1
|
McGrath EP, Logue SE, Mnich K, Deegan S, Jäger R, Gorman AM, Samali A. The Unfolded Protein Response in Breast Cancer. Cancers (Basel) 2018; 10:cancers10100344. [PMID: 30248920 PMCID: PMC6211039 DOI: 10.3390/cancers10100344] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 09/12/2018] [Accepted: 09/18/2018] [Indexed: 01/18/2023] Open
Abstract
In 2018, in the US alone, it is estimated that 268,670 people will be diagnosed with breast cancer, and that 41,400 will die from it. Since breast cancers often become resistant to therapies, and certain breast cancers lack therapeutic targets, new approaches are urgently required. A cell-stress response pathway, the unfolded protein response (UPR), has emerged as a promising target for the development of novel breast cancer treatments. This pathway is activated in response to a disturbance in endoplasmic reticulum (ER) homeostasis but has diverse physiological and disease-specific functions. In breast cancer, UPR signalling promotes a malignant phenotype and can confer tumours with resistance to widely used therapies. Here, we review several roles for UPR signalling in breast cancer, highlighting UPR-mediated therapy resistance and the potential for targeting the UPR alone or in combination with existing therapies.
Collapse
Affiliation(s)
- Eoghan P McGrath
- Apoptosis Research Centre, National University of Ireland (NUI), Galway, University Road, Galway, H91 TK33 Galway, Ireland.
- School of Natural Sciences, NUI Galway, University Road, H91 TK33 Galway, Ireland.
| | - Susan E Logue
- Apoptosis Research Centre, National University of Ireland (NUI), Galway, University Road, Galway, H91 TK33 Galway, Ireland.
- School of Natural Sciences, NUI Galway, University Road, H91 TK33 Galway, Ireland.
| | - Katarzyna Mnich
- Apoptosis Research Centre, National University of Ireland (NUI), Galway, University Road, Galway, H91 TK33 Galway, Ireland.
- School of Natural Sciences, NUI Galway, University Road, H91 TK33 Galway, Ireland.
| | - Shane Deegan
- Apoptosis Research Centre, National University of Ireland (NUI), Galway, University Road, Galway, H91 TK33 Galway, Ireland.
- School of Natural Sciences, NUI Galway, University Road, H91 TK33 Galway, Ireland.
| | - Richard Jäger
- Department of Natural Sciences, Bonn-Rhein-Sieg University of Applied Sciences, 53359 Rheinbach, Germany.
| | - Adrienne M Gorman
- Apoptosis Research Centre, National University of Ireland (NUI), Galway, University Road, Galway, H91 TK33 Galway, Ireland.
- School of Natural Sciences, NUI Galway, University Road, H91 TK33 Galway, Ireland.
| | - Afshin Samali
- Apoptosis Research Centre, National University of Ireland (NUI), Galway, University Road, Galway, H91 TK33 Galway, Ireland.
- School of Natural Sciences, NUI Galway, University Road, H91 TK33 Galway, Ireland.
| |
Collapse
|
2
|
Mokarram P, Albokashy M, Zarghooni M, Moosavi MA, Sepehri Z, Chen QM, Hudecki A, Sargazi A, Alizadeh J, Moghadam AR, Hashemi M, Movassagh H, Klonisch T, Owji AA, Łos MJ, Ghavami S. New frontiers in the treatment of colorectal cancer: Autophagy and the unfolded protein response as promising targets. Autophagy 2017; 13:781-819. [PMID: 28358273 PMCID: PMC5446063 DOI: 10.1080/15548627.2017.1290751] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Colorectal cancer (CRC), despite numerous therapeutic and screening attempts, still remains a major life-threatening malignancy. CRC etiology entails both genetic and environmental factors. Macroautophagy/autophagy and the unfolded protein response (UPR) are fundamental mechanisms involved in the regulation of cellular responses to environmental and genetic stresses. Both pathways are interconnected and regulate cellular responses to apoptotic stimuli. In this review, we address the epidemiology and risk factors of CRC, including genetic mutations leading to the occurrence of the disease. Next, we discuss mutations of genes related to autophagy and the UPR in CRC. Then, we discuss how autophagy and the UPR are involved in the regulation of CRC and how they associate with obesity and inflammatory responses in CRC. Finally, we provide perspectives for the modulation of autophagy and the UPR as new therapeutic options for CRC treatment.
Collapse
Affiliation(s)
- Pooneh Mokarram
- a Colorectal Research Center and Department of Biochemistry , School of Medicine, Shiraz University of Medical Sciences , Shiraz , Iran
| | - Mohammed Albokashy
- b Department of Human Anatomy and Cell Science , Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba , Winnipeg , MB , Canada
| | - Maryam Zarghooni
- c Zabol University of Medical Sciences , Zabol , Iran.,d University of Toronto Alumni , Toronto , ON , Canada
| | - Mohammad Amin Moosavi
- e Department of Molecular Medicine , Institute of Medical Biotechnology, National Institute for Genetic Engineering and Biotechnology , Tehran , Iran
| | - Zahra Sepehri
- c Zabol University of Medical Sciences , Zabol , Iran
| | - Qi Min Chen
- b Department of Human Anatomy and Cell Science , Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba , Winnipeg , MB , Canada
| | | | | | - Javad Alizadeh
- b Department of Human Anatomy and Cell Science , Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba , Winnipeg , MB , Canada
| | - Adel Rezaei Moghadam
- b Department of Human Anatomy and Cell Science , Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba , Winnipeg , MB , Canada
| | - Mohammad Hashemi
- g Department of Clinical Biochemistry , School of Medicine, Zahedan University of Medical Sciences , Zahedan , Iran
| | - Hesam Movassagh
- h Department of Immunology , Rady Faculty of Health Sciences, College of Medicine, University of Manitoba , Winnipeg , MB , Canada
| | - Thomas Klonisch
- b Department of Human Anatomy and Cell Science , Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba , Winnipeg , MB , Canada
| | - Ali Akbar Owji
- i Department of Clinical Biochemistry , School of Medicine, Shiraz Medical University , Shiraz , Iran
| | - Marek J Łos
- j Małopolska Centre of Biotechnology , Jagiellonian University , Krakow , Poland ; LinkoCare Life Sciences AB , Sweden
| | - Saeid Ghavami
- b Department of Human Anatomy and Cell Science , Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba , Winnipeg , MB , Canada.,k Health Policy Research Center , Shiraz University of Medical Sciences , Shiraz , Iran
| |
Collapse
|
3
|
Shimizu A, Kaira K, Yasuda M, Asao T, Ishikawa O. Clinical and Pathological Significance of ER Stress Marker (BiP/GRP78 and PERK) Expression in Malignant Melanoma. Pathol Oncol Res 2016; 23:111-116. [PMID: 27502501 DOI: 10.1007/s12253-016-0099-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2015] [Accepted: 07/31/2016] [Indexed: 01/19/2023]
Abstract
Glucose-regulated protein of 78 kD (GRP78) also referred to as immunoglobulin heavy chain binding protein (BiP/GRP78) plays an important role in the endoplasmic reticulum (ER) stress. The level of BiP/GRP78 is highly elevated in various human cancers. The purpose of this study is to examine the prognostic significance of BiP/GRP78 expression in patients with malignant melanoma. A total of 133 malignant melanoma patients were analyzed, and tumor specimens were stained by immunohistochemistry for BiP/GRP78, PKR-like endoplasmic reticulum kinase (PERK), Ki-67, p53 and microvessel density (MVD) determined by CD34. BiP/GRP78 and PERK were highly expressed in 40 % (53/133) and 78 % (104/133), respectively. BiP/GRP78 disclosed a significant relationship with PERK expression, thickness, T factor, N factor, disease staging, cell proliferation (Ki-67) and MVD (CD34). By multivariate analysis, the high expression of BiP/GRP78 was identified as an independent prognostic factor for predicting poor survival against malignant melanoma. The increased BiP/GRP78 expression was clarified as an independent prognostic marker for predicting worse outcome. ER stress marker, BiP/GRP78 could be a powerful molecular target for the treatment of malignant melanoma.
Collapse
Affiliation(s)
- Akira Shimizu
- Department of Dermatology, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan.
| | - Kyoichi Kaira
- Department of Oncology Clinical Development, Gunma University Graduate School of Medicine, Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Masahito Yasuda
- Department of Dermatology, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Takayuki Asao
- Department of Oncology Clinical Development, Gunma University Graduate School of Medicine, Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Osamu Ishikawa
- Department of Dermatology, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan
| |
Collapse
|
4
|
Millen R, Malaterre J, Cross RS, Carpinteri S, Desai J, Tran B, Darcy P, Gibbs P, Sieber O, Zeps N, Waring P, Fox S, Pereira L, Ramsay RG. Immunomodulation by MYB is associated with tumor relapse in patients with early stage colorectal cancer. Oncoimmunology 2016; 5:e1149667. [PMID: 27622014 PMCID: PMC5006930 DOI: 10.1080/2162402x.2016.1149667] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 01/26/2016] [Accepted: 01/27/2016] [Indexed: 01/26/2023] Open
Abstract
The presence of tumor immune infiltrating cells (TILs), particularly CD8+ T-cells, is a robust predictor of outcome in patients with colorectal cancer (CRC). We revisited TIL abundance specifically in patients with microsatellite stable (MSS) CRC without evidence of lymph node or metastatic spread. Examination of the density of CD8+ T-cells in primary tumors in the context of other pro-oncogenic markers was performed to investigate potential regulators of TILs. Two independent cohorts of patients with MSS T2-4N0M0 CRC, enriched for cases with atypical relapse, were investigated. We quantified CD8+ and CD45RO+ -TILs, inflammatory markers, NFkBp65, pStat3, Cyclo-oxygenase-2 (COX2) and GRP78 as well as transcription factors (TF), β-catenin and MYB. High CD8+ TILs correlated with a better relapse-free survival in both cohorts (p = 0.002) with MYB and its target gene, GRP78 being higher in the relapse group (p = 0.001); no difference in pSTAT3 and p65 was observed. A mouse CRC (CT26) model was employed to evaluate the effect of MYB on GRP78 expression as well as T-cell infiltration. MYB over-expressing in CT26 cells increased GRP78 expression and the analysis of tumor-draining lymph nodes adjacent to tumors showed reduced T-cell activation. Furthermore, MYB over-expression reduced the efficacy of anti-PD-1 to modulate CT26 tumor growth. This high MYB and GRP78 show a reciprocal relationship with CD8+ TILs which may be useful refining the prediction of patient outcome. These data reveal a new immunomodulatory function for MYB suggesting a basis for further development of anti-GRP78 and/or anti-MYB therapies.
Collapse
Affiliation(s)
- Rosemary Millen
- Peter MacCallum Cancer Center and The Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne ,Victoria, Australia; St Vincent's Hospital, Fitzroy, Victoria, Australia
| | - Jordane Malaterre
- Peter MacCallum Cancer Center and The Sir Peter MacCallum Department of Oncology, University of Melbourne , Melbourne ,Victoria, Australia
| | - Ryan S Cross
- Peter MacCallum Cancer Center and The Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne ,Victoria, Australia; The Department of Pathology, University of Melbourne, Melbourne Victoria, Australia
| | - Sandra Carpinteri
- Peter MacCallum Cancer Center and The Sir Peter MacCallum Department of Oncology, University of Melbourne , Melbourne ,Victoria, Australia
| | - Jayesh Desai
- Peter MacCallum Cancer Center and The Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne ,Victoria, Australia; Royal Melbourne Hospital and Systems Biology and Personalised Medicine Division, Walter and Eliza Hall Institute, Parkville, Victoria, Australia
| | - Ben Tran
- Royal Melbourne Hospital and Systems Biology and Personalised Medicine Division, Walter and Eliza Hall Institute , Parkville, Victoria, Australia
| | - Phillip Darcy
- Peter MacCallum Cancer Center and The Sir Peter MacCallum Department of Oncology, University of Melbourne , Melbourne ,Victoria, Australia
| | - Peter Gibbs
- Royal Melbourne Hospital and Systems Biology and Personalised Medicine Division, Walter and Eliza Hall Institute , Parkville, Victoria, Australia
| | - Oliver Sieber
- Royal Melbourne Hospital and Systems Biology and Personalised Medicine Division, Walter and Eliza Hall Institute , Parkville, Victoria, Australia
| | - Nikolajs Zeps
- St John of God Subiaco Hospital, Subiaco, Western Australia, Australia; The School of Surgery, The University of Western Australia, Nedlands, Western Australia, Australia
| | - Paul Waring
- The Department of Pathology, University of Melbourne , Melbourne Victoria, Australia
| | - Stephen Fox
- Peter MacCallum Cancer Center and The Sir Peter MacCallum Department of Oncology, University of Melbourne , Melbourne ,Victoria, Australia
| | - Lloyd Pereira
- Peter MacCallum Cancer Center and The Sir Peter MacCallum Department of Oncology, University of Melbourne , Melbourne ,Victoria, Australia
| | - Robert G Ramsay
- Peter MacCallum Cancer Center and The Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne ,Victoria, Australia; The Department of Pathology, University of Melbourne, Melbourne Victoria, Australia
| |
Collapse
|
5
|
Hugo HJ, Saunders C, Ramsay RG, Thompson EW. New Insights on COX-2 in Chronic Inflammation Driving Breast Cancer Growth and Metastasis. J Mammary Gland Biol Neoplasia 2015; 20:109-19. [PMID: 26193871 DOI: 10.1007/s10911-015-9333-4] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 06/29/2015] [Indexed: 12/22/2022] Open
Abstract
The medicinal use of aspirin stretches back to ancient times, before it was manufactured in its pure form in the late 19th century. Its accepted mechanistic target, cyclooxygenase (COX), was discovered in the 1970s and since this landmark discovery, the therapeutic application of aspirin and other non-steroidal anti-inflammatory drugs (NSAIDs) has increased dramatically. The most significant benefits of NSAIDs are in conditions involving chronic inflammation (CI). Given the recognized role of CI in cancer development, the use of long-term NSAID treatment in the prevention of cancer is an enticing possibility. COX-2 is a key driver of CI, and here we review COX-2 expression as a predictor of survival in various cancer types, including breast. Obesity and post-partum involution are natural inflammatory states that are associated with increased breast cancer risk. We outline the COX-2 mediated mechanisms contributing to the growth of cancers. We dissect the cellular mechanism of epithelial-mesenchymal transition (EMT) and how COX-2 may induce this to facilitate tumor progression. Finally we examine the potential regulation of COX-2 by c-Myb, and the possible interplay between c-Myb/COX-2 in proliferation, and hypoxia inducible factor-1 alpha (HIF1α)/COX-2 in invasive pathways in breast cancer.
Collapse
Affiliation(s)
- Honor J Hugo
- VBCRC Invasion and Metastasis Unit, St Vincent's Institute, Fitzroy, VIC, Australia.
| | - C Saunders
- School of Surgery, University of Western Australia, Perth, Western Australia, Australia
| | - R G Ramsay
- Differentation and Transcription Laboratory, Peter MacCallum Cancer Centre and the Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC, Australia
| | - E W Thompson
- VBCRC Invasion and Metastasis Unit, St Vincent's Institute, Fitzroy, VIC, Australia
- Institute of Health and Biomedical Innovation and School of Biomedical Sciences, Queensland Institute of Technology, Brisbane, QLD, Australia
- Department of Surgery, St Vincent's Hospital, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
6
|
Therapeutic DNA vaccination against colorectal cancer by targeting the MYB oncoprotein. Clin Transl Immunology 2015; 4:e30. [PMID: 25671128 PMCID: PMC4318491 DOI: 10.1038/cti.2014.29] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Revised: 12/02/2014] [Accepted: 12/03/2014] [Indexed: 12/18/2022] Open
Abstract
Cancers can be addicted to continued and relatively high expression of nuclear oncoproteins. This is evident in colorectal cancer (CRC) where the oncoprotein and transcription factor MYB is over expressed and essential to continued proliferation and tumour cell survival. Historically, targeting transcription factors in the context of cancer has been very challenging. Nevertheless, we formulated a DNA vaccine to generate a MYB-specific immune response in the belief MYB peptides might be aberrantly presented on the cell surface of CRC cells. MYB, like many tumour antigens, is weakly immunogenic as it is a 'self' antigen and is subject to tolerance. To break tolerance, a fusion vaccine was generated comprising a full-length MYB complementary DNA (cDNA) flanked by two potent CD4-epitopes derived from tetanus toxoid. Vaccination was achieved against tumours initiated by two distinct highly aggressive, syngeneic cancer cell lines (CT26 and MC38) that express MYB. This was done in BALB/c and C57BL/6 mouse strains respectively. We introduced multiple inactivating mutations into the oncogene sequence for safety and sub-cloned the cDNA into a Food and Drug Administration (FDA)-compliant vector. We used low dose cyclophosphamide (CY) to overcome T-regulatory cell immune suppression, and anti-program cell death receptor 1 (anti-PD-1) antibodies to block T-cell exhaustion. Anti-PD-1 administered alone slightly delayed tumour growth in MC38 and more effectively in CT26 bearing mice, while CY treatment alone did not. We found that therapeutic vaccination elicits protection when MC38 tumour burden is low, mounts tumour-specific cell killing and affords enhanced protection when MC38 and CT26 tumour burden is higher but only in combination with anti-PD-1 antibody or low dose CY, respectively.
Collapse
|
7
|
Proteome changes induced by c-myb silencing in human chronic myeloid leukemia cells suggest molecular mechanisms and putative biomarkers of hematopoietic malignancies. J Proteomics 2013; 96:200-22. [PMID: 24220303 DOI: 10.1016/j.jprot.2013.10.040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Revised: 10/18/2013] [Accepted: 10/30/2013] [Indexed: 11/23/2022]
Abstract
UNLABELLED To shed light on the molecular mechanisms associated with aberrant accumulation of c-Myb in chronic myeloid leukemia, comparative proteomic analysis was performed on c-myb RNAi-specifically silenced K562 cells, sampled on a time-course basis. 2D-DIGE technology highlighted 37 differentially-represented proteins that were further characterized by nLC-ESI-LIT-MS/MS and validated by western blotting and qRT-PCR analysis. Most of the deregulated proteins were related to protein folding, energy/primary metabolism, transcription/translation regulation and oxidative stress response. Protein network analysis suggested that glycolysis, gluconeogenesis and protein ubiquitination biosynthesis pathways were highly represented, confirming also the pivotal role of c-Myc. A specific reduced representation was observed for glyceraldehyde-3-phosphate-dehydrogenase and α-enolase, suggesting a possible role of c-Myb in the activation of aerobic glycolysis. A reduced amount was also observed for stress responsive heat shock 70kDa protein and 78kDa glucose-regulated protein, previously identified as direct targets of c-Myb. Among over-represented proteins, worth mentioning is the chromatin modifier chromobox protein homolog 3 that contributes to silencing of E2F- and Myc-responsive genes in quiescent G0 cells. Data here presented, while providing novel insights onto the molecular mechanisms underlying c-Myb activity, indicate potential protein biomarkers for monitoring the progression of chronic myeloid leukemia. BIOLOGICAL SIGNIFICANCE Myeloid leukemia is a malignant disease of the hematopoietic system in which cells of myeloid lineages accumulate to an undifferentiated state. In particular, it was shown that an aberrant accumulation of the c-Myb transcriptional factor is associated with the suppression of normal differentiation processes promoting the development of the hematopoietic malignancies. Many efforts have been recently made to identify novel genes directly targeted by c-Myb at a transcriptome level. In this work, we originally describe a differential proteomic approach to facilitate the comprehension of the regulation of the protein networks exerted by c-Myb. Our study reveals a complex network of proteins regulated by c-Myb. The functional heterogeneity of these proteins emphasizes the pleiotropic role of c-Myb as a regulator of genes that are crucial for energy production and stress response in leukemia. In fact, variations in glyceraldehyde-3-phosphate-dehydrogenase and α-enolase suggest a possible role of c-Myb in the activation of aerobic glycolysis. Moreover, significant differences were found for heat shock 70kDa protein and 78kDa glucose-regulated protein known as direct c-Myb targets. This work highlights potential protein biomarkers to look into disease progression and to develop translational medicine approaches in myeloid leukemia.
Collapse
|
8
|
Zhao L, Ye P, Gonda TJ. The MYB proto-oncogene suppresses monocytic differentiation of acute myeloid leukemia cells via transcriptional activation of its target gene GFI1. Oncogene 2013; 33:4442-9. [PMID: 24121275 DOI: 10.1038/onc.2013.419] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 08/14/2013] [Accepted: 09/02/2013] [Indexed: 12/20/2022]
Abstract
The MYB gene is a master regulator of hematopoiesis and contributes to leukemogenesis in several species including humans. Although it is clear that MYB can promote proliferation, suppress apoptosis and block differentiation, the identities of the MYB target genes that mediate these effects have only been partially elucidated. Several studies, including our own, have collectively identified substantial numbers of MYB target genes, including candidates for each of these activities; however, functional validation, particularly in the case of differentiation suppression, has lagged well behind. Here we show that GFI1, which encodes an important regulator of hematopoietic stem cell (HSC) function and granulocytic differentiation, is a direct target of MYB in myeloid leukemia cells. Chromatin immunoprecipitation and reporter studies identified a functional MYB-binding site in the promoter region of GFI, whereas ectopic expression and small hairpin RNA-mediated knockdown of MYB resulted in concomitant increases and decreases, respectively, in GFI1 expression. We also demonstrate that GFI1, like MYB, can block the induced monocytic differentiation of a human acute myeloid leukemia cell line, and most importantly, that GFI1 is essential for MYB's ability to block monocytic differentiation. Thus, we have identified a target of MYB that is a likely mediator of its myeloid differentiation-blocking activity, and which may also be involved in MYB's activities in regulating normal HSC function and myeloid differentiation.
Collapse
Affiliation(s)
- L Zhao
- The University of Queensland Diamantina Institute, Brisbane, Queensland, Australia
| | - P Ye
- 1] The University of Queensland Diamantina Institute, Brisbane, Queensland, Australia [2] School of Pharmacy, The University of Queensland, Pharmacy Australia Centre of Excellence, Brisbane, Queensland, Australia
| | - T J Gonda
- 1] The University of Queensland Diamantina Institute, Brisbane, Queensland, Australia [2] School of Pharmacy, The University of Queensland, Pharmacy Australia Centre of Excellence, Brisbane, Queensland, Australia
| |
Collapse
|
9
|
Avila MF, Cabezas R, Torrente D, Gonzalez J, Morales L, Alvarez L, Capani F, Barreto GE. Novel interactions of GRP78: UPR and estrogen responses in the brain. Cell Biol Int 2013; 37:521-32. [DOI: 10.1002/cbin.10058] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 01/22/2013] [Indexed: 12/21/2022]
Affiliation(s)
- Marco Fidel Avila
- Departamento de Nutrición y Bioquímica; Facultad de Ciencias, Pontificia Universidad Javeriana; Bogotá D.C., Colombia
| | - Ricardo Cabezas
- Departamento de Nutrición y Bioquímica; Facultad de Ciencias, Pontificia Universidad Javeriana; Bogotá D.C., Colombia
| | - Daniel Torrente
- Departamento de Nutrición y Bioquímica; Facultad de Ciencias, Pontificia Universidad Javeriana; Bogotá D.C., Colombia
| | - Janneth Gonzalez
- Departamento de Nutrición y Bioquímica; Facultad de Ciencias, Pontificia Universidad Javeriana; Bogotá D.C., Colombia
| | - Ludis Morales
- Departamento de Nutrición y Bioquímica; Facultad de Ciencias, Pontificia Universidad Javeriana; Bogotá D.C., Colombia
| | - Lisandro Alvarez
- Laboratorio de Citoarquitectura y Plasticidad Neuronal, Instituto de Investigaciones Cardiológicas Prof. Dr. Alberto C. Taquini (ININCA), Facultad de Medicina, UBA-CONICET; Marcelo T. de Alvear 2270, C1122AAJ Buenos Aires; Argentina
| | - Francisco Capani
- Laboratorio de Citoarquitectura y Plasticidad Neuronal, Instituto de Investigaciones Cardiológicas Prof. Dr. Alberto C. Taquini (ININCA), Facultad de Medicina, UBA-CONICET; Marcelo T. de Alvear 2270, C1122AAJ Buenos Aires; Argentina
| | - George E. Barreto
- Departamento de Nutrición y Bioquímica; Facultad de Ciencias, Pontificia Universidad Javeriana; Bogotá D.C., Colombia
| |
Collapse
|
10
|
Ye P, Zhao L, Gonda TJ. The MYB oncogene can suppress apoptosis in acute myeloid leukemia cells by transcriptional repression of DRAK2 expression. Leuk Res 2013; 37:595-601. [PMID: 23398943 DOI: 10.1016/j.leukres.2013.01.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Revised: 01/14/2013] [Accepted: 01/16/2013] [Indexed: 11/19/2022]
Abstract
RNA interference-mediated suppression of MYB expression promoted apoptosis in the AML cell line U937, without affecting expression of the anti-apoptotic MYB target BCL2. This was accompanied by up-regulation of the pro-apoptotic gene DRAK2 and stimulation of caspase-9 activity. Moreover, RNA interference-mediated suppression of DRAK2 in U937 cells alleviated apoptosis induced by MYB down-regulation. Finally ChIP assays showed that in U937 cells MYB binds to a conserved element upstream of the DRAK2 transcription start site. Together, these findings identify a novel mechanism by which MYB suppresses apoptosis in an AML model cell line.
Collapse
Affiliation(s)
- Ping Ye
- School of Pharmacy, The University of Queensland, Brisbane, Queensland, Australia
| | | | | |
Collapse
|
11
|
Satkoski Trask JA, Garnica WT, Smith DG, Houghton P, Lerche N, Kanthaswamy S. Single-nucleotide polymorphisms reveal patterns of allele sharing across the species boundary between rhesus (Macaca mulatta) and cynomolgus (M. fascicularis) macaques. Am J Primatol 2012; 75:135-44. [PMID: 23165690 DOI: 10.1002/ajp.22091] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Revised: 09/20/2012] [Accepted: 09/30/2012] [Indexed: 12/21/2022]
Abstract
Both phenotypic and genetic evidence for asymmetric hybridization between rhesus (Macaca mulatta) and cynomolgus (Macaca fascicularis) macaques has been observed in the region of Indochina where both species are sympatric. The large-scale sharing of major histocompatibility complex (MHC) class II alleles between the two species in this region supports the hypothesis that genes, and especially genes involved in immune response, are being transferred across the species boundary. This differential introgression has important implications for the incorporation of cynomolgus macaques of unknown geographic origin in biomedical research protocols. Our study found that for 2,808 single-nucleotide polymorphism (SNP) markers, the minor allele frequencies (MAF) and observed heterozygosity calculated from a sample of Vietnamese cynomolgus macaques was significantly different from those calculated from samples of both Chinese rhesus and Indonesian cynomolgus macaques. SNP alleles from Chinese rhesus macaques were overrepresented in a sample of Vietnamese cynomolgus macaques relative to their Indonesian conspecifics and located in genes functionally related to the primary immune system. These results suggest that Indochinese cynomolgus macaques represent a genetically and immunologically distinct entity from Indonesian cynomolgus macaques.
Collapse
|
12
|
Fasano E, Serini S, Piccioni E, Toesca A, Monego G, Cittadini AR, Ranelletti FO, Calviello G. DHA induces apoptosis by altering the expression and cellular location of GRP78 in colon cancer cell lines. Biochim Biophys Acta Mol Basis Dis 2012; 1822:1762-72. [PMID: 22898250 DOI: 10.1016/j.bbadis.2012.08.003] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Revised: 08/01/2012] [Accepted: 08/03/2012] [Indexed: 10/28/2022]
Abstract
n-3 polyunsaturated fatty acids exert growth-inhibitory and pro-apoptotic effects in colon cancer cells. We hypothesized that the anti-apoptotic glucose related protein of 78kDa (GRP78), originally described as a component of the unfolded protein response in endoplasmic reticulum (ER), could be a molecular target for docosahexaenoic acid (DHA) in these cells. GRP78 total and surface overexpression was previously associated with a poor prognosis in several cancers, whereas its down-regulation with decreased cancer growth in animal models. DHA treatment induced apoptosis in three colon cancer cell lines (HT-29, HCT116 and SW480), and inhibited their total and surface GRP78 expression. The cell ability to undergo DHA-induced apoptosis was inversely related to their level of GRP78 expression. The transfection of the low GRP78-expressing SW480 cells with GRP78-GFP cDNA significantly induced cell growth and inhibited the DHA-driven apoptosis, thus supporting the essential role of GRP78 in DHA pro-apoptotic effect. We suggest that pERK1/2 could be the first upstream target for DHA, and demonstrate that, downstream of GRP78, DHA may exert its proapoptotic role by augmenting the expression of the ER resident factors ERdj5 and inhibiting the phosphorylation of PKR-like ER kinase (PERK), known to be both physically associated with GRP78, and by activating caspase-4. Overall, the regulation of cellular GRP78 expression and location is suggested as a possible route through which DHA can exert pro-apoptotic and antitumoral effects in colon cancer cells.
Collapse
Affiliation(s)
- Elena Fasano
- Institute of General Pathology, Università Cattolica del Sacro Cuore, Largo F. Vito, 1-00168 Rome, Italy
| | | | | | | | | | | | | | | |
Collapse
|
13
|
CD147 induces UPR to inhibit apoptosis and chemosensitivity by increasing the transcription of Bip in hepatocellular carcinoma. Cell Death Differ 2012; 19:1779-90. [PMID: 22595757 DOI: 10.1038/cdd.2012.60] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The unfolded protein response (UPR) is generally activated in solid tumors and results in tumor cell anti-apoptosis and drug resistance. However, tumor-specific UPR transducers are largely unknown. In the present study, we identified CD147, a cancer biomarker, as an UPR inducer in hepatocellular carcinoma (HCC). The expression of the major UPR target, Bip, was found to be positively associated with CD147 in human hepatoma tissues. By phosphorylating FAK and Src, CD147-enhanced TFII-I tyrosine phosphorylation at Tyr248. CD147 also induced p-TFII-I nuclear localization and binding to the Bip promoter where endoplasmic reticulum (ER) stress response element 1 (ERSE1) (-82/-50) is the most efficient target of the three ERSEs, thus increasing transcription of Bip. Furthermore, by inducing UPR, CD147 inhibited HCC cell apoptosis and decreased cell Adriamycin chemosensitivity, thus decreasing the survival rate of hepatoma-bearing nude mice. Together, these results reveal pivotal roles for CD147 in modulating the UPR in HCC and raise the possibility that CD147 is a target that promotes HCC cell apoptosis and increases the sensitivity of tumors to anti-cancer drugs. Therefore, CD147 inhibition provides an opportunity to enhance the efficacy of existing agents and represents a novel target for HCC treatment.
Collapse
|
14
|
Abstract
Sequences of molecular events that initiate and advance the progression of human colorectal cancer (CRC) are becoming clearer. Accepting that these events, once they are in place, accumulate over time, rapid disease progression might be expected. Yet CRC usually develops slowly over decades. Emerging insights suggest that the tumor cell microenvironment encompassing fibroblasts and endothelial and immune cells dictate when, whether, and how malignancies progress. Signaling pathways that affect the microenvironment and the inflammatory response seem to play a central role in CRC. Indeed, some of these pathways directly regulate the stem/progenitor cell niche at the base of the crypt; it now appears that the survival and growth of neoplastic cells often relies upon their subverted engagement of these pathways. Spurned on by the use of gene manipulation technologies in the mouse, dissecting and recapitulating these complex molecular interactions between the tumor and its microenvironment in the gastrointestinal (GI) tract is a reality. In parallel, our ability to isolate and grow GI stem cells in vitro enables us, for the first time, to complement reductionist in vitro findings with complex in vivo observations. Surprisingly, data suggest that the large number of signaling pathways underpinning the reciprocal interaction between the neoplastic epithelium and its microenvironment converge on a small number of common transcription factors. Here, we review the separate and interactive roles of NFκB, Stat3, and Myb, transcription factors commonly overexpressed or excessively activated in CRC. They confer molecular links between inflammation, stroma, the stem cell niche, and neoplastic cell growth.
Collapse
Affiliation(s)
- Matthias Ernst
- Ludwig Institute for Cancer Research, Melbourne, Victoria, Australia
| | | |
Collapse
|
15
|
Miao RY, Drabsch Y, Cross RS, Cheasley D, Carpinteri S, Pereira L, Malaterre J, Gonda TJ, Anderson RL, Ramsay RG. MYB is essential for mammary tumorigenesis. Cancer Res 2011; 71:7029-37. [PMID: 21948968 DOI: 10.1158/0008-5472.can-11-1015] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
MYB oncogene upregulation is associated with estrogen receptor (ER)-positive breast cancer, but disease requirements for MYB function in vivo have not been explored. In this study, we provide evidence of a critical requirement for MYB functions in models of human and murine breast cancer. In human breast cancer, we found that MYB expression was critical for tumor cell growth both in vitro and in vivo in xenograft settings. In transgenic knockout mice, tissue-specific deletion of the murine MYB gene caused a transient defect in mammary gland development that was reflected in delayed ductal branching and defective apical bud formation. In mouse mammary tumor virus (MMTV)-NEU mice where tumors are initiated by activation of HER2, MYB deletion was sufficient to abolish tumor formation. In the more aggressive MMTV-PyMT model system, MYB deletion delayed tumorigenesis significantly. Together, the findings in these transgenic knockout models implied that MYB was critical during an early window in mammary development when it was essential for tumor initiation, even though MYB loss did not exert a lasting impact upon normal mammary function. Two important MYB-target genes that promote cell survival, BCL2 and GRP78/BIP, were each elevated compared with nontransformed mammary epithelial cells, thereby promoting survival as confirmed in colony formation assays in vitro. Taken together, our findings establish a role for MYB at the hub of ER- and HER2-dependent pathways in mammary carcinogenesis.
Collapse
Affiliation(s)
- Rebecca Yu Miao
- Peter MacCallum Cancer Centre and Department of Pathology, University of Melbourne, Melbourne, Victoria, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Zhao L, Glazov EA, Pattabiraman DR, Al-Owaidi F, Zhang P, Brown MA, Leo PJ, Gonda TJ. Integrated genome-wide chromatin occupancy and expression analyses identify key myeloid pro-differentiation transcription factors repressed by Myb. Nucleic Acids Res 2011; 39:4664-79. [PMID: 21317192 PMCID: PMC3113568 DOI: 10.1093/nar/gkr024] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2010] [Revised: 01/11/2011] [Accepted: 01/12/2011] [Indexed: 12/28/2022] Open
Abstract
To gain insight into the mechanisms by which the Myb transcription factor controls normal hematopoiesis and particularly, how it contributes to leukemogenesis, we mapped the genome-wide occupancy of Myb by chromatin immunoprecipitation followed by massively parallel sequencing (ChIP-Seq) in ERMYB myeloid progenitor cells. By integrating the genome occupancy data with whole genome expression profiling data, we identified a Myb-regulated transcriptional program. Gene signatures for leukemia stem cells, normal hematopoietic stem/progenitor cells and myeloid development were overrepresented in 2368 Myb regulated genes. Of these, Myb bound directly near or within 793 genes. Myb directly activates some genes known critical in maintaining hematopoietic stem cells, such as Gfi1 and Cited2. Importantly, we also show that, despite being usually considered as a transactivator, Myb also functions to repress approximately half of its direct targets, including several key regulators of myeloid differentiation, such as Sfpi1 (also known as Pu.1), Runx1, Junb and Cebpb. Furthermore, our results demonstrate that interaction with p300, an established coactivator for Myb, is unexpectedly required for Myb-mediated transcriptional repression. We propose that the repression of the above mentioned key pro-differentiation factors may contribute essentially to Myb's ability to suppress differentiation and promote self-renewal, thus maintaining progenitor cells in an undifferentiated state and promoting leukemic transformation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Thomas J. Gonda
- The University of Queensland Diamantina Institute, Brisbane, Queensland 4102, Australia
| |
Collapse
|
17
|
Unfolded protein response activation contributes to chemoresistance in hepatocellular carcinoma. Eur J Gastroenterol Hepatol 2010; 22:1099-105. [PMID: 20177386 DOI: 10.1097/meg.0b013e3283378405] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Hepatocellular carcinoma (HCC) has an annual worldwide incidence of 626 000 cases and causes 550 000 deaths per year. Although the mainstay of treatment is surgical resection, for inoperable or metastatic disease, chemotherapy may be offered. The primary agent used is doxorubicin, but response rates are poor (<20%). The unfolded protein response (UPR) is a cytoprotective cellular stress response that enables cells to survive periods of hypoxia and nutrient deprivation. The UPR may confer resistance to anticancer agents and contribute to treatment failure. This study has investigated whether the UPR is activated in HCC and whether this may contribute to doxorubicin resistance. METHODS Eighty-six human HCCs were immunohistochemically stained for glucose regulated protein 78, the key marker of UPR activation. An in-vitro model of UPR activation in HepG2 HCC cells was developed by glucose deprived culture. UPR activation was confirmed with western blotting and PCR to show overexpression of glucose regulated protein 78. The relative efficacy of doxorubicin chemotherapy on UPR-activated HepG2 cells was compared with normal HepG2 cells by use of an thiazolyl blue tetrazolium bromide colorimetric assay. RESULTS Expression of glucose regulated protein 78 was shown in 100% of the HCC samples with 66% showing strong staining. In-vitro UPR activation was achieved with glucose deprivation. UPR activation induced significant resistance to doxorubicin: 34% survival under standard culture conditions versus 58% and 63% for UPR-activated cells in 0.5 and 1 mmol glucose respectively (P=0.00928). CONCLUSION The UPR is activated in HCCs and confers resistance to chemotherapy in vitro. UPR activation may contribute to HCC chemoresistance.
Collapse
|
18
|
Abstract
Cell surface expression of glucose-regulated protein 78 (GRP78) occurs in several types of cancer; however, its role in the behavior of primary cutaneous melanoma is not well studied. The association of cell surface GRP78 with other proteins such as MTJ1 stimulates cell proliferation. In this study, we characterized the pattern of expression of GRP78 and MTJ1 in invasive primary cutaneous melanomas and analyzed the relationships between the pattern of expression and various clinicopathological parameters. We found two patterns of GRP78 expression in invasive primary cutaneous melanoma. One pattern showed a gradual fading of protein expression from superficial to deeper levels within the same tumor. The second pattern of expression showed a similar fading with an abrupt regaining of expression at the deep invasive edge of the melanoma. These two distinct patterns of GRP78 expression correlated with both patient survival and depth of tumor invasion. A moderate MTJ1 expression was found to be associated with decreased patient survival; however, no significant associations were observed between patterns of GRP78 and MTJ1 expression. Our study (1) describes two distinct patterns of GRP78 in invasive primary cutaneous melanoma, (2) inversely correlates regain of GRP78 expression with patient survival, and (3) suggests a modifying effect of MTJ1 on GRP78 in enhancing tumor aggressiveness.
Collapse
|
19
|
Zhuang L, Scolyer RA, Lee CS, McCarthy SW, Cooper WA, Zhang XD, Thompson JF, Hersey P. Expression of glucose-regulated stress protein GRP78 is related to progression of melanoma. Histopathology 2009; 54:462-70. [DOI: 10.1111/j.1365-2559.2009.03242.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
20
|
Siyan W, Feng Y, Lichuan Z, Jiarui W, Yingyan W, Li J, Bingcheng L, Qi W. Application of microfluidic gradient chip in the analysis of lung cancer chemotherapy resistance. J Pharm Biomed Anal 2008; 49:806-10. [PMID: 19162424 DOI: 10.1016/j.jpba.2008.12.021] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2008] [Revised: 11/26/2008] [Accepted: 12/11/2008] [Indexed: 01/05/2023]
Abstract
The major challenge of chemotherapy is the disease resistance for many lung cancer patients. Integrated microfluidic systems offer many desirable characteristics and can be used in cellular biological analysis. This work aimed to study the correlation between the expression of Glucose Regulated Protein-78 (GRP78) and the resistance to anticancer drug VP-16 in human lung squamous carcinoma cell line SK-MES-1 using an integrated microfluidic gradient chip device. We used A23187, a GRP78 inducer, with a gradient concentration in the upstream network of the device to induce the expression of GRP78 in the cells cultured in the downstream before the addition of VP-16. The expression of GRP78 was detected by immunofluorescence, the apoptosis for the cells treated by VP-16 was assessed morphologically by 4',6-diamidino-2-phenylindole (DAPI) staining. The results indicated that the expressions of GRP78 increased greatly for the cells under the induction of A23187 with a dose-depended manner, while the percentage of apoptotic cells decreased significantly after being treated by VP-16. Our results from this study confirmed the role of GRP78 played in the chemotherapy resistance to VP-16 in SK-MES-1 cell line, suggesting that the integrated microfluidic systems may be an unique approach for characterizing the cellular responses.
Collapse
Affiliation(s)
- Wang Siyan
- Department of Emergencyt, The Second Hospital Affiliated to Dalian Medical University, 467 Zhongshan Road, Dalian 116023, China
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Chiu CC, Lin CY, Lee LY, Chen YJ, Kuo TF, Chang JTC, Liao CT, Wang HM, Yen TC, Shen CR, Liao SK, Cheng AJ. Glucose-regulated protein 78 regulates multiple malignant phenotypes in head and neck cancer and may serve as a molecular target of therapeutic intervention. Mol Cancer Ther 2008; 7:2788-97. [PMID: 18790759 DOI: 10.1158/1535-7163.mct-08-0172] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Glucose-regulated protein 78 (Grp78) is an endoplasmic reticulum chaperone protein and is overexpressed in various cancers. However, it is unclear how significance of this molecule play an active role contributing to the oncogenic effect of head and neck cancer (HNC). To investigate the potential function of Grp78, six HNC cell lines were used. We found that Grp78 is highly expressed in all six cell lines and many of the proteins were localized in the periphery regions, implying other function of this molecule aside from endoplasmic reticulum stress response. Knockdown of Grp78 by small interfering RNA significantly reduced cell growth and colony formation to 53% to 12% compared with that of controls in all six HNC cell lines. Using in vitro wound healing and Matrigel invasion assays, we found that cell migration and invasive ability were also inhibited to 23% to 2% in all these cell lines tested. In vivo xenograft studies showed that administration of Grp78-small interfering RNA plasmid into HNC xenografts significantly inhibited both tumor growth in situ (>60% inhibition at day 34) and liver metastasis (>90% inhibition at day 20). Our study showed that Grp78 actively regulates multiple malignant phenotypes, including cell growth, migration, and invasion. Because knockdown Grp78 expression succeeds in the reduction of tumor growth and metastatic potential, this molecule may serve as a molecular target of therapeutic intervention for HNC.
Collapse
Affiliation(s)
- Ching-Chi Chiu
- Graduate Institute of Biomedical Science, Chang Gung University, Taoyuan, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Ying-Yan W, Tao W, Xin L, Hong-Wei G, Bing-Cheng L, Qi W. The analysis of chemotherapy resistance in human lung cancer cell line with microchip-based system. Biomed Microdevices 2008; 10:429-35. [PMID: 18368495 DOI: 10.1007/s10544-007-9152-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Microchip-based systems have many desirable characteristics and can be used in much cellular biochemical analysis. Glucose-regulated protein 78 (GRP78), an endoplasmic reticulum chaperone, has a critical role in chemotherapy resistance of some cancers. This work aimed at analyzing the correlation between the expression of GRP78 and an anticancer drug, topoisomerase II inhibitor-VP-16, in human lung cancer cell line NCI-H460 using this microchip-based system. The cells were cultured on a PDMS chip, the expression of GRP78 at both protein and mRNA levels for the cells under the condition with or without the induction of A23187 were assayed by immunofluorescence and chip electrophoresis, respectively. Then the cells were treated by VP-16, percentages of apoptosis and the cycle distributions of the cells were detected by flow cytometry. The cells cultured on the PDMS attached and spread well to micro-channels with high viability. Compared with the non-induced cells, the expression of GRP78 at both protein and mRNA levels for the A23187-induced cells were increased greatly. After treatment by VP-16, the percentage of apoptotic cells decreased nearly threefold for the A23187-induced cells in contrast to the non-induced cells (13.15 +/- 3.84% versus 34.03 +/- 11.45%), and the cells distributed in S phase reduced dramatically (11.96 +/- 1.27% versus 20.76 +/- 3.05%) whereas in G(1) phase increased greatly (74.16 +/- 0.95% versus 57.06 +/- 4%). GRP78 is correlated to the resistance to VP-16 in human lung cancer cell line. The microchip-based system has the potential application and feasibility for cell culture and its functional research.
Collapse
Affiliation(s)
- Wang Ying-Yan
- Laboratory Center for Diagnostics, Dalian Medical University, Dalian, 116023, Liaoning, China
| | | | | | | | | | | |
Collapse
|
23
|
Selective anticancer strategies via intervention of the death pathways relevant to cell transformation. Cell Death Differ 2008; 15:1197-210. [DOI: 10.1038/cdd.2008.48] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
24
|
Beachy S, Kisailus A, Repasky E, Subjeck J, Wang X, Kazim A. Engineering secretable forms of chaperones for immune modulation and vaccine development. Methods 2007; 43:184-93. [PMID: 17920514 DOI: 10.1016/j.ymeth.2007.06.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2007] [Accepted: 06/25/2007] [Indexed: 12/22/2022] Open
|
25
|
Berge T, Matre V, Brendeford EM, Saether T, Lüscher B, Gabrielsen OS. Revisiting a selection of target genes for the hematopoietic transcription factor c-Myb using chromatin immunoprecipitation and c-Myb knockdown. Blood Cells Mol Dis 2007; 39:278-86. [PMID: 17587615 DOI: 10.1016/j.bcmd.2007.05.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2007] [Accepted: 05/21/2007] [Indexed: 12/24/2022]
Abstract
The transcription factor c-Myb is an important regulator of hematopoiesis required for proper development of most blood cell lineages in vertebrates. An increasing number of target genes for c-Myb are being published, although with little or no overlap between the lists of genes reported. This raises the question of which criteria a bona fide c-Myb-target gene should satisfy. In the present paper, we have analyzed a set of previously reported target genes using chromatin immunoprecipitation (ChIP) and siRNA-mediated knockdown. Among the seven well-studied c-Myb target genes that we analyzed by ChIP, only ADA, c-MYC and MAT2A seemed to be occupied by c-Myb under our experimental settings in the Myb-positive cell lines Jurkat and HL60. After siRNA-mediated knockdown of c-Myb expression, the expression levels of two out of three ChIP positive Myb target genes, ADA and c-MYC, were strongly affected. These results clearly demonstrate the importance of combining different methods for target gene validation and suggest that a combination of ChIP and c-Myb knockdown may represent a powerful approach to identify a core collection of c-Myb target genes.
Collapse
Affiliation(s)
- Tone Berge
- Department of Molecular Biosciences, University of Oslo, N-0316 Oslo, Norway
| | | | | | | | | | | |
Collapse
|
26
|
Abstract
Unfolded protein response (UPR) is an important genomic response to endoplasmic reticulum (ER) stress. The ER chaperones, GRP78 and Gadd153, play critical roles in cell survival or cell death as part of the UPR, which is regulated by three signaling pathways: PERK/ATF4, IRE1/XBP1 and ATF6. During the UPR, accumulated unfolded protein is either correctly refolded, or unsuccessfully refolded and degraded by the ubiquitin-proteasome pathway. When the unfolded protein exceeds a threshold, damaged cells are committed to cell death, which is mediated by ATF4 and ATF6, as well as activation of the JNK/AP-1/Gadd153-signaling pathway. Gadd153 suppresses activation of Bcl-2 and NF-kappaB. UPR-mediated cell survival or cell death is regulated by the balance of GRP78 and Gadd153 expression, which is coregulated by NF-kappaB in accordance with the magnitude of ER stress. Less susceptibility to cell death upon activation of the UPR may contribute to tumor progression and drug resistance of solid tumors.
Collapse
Affiliation(s)
- R Kim
- International Radiation Information Center, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan.
| | | | | | | |
Collapse
|
27
|
Scriven P, Brown NJ, Pockley AG, Wyld L. The unfolded protein response and cancer: a brighter future unfolding? J Mol Med (Berl) 2007; 85:331-41. [PMID: 17216204 DOI: 10.1007/s00109-006-0150-5] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2006] [Revised: 09/26/2006] [Accepted: 11/29/2006] [Indexed: 01/23/2023]
Abstract
Mammalian cells are bathed in an interstitial fluid that has a tightly regulated composition in healthy states. Interstitial fluid provides cells with all the necessary metabolic substrates (oxygen, glucose, amino acids, etc.), and waste molecules are removed by diffusion gradients that are controlled by local vascular perfusion. The health and normal function of all cells within a body is dependent on the maintenance of this microenvironment. However, many disease states cause fluctuations in this, and in some instances, these might be of sufficient severity to stress and/or be toxic to the cell. Cells have developed a number of responses to enable their survival in a hostile environment. This article discusses one such pathway--the unfolded protein response and its relationship to cancer. The molecular signalling cascade, the mechanism of its activation in cancer and the consequences of its activation for a tumour are discussed, as are clinical studies and potential translational approaches for utilising this pathway for tumour targeting.
Collapse
Affiliation(s)
- Peter Scriven
- Academic Unit of Surgical Oncology, University of Sheffield, K Floor, Royal Hallamshire Hospital, Glossop Road, Sheffield, S10 2JF, UK.
| | | | | | | |
Collapse
|