle anabolism. Am J Physiol Cell Physiol 2021; 320:C45-C56. [PMID: 33052072 DOI: 10.1152/ajpcell.00432.2020] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
UBR5 is an E3 ubiquitin ligase positively associated with anabolism, hypertrophy, and recovery from atrophy in skeletal muscle. The precise mechanisms underpinning UBR5's role in the regulation of skeletal muscle mass remain unknown. The present study aimed to elucidate these mechanisms by silencing the UBR5 gene in vivo. To achieve this aim, we electroporated a UBR5-RNAi plasmid into mouse tibialis anterior muscle to investigate the impact of reduced UBR5 on anabolic signaling MEK/ERK/p90RSK and Akt/GSK3β/p70S6K/4E-BP1/rpS6 pathways. Seven days after UBR5 RNAi electroporation, although reductions in overall muscle mass were not detected, the mean cross-sectional area (CSA) of green fluorescent protein (GFP)-positive fibers were reduced (-9.5%) and the number of large fibers were lower versus the control. Importantly, UBR5-RNAi significantly reduced total RNA, muscle protein synthesis, ERK1/2, Akt, and GSK3β activity. Although p90RSK phosphorylation significantly increased, total p90RSK protein levels demonstrated a 45% reduction with UBR5-RNAi. Finally, these early events after 7 days of UBR5 knockdown culminated in significant reductions in muscle mass (-4.6%) and larger reductions in fiber CSA (-18.5%) after 30 days. This was associated with increased levels of phosphatase PP2Ac and inappropriate chronic elevation of p70S6K and rpS6 between 7 and 30 days, as well as corresponding reductions in eIF4e. This study demonstrates that UBR5 plays an important role in anabolism/hypertrophy, whereby knockdown of UBR5 culminates in skeletal muscle atrophy.
Collapse
Affiliation(s)
- David C Hughes
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Daniel C Turner
- Norwegian School of Sport Sciences (NiH), Institute for Physical Performance, Oslo, Norway
- School of Pharmacy and Bioengineering, Institute for Science & Technology in Medicine (ISTM), Keele University, Staffordshire, United Kingdom
- Stem Cells, Ageing and Molecular Physiology Unit (SCAMP), Research Institute for Sport & Exercise Sciences (RISES), Liverpool John Moores University, Liverpool, United Kingdom
| | - Leslie M Baehr
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Robert A Seaborne
- Stem Cells, Ageing and Molecular Physiology Unit (SCAMP), Research Institute for Sport & Exercise Sciences (RISES), Liverpool John Moores University, Liverpool, United Kingdom
- Centre for Genomics and Child Health, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Mark Viggars
- Stem Cells, Ageing and Molecular Physiology Unit (SCAMP), Research Institute for Sport & Exercise Sciences (RISES), Liverpool John Moores University, Liverpool, United Kingdom
| | - Jonathan C Jarvis
- Stem Cells, Ageing and Molecular Physiology Unit (SCAMP), Research Institute for Sport & Exercise Sciences (RISES), Liverpool John Moores University, Liverpool, United Kingdom
| | - Piotr P Gorski
- Norwegian School of Sport Sciences (NiH), Institute for Physical Performance, Oslo, Norway
- School of Pharmacy and Bioengineering, Institute for Science & Technology in Medicine (ISTM), Keele University, Staffordshire, United Kingdom
| | - Claire E Stewart
- Stem Cells, Ageing and Molecular Physiology Unit (SCAMP), Research Institute for Sport & Exercise Sciences (RISES), Liverpool John Moores University, Liverpool, United Kingdom
| | - Daniel J Owens
- Stem Cells, Ageing and Molecular Physiology Unit (SCAMP), Research Institute for Sport & Exercise Sciences (RISES), Liverpool John Moores University, Liverpool, United Kingdom
| | - Sue C Bodine
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Adam P Sharples
- Norwegian School of Sport Sciences (NiH), Institute for Physical Performance, Oslo, Norway
- School of Pharmacy and Bioengineering, Institute for Science & Technology in Medicine (ISTM), Keele University, Staffordshire, United Kingdom
- Stem Cells, Ageing and Molecular Physiology Unit (SCAMP), Research Institute for Sport & Exercise Sciences (RISES), Liverpool John Moores University, Liverpool, United Kingdom
| |
Collapse
|
11
|
Zhang J, Cai R, Liang J, Izaz A, Shu Y, Pan T, Wu X. Molecular mechanism of Chinese alligator (Alligator sinensis) adapting to hibernation. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2020; 336:32-49. [PMID: 33231934 DOI: 10.1002/jez.b.23013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 10/22/2020] [Accepted: 10/28/2020] [Indexed: 12/22/2022]
Abstract
Hibernation is a physiological state for Chinese alligators to cope with cold weather. In mammals, gene expression changes during hibernation and their regulatory mechanisms have been extensively studied, however, these studies in reptiles are still rare. Here, integrated analysis of messenger RNA (mRNA), microRNA (miRNA), and long noncoding RNA (lncRNA) reveals the molecular mechanisms of the hypothalamus, liver, and skeletal muscle in hibernating and active individuals. During hibernation, the number of genes increased in the hypothalamus, liver, and skeletal muscle was 585, 282, and 297, while the number of genes decreased was 215, 561, and 627, respectively, as compared with active individuals. Through Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analysis, the differential expressed genes were mainly enriched in DNA damage repair, biological rhythm, energy metabolism, myoprotein degradation, and other related items and pathways. Besides, 4740 miRNAs were identified in three tissues. Through the comprehensive analysis of miRNA and mRNA abundance profiles, 12,291, 6997, and 8232 miRNA-mRNA pairs all showed a negative correlation in the hypothalamus, liver, and skeletal muscle, respectively. Some miRNA target genes were related tobiological rhythm and energy metabolism, suggesting that miRNA may play an important role in the physiological metabolism of the hibernating adaptability of Chinese alligators. Moreover, 402, 230, and 130 differentially expressed lncRNAs were identified in the hypothalamus, liver, and skeletal muscle, respectively. The targeting relationship of four lncRNA-mRNA pairs were predicted, with the main function of target genes involved in the amino acid transportation. These results are helpful to further understand the molecular regulatory basis of the hibernation adaptation in Chinese alligators.
Collapse
Affiliation(s)
- Jihui Zhang
- Key Laboratory for the Conservation and Utilization of Important Biological Resources of Anhui Province, Wuhu, China.,College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Ruiqing Cai
- Key Laboratory for the Conservation and Utilization of Important Biological Resources of Anhui Province, Wuhu, China.,College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Juanjuan Liang
- Key Laboratory for the Conservation and Utilization of Important Biological Resources of Anhui Province, Wuhu, China.,College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Ali Izaz
- Key Laboratory for the Conservation and Utilization of Important Biological Resources of Anhui Province, Wuhu, China.,College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Yilin Shu
- Key Laboratory for the Conservation and Utilization of Important Biological Resources of Anhui Province, Wuhu, China.,College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Tao Pan
- Key Laboratory for the Conservation and Utilization of Important Biological Resources of Anhui Province, Wuhu, China.,College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Xiaobing Wu
- Key Laboratory for the Conservation and Utilization of Important Biological Resources of Anhui Province, Wuhu, China.,College of Life Sciences, Anhui Normal University, Wuhu, China
| |
Collapse
|
12
|
Khan SA, He J, Deng S, Zhang H, Liu G, Li S, Tang D, Zhang J, Shu Y, Wu H. Integrated analysis of mRNA and miRNA expression profiles reveals muscle growth differences between fast- and slow-growing king ratsnakes (Elaphe carinata). Comp Biochem Physiol B Biochem Mol Biol 2020; 248-249:110482. [DOI: 10.1016/j.cbpb.2020.110482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 06/18/2020] [Accepted: 07/20/2020] [Indexed: 10/23/2022]
|
13
|
Van Pelt DW, Vechetti IJ, Lawrence MM, Van Pelt KL, Patel P, Miller BF, Butterfield TA, Dupont-Versteegden EE. Serum extracellular vesicle miR-203a-3p content is associated with skeletal muscle mass and protein turnover during disuse atrophy and regrowth. Am J Physiol Cell Physiol 2020; 319:C419-C431. [PMID: 32639875 PMCID: PMC7500218 DOI: 10.1152/ajpcell.00223.2020] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/25/2020] [Accepted: 07/01/2020] [Indexed: 12/13/2022]
Abstract
Small noncoding microRNAs (miRNAs) are important regulators of skeletal muscle size, and circulating miRNAs within extracellular vesicles (EVs) may contribute to atrophy and its associated systemic effects. The purpose of this study was to understand how muscle atrophy and regrowth alter in vivo serum EV miRNA content. We also associated changes in serum EV miRNA with protein synthesis, protein degradation, and miRNA within muscle, kidney, and liver. We subjected adult (10 mo) F344/BN rats to three conditions: weight bearing (WB), hindlimb suspension (HS) for 7 days to induce muscle atrophy, and HS for 7 days followed by 7 days of reloading (HSR). Microarray analysis of EV miRNA content showed that the overall changes in serum EV miRNA were predicted to target major anabolic, catabolic, and mechanosensitive pathways. MiR-203a-3p was the only miRNA demonstrating substantial differences in HS EVs compared with WB. There was a limited association of EV miRNA content to the corresponding miRNA content within the muscle, kidney, or liver. Stepwise linear regression demonstrated that EV miR-203a-3p was correlated with muscle mass and muscle protein synthesis and degradation across all conditions. Finally, EV miR-203a-3p expression was significantly decreased in human subjects who underwent unilateral lower limb suspension (ULLS) to induce muscle atrophy. Altogether, we show that serum EV miR-203a-3p expression is related to skeletal muscle protein turnover and atrophy. We suggest that serum EV miR-203a-3p content may be a useful biomarker and future work should investigate whether serum EV miR-203a-3p content is mechanistically linked to protein synthesis and degradation.
Collapse
Affiliation(s)
- Douglas W Van Pelt
- Department of Physical Therapy and Center for Muscle Biology, University of Kentucky, Lexington, Kentucky
| | - Ivan J Vechetti
- Department of Physiology, University of Kentucky, Lexington, Kentucky
| | - Marcus M Lawrence
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma
| | - Kathryn L Van Pelt
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky
| | - Parth Patel
- Department of Physical Therapy and Center for Muscle Biology, University of Kentucky, Lexington, Kentucky
| | - Benjamin F Miller
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma
| | - Timothy A Butterfield
- Department of Athletic Training and Clinical Nutrition and Center for Muscle Biology, University of Kentucky, Lexington, Kentucky
| | | |
Collapse
|
14
|
Seaborne RA, Hughes DC, Turner DC, Owens DJ, Baehr LM, Gorski P, Semenova EA, Borisov OV, Larin AK, Popov DV, Generozov EV, Sutherland H, Ahmetov II, Jarvis JC, Bodine SC, Sharples AP. UBR5 is a novel E3 ubiquitin ligase involved in skeletal muscle hypertrophy and recovery from atrophy. J Physiol 2019; 597:3727-3749. [PMID: 31093990 DOI: 10.1113/jp278073] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 05/10/2019] [Indexed: 01/03/2023] Open
Abstract
KEY POINTS We have recently identified that a HECT domain E3 ubiquitin ligase, named UBR5, is altered epigenetically (via DNA methylation) after human skeletal muscle hypertrophy, where its gene expression is positively correlated with increasing lean leg mass after training and retraining. In the present study we extensively investigate this novel and uncharacterised E3 ubiquitin ligase (UBR5) in skeletal muscle atrophy, recovery from atrophy and injury, anabolism and hypertrophy. We demonstrated that UBR5 was epigenetically altered via DNA methylation during recovery from atrophy. We also determined that UBR5 was alternatively regulated versus well characterised E3 ligases, MuRF1/MAFbx, at the gene expression level during atrophy, recovery from atrophy and hypertrophy. UBR5 also increased at the protein level during recovery from atrophy and injury, hypertrophy and during human muscle cell differentiation. Finally, in humans, genetic variations of the UBR5 gene were strongly associated with larger fast-twitch muscle fibres and strength/power performance versus endurance/untrained phenotypes. ABSTRACT We aimed to investigate a novel and uncharacterized E3 ubiquitin ligase in skeletal muscle atrophy, recovery from atrophy/injury, anabolism and hypertrophy. We demonstrated an alternate gene expression profile for UBR5 vs. well characterized E3-ligases, MuRF1/MAFbx, where, after atrophy evoked by continuous-low-frequency electrical-stimulation in rats, MuRF1/MAFbx were both elevated, yet UBR5 was unchanged. Furthermore, after recovery of muscle mass post TTX-induced atrophy in rats, UBR5 was hypomethylated and increased at the gene expression level, whereas a suppression of MuRF1/MAFbx was observed. At the protein level, we also demonstrated a significant increase in UBR5 after recovery of muscle mass from hindlimb unloading in both adult and aged rats, as well as after recovery from atrophy evoked by nerve crush injury in mice. During anabolism and hypertrophy, UBR5 gene expression increased following acute loading in three-dimensional bioengineered mouse muscle in vitro, and after chronic electrical stimulation-induced hypertrophy in rats in vivo, without increases in MuRF1/MAFbx. Additionally, UBR5 protein abundance increased following functional overload-induced hypertrophy of the plantaris muscle in mice and during differentiation of primary human muscle cells. Finally, in humans, genetic association studies (>700,000 single nucleotide polymorphisms) demonstrated that the A alleles of rs10505025 and rs4734621 single nucleotide polymorphisms in the UBR5 gene were strongly associated with larger cross-sectional area of fast-twitch muscle fibres and favoured strength/power vs. endurance/untrained phenotypes. Overall, we suggest that: (i) UBR5 comprises a novel E3 ubiquitin ligase that is inversely regulated to MuRF1/MAFbx; (ii) UBR5 is epigenetically regulated; and (iii) UBR5 is elevated at both the gene expression and protein level during recovery from skeletal muscle atrophy and hypertrophy.
Collapse
Affiliation(s)
- Robert A Seaborne
- Stem Cells, Ageing and Molecular Physiology Unit, Exercise Metabolism and Adaptation Research Group, Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, UK.,Institute for Science and Technology in Medicine (ISTM), School of Medicine, Keele University, Keele, UK.,Centre for Genomics and Child Health, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - David C Hughes
- Department of Internal Medicine, Division of Endocrinology and Metabolism, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Daniel C Turner
- Stem Cells, Ageing and Molecular Physiology Unit, Exercise Metabolism and Adaptation Research Group, Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, UK.,Institute for Science and Technology in Medicine (ISTM), School of Medicine, Keele University, Keele, UK
| | - Daniel J Owens
- Stem Cells, Ageing and Molecular Physiology Unit, Exercise Metabolism and Adaptation Research Group, Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, UK
| | - Leslie M Baehr
- Department of Internal Medicine, Division of Endocrinology and Metabolism, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Piotr Gorski
- Stem Cells, Ageing and Molecular Physiology Unit, Exercise Metabolism and Adaptation Research Group, Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, UK.,Institute for Science and Technology in Medicine (ISTM), School of Medicine, Keele University, Keele, UK
| | - Ekaterina A Semenova
- Department of Molecular Biology and Genetics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | - Oleg V Borisov
- Department of Molecular Biology and Genetics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia.,Institute for Genomic Statistics and Bioinformatics, University Hospital Bonn, Bonn, Germany
| | - Andrey K Larin
- Department of Molecular Biology and Genetics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | - Daniil V Popov
- Laboratory of Exercise Physiology, Institute of Biomedical Problems of the Russian Academy of Sciences, Moscow, Russia
| | - Edward V Generozov
- Department of Molecular Biology and Genetics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | - Hazel Sutherland
- Exercise Metabolism and Adaptation Research Group, Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, UK
| | - Ildus I Ahmetov
- Department of Molecular Biology and Genetics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia.,Laboratory of Molecular Genetics, Kazan State Medical University, Kazan, Russia.,Department of Physical Education, Plekhanov Russian University of Economics, Moscow, Russia.,Exercise Metabolism and Adaptation Research Group, Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, UK
| | - Jonathan C Jarvis
- Exercise Metabolism and Adaptation Research Group, Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, UK
| | - Sue C Bodine
- Department of Internal Medicine, Division of Endocrinology and Metabolism, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Adam P Sharples
- Stem Cells, Ageing and Molecular Physiology Unit, Exercise Metabolism and Adaptation Research Group, Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, UK.,Institute for Science and Technology in Medicine (ISTM), School of Medicine, Keele University, Keele, UK
| |
Collapse
|
15
|
Freire PP, Fernandez GJ, Cury SS, de Moraes D, Oliveira JS, de Oliveira G, Dal-Pai-Silva M, Dos Reis PP, Carvalho RF. The Pathway to Cancer Cachexia: MicroRNA-Regulated Networks in Muscle Wasting Based on Integrative Meta-Analysis. Int J Mol Sci 2019; 20:E1962. [PMID: 31013615 PMCID: PMC6515458 DOI: 10.3390/ijms20081962] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 04/05/2019] [Accepted: 04/11/2019] [Indexed: 12/15/2022] Open
Abstract
Cancer cachexia is a multifactorial syndrome that leads to significant weight loss. Cachexia affects 50%-80% of cancer patients, depending on the tumor type, and is associated with 20%-40% of cancer patient deaths. Besides the efforts to identify molecular mechanisms of skeletal muscle atrophy-a key feature in cancer cachexia-no effective therapy for the syndrome is currently available. MicroRNAs are regulators of gene expression, with therapeutic potential in several muscle wasting disorders. We performed a meta-analysis of previously published gene expression data to reveal new potential microRNA-mRNA networks associated with muscle atrophy in cancer cachexia. We retrieved 52 differentially expressed genes in nine studies of muscle tissue from patients and rodent models of cancer cachexia. Next, we predicted microRNAs targeting these differentially expressed genes. We also include global microRNA expression data surveyed in atrophying skeletal muscles from previous studies as background information. We identified deregulated genes involved in the regulation of apoptosis, muscle hypertrophy, catabolism, and acute phase response. We further predicted new microRNA-mRNA interactions, such as miR-27a/Foxo1, miR-27a/Mef2c, miR-27b/Cxcl12, miR-27b/Mef2c, miR-140/Cxcl12, miR-199a/Cav1, and miR-199a/Junb, which may contribute to muscle wasting in cancer cachexia. Finally, we found drugs targeting MSTN, CXCL12, and CAMK2B, which may be considered for the development of novel therapeutic strategies for cancer cachexia. Our study has broadened the knowledge of microRNA-regulated networks that are likely associated with muscle atrophy in cancer cachexia, pointing to their involvement as potential targets for novel therapeutic strategies.
Collapse
Affiliation(s)
- Paula Paccielli Freire
- Department of Morphology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, São Paulo 18.618-619, Brazil.
| | - Geysson Javier Fernandez
- Department of Morphology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, São Paulo 18.618-619, Brazil.
| | - Sarah Santiloni Cury
- Department of Morphology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, São Paulo 18.618-619, Brazil.
| | - Diogo de Moraes
- Department of Morphology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, São Paulo 18.618-619, Brazil.
| | - Jakeline Santos Oliveira
- Department of Morphology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, São Paulo 18.618-619, Brazil.
| | - Grasieli de Oliveira
- Department of Morphology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, São Paulo 18.618-619, Brazil.
| | - Maeli Dal-Pai-Silva
- Department of Morphology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, São Paulo 18.618-619, Brazil.
| | - Patrícia Pintor Dos Reis
- Department of Surgery and Orthopedics, Faculty of Medicine, São Paulo State University (UNESP), Botucatu, São Paulo 18.618-687, Brazil.
- Experimental Research Unity, Faculty of Medicine, São Paulo State University (UNESP), Botucatu, São Paulo 18.618-687, Brazil.
| | - Robson Francisco Carvalho
- Department of Morphology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, São Paulo 18.618-619, Brazil.
| |
Collapse
|
16
|
Samant SA, Pillai VB, Gupta MP. Cellular mechanisms promoting cachexia and how they are opposed by sirtuins 1. Can J Physiol Pharmacol 2019; 97:235-245. [PMID: 30407871 DOI: 10.1139/cjpp-2018-0479] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Many chronic diseases are associated with unintentional loss of body weight, which is termed "cachexia". Cachexia is a complex multifactorial syndrome associated with the underlying primary disease, and characterized by loss of skeletal muscle with or without loss of fat tissue. Patients with cachexia face dire symptoms like dyspnea, fatigue, edema, exercise intolerance, and low responsiveness to medical therapy, which worsen quality of life. Because cachexia is not a stand-alone disorder, treating primary disease - such as cancer - takes precedence for the physician, and it remains mostly a neglected illness. Existing clinical trials have demonstrated limited success mostly because of their monotherapeutic approach and late detection of the syndrome. To conquer cachexia, it is essential to identify as many molecular targets as possible using the latest technologies we have at our disposal. In this review, we have discussed different aspects of cachexia, which include various disease settings, active molecular pathways, and recent novel advances made in this field to understand consequences of this illness. We also discuss roles of the sirtuins, the NAD+-dependent lysine deacetylases, microRNAs, certain dietary options, and epigenetic drugs as potential approaches, which can be used to tackle cachexia as early as possible in its course.
Collapse
Affiliation(s)
- Sadhana A Samant
- Department of Surgery, Committee on Molecular and Cellular Physiology, Biological Sciences Division, Pritzker School of Medicine, The University of Chicago, Chicago, IL 60637, USA
- Department of Surgery, Committee on Molecular and Cellular Physiology, Biological Sciences Division, Pritzker School of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | - Vinodkumar B Pillai
- Department of Surgery, Committee on Molecular and Cellular Physiology, Biological Sciences Division, Pritzker School of Medicine, The University of Chicago, Chicago, IL 60637, USA
- Department of Surgery, Committee on Molecular and Cellular Physiology, Biological Sciences Division, Pritzker School of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | - Mahesh P Gupta
- Department of Surgery, Committee on Molecular and Cellular Physiology, Biological Sciences Division, Pritzker School of Medicine, The University of Chicago, Chicago, IL 60637, USA
- Department of Surgery, Committee on Molecular and Cellular Physiology, Biological Sciences Division, Pritzker School of Medicine, The University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
17
|
Shu Y, Xia J, Yu Q, Wang G, Zhang J, He J, Wang H, Zhang L, Wu H. Integrated analysis of mRNA and miRNA expression profiles reveals muscle growth differences between adult female and male Chinese concave-eared frogs (Odorrana tormota). Gene 2018; 678:241-251. [PMID: 30103010 DOI: 10.1016/j.gene.2018.08.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Revised: 07/24/2018] [Accepted: 08/02/2018] [Indexed: 02/07/2023]
Abstract
The Chinese concave-eared torrent frog (Odorrana tormota) is the first known non-mammalian vertebrate that can communicate using ultrasound. In this species, females are approximately four times as large as males, in which the female growth rate is obviously higher than that of male. Until now, the molecular mechanisms underlying muscle growth development differences between male and female frogs have not been reported. Here, we integrated mRNA and miRNA expression profiles to reveal growth differences in the hindlimb muscles of 2-year-old frogs. Among 569 differentially expressed genes (DEGs), 69 were associated with muscle growth and regeneration. Fifty-one up-regulated genes in females were potentially involved in promoting muscle growth and regeneration, whereas 18 up-regulated genes in males may lead to muscle growth inhibition and fast-twitch muscle fiber contraction. 244 DEGs were enriched in mTOR and other protein synthesis signaling pathways, and protein degradation pathways, including lysosomal protease, calpain, caspase, and ubiquitin-proteasome system pathways. It may interpret why female muscles grow faster than males. Based on expression differences of genes involved in glycolysis and oxidative metabolism, we speculated that the proportion of slow muscle fiber was higher and that of fast muscle fiber was lower in female compared with male muscle. Additionally, 767 miRNAs were identified, including 217 new miRNAs, and 6248 miRNA-negatively regulated mRNAs were predicted. The miRNA target genes were enriched in pathways related to muscle growth, protein synthesis, and degradation. Thus, in addition to the identified mRNA differential expressions, miRNAs may play other important roles in the differential regulation of hindlimb muscle growth between female and male O. tormota.
Collapse
Affiliation(s)
- Yilin Shu
- Key Laboratory for the Conservation and Utilization of Important Biological Resources of Anhui Province, Wuhu 241000, China; College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Jinquan Xia
- Key Laboratory for the Conservation and Utilization of Important Biological Resources of Anhui Province, Wuhu 241000, China; College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Qiang Yu
- Key Laboratory for the Conservation and Utilization of Important Biological Resources of Anhui Province, Wuhu 241000, China; College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Gang Wang
- Key Laboratory for the Conservation and Utilization of Important Biological Resources of Anhui Province, Wuhu 241000, China; College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Jihui Zhang
- Key Laboratory for the Conservation and Utilization of Important Biological Resources of Anhui Province, Wuhu 241000, China; College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Jun He
- Key Laboratory for the Conservation and Utilization of Important Biological Resources of Anhui Province, Wuhu 241000, China; College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Huan Wang
- Key Laboratory for the Conservation and Utilization of Important Biological Resources of Anhui Province, Wuhu 241000, China; College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Ling Zhang
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University of Science and Technology, China; Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, China.
| | - Hailong Wu
- Key Laboratory for the Conservation and Utilization of Important Biological Resources of Anhui Province, Wuhu 241000, China; College of Life Sciences, Anhui Normal University, Wuhu 241000, China.
| |
Collapse
|
18
|
S-allyl cysteine inhibits TNFα-induced skeletal muscle wasting through suppressing proteolysis and expression of inflammatory molecules. Biochim Biophys Acta Gen Subj 2018; 1862:895-906. [DOI: 10.1016/j.bbagen.2017.12.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 12/15/2017] [Accepted: 12/26/2017] [Indexed: 12/20/2022]
|
19
|
Integrative approach using liver and duodenum RNA-Seq data identifies candidate genes and pathways associated with feed efficiency in pigs. Sci Rep 2018; 8:558. [PMID: 29323241 PMCID: PMC5764994 DOI: 10.1038/s41598-017-19072-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 12/21/2017] [Indexed: 12/11/2022] Open
Abstract
This study aims identifying candidate genes and pathways associated with feed efficiency (FE) in pigs. Liver and duodenum transcriptomes of 37 gilts showing high and low residual feed intake (RFI) were analysed by RNA-Seq. Gene expression data was explored through differential expression (DE) and weighted gene co-expression network analyses. DE analysis revealed 55 and 112 differentially regulated genes in liver and duodenum tissues, respectively. Clustering genes according to their connectivity resulted in 23 (liver) and 25 (duodenum) modules of genes with a co-expression pattern. Four modules, one in liver (with 444 co-expressed genes) and three in duodenum (gathering 37, 126 and 41 co-expressed genes), were significantly associated with FE indicators. Intra-module analyses revealed tissue-specific candidate genes; 12 of these genes were also identified as DE between individuals with high and low RFI. Pathways enriched by the list of genes showing DE and/or belonging to FE co-expressed modules included response to oxidative stress, inflammation, immune response, lipid metabolism and thermoregulation. Low overlapping between genes identified in duodenum and liver tissues was observed but heat shock proteins were associated to FE in both tissues. Our results suggest tissue-specific rather than common transcriptome regulatory processes associated with FE in pigs.
Collapse
|
20
|
Kou X, Li J, Liu X, Yang X, Fan J, Chen N. Ampelopsin attenuates the atrophy of skeletal muscle from d-gal-induced aging rats through activating AMPK/SIRT1/PGC-1α signaling cascade. Biomed Pharmacother 2017; 90:311-320. [PMID: 28364603 DOI: 10.1016/j.biopha.2017.03.070] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Revised: 03/14/2017] [Accepted: 03/24/2017] [Indexed: 12/11/2022] Open
Abstract
The atrophy of skeletal muscle is highly correlated with oxidative damage, excessive apoptosis and dysfunctional autophagy. Ampelopsin, a natural flavonoid, has multiple biological functions including anti-inflammatory, anti-oxidative, and hepatoprotective functions. Sprague-Dawley (SD) rats subjected to intraperitoneal injection of d-galactose (d-gal) at the dose of 150mg/kg·d revealed an obvious atrophy of skeletal muscle with significantly reduced muscle mass/body mass ratio, cross-sectional area and fiber diameter of skeletal muscle in d-gal-induced aging rats when compared to normal control rats without d-gal administration for 6 consecutive weeks. In contrast, the combinatorial administration of d-gal at the identical dose and DHM at the dose of 100 or 200mg/kg·d could alleviate the reduction of these hallmarks associated with the atrophy of skeletal muscle. In addition, d-gal administration could result in obvious apoptosis and impaired autophagy in skeletal muscle, which could be mitigated upon DHM treatment due to its role in decreasing ubiquitin and Atrogin-1/MAFbx and up-regulating AMPK and SIRT1 signal pathways. Therefore, DHM may be a potential candidate for the prevention and treatment of skeletal muscle atrophy associated aging process.
Collapse
Affiliation(s)
- Xianjuan Kou
- Wuti-Tianjiu Research and Development Center for Exercise Nutrition and Foods, Hubei Key Laboratory of Sport Training and Monitoring, College of Health Science, Wuhan Sports University, Wuhan 430079, China
| | - Jie Li
- Graduate School, Wuhan Sports University, Wuhan 430079, China
| | - Xingran Liu
- Graduate School, Wuhan Sports University, Wuhan 430079, China
| | - Xiaoqi Yang
- Graduate School, Wuhan Sports University, Wuhan 430079, China
| | - Jingjing Fan
- Wuti-Tianjiu Research and Development Center for Exercise Nutrition and Foods, Hubei Key Laboratory of Sport Training and Monitoring, College of Health Science, Wuhan Sports University, Wuhan 430079, China
| | - Ning Chen
- Wuti-Tianjiu Research and Development Center for Exercise Nutrition and Foods, Hubei Key Laboratory of Sport Training and Monitoring, College of Health Science, Wuhan Sports University, Wuhan 430079, China.
| |
Collapse
|
21
|
RNA-seq based detection of differentially expressed genes in the skeletal muscle of Duroc pigs with distinct lipid profiles. Sci Rep 2017; 7:40005. [PMID: 28195222 PMCID: PMC5307323 DOI: 10.1038/srep40005] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 11/30/2016] [Indexed: 12/14/2022] Open
Abstract
We have used a RNA-seq approach to investigate differential expression in the skeletal muscle of swine (N = 52) with divergent lipid profiles i.e. HIGH (increased intramuscular fat and muscle saturated and monounsaturated fatty acid contents, higher serum lipid concentrations and fatness) and LOW pigs (leaner and with an increased muscle polyunsaturated fatty acid content). The number of mRNAs and non-coding RNAs (ncRNAs) expressed in the porcine gluteus medius muscle were 18,104 and 1,558, respectively. At the nominal level of significance (P-value ≤ 0.05), we detected 1,430 mRNA and 12 non-coding RNA (ncRNA) transcripts as differentially expressed (DE) in the gluteus medius muscle of HIGH vs LOW pigs. This smaller contribution of ncRNAs to differential expression may have biological and technical reasons. We performed a second analysis, that was more stringent (P-value ≤ 0.01 and fold-change ≥ 1.5), and only 96 and 0 mRNA-and ncRNA-encoding genes happened to be DE, respectively. The subset of DE mRNA genes was enriched in pathways related with lipid (lipogenesis and triacylglycerol degradation) and glucose metabolism. Moreover, HIGH pigs showed a more lipogenic profile than their LOW counterparts.
Collapse
|
22
|
Chen B, Wu Q, Xiong Z, Ma Y, Yu S, Chen D, Huang S, Dong Y. Adenosine monophosphate-activated protein kinase attenuates cardiomyocyte hypertrophy through regulation of FOXO3a/MAFbx signaling pathway. Acta Biochim Biophys Sin (Shanghai) 2016; 48:827-32. [PMID: 27521792 DOI: 10.1093/abbs/gmw076] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 05/13/2016] [Indexed: 01/12/2023] Open
Abstract
Control of cardiac muscle mass is thought to be determined by a dynamic balance of protein synthesis and degradation. Recent studies have demonstrated that atrophy-related forkhead box O 3a (FOXO3a)/muscle atrophy F-box (MAFbx) signaling pathway plays a central role in the modulation of proteolysis and exert inhibitory effect on cardiomyocyte hypertrophy. In this study, we tested the hypothesis that adenosine monophosphate-activated protein kinase (AMPK) activation attenuates cardiomyocyte hypertrophy by regulating FOXO3a/MAFbx signaling pathway and its downstream protein degradation. The results showed that activation of AMPK with 5-aminoimidazole-4-carboxamide ribonucleoside (AICAR) attenuated cardiomyocyte hypertrophy induced by angiotensin II (Ang II). The antihypertrophic effects of AICAR were blunted by AMPK inhibitor Compound C. In addition, AMPK dramatically increased the activity of transcription factor FOXO3a, up-regulated the expression of its downstream ubiquitin ligase MAFbx, and enhanced cardiomyocyte proteolysis. Meanwhile, the effects of AMPK on protein degradation and cardiomyocyte hypertrophy were blocked after MAFbx was silenced by transfection of cardiomyocytes with MAFbx-siRNA. These results indicate that AMPK plays an important role in the inhibition of cardiomyocyte hypertrophy by activating protein degradation via FOXO3a/MAFbx signaling pathway.
Collapse
Affiliation(s)
- Baolin Chen
- Department of Cardiology, The Guizhou Provincial People's Hospital, Guiyang 550002, China
| | - Qiang Wu
- Department of Cardiology, The Guizhou Provincial People's Hospital, Guiyang 550002, China
| | - Zhaojun Xiong
- Department of Cardiology, The Third Affiliated hospital of Sun Yat-Sen University, Guangzhou 510080, China
| | - Yuedong Ma
- Department of Cardiology, The First Affiliated hospital of Sun Yat-Sen University, Guangzhou 510080, China Key Laboratory on Assisted Circulation, Ministry of Health, Guangzhou 510080, China
| | - Sha Yu
- Department of Cardiology, The Guizhou Provincial People's Hospital, Guiyang 550002, China
| | - Dandan Chen
- Department of Cardiology, The Guizhou Provincial People's Hospital, Guiyang 550002, China
| | - Shengwen Huang
- Department of Laboratory, The Guizhou Provincial People's Hospital, Guiyang 550002, China
| | - Yugang Dong
- Department of Cardiology, The First Affiliated hospital of Sun Yat-Sen University, Guangzhou 510080, China Key Laboratory on Assisted Circulation, Ministry of Health, Guangzhou 510080, China
| |
Collapse
|
23
|
Jang J, Park J, Chang H, Lim K. l-Carnitine supplement reduces skeletal muscle atrophy induced by prolonged hindlimb suspension in rats. Appl Physiol Nutr Metab 2016; 41:1240-1247. [PMID: 27841025 DOI: 10.1139/apnm-2016-0094] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
l-Carnitine was recently found to downregulate the ubiquitin proteasome pathway (UPP) and increase insulin-like growth factor 1 concentrations in animal models. However, the effect of l-carnitine administration on disuse muscle atrophy induced by hindlimb suspension has not yet been studied. Thus, we hypothesized that l-carnitine may have a protective effect on muscle atrophy induced by hindlimb suspension via the Akt1/mTOR and/or UPP. Male Wistar rats were assigned to 3 groups: hindlimb suspension group, hindlimb suspension with l-carnitine administration (1250 mg·kg-1·day-1) group, and pair-fed group adjusted hindlimb suspension. l-Carnitine administration for 2 weeks of hindlimb suspension alleviated the decrease in weight and fiber size in the soleus muscle. In addition, l-carnitine suppressed atrogin-1 mRNA expression, which has been reported to play a pivotal role in muscle atrophy. The present study shows that l-carnitine has a protective effect against soleus muscle atrophy caused by hindlimb suspension and decreased E3 ligase messenger RNA expression, suggesting the possibility that l-carnitine protects against muscle atrophy, at least in part, through the inhibition of the UPP. These observations suggest that l-carnitine could serve as an effective supplement in the decrease of muscle atrophy caused by weightlessness in the fields of clinical and rehabilitative research.
Collapse
Affiliation(s)
- Jiwoong Jang
- a Laboratory of Exercise Nutrition, Department of Physical Education, Konkuk University, 120, Neungdong-ro, Gwangjin-gu, Seoul 143-701, Korea
| | - Jonghoon Park
- b Department of Physical Education, Korea University, Seoul 136-701, Korea
| | - Hyukki Chang
- c Department of Human Movement Science, Seoul Women's University, Seoul 139-774, Korea
| | - Kiwon Lim
- a Laboratory of Exercise Nutrition, Department of Physical Education, Konkuk University, 120, Neungdong-ro, Gwangjin-gu, Seoul 143-701, Korea
| |
Collapse
|
24
|
Aerobic Exercise and Pharmacological Therapies for Skeletal Myopathy in Heart Failure: Similarities and Differences. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:4374671. [PMID: 26904163 PMCID: PMC4745416 DOI: 10.1155/2016/4374671] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2015] [Accepted: 09/29/2015] [Indexed: 12/20/2022]
Abstract
Skeletal myopathy has been identified as a major comorbidity of heart failure (HF) affecting up to 20% of ambulatory patients leading to shortness of breath, early fatigue, and exercise intolerance. Neurohumoral blockade, through the inhibition of renin angiotensin aldosterone system (RAS) and β-adrenergic receptor blockade (β-blockers), is a mandatory pharmacological therapy of HF since it reduces symptoms, mortality, and sudden death. However, the effect of these drugs on skeletal myopathy needs to be clarified, since exercise intolerance remains in HF patients optimized with β-blockers and inhibitors of RAS. Aerobic exercise training (AET) is efficient in counteracting skeletal myopathy and in improving functional capacity and quality of life. Indeed, AET has beneficial effects on failing heart itself despite being of less magnitude compared with neurohumoral blockade. In this way, AET should be implemented in the care standards, together with pharmacological therapies. Since both neurohumoral inhibition and AET have a direct and/or indirect impact on skeletal muscle, this review aims to provide an overview of the isolated effects of these therapeutic approaches in counteracting skeletal myopathy in HF. The similarities and dissimilarities of neurohumoral inhibition and AET therapies are also discussed to identify potential advantageous effects of these combined therapies for treating HF.
Collapse
|
25
|
Al-Yacoub N, Shaheen R, Awad SM, Kunhi M, Dzimiri N, Nguyen HC, Xiong Y, Al-Buraiki J, Al-Habeeb W, Alkuraya FS, Poizat C. FBXO32, encoding a member of the SCF complex, is mutated in dilated cardiomyopathy. Genome Biol 2016; 17:2. [PMID: 26753747 PMCID: PMC4707779 DOI: 10.1186/s13059-015-0861-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 12/29/2015] [Indexed: 01/12/2023] Open
Abstract
Background Dilated cardiomyopathy (DCM) is a common form of cardiomyopathy causing systolic dysfunction and heart failure. Rare variants in more than 30 genes, mostly encoding sarcomeric proteins and proteins of the cytoskeleton, have been implicated in familial DCM to date. Yet, the majority of variants causing DCM remain to be identified. The goal of the study is to identify novel mutations causing familial dilated cardiomyopathy. Results We identify FBXO32 (ATROGIN 1), a member of the F-Box protein family, as a novel DCM-causing locus. The missense mutation affects a highly conserved amino acid and is predicted to severely impair binding to SCF proteins. This is validated by co-immunoprecipitation experiments from cells expressing the mutant protein and from human heart tissue from two of the affected patients. We also demonstrate that the hearts of the patients with the FBXO32 mutation show accumulation of selected proteins regulating autophagy. Conclusion Our results indicate that abnormal SCF activity with subsequent impairment of the autophagic flux due to a novel FBXO32 mutation is implicated in the pathogenesis of DCM. Electronic supplementary material The online version of this article (doi:10.1186/s13059-015-0861-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Nadya Al-Yacoub
- Cardiovascular Research Program, King Faisal Specialist Hospital & Research Centre, Riyadh, 11211, Saudi Arabia.
| | - Ranad Shaheen
- Department of Genetics, King Faisal Specialist Hospital & Research Centre, Riyadh, 11211, Saudi Arabia.
| | - Salma Mahmoud Awad
- Cardiovascular Research Program, King Faisal Specialist Hospital & Research Centre, Riyadh, 11211, Saudi Arabia.
| | - Muhammad Kunhi
- Cardiovascular Research Program, King Faisal Specialist Hospital & Research Centre, Riyadh, 11211, Saudi Arabia.
| | - Nduna Dzimiri
- Cardiovascular & Pharmacogenetics, Genetics Department, King Faisal Specialist Hospital & Research Centre, Riyadh, 11211, Saudi Arabia.
| | - Henry C Nguyen
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA.
| | - Yong Xiong
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA.
| | - Jehad Al-Buraiki
- Heart Centre, King Faisal Specialist Hospital & Research Centre, Riyadh, 11211, Saudi Arabia.
| | | | - Fowzan S Alkuraya
- Department of Genetics, King Faisal Specialist Hospital & Research Centre, Riyadh, 11211, Saudi Arabia.
| | - Coralie Poizat
- Cardiovascular Research Program, King Faisal Specialist Hospital & Research Centre, Riyadh, 11211, Saudi Arabia.
| |
Collapse
|
26
|
The impact of obesity on skeletal muscle strength and structure through adolescence to old age. Biogerontology 2015; 17:467-83. [PMID: 26667010 PMCID: PMC4889641 DOI: 10.1007/s10522-015-9626-4] [Citation(s) in RCA: 293] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 11/26/2015] [Indexed: 12/25/2022]
Abstract
Obesity is associated with functional limitations in muscle performance and increased likelihood of developing a functional disability such as mobility, strength, postural and dynamic balance limitations. The consensus is that obese individuals, regardless of age, have a greater absolute maximum muscle strength compared to non-obese persons, suggesting that increased adiposity acts as a chronic overload stimulus on the antigravity muscles (e.g., quadriceps and calf), thus increasing muscle size and strength. However, when maximum muscular strength is normalised to body mass, obese individuals appear weaker. This relative weakness may be caused by reduced mobility, neural adaptations and changes in muscle morphology. Discrepancies in the literature remain for maximal strength normalised to muscle mass (muscle quality) and can potentially be explained through accounting for the measurement protocol contributing to muscle strength capacity that need to be explored in more depth such as antagonist muscle co-activation, muscle architecture, a criterion valid measurement of muscle size and an accurate measurement of physical activity levels. Current evidence demonstrating the effect of obesity on muscle quality is limited. These factors not being recorded in some of the existing literature suggest a potential underestimation of muscle force either in terms of absolute force production or relative to muscle mass; thus the true effect of obesity upon skeletal muscle size, structure and function, including any interactions with ageing effects, remains to be elucidated.
Collapse
|
27
|
Houston FE, Hain BA, Adams TJ, Houston KL, O'Keeffe R, Dodd SL. Heat shock protein 70 overexpression does not attenuate atrophy in botulinum neurotoxin type A-treated skeletal muscle. J Appl Physiol (1985) 2015; 119:83-92. [PMID: 25953835 DOI: 10.1152/japplphysiol.00233.2015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 04/29/2015] [Indexed: 11/22/2022] Open
Abstract
Botulinum neurotoxin type A (BoNT/A) is used clinically to induce therapeutic chemical denervation of spastically contracted skeletal muscles. However, BoNT/A administration can also cause atrophy. We sought to determine whether a major proteolytic pathway contributing to atrophy in multiple models of muscle wasting, the ubiquitin proteasome system (UPS), is involved in BoNT/A-induced atrophy. Three and ten days following BoNT/A injection of rat hindlimb, soleus muscle fiber cross-sectional area was reduced 25 and 65%, respectively. The transcriptional activity of NF-κB and Foxo was significantly elevated at 3 days (2- to 4-fold) and 10 days (5- to 6-fold). Muscle RING-finger protein-1 (MuRF1) activity was elevated (2-fold) after 3 days but not 10 days, while atrogin-1 activity was not elevated at any time point. BoNT/A-induced polyubiquitination occurred after 3 days (3-fold increase) but was totally absent after 10 days. Proteasome activity was elevated (1.5- to 2-fold) after 3 and 10 days. We employed the use of heat shock protein 70 (Hsp70) to inhibit NF-κB and Foxo transcriptional activity. Electrotransfer of Hsp70 into rat soleus, before BoNT/A administration, was insufficient to attenuate atrophy. It was also insufficient to decrease BoNT/A-induced Foxo activity at 3 days, although NF-κB activity was abolished. By 10 days both NF-κB and Foxo activation were abolished by Hsp70. Hsp70-overexpression was unable to alter the levels of BoNT/A-induced effects on MuRF1/atrogin-1, polyubiquitination, or proteasome activity. In conclusion, Hsp70 overexpression is insufficient to attenuate BoNT/A-induced atrophy. It remains unclear what proteolytic mechanism/s are contributing to BoNT/A-induced atrophy, although a Foxo-MuRF1-ubiquitin-proteasome contribution may exist, at least in early BoNT/A-induced atrophy. Further clarification of UPS involvement in BoNT/A-induced atrophy is warranted.
Collapse
Affiliation(s)
- Fraser E Houston
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida; and
| | - Brian A Hain
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida; and
| | - Thomas J Adams
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida; and
| | - Kati L Houston
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida; and
| | | | - Stephen L Dodd
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida; and
| |
Collapse
|
28
|
Kim MY, Kim JH, Lee JU, Lee LK, Yang SM, Park BS, Jeon HJ, Lee WD, Noh JW, Kwak TY, Jang SH, Lee TH, Kim JY, Kim TW, Kim B, Kim J. Cofilin Phosphorylation Decreased by Serum-free Starvation with Low Glucose in the L6 Myoblasts. J Phys Ther Sci 2014; 26:1543-5. [PMID: 25364107 PMCID: PMC4210392 DOI: 10.1589/jpts.26.1543] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Accepted: 04/10/2014] [Indexed: 01/08/2023] Open
Abstract
[Purpose] Many studies have been using cell culture models of muscle cells with exogenous cytokines or glucocorticoids to mimic atrophy in in vivo and in vitro tests. However, the changes in the phosphorylation of atrophy-related cofilin are still poorly understood in starved skeletal muscle cells. In this study, we first examined whether or not phosphorylation of cofilin is altered in L6 myoblasts after 3, 6, 12, 24, 48, and 72 hours of serum-free starvation with low glucose. [Methods] We used Western blotting to exam protein expression and phosphorylation in atrophied L6 myoblasts. [Results] L6 cell sizes and numbers were diminished as a result of serum-free starvation in a time-dependent manner. Serum-free starvation for 3, 6, 12, 24, 48, and 72 hours significantly decreased the phosphorylation of cofilin, respectively. [Conclusion] These results suggest that starvation-induced atrophy may be in part related to changes in the phosphorylation of cofilin in L6 myoblasts.
Collapse
Affiliation(s)
- Mee-Young Kim
- Department of Physical Therapy, Laboratory of Health Science and Nanophysiotherapy, Yongin University, Republic of Korea ; Department of Physical Therapy, Laboratory of Health Science and Nanophysiotherapy, Yongin University, Republic of Korea
| | - Ju-Hyun Kim
- Department of Physical Therapy, Laboratory of Health Science and Nanophysiotherapy, Yongin University, Republic of Korea
| | - Jeong-Uk Lee
- Department of Physical Therapy, Laboratory of Health Science and Nanophysiotherapy, Yongin University, Republic of Korea
| | - Lim-Kyu Lee
- Department of Physical Therapy, Laboratory of Health Science and Nanophysiotherapy, Yongin University, Republic of Korea
| | - Seung-Min Yang
- Department of Physical Therapy, Laboratory of Health Science and Nanophysiotherapy, Yongin University, Republic of Korea
| | - Byoung-Sun Park
- Department of Physical Therapy, Laboratory of Health Science and Nanophysiotherapy, Yongin University, Republic of Korea
| | - Hye-Joo Jeon
- Department of Physical Therapy, Laboratory of Health Science and Nanophysiotherapy, Yongin University, Republic of Korea
| | - Won-Deok Lee
- Department of Physical Therapy, Laboratory of Health Science and Nanophysiotherapy, Yongin University, Republic of Korea
| | - Ji-Woong Noh
- Department of Physical Therapy, Laboratory of Health Science and Nanophysiotherapy, Yongin University, Republic of Korea
| | - Taek-Yong Kwak
- Department of Taekwondo Instructor Education, College of Martial Arts, Yongin University, Republic of Korea
| | - Sung-Ho Jang
- Department of Judo, College of Martial Arts, Yongin University, Republic of Korea
| | - Tae-Hyun Lee
- Combative Martial Arts Training, College of Martial Arts, Yongin University, Republic of Korea
| | - Ju-Young Kim
- Combative Martial Arts Training, College of Martial Arts, Yongin University, Republic of Korea
| | - Tae-Whan Kim
- Department of Sports Science and Engineering, Korea Institute of Sport Science, Republic of Korea
| | - Bokyung Kim
- Department of Physiology, School of Medicine, Institute of Functional Genomics, Konkuk University, Republic of Korea
| | - Junghwan Kim
- Department of Physical Therapy, College of Public Health and Welfare, Yongin University, Republic of Korea
| |
Collapse
|
29
|
Li B, Wan L, Li Y, Yu Q, Chen P, Gan R, Yang Q, Han Y, Guo C. Baicalin, a component of Scutellaria baicalensis, alleviates anorexia and inhibits skeletal muscle atrophy in experimental cancer cachexia. Tumour Biol 2014; 35:12415-25. [PMID: 25195133 DOI: 10.1007/s13277-014-2558-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Accepted: 08/26/2014] [Indexed: 12/30/2022] Open
Abstract
Inflammatory responses are key contributors to cancer cachexia and foster a complex cascade of biological outcomes. Baicalin is a natural compound derived from Scutellaria baicalensis that possesses anti-inflammatory properties in many diseases; therefore, the aim of this study was to verify whether baicalin could ameliorate cachexia in a CT26 adenocarcinoma-induced model. Tumour-bearing and control mice were injected with CT26 adenocarcinoma cells and phosphate-buffered saline (PBS), respectively, and baicalin was administered intraperitoneally for 15 days. During the study, food intake, body weight, major organ weight, gastrocnemius muscle weight, tibialis muscle weight, epididymal fat weight and serum cytokine levels were measured and evaluated. Additionally, the expression of two E3 ubiquitin ligases and NF-κB pathway proteins were detected by Western blot. The total food intake in tumour-bearing mice receiving baicalin from days 1-16, as well as the average food intake on days 10-16, were less than normal but were significantly higher than in vehicle-treated tumour-bearing mice. Loss of tumour-free body mass in vehicle-treated tumour-bearing mice was significantly increased compared with control mice and tumour-bearing mice receiving baicalin. Serum cytokines, including tumour necrosis factor-α (TNF-α) and interleukin-6 (IL-6), were lowered in tumour-bearing mice treated with baicalin. Gastrocnemius muscle, epididymal fat, heart and kidney weight were significantly greater in the baicalin treatment groups compared with the vehicle-treated tumour-bearing mice. In addition, the expression of two E3 ubiquitin ligases, as well as phospho-p65, was significantly downregulated, whereas the expression of IκBα was up-regulated in tumour-bearing mice treated with baicalin, as determined by Western blotting. The present study demonstrates that baicalin effectively ameliorates anorexia by inhibiting cytokine expression and prevents skeletal muscle atrophy most likely by inhibiting activation of NF-κB in an experimental cancer cachexia model, suggesting that baicalin represents a promising natural medicine for treating cancer-induced cachexia.
Collapse
Affiliation(s)
- Bin Li
- Department of Pharmacy, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No. 600, Yishan Road, Shanghai, 200233, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Sakuma K, Aoi W, Yamaguchi A. The intriguing regulators of muscle mass in sarcopenia and muscular dystrophy. Front Aging Neurosci 2014; 6:230. [PMID: 25221510 PMCID: PMC4148637 DOI: 10.3389/fnagi.2014.00230] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Accepted: 08/10/2014] [Indexed: 12/25/2022] Open
Abstract
Recent advances in our understanding of the biology of muscle have led to new interest in the pharmacological treatment of muscle wasting. Loss of muscle mass and increased intramuscular fibrosis occur in both sarcopenia and muscular dystrophy. Several regulators (mammalian target of rapamycin, serum response factor, atrogin-1, myostatin, etc.) seem to modulate protein synthesis and degradation or transcription of muscle-specific genes during both sarcopenia and muscular dystrophy. This review provides an overview of the adaptive changes in several regulators of muscle mass in both sarcopenia and muscular dystrophy.
Collapse
Affiliation(s)
- Kunihiro Sakuma
- Research Center for Physical Fitness, Sports and Health, Toyohashi University of Technology, Toyohashi, Japan
| | - Wataru Aoi
- Laboratory of Health Science, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto, Japan
| | - Akihiko Yamaguchi
- Department of Physical Therapy, Health Sciences University of Hokkaido, Kanazawa, Japan
| |
Collapse
|
31
|
The kinin B1 receptor regulates muscle-specific E3 ligases expression and is involved in skeletal muscle mass control. Clin Sci (Lond) 2014; 127:185-94. [PMID: 24498923 DOI: 10.1042/cs20130358] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Regulation of muscle mass depends on the balance between synthesis and degradation of proteins, which is under the control of different signalling pathways regulated by hormonal, neural and nutritional stimuli. Such stimuli are altered in several pathologies, including COPD (chronic obstructive pulmonary disease), diabetes, AIDS and cancer (cachexia), as well as in some conditions such as immobilization and aging (sarcopenia), leading to muscle atrophy, which represents a significant contribution to patient morbidity. The KKS (kallikrein-kinin system) is composed of the enzymes kallikreins, which generate active peptides called kinins that activate two G-protein-coupled receptors, namely B1 and B2, which are expressed in a variety of tissues. The local modulation of the KKS may account for its participation in different diseases, such as those of the cardiovascular, renal and central nervous systems, cancer and many inflammatory processes, including pain. Owing to such pleiotropic actions of the KKS by local modulatory events and the probable fine-tuning of associated signalling cascades involved in skeletal muscle catabolic disorders [for example, NF-κB (nuclear factor κB) and PI3K (phosphoinositide 3-kinase)/Akt pathways], we hypothesized that KKS might contribute to the modulation of intracellular responses in atrophying skeletal muscle. Our results show that kinin B1 receptor activation induced a decrease in the diameter of C2C12 myotubes, activation of NF-κB, a decrease in Akt phosphorylation levels, and an increase in the mRNA levels of the ubiquitin E3 ligases atrogin-1 and MuRF-1 (muscle RING-finger protein-1). In vivo, we observed an increase in kinin B1 receptor mRNA levels in an androgen-sensitive model of muscle atrophy. In the same model, inhibition of the kinin B1 receptor with a selective antagonist resulted in an impairment of atrogin-1 and MuRF-1 expression and IκB (inhibitor of NF-κB) phosphorylation. Moreover, knockout of the kinin B1 receptor in mice led to an impairment in MuRF-1 mRNA expression after induction of LA (levator ani) muscle atrophy. In conclusion, using pharmacological and gene-ablation tools, we have obtained evidence that the kinin B1 receptor plays a significant role in the regulation of skeletal muscle proteolysis in the LA muscle atrophy model.
Collapse
|
32
|
Sun H, Qiu J, Chen Y, Yu M, Ding F, Gu X. Proteomic and bioinformatic analysis of differentially expressed proteins in denervated skeletal muscle. Int J Mol Med 2014; 33:1586-1596. [PMID: 24715111 DOI: 10.3892/ijmm.2014.1737] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Accepted: 04/03/2014] [Indexed: 11/06/2022] Open
Abstract
The aim of this study was to improve our understanding and the current treatment of denervation-induced skeletal muscle atrophy. We used isobaric tags for relative and absolute quantification (iTRAQ) coupled with two-dimensional liquid chromatography-tandem mass spectrometry (2D LC-MS/MS) to identify the differentially expressed proteins in the tibialis anterior (TA) muscle of rats at 1 and 4 weeks following sciatic nerve transection. A total of 110 proteins was differentially expressed and was further classified using terms from the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases to unravel their molecular functions. Among the differentially expressed metabolic enzymes involved in glycolysis, Krebs cycle and oxidative phosphorylation, α- and β-enolase displayed an increased and decreased expression, respectively, which was further validated by western blot analysis and immunohistochemistry. These findings suggest that the enolase isozymic switch during denervation-induced muscle atrophy is the reverse of that occurring during muscle maturation. Notably, protein‑protein interaction analysis using the STRING database indicated that the protein expression of tumor necrosis factor receptor-associated factor-6 (TRAF6), muscle ring-finger protein 1 (MuRF1) and muscle atrophy F-box (MAFBx) was also upregulated during denervation‑induced skeletal muscle atrophy, which was confirmed by western blot analysis. TRAF6 knockdown experiments in L6 myotubes suggested that the decreased expression of TRAF6 attenuated glucocorticoid‑induced myotube atrophy. Therefore, we hypothesized that the upregulation of TRAF6 may be involved in the development of denervation‑induced muscle atrophy, at least in part, by regulating the expression of MAFBx and MuRF1 proteins. The data from the present study provide valuable insight into the molecular mechanisms regulating denervation-induced muscle atrophy.
Collapse
Affiliation(s)
- Hualin Sun
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Jiaying Qiu
- Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Yanfei Chen
- Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Miaomei Yu
- Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Fei Ding
- Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Xiaosong Gu
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, Jiangsu 215123, P.R. China
| |
Collapse
|
33
|
Basic VT, Jacobsen A, Sirsjö A, Abdel-Halim SM. TNF stimulation induces VHL overexpression and impairs angiogenic potential in skeletal muscle myocytes. Int J Mol Med 2014; 34:228-36. [PMID: 24820910 DOI: 10.3892/ijmm.2014.1776] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2014] [Accepted: 03/24/2014] [Indexed: 11/06/2022] Open
Abstract
Decreased skeletal muscle capillarization is considered to significantly contribute to the development of pulmonary cachexia syndrome (PCS) and progressive muscle wasting in several chronic inflammatory diseases, including chronic obstructive pulmonary disease (COPD). It is unclear to which extent the concurrent presence of systemic inflammation contributes to decreased skeletal muscle capillarization under these conditions. The present study was designed to examine in vitro the effects of the pro-inflammatory cytokine, tumor necrosis factor (TNF), on the regulation of hypoxia-angiogenesis signal transduction and capillarization in skeletal muscles. For this purpose, fully differentiated C2C12 skeletal muscle myocytes were stimulated with TNF and maintained under normoxic or hypoxic conditions. The expression levels of the putative elements of the hypoxia-angiogenesis signaling cascade were examined using qPCR, western blot analysis and immunofluorescence. Under normoxic conditinos, TNF stimulation increased the protein expression of anti-angiogenic von-Hippel Lindau (VHL), prolyl hydroxylase (PHD)2 and ubiquitin conjugating enzyme 2D1 (Ube2D1), as well as the total ubiquitin content in the skeletal muscle myocytes. By contrast, the expression levels of hypoxia-inducible factor 1‑α (HIF1-α) and those of its transcriptional targets, vascular endothelial growth factor (VEGF)A and glucose transporter 1 (Glut1), were markedly reduced. In addition, hypoxia increased the expression of the VHL transcript and further elevated the VHL protein expression levels in C2C12 myocytes following TNF stimulation. Consequently, an impaired angiogenic potential was observed in the TNF-stimulated myocytes during hypoxia. In conclusion, TNF increases VHL expression and disturbs hypoxia-angiogenesis signal transduction in skeletal muscle myocytes. The current findings provide a mechanism linking systemic inflammation and impaired angiogenesis in skeletal muscle. This is particularly relevant to further understanding the mechanisms mediating muscle wasting and cachexia in patients with chronic inflammatory diseases, such as COPD.
Collapse
Affiliation(s)
- Vladimir T Basic
- Department of Clinical Medicine, Örebro University, Örebro, Sweden
| | - Annette Jacobsen
- Department of Clinical Medicine, Örebro University, Örebro, Sweden
| | - Allan Sirsjö
- Department of Clinical Medicine, Örebro University, Örebro, Sweden
| | - Samy M Abdel-Halim
- Division of Respiratory Medicine and Allergology, Department of Clinical Sciences, Danderyd Hospital, Stockholm, Sweden
| |
Collapse
|
34
|
Current understanding of sarcopenia: possible candidates modulating muscle mass. Pflugers Arch 2014; 467:213-29. [PMID: 24797147 DOI: 10.1007/s00424-014-1527-x] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Revised: 04/21/2014] [Accepted: 04/22/2014] [Indexed: 12/17/2022]
Abstract
The world's elderly population is expanding rapidly, and we are now faced with the significant challenge of maintaining or improving physical activity, independence, and quality of life in the elderly. Sarcopenia, the age-related loss of skeletal muscle mass, is characterized by a deterioration of muscle quantity and quality leading to a gradual slowing of movement, a decline in strength and power, increased risk of fall-related injury, and often, frailty. Since sarcopenia is largely attributed to various molecular mediators affecting fiber size, mitochondrial homeostasis, and apoptosis, the mechanisms responsible for these deleterious changes present numerous therapeutic targets for drug discovery. Muscle loss has been linked with several proteolytic systems, including the ubuiquitin-proteasome, lysosome-autophagy, and tumor necrosis factor (TNF)-α/nuclear factor-kappaB (NF-κB) systems. Although many factors are considered to regulate age-dependent muscle loss, this gentle atrophy is not affected by factors known to enhance rapid atrophy (denervation, hindlimb suspension, etc.). In addition, defects in Akt-mammalian target of rapamycin (mTOR) and serum response factor (SRF)-dependent signaling have been found in sarcopenic muscle. Intriguingly, more recent studies indicated an apparent functional defect in autophagy- and myostatin-dependent signaling in sarcopenic muscle. In this review, we summarize the current understanding of the adaptation of many regulators in sarcopenia.
Collapse
|
35
|
Kamata S, Yamamoto J, Kamijo K, Ochiai T, Morita T, Yoshitomi Y, Hagiya Y, Kubota M, Ohkubo R, Kawaguchi M, Himi T, Kasahara T, Ishii I. Dietary deprivation of each essential amino acid induces differential systemic adaptive responses in mice. Mol Nutr Food Res 2014; 58:1309-21. [DOI: 10.1002/mnfr.201300758] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Revised: 01/24/2014] [Accepted: 01/26/2014] [Indexed: 12/13/2022]
Affiliation(s)
- Shotaro Kamata
- Department of Biochemistry; Keio University Graduate School of Pharmaceutical Sciences; Tokyo Japan
| | - Junya Yamamoto
- Department of Biochemistry; Keio University Graduate School of Pharmaceutical Sciences; Tokyo Japan
| | - Kenta Kamijo
- Department of Biochemistry; Keio University Graduate School of Pharmaceutical Sciences; Tokyo Japan
| | - Takahito Ochiai
- Department of Biochemistry; Keio University Graduate School of Pharmaceutical Sciences; Tokyo Japan
| | - Tamako Morita
- Department of Biochemistry; Keio University Graduate School of Pharmaceutical Sciences; Tokyo Japan
| | - Yurika Yoshitomi
- Department of Biochemistry; Keio University Graduate School of Pharmaceutical Sciences; Tokyo Japan
| | - Yoshifumi Hagiya
- Department of Biochemistry; Keio University Graduate School of Pharmaceutical Sciences; Tokyo Japan
| | - Masashi Kubota
- Department of Biochemistry; Keio University Graduate School of Pharmaceutical Sciences; Tokyo Japan
| | - Rika Ohkubo
- Department of Biochemistry; Keio University Graduate School of Pharmaceutical Sciences; Tokyo Japan
| | | | - Toshiyuki Himi
- Faculty of Pharmacy and Research Institute of Pharmaceutical Sciences; Musashino University; Tokyo Japan
| | - Tadashi Kasahara
- Department of Biochemistry; Keio University Graduate School of Pharmaceutical Sciences; Tokyo Japan
| | - Isao Ishii
- Department of Biochemistry; Keio University Graduate School of Pharmaceutical Sciences; Tokyo Japan
| |
Collapse
|
36
|
Bhattacharya A, Hamilton R, Jernigan A, Zhang Y, Sabia M, Rahman MM, Li Y, Wei R, Chaudhuri A, Van Remmen H. Genetic ablation of 12/15-lipoxygenase but not 5-lipoxygenase protects against denervation-induced muscle atrophy. Free Radic Biol Med 2014; 67:30-40. [PMID: 24121057 DOI: 10.1016/j.freeradbiomed.2013.10.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Revised: 08/30/2013] [Accepted: 10/01/2013] [Indexed: 12/15/2022]
Abstract
Skeletal muscle atrophy is a debilitating outcome of a number of chronic diseases and conditions associated with loss of muscle innervation by motor neurons, such as aging and neurodegenerative diseases. We previously reported that denervation-induced loss of muscle mass is associated with activation of cytosolic phospholipase A2 (cPLA2), the rate-limiting step for the release of arachidonic acid from membrane phospholipids, which then acts as a substrate for metabolic pathways that generate bioactive lipid mediators. In this study, we asked whether 5- and 12/15-lipoxygenase (LO) lipid metabolic pathways downstream of cPLA2 mediate denervation-induced muscle atrophy in mice. Both 5- and 12/15-LO were activated in response to surgical denervation; however, 12/15-LO activity was increased ~2.5-fold versus an ~1.5-fold increase in activity of 5-LO. Genetic and pharmacological inhibition of 12/15-LO (but not 5-LO) significantly protected against denervation-induced muscle atrophy, suggesting a selective role for the 12/15-LO pathway in neurogenic muscle atrophy. The activation of the 12/15-LO pathway (but not 5-LO) during muscle atrophy increased NADPH oxidase activity, protein ubiquitination, and ubiquitin-proteasome-mediated proteolytic degradation. In conclusion, this study reveals a novel pathway for neurogenic muscle atrophy and suggests that 12/15-LO may be a potential therapeutic target in diseases associated with loss of innervation and muscle atrophy.
Collapse
Affiliation(s)
- Arunabh Bhattacharya
- Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; Sam and Ann Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX 78245, USA.
| | - Ryan Hamilton
- Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; Sam and Ann Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX 78245, USA
| | - Amanda Jernigan
- Sam and Ann Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX 78245, USA
| | - Yiqiang Zhang
- Sam and Ann Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX 78245, USA; Department of Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Marian Sabia
- Sam and Ann Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX 78245, USA
| | - Md M Rahman
- Sam and Ann Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX 78245, USA; Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Yan Li
- Sam and Ann Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX 78245, USA
| | - Rochelle Wei
- Sam and Ann Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX 78245, USA
| | - Asish Chaudhuri
- Sam and Ann Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX 78245, USA; Department of Biochemistry, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; Geriatric Research Education and Clinical Center, South Texas Veterans Health Care System, San Antonio, TX 78229, USA
| | - Holly Van Remmen
- Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; Sam and Ann Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX 78245, USA; Department of Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; Geriatric Research Education and Clinical Center, South Texas Veterans Health Care System, San Antonio, TX 78229, USA
| |
Collapse
|
37
|
Sato S, Ogura Y, Kumar A. TWEAK/Fn14 Signaling Axis Mediates Skeletal Muscle Atrophy and Metabolic Dysfunction. Front Immunol 2014; 5:18. [PMID: 24478779 PMCID: PMC3902304 DOI: 10.3389/fimmu.2014.00018] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 01/14/2014] [Indexed: 01/07/2023] Open
Abstract
Tumor necrosis factor-like weak inducer of apoptosis (TWEAK) through binding to its receptor fibroblast growth factor inducible 14 (Fn14) has been shown to regulate many cellular responses including proliferation, differentiation, apoptosis, inflammation, and fibrosis, under both physiological and pathological conditions. Emerging evidence suggests that TWEAK is also a major muscle wasting cytokine. TWEAK activates nuclear factor-κB signaling and proteolytic pathways such as ubiquitin–proteasome system, autophagy, and caspases to induce muscle proteolysis in cultured myotubes. Fn14 is dormant or expressed in minimal amounts in normal healthy muscle. However, specific atrophic conditions, such as denervation, immobilization, and starvation stimulate the expression of Fn14 leading to activation of TWEAK/Fn14 signaling and eventually skeletal muscle atrophy. TWEAK also causes slow- to fast-type fiber transition in skeletal muscle. Furthermore, recent studies suggest that TWEAK diminishes mitochondrial content and represses skeletal muscle oxidative phosphorylation capacity. TWEAK mediates these effects through affecting the expression of a number of genes and microRNAs. In this review article, we have discussed the recent advancements toward understanding the role and mechanisms of action of TWEAK/Fn14 signaling in skeletal muscle with particular reference to different models of atrophy and oxidative metabolism.
Collapse
Affiliation(s)
- Shuichi Sato
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine , Louisville, KY , USA
| | - Yuji Ogura
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine , Louisville, KY , USA
| | - Ashok Kumar
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine , Louisville, KY , USA
| |
Collapse
|
38
|
Hwang CY, Kim K, Choi JY, Bahn YJ, Lee SM, Kim YK, Lee C, Kwon KS. Quantitative proteome analysis of age-related changes in mouse gastrocnemius muscle using mTRAQ. Proteomics 2014; 14:121-32. [DOI: 10.1002/pmic.201200497] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 10/07/2013] [Accepted: 11/06/2013] [Indexed: 11/06/2022]
Affiliation(s)
- Chae Young Hwang
- Laboratory of Cell Signaling; Aging Research Center; Korea Research Institute of Bioscience and Biotechnology; Daejeon Korea
| | - Kyutae Kim
- BRI; Korea Institute of Science and Technology; Seoul Korea
- School of Life Sciences and Biotechnology; Korea University; Seoul Korea
| | - Jeong Yi Choi
- Laboratory of Cell Signaling; Aging Research Center; Korea Research Institute of Bioscience and Biotechnology; Daejeon Korea
| | - Young Jae Bahn
- Laboratory of Cell Signaling; Aging Research Center; Korea Research Institute of Bioscience and Biotechnology; Daejeon Korea
| | - Seung-Min Lee
- Laboratory of Cell Signaling; Aging Research Center; Korea Research Institute of Bioscience and Biotechnology; Daejeon Korea
| | - Yoon Ki Kim
- School of Life Sciences and Biotechnology; Korea University; Seoul Korea
| | - Cheolju Lee
- BRI; Korea Institute of Science and Technology; Seoul Korea
| | - Ki-Sun Kwon
- Laboratory of Cell Signaling; Aging Research Center; Korea Research Institute of Bioscience and Biotechnology; Daejeon Korea
| |
Collapse
|
39
|
Pooley NJ, Tacchi L, Secombes CJ, Martin SAM. Inflammatory responses in primary muscle cell cultures in Atlantic salmon (Salmo salar). BMC Genomics 2013; 14:747. [PMID: 24180744 PMCID: PMC3819742 DOI: 10.1186/1471-2164-14-747] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Accepted: 10/26/2013] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND The relationship between fish health and muscle growth is critical for continued expansion of the aquaculture industry. The effect of immune stimulation on the expression of genes related to the energy balance of fish is poorly understood. In mammals immune stimulation results in major transcriptional changes in muscle, potentially to allow a reallocation of amino acids for use in the immune response and energy homeostasis. The aim of this study was to investigate the effects of immune stimulation on fish muscle gene expression. RESULTS Atlantic salmon (Salmo salar) primary muscle cell cultures were stimulated with recombinant (r)IL-1β, a major proinflammatory cytokine, for 24 h in order to simulate an acute immune response. The transcriptomic response was determined by RNA hybridization to a 4 × 44 K Agilent Atlantic salmon microarray platform. The rIL-1β stimulation induced the expression of genes related to both the innate and adaptive immune systems. In addition there were highly significant changes in the expression of genes related to regulation of the cell cycle, growth/structural proteins, proteolysis and lipid metabolism. Of interest were a number of IGF binding proteins that were differentially expressed, which may demonstrate cross talk between the growth and immune systems. CONCLUSION We show rIL-1β modulates the expression of not only immune related genes, but also that of genes involved in processes related to growth and metabolism. Co-stimulation of muscle cells with both rIGF-I and rIL-1β demonstrates cross talk between these pathways providing potential avenues for further research. This study highlights the potential negative effects of inflammation on muscle protein deposition and growth in fish and extends our understanding of energy allocation in ectothermic animals.
Collapse
Affiliation(s)
- Nicholas J Pooley
- Institute of Biological and Environmental Sciences, University of Aberdeen, Tillydrone Avenue, Aberdeen AB24 2TZ, UK
| | - Luca Tacchi
- Institute of Biological and Environmental Sciences, University of Aberdeen, Tillydrone Avenue, Aberdeen AB24 2TZ, UK
- Current address: Centre for Evolutionary and Theoretical Immunology, University of New Mexico, Albuquerque, NM 87131-0001, USA
| | - Christopher J Secombes
- Institute of Biological and Environmental Sciences, University of Aberdeen, Tillydrone Avenue, Aberdeen AB24 2TZ, UK
| | - Samuel AM Martin
- Institute of Biological and Environmental Sciences, University of Aberdeen, Tillydrone Avenue, Aberdeen AB24 2TZ, UK
| |
Collapse
|
40
|
Cobalt triggers necrotic cell death and atrophy in skeletal C2C12 myotubes. Toxicol Appl Pharmacol 2013; 271:196-205. [DOI: 10.1016/j.taap.2013.05.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Revised: 05/01/2013] [Accepted: 05/04/2013] [Indexed: 12/14/2022]
|
41
|
Op den Kamp CM, Langen RC, Snepvangers FJ, de Theije CC, Schellekens JM, Laugs F, Dingemans AMC, Schols AM. Nuclear transcription factor κ B activation and protein turnover adaptations in skeletal muscle of patients with progressive stages of lung cancer cachexia. Am J Clin Nutr 2013; 98:738-48. [PMID: 23902785 DOI: 10.3945/ajcn.113.058388] [Citation(s) in RCA: 115] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Experimental models of cancer cachexia have indicated that systemic inflammation induces muscle-protein breakdown and wasting via muscular nuclear transcription factor κB (NF-κB) activation. This process may limit the efficacy of nutritional intervention. OBJECTIVES We assessed muscle NF-κB activity and protein turnover signaling in progressive stages of clinical lung cancer cachexia and assessed whether circulating factors can induce muscular NF-κB activity. DESIGN Patients with lung cancer precachexia (n = 10) and cachexia (n = 16) were cross-sectionally compared with 22 healthy control subjects. mRNA transcripts of muscle proteolytic (ubiquitin proteasome system and autophagy lysosomal pathway) and myogenic markers and protein expression of PI3K/Akt, myostatin, and autophagy signaling were measured. A multiplex analysis showed the systemic inflammatory status, whereas plasma exposure to stable NF-κB-luciferase-reporter muscle cells revealed NF-κB inducibility. RESULTS Compared with healthy control subjects, cachectic patients had reduced (appendicular) muscle mass (-10%), muscle fiber atrophy (-27%), and decreased quadriceps strength (-31%). Subtle alterations in the muscle morphology were also detectable in precachectic patients, without changes in body composition. Despite increased Akt phosphorylation, downstream phosphosubstrates glycogen synthase kinase 3β, mammalian target of rapamycin, and Forkhead box protein were unaltered. The expression of autophagy effectors B cell lymphoma 2/adenovirus E1B 19-kDa protein-interacting protein 3 and microtubule-associated proteins 1A/1B light chain 3B gradually increased from precachectic to cachectic patients, without differences in E3 ubiquitin ligases. Systemic and local inflammation was evident in cachexia and intermediate in precachexia, but the plasma of both patients groups caused ex vivo muscle NF-κB activation. CONCLUSIONS In lung cancer, muscular NF-κB activity is induced by factors contained within the circulation. Autophagy may contribute to increased muscle proteolysis in lung cancer cachexia, whereas the absence of downstream changes in phosphosubstrates despite increased Akt phosphorylation suggests impaired anabolic signaling that may require targeted nutritional intervention.
Collapse
Affiliation(s)
- Céline M Op den Kamp
- Department of Respiratory Medicine, NUTRIM School for Nutrition, Toxicology and Metabolism, Maastricht University Medical Centre, Maastricht, Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Merli M, Giusto M, Molfino A, Bonetto A, Rossi M, Ginanni Corradini S, Baccino FM, Rossi Fanelli F, Costelli P, Muscaritoli M. MuRF-1 and p-GSK3β expression in muscle atrophy of cirrhosis. Liver Int 2013; 33:714-21. [PMID: 23432902 DOI: 10.1111/liv.12128] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Accepted: 01/19/2013] [Indexed: 12/14/2022]
Abstract
BACKGROUND Chronic diseases, including cirrhosis, are often accompanied by protein-energy malnutrition and muscle loss, which in turn negatively affect quality of life, morbidity and mortality. Unlike other chronic conditions, few data are available on the molecular mechanisms underlying muscle wasting in this clinical setting. AIMS To assess mechanisms of muscle atrophy in patients with cirrhosis. METHODS Nutritional [subjective global assessment (SGA) and anthropometry] and metabolic assessment was performed in 30 cirrhotic patients awaiting liver transplantation. Rectus abdominis biopsies were obtained intraoperatively in 22 cirrhotic patients and in 10 well-nourished subjects undergoing elective surgery for non-neoplastic disease, as a control group. Total RNA was extracted and mRNA for atrogenes (MuRF-1, Atrogin-1/MAFbx), myostatin (MSTN), GSK3β and IGF-1 was assayed. RESULTS A total of 50% of cirrhotic patients were malnourished based on SGA, while 53% were muscle-depleted according to mid-arm muscle area (MAMA<5th percentile). MuRF-1 RNA expression was significantly increased in malnourished cirrhotic patients (SGA-B/C) vs. well-nourished patients (SGA-A) (P = 0.01). The phosphorylation of GSK3β was up-regulated in cirrhotic patients with hepatocellular carcinoma (HCC) vs. patients without tumour (P < 0.05). CONCLUSIONS Muscle loss is frequently found in end-stage liver disease patients. Molecular factors pertaining to signalling pathways known to be involved in the regulation of muscle mass are altered during cirrhosis and HCC.
Collapse
Affiliation(s)
- Manuela Merli
- Gastroenterology, Department of Clinical Medicine, Sapienza University of Rome, Rome, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Supplementation with l-carnitine downregulates genes of the ubiquitin proteasome system in the skeletal muscle and liver of piglets. Animal 2013; 6:70-8. [PMID: 22436156 DOI: 10.1017/s1751731111001327] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Supplementation of carnitine has been shown to improve performance characteristics such as protein accretion in growing pigs. The molecular mechanisms underlying this phenomenon are largely unknown. Based on recent results from DNA microchip analysis, we hypothesized that carnitine supplementation leads to a downregulation of genes of the ubiquitin proteasome system (UPS). The UPS is the most important system for protein breakdown in tissues, which in turn could be an explanation for increased protein accretion. To test this hypothesis, we fed sixteen male, four-week-old piglets either a control diet or the same diet supplemented with carnitine and determined the expression of several genes involved in the UPS in the liver and skeletal muscle. To further determine whether the effects of carnitine on the expression of genes of the UPS are mediated directly or indirectly, we also investigated the effect of carnitine on the expression of genes of the UPS in cultured C2C12 myotubes and HepG2 liver cells. In the liver of piglets fed the carnitine-supplemented diet, the relative mRNA levels of atrogin-1, E214k and Psma1 were lower than in those of the control piglets (P < 0.05). In skeletal muscle, the relative mRNA levels of atrogin-1, MuRF1, E214k, Psma1 and ubiquitin were lower in piglets fed the carnitine-supplemented diet than that in control piglets (P < 0.05). Incubating C2C12 myotubes and HepG2 liver cells with increasing concentrations of carnitine had no effect on basal and/or hydrocortisone-stimulated mRNA levels of genes of the UPS. In conclusion, this study shows that dietary carnitine decreases the transcript levels of several genes involved in the UPS in skeletal muscle and liver of piglets, whereas carnitine has no effect on the transcript levels of these genes in cultivated HepG2 liver cells and C2C12 myotubes. These data suggest that the inhibitory effect of carnitine on the expression of genes of the UPS is mediated indirectly, probably via modulating the release of inhibitors of the UPS such as IGF-1. The inhibitory effect of carnitine on the expression of genes of the UPS might explain, at least partially, the increased protein accretion in piglets supplemented with carnitine.
Collapse
|
44
|
Zhang G, Lin RK, Kwon YT, Li YP. Signaling mechanism of tumor cell-induced up-regulation of E3 ubiquitin ligase UBR2. FASEB J 2013; 27:2893-901. [PMID: 23568773 DOI: 10.1096/fj.12-222711] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The N-end rule pathway contributes significantly to accelerated muscle proteolysis mediated by the ubiquitin-proteasome pathway in various catabolic conditions. UBR2 (aka E3α-II) is the only known E3 ubiquitin ligase of the N-end rule pathway that is up-regulated by cachectic stimuli including proinflammatory cytokines and tumors. However, the signaling mechanism through which UBR2 is up-regulated remains undetermined. Here we identify a signaling pathway that mediates tumor cell-induced up-regulation of UBR2. UBR2 expression in C2C12 myotubes was up-regulated by conditioned medium from Lewis lung carcinoma cells or C26 colon adenocarcinoma cells, which was blocked by a pharmacological inhibitor of p38α/β mitogen-activated protein kinase (MAPK), SB202190. Similarly, SB202190 administration (i.p.) abolished UBR2 up-regulation in the tibialis anterior of LLC tumor-bearing mice. Genetic gain and loss of function assays in C2C12 myotubes indicated that tumor-induced activation of the p38β isoform is sufficient and necessary for UBR2 up-regulation. In addition, UBR2 up-regulation required p38β-mediated phosphorylation of CCAAT/enhancer binding protein (C/EBP)-β Thr-188, which was critical to C/EBPβ binding to the UBR2 promoter. Furthermore, luciferase reporter assay revealed that the C/EBPβ binding motif in the UBR2 promoter is a functional C/EBPβ-responsive cis-element that enhances the promoter activity on activation by p38β. Finally, genetic ablation of C/EBPβ blocked UBR2 up-regulation in LLC tumor-bearing mice. These results suggest that UBR2 up-regulation in cachectic muscle is mediated by the p38β-C/EBPβ signaling pathway responsible for the bulk of tumor-induced muscle proteolysis.
Collapse
Affiliation(s)
- Guohua Zhang
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center, Houston, TX 77030, USA
| | | | | | | |
Collapse
|
45
|
MG132-mediated inhibition of the ubiquitin-proteasome pathway ameliorates cancer cachexia. J Cancer Res Clin Oncol 2013; 139:1105-15. [PMID: 23535871 PMCID: PMC7087863 DOI: 10.1007/s00432-013-1412-6] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Accepted: 02/28/2013] [Indexed: 01/06/2023]
Abstract
Purpose To evaluate the effect of proteasome inhibitor MG132 in cancer cachexia and to delineate the molecular mechanism underlying. Methods We established an experimental cancer cachexia model by subcutaneously implanting colon 26 cells into the armpits of BALB/c mice. Following administration of MG132 at various time points, body weight, food intake, gastrocnemius muscle weight, spontaneous activity and survival of tumor-bearing mice were examined along with tumor growth. Moreover, cachectic markers including glucose, triglyceride, albumin and total proteins as well as levels of the proinflammatory cytokines TNF-α and IL-6 in serum and gastrocnemius tissue were measured. Finally, mRNA and protein levels of p65, IκBα, and ubiquitin E3 ligases MuRF1 and MAFbx in gastrocnemius muscle were assessed. Results MG132 treatment significantly alleviated cancer cachexia as demonstrated by attenuated weight loss, altered carbohydrate metabolism and muscle atrophy and increased spontaneous activity and survival time of tumor-bearing mice. MG132 reduced tumor growth and the levels of TNF-α and IL-6 in serum and gastrocnemius tissue. NF-κB, MuRF1 and MAFbx were also inhibited by MG132. Unexpectedly, MG132 was more efficient when administrated during the early stages of cachexia. MG132 had no effect on food intake of tumor-bearing mice. Conclusion Our results demonstrate that MG132-induced inhibition of the ubiquitin–proteasome pathway in cancer cachexia decreased the activity of NF-κB and the degradation of IκBα, and reduced the levels of TNF-α and IL-6 in serum and gastrocnemius tissue, accompanied by downregulation of MuRF1 and MAFbx. These data suggest that MG132 is a potential therapeutic and preventive agent for cancer cachexia.
Collapse
|
46
|
Keller J, Couturier A, Haferkamp M, Most E, Eder K. Supplementation of carnitine leads to an activation of the IGF-1/PI3K/Akt signalling pathway and down regulates the E3 ligase MuRF1 in skeletal muscle of rats. Nutr Metab (Lond) 2013; 10:28. [PMID: 23497226 PMCID: PMC3631133 DOI: 10.1186/1743-7075-10-28] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Accepted: 03/07/2013] [Indexed: 01/08/2023] Open
Abstract
Background Recently, it has been shown that carnitine down-regulates genes involved in the ubiquitin-proteasome system (UPS) in muscle of pigs and rats. The mechanisms underlying this observation are yet unknown. Based on the previous finding that carnitine increases plasma IGF-1 concentration, we investigated the hypothesis that carnitine down-regulates genes of the UPS by modulation of the of the IGF-1/PI3K/Akt signalling pathway which is an important regulator of UPS activity in muscle. Methods Male Sprague–Dawley rats, aged four weeks, were fed either a control diet with a low native carnitine concentration or the same diet supplemented with carnitine (1250 mg/kg diet) for four weeks. Components of the UPS and IGF-1/PI3K/Akt signalling pathway in skeletal muscle were examined. Results Rats fed the diet supplemented with carnitine had lower mRNA and protein levels of MuRF1, the most important E3 ubiquitin ligase in muscle, decreased concentrations of ubiquitin-protein conjugates in skeletal muscle and higher IGF-1 concentration in plasma than control rats (P < 0.05). Moreover, in skeletal muscle of rats fed the diet supplemented with carnitine there was an activation of the PI3K/Akt signalling pathway, as indicated by increased protein levels of phosphorylated (activated) Akt1 (P < 0.05). Conclusion The present study shows that supplementation of carnitine markedly decreases the expression of MuRF1 and concentrations of ubiquitinated proteins in skeletal muscle of rats, indicating a diminished degradation of myofibrillar proteins by the UPS. The study moreover shows that supplementation of carnitine leads to an activation of the IGF-1/PI3K/Akt signalling pathway which in turn might contribute to the observed down-regulation of MuRF1 and muscle protein ubiquitination.
Collapse
Affiliation(s)
- Janine Keller
- Institute of Animal Nutrition and Nutritional Physiology, Justus-Liebig-University, Heinrich-Buff-Ring 26-32, Giessen, 35392, Germany.
| | | | | | | | | |
Collapse
|
47
|
Park S, Nozaki K, Guyton MK, Smith JA, Ray SK, Banik NL. Calpain inhibition attenuated morphological and molecular changes in skeletal muscle of experimental allergic encephalomyelitis rats. J Neurosci Res 2012; 90:2134-45. [PMID: 22715087 PMCID: PMC12010168 DOI: 10.1002/jnr.23096] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Revised: 04/30/2012] [Accepted: 05/09/2012] [Indexed: 12/22/2022]
Abstract
Muscle weakness and atrophy are important manifestations of multiple sclerosis (MS). To investigate the pathophysiological mechanisms of skeletal muscle change in MS, we induced experimental autoimmune encephalomyelitis (EAE) in Lewis male rats and examined morphological and molecular changes in skeletal muscle. We also treated EAE rats with calpepetin, a calpain inhibitor, to examine its beneficial effects on skeletal muscle damage. Morphological changes in muscle tissue of EAE rats included smaller and irregularly shaped muscle fibers and fibrosis. Western blot analysis demonstrated increased calpain:calpastatin ratio, inflammation-related transcription factors (nuclear factor-κB:inhibitor of κB α ratio), and proinflammatory enzymes (cyclooxygenase-2). TUNEL-positive myonuclei in skeletal muscle cells of EAE rats indicated cell death. In addition, markers of apoptotic cell death (Bax:Bcl-2 ratio and caspase-12 protein levels) were elevated. Expression of muscle-specific ubiquitin ligases (muscle atrophy F-box and muscle ring finger protein 1), was upregulated in muscle tissue of EAE-vehicle animals. Both prophylactic and therapeutic treatment with calpeptin partially attenuated muscle changes noted in EAE animals. These results indicate that morphological and molecular changes including apoptotic cell death and protein breakdown develop in skeletal muscle of EAE animals and that these changes can be reversed by calpain inhibition.
Collapse
Affiliation(s)
- Sookyoung Park
- Division of Neurology, Department of Neurosciences, Medical University of South Carolina, Charleston, South Carolina
| | - Kenkichi Nozaki
- Division of Neurology, Department of Neurosciences, Medical University of South Carolina, Charleston, South Carolina
| | - M. Kelly Guyton
- Division of Neurology, Department of Neurosciences, Medical University of South Carolina, Charleston, South Carolina
| | - Joshua A. Smith
- Division of Neurology, Department of Neurosciences, Medical University of South Carolina, Charleston, South Carolina
| | - Swapan K. Ray
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, South Carolina
| | - Naren L. Banik
- Division of Neurology, Department of Neurosciences, Medical University of South Carolina, Charleston, South Carolina
| |
Collapse
|
48
|
Treatment with pharmacological PPARα agonists stimulates the ubiquitin proteasome pathway and myofibrillar protein breakdown in skeletal muscle of rodents. Biochim Biophys Acta Gen Subj 2012; 1830:2105-17. [PMID: 23041501 DOI: 10.1016/j.bbagen.2012.09.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Revised: 09/28/2012] [Accepted: 09/28/2012] [Indexed: 12/14/2022]
Abstract
BACKGROUND Treatment of hyperlipidemic patients with fibrates, agonists of peroxisome proliferator-activated receptor α (PPARα), provokes muscle atrophy as a side effect. The molecular mechanism underlying this phenomenon is still unknown. We tested the hypothesis that activation of PPARα leads to an up-regulation of the ubiquitin proteasome system (UPS) which plays a major role in protein degradation in muscle. METHODS Rats, wild-type and PPARα-deficient mice (PPARα(-/-)) were treated with synthetic PPARα agonists (clofibrate, WY-14,643) to study their effect on the UPS and myofibrillar protein breakdown in muscle. RESULTS In rats and wild-type mice but not PPARα(-/-) mice, clofibrate or WY-14,643 caused increases in mRNA and protein levels of the ubiquitin ligases atrogin-1 and MuRF1 in muscle. Wild-type mice treated with WY-14,643 had a greater 3-methylhistidine release from incubated muscle and lesser muscle weights. In addition, wild-type mice but not PPARα(-/-) mice treated with WY-14,643 had higher amounts of ubiquitin-protein conjugates, a decreased activity of PI3K/Akt1 signalling, and an increased activity of FoxO1 transcription factor in muscle. Reporter gene and gel shift experiments revealed that the atrogin-1 and MuRF1 promoter do not contain functional PPARα DNA-binding sites. CONCLUSIONS These findings indicate that fibrates stimulate ubiquitination of proteins in skeletal muscle which in turn stimulates protein degradation. Up-regulation of ubiquitin ligases is probably not mediated by PPARα-dependent gene transcription but by PPARα-dependent inhibition of the PI3K/Akt1 signalling pathway leading to activation of FoxO1. GENERAL SIGNIFICANCE PPARα plays a role in the regulation of the ubiquitin proteasome system.
Collapse
|
49
|
Cea LA, Riquelme MA, Cisterna BA, Puebla C, Vega JL, Rovegno M, Sáez JC. Connexin- and pannexin-based channels in normal skeletal muscles and their possible role in muscle atrophy. J Membr Biol 2012; 245:423-36. [PMID: 22850938 DOI: 10.1007/s00232-012-9485-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Accepted: 06/28/2012] [Indexed: 12/13/2022]
Abstract
Precursor cells of skeletal muscles express connexins 39, 43 and 45 and pannexin1. In these cells, most connexins form two types of membrane channels, gap junction channels and hemichannels, whereas pannexin1 forms only hemichannels. All these channels are low-resistance pathways permeable to ions and small molecules that coordinate developmental events. During late stages of skeletal muscle differentiation, myofibers become innervated and stop expressing connexins but still express pannexin1 hemichannels that are potential pathways for the ATP release required for potentiation of the contraction response. Adult injured muscles undergo regeneration, and connexins are reexpressed and form membrane channels. In vivo, connexin reexpression occurs in undifferentiated cells that form new myofibers, favoring the healing process of injured muscle. However, differentiated myofibers maintained in culture for 48 h or treated with proinflammatory cytokines for less than 3 h also reexpress connexins and only form functional hemichannels at the cell surface. We propose that opening of these hemichannels contributes to drastic changes in electrochemical gradients, including reduction of membrane potential, increases in intracellular free Ca(2+) concentration and release of diverse metabolites (e.g., NAD(+) and ATP) to the extracellular milieu, contributing to multiple metabolic and physiologic alterations that characterize muscles undergoing atrophy in several acquired and genetic human diseases. Consequently, inhibition of connexin hemichannels expressed by injured or denervated skeletal muscles might reduce or prevent deleterious changes triggered by conditions that promote muscle atrophy.
Collapse
Affiliation(s)
- Luis A Cea
- Departamento de Fisiología, Pontificia Universidad Católica de Chile, Alameda 340, Santiago, Chile,
| | | | | | | | | | | | | |
Collapse
|
50
|
Premature expression of a muscle fibrosis axis in chronic HIV infection. Skelet Muscle 2012; 2:10. [PMID: 22676806 PMCID: PMC3407733 DOI: 10.1186/2044-5040-2-10] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Accepted: 06/07/2012] [Indexed: 02/06/2023] Open
Abstract
Background Despite the success of highly active antiretroviral therapy (HAART), HIV infected individuals remain at increased risk for frailty and declines in physical function that are more often observed in older uninfected individuals. This may reflect premature or accelerated muscle aging. Methods Skeletal muscle gene expression profiles were evaluated in three uninfected independent microarray datasets including young (19 to 29 years old), middle aged (40 to 45 years old) and older (65 to 85 years old) subjects, and a muscle dataset from HIV infected subjects (36 to 51 years old). Using Bayesian analysis, a ten gene muscle aging signature was identified that distinguished young from old uninfected muscle and included the senescence and cell cycle arrest gene p21/Cip1 (CDKN1A). This ten gene signature was then evaluated in muscle specimens from a cohort of middle aged (30 to 55 years old) HIV infected individuals. Expression of p21/Cip1 and related pathways were validated and further analyzed in a rodent model for HIV infection. Results We identify and replicate the expression of a set of muscle aging genes that were prematurely expressed in HIV infected, but not uninfected, middle aged subjects. We validated select genes in a rodent model of chronic HIV infection. Because the signature included p21/Cip1, a cell cycle arrest gene previously associated with muscle aging and fibrosis, we explored pathways related to senescence and fibrosis. In addition to p21/Cip1, we observed HIV associated upregulation of the senescence factor p16INK4a (CDKN2A) and fibrosis associated TGFβ1, CTGF, COL1A1 and COL1A2. Fibrosis in muscle tissue was quantified based on collagen deposition and confirmed to be elevated in association with infection status. Fiber type composition was also measured and displayed a significant increase in slow twitch fibers associated with infection. Conclusions The expression of genes associated with a muscle aging signature is prematurely upregulated in HIV infection, with a prominent role for fibrotic pathways. Based on these data, therapeutic interventions that promote muscle function and attenuate pro-fibrotic gene expression should be considered in future studies.
Collapse
|