1
|
Juibari AD, Rezadoost MH, Soleimani M. The key role of Calpain in COVID-19 as a therapeutic strategy. Inflammopharmacology 2022; 30:1479-1491. [PMID: 35635676 PMCID: PMC9149670 DOI: 10.1007/s10787-022-01002-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 04/24/2022] [Indexed: 12/02/2022]
Abstract
COVID-19 is one of the viral diseases that has caused many deaths and financial losses to humans. Using the available information, this virus appears to activate the host cell-death mechanism through Calpain activation. Calpain inhibition can stop its downstream cascade reactions that cause cell death. Given the main roles of Calpain in the entry and pathogenicity of the SARS-CoV-2, its inhibition can be effective in controlling the COVID-19. This review describes how the virus activates Calpain by altering calcium flow. When Calpain was activated, the virus can enter the target cell. Subsequently, many complications of the disease, such as inflammation, cytokine storm and pulmonary fibrosis, are caused by virus-activated Calpain function. Calpain inhibitors appear to be a potential drug to control the disease and prevent death from COVID-19.
Collapse
Affiliation(s)
- Aref Doozandeh Juibari
- Department of Medical Biotechnology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | | | - Masoud Soleimani
- Department of Hematology, Faculty of Medical Sciences, Tarbiat Modarres University, Tehran, Iran
| |
Collapse
|
2
|
Pulli I, Löf C, Blom T, Asghar M, Lassila T, Bäck N, Lin KL, Nyström J, Kemppainen K, Toivola D, Dufour E, Sanz A, Cooper H, Parys J, Törnquist K. Sphingosine kinase 1 overexpression induces MFN2 fragmentation and alters mitochondrial matrix Ca2+ handling in HeLa cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1866:1475-1486. [DOI: 10.1016/j.bbamcr.2019.06.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 06/02/2019] [Accepted: 06/13/2019] [Indexed: 01/08/2023]
|
3
|
Gerbod-Giannone MC, Dallet L, Naudin G, Sahin A, Decossas M, Poussard S, Lambert O. Involvement of caveolin-1 and CD36 in native LDL endocytosis by endothelial cells. Biochim Biophys Acta Gen Subj 2019; 1863:830-838. [DOI: 10.1016/j.bbagen.2019.01.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 12/13/2018] [Accepted: 01/08/2019] [Indexed: 12/12/2022]
|
4
|
Montgomery DS, Yu L, Ghazi ZM, Thai TL, Al-Khalili O, Ma HP, Eaton DC, Alli AA. ENaC activity is regulated by calpain-2 proteolysis of MARCKS proteins. Am J Physiol Cell Physiol 2017; 313:C42-C53. [PMID: 28468944 PMCID: PMC5538800 DOI: 10.1152/ajpcell.00244.2016] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 04/13/2017] [Accepted: 04/15/2017] [Indexed: 12/27/2022]
Abstract
We previously demonstrated a role for the myristoylated alanine-rich C kinase substrate (MARCKS) to serve as an adaptor protein in the anionic phospholipid phosphate-dependent regulation of the epithelial sodium channel (ENaC). Both MARCKS and ENaC are regulated by proteolysis. Calpains are a family of ubiquitously expressed intracellular Ca2+-dependent cysteine proteases involved in signal transduction. Here we examine the role of calpain-2 in regulating MARCKS and ENaC in cultured renal epithelial cells and in the mouse kidney. Using recombinant fusion proteins, we show that MARCKS, but not the ENaC subunits, are a substrate of calpain-2 in the presence of Ca2+ Pharmacological inhibition of calpain-2 alters MARCKS protein expression in light-density sucrose gradient fractions from cell lysates of mouse cortical collecting duct cells. Calpain-dependent cleaved products of MARCKS are detectable in cultured renal cells. Ca2+ mobilization and calpain-2 inhibition decrease the association between ENaC and MARCKS. The inhibition of calpain-2 reduces ENaC activity as demonstrated by single-channel patch-clamp recordings and transepithelial current measurements. These results suggest that calpain-2 proteolysis of MARCKS promotes its interaction with lipids and ENaC at the plasma membrane to allow for the phosphatidylinositol 4,5-bisphosphate (PIP2)-dependent regulation of ENaC activity in the kidney.
Collapse
Affiliation(s)
- Darrice S Montgomery
- Department of Physiology and Functional Genomics and Department of Medicine Division of Nephrology, Hypertension, and Renal Transplantation, University of Florida College of Medicine, Gainesville, Florida
| | - Ling Yu
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China; and
| | - Zinah M Ghazi
- Department of Physiology, Emory University School of Medicine, Atlanta, Georgia
| | - Tiffany L Thai
- Department of Physiology, Emory University School of Medicine, Atlanta, Georgia
| | - Otor Al-Khalili
- Department of Physiology, Emory University School of Medicine, Atlanta, Georgia
| | - He-Ping Ma
- Department of Physiology, Emory University School of Medicine, Atlanta, Georgia
| | - Douglas C Eaton
- Department of Physiology, Emory University School of Medicine, Atlanta, Georgia
| | - Abdel A Alli
- Department of Physiology and Functional Genomics and Department of Medicine Division of Nephrology, Hypertension, and Renal Transplantation, University of Florida College of Medicine, Gainesville, Florida;
| |
Collapse
|
5
|
Mougeolle A, Poussard S, Decossas M, Lamaze C, Lambert O, Dargelos E. Oxidative stress induces caveolin 1 degradation and impairs caveolae functions in skeletal muscle cells. PLoS One 2015; 10:e0122654. [PMID: 25799323 PMCID: PMC4370508 DOI: 10.1371/journal.pone.0122654] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 02/21/2015] [Indexed: 11/19/2022] Open
Abstract
Increased level of oxidative stress, a major actor of cellular aging, impairs the regenerative capacity of skeletal muscle and leads to the reduction in the number and size of muscle fibers causing sarcopenia. Caveolin 1 is the major component of caveolae, small membrane invaginations involved in signaling and endocytic trafficking. Their role has recently expanded to mechanosensing and to the regulation of oxidative stress-induced pathways. Here, we increased the amount of reactive oxidative species in myoblasts by addition of hydrogen peroxide (H2O2) at non-toxic concentrations. The expression level of caveolin 1 was significantly decreased as early as 10 min after 500 μM H2O2 treatment. This reduction was not observed in the presence of a proteasome inhibitor, suggesting that caveolin 1 was rapidly degraded by the proteasome. In spite of caveolin 1 decrease, caveolae were still able to assemble at the plasma membrane. Their functions however were significantly perturbed by oxidative stress. Endocytosis of a ceramide analog monitored by flow cytometry was significantly diminished after H2O2 treatment, indicating that oxidative stress impaired its selective internalization via caveolae. The contribution of caveolae to the plasma membrane reservoir has been monitored after osmotic cell swelling. H2O2 treatment increased membrane fragility revealing that treated cells were more sensitive to an acute mechanical stress. Altogether, our results indicate that H2O2 decreased caveolin 1 expression and impaired caveolae functions. These data give new insights on age-related deficiencies in skeletal muscle.
Collapse
Affiliation(s)
- Alexis Mougeolle
- Univ Bordeaux, Chimie et Biologie des Membranes et Nanoobjets, UMR 5248, F-33600 Pessac, France; CNRS, Chimie et Biologie des Membranes et Nanoobjets, UMR 5248, F-33600 Pessac, France; Bordeaux INP, Chimie et Biologie des Membranes et Nanoobjets, UMR 5248, F-33600 Pessac, France
| | - Sylvie Poussard
- Univ Bordeaux, Chimie et Biologie des Membranes et Nanoobjets, UMR 5248, F-33600 Pessac, France; CNRS, Chimie et Biologie des Membranes et Nanoobjets, UMR 5248, F-33600 Pessac, France; Bordeaux INP, Chimie et Biologie des Membranes et Nanoobjets, UMR 5248, F-33600 Pessac, France
| | - Marion Decossas
- Univ Bordeaux, Chimie et Biologie des Membranes et Nanoobjets, UMR 5248, F-33600 Pessac, France; CNRS, Chimie et Biologie des Membranes et Nanoobjets, UMR 5248, F-33600 Pessac, France; Bordeaux INP, Chimie et Biologie des Membranes et Nanoobjets, UMR 5248, F-33600 Pessac, France
| | - Christophe Lamaze
- Institut Curie—Centre de Recherche, Membrane Dynamics and Mechanics of Intracellular Signaling Team, INSERM U1143, CNRS UMR 3666, Paris, France
| | - Olivier Lambert
- Univ Bordeaux, Chimie et Biologie des Membranes et Nanoobjets, UMR 5248, F-33600 Pessac, France; CNRS, Chimie et Biologie des Membranes et Nanoobjets, UMR 5248, F-33600 Pessac, France; Bordeaux INP, Chimie et Biologie des Membranes et Nanoobjets, UMR 5248, F-33600 Pessac, France
| | - Elise Dargelos
- Univ Bordeaux, Chimie et Biologie des Membranes et Nanoobjets, UMR 5248, F-33600 Pessac, France; CNRS, Chimie et Biologie des Membranes et Nanoobjets, UMR 5248, F-33600 Pessac, France; Bordeaux INP, Chimie et Biologie des Membranes et Nanoobjets, UMR 5248, F-33600 Pessac, France
- * E-mail:
| |
Collapse
|
6
|
Czikora I, Alli A, Bao HF, Kaftan D, Sridhar S, Apell HJ, Gorshkov B, White R, Zimmermann A, Wendel A, Pauly-Evers M, Hamacher J, Garcia-Gabay I, Fischer B, Verin A, Bagi Z, Pittet JF, Shabbir W, Lemmens-Gruber R, Chakraborty T, Lazrak A, Matthay MA, Eaton DC, Lucas R. A novel tumor necrosis factor-mediated mechanism of direct epithelial sodium channel activation. Am J Respir Crit Care Med 2014; 190:522-32. [PMID: 25029038 DOI: 10.1164/rccm.201405-0833oc] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
RATIONALE Alveolar liquid clearance is regulated by Na(+) uptake through the apically expressed epithelial sodium channel (ENaC) and basolaterally localized Na(+)-K(+)-ATPase in type II alveolar epithelial cells. Dysfunction of these Na(+) transporters during pulmonary inflammation can contribute to pulmonary edema. OBJECTIVES In this study, we sought to determine the precise mechanism by which the TIP peptide, mimicking the lectin-like domain of tumor necrosis factor (TNF), stimulates Na(+) uptake in a homologous cell system in the presence or absence of the bacterial toxin pneumolysin (PLY). METHODS We used a combined biochemical, electrophysiological, and molecular biological in vitro approach and assessed the physiological relevance of the lectin-like domain of TNF in alveolar liquid clearance in vivo by generating triple-mutant TNF knock-in mice that express a mutant TNF with deficient Na(+) uptake stimulatory activity. MEASUREMENTS AND MAIN RESULTS TIP peptide directly activates ENaC, but not the Na(+)-K(+)-ATPase, upon binding to the carboxy-terminal domain of the α subunit of the channel. In the presence of PLY, a mediator of pneumococcal-induced pulmonary edema, this binding stabilizes the ENaC-PIP2-MARCKS complex, which is necessary for the open probability conformation of the channel and preserves ENaC-α protein expression, by means of blunting the protein kinase C-α pathway. Triple-mutant TNF knock-in mice are more prone than wild-type mice to develop edema with low-dose intratracheal PLY, correlating with reduced pulmonary ENaC-α subunit expression. CONCLUSIONS These results demonstrate a novel TNF-mediated mechanism of direct ENaC activation and indicate a physiological role for the lectin-like domain of TNF in the resolution of alveolar edema during inflammation.
Collapse
|
7
|
Possidonio ACB, Miranda M, Gregoracci GB, Thompson FL, Costa ML, Mermelstein C. Cholesterol depletion induces transcriptional changes during skeletal muscle differentiation. BMC Genomics 2014; 15:544. [PMID: 24981252 PMCID: PMC4092213 DOI: 10.1186/1471-2164-15-544] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Accepted: 06/09/2014] [Indexed: 11/25/2022] Open
Abstract
Background Myoblasts undergo major changes in their plasma membrane during the initial steps of skeletal muscle differentiation, including major alterations in the distribution of cholesterol. Cholesterol is involved in crucial membrane functions, such as fluidity, and permeability, and in the organization of specialized membrane microdomains (or lipid rafts). We have previously shown that alterations in cholesterol levels in myoblasts induce changes in proliferation and differentiation, which involves activation of Wnt/beta-catenin signaling pathway. In this study we used methyl-β-cyclodextrin (MbCD) to extract cholesterol from the membrane of chick skeletal muscle cells grown in culture. Using Ion Torrent-based sequencing, we compared the transcriptome of untreated and MbCD treated cells. Our aim was to define the genes that are expressed in these two conditions and relate their expression to cellular functions. Results Over 5.7 million sequences were obtained, representing 671.38 Mb of information. mRNA transcriptome profiling of myogenic cells after cholesterol depletion revealed alterations in transcripts involved in the regulation of apoptosis, focal adhesion, phagosome, tight junction, cell cycle, lysosome, adherens junctions, gap junctions, p53 signaling pathway, endocytosis, autophagy and actin cytoskeleton. Lim domain only protein 7 mRNA was found to be the highest up-regulated feature after cholesterol depletion. Conclusions This is the first study on the effects of membrane cholesterol depletion in mRNA expression in myogenic cells. Our data shows that alterations in the availability of plasma membrane cholesterol lead to transcriptional changes in myogenic cells. The knowledge of the genes involved in the cellular response to cholesterol depletion could contribute to our understanding of skeletal muscle differentiation. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-544) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | - Claudia Mermelstein
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
8
|
Lampe WR, Park J, Fang S, Crews AL, Adler KB. Calpain and MARCKS protein regulation of airway mucin secretion. Pulm Pharmacol Ther 2012; 25:427-31. [PMID: 22710197 PMCID: PMC3486950 DOI: 10.1016/j.pupt.2012.06.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Revised: 05/01/2012] [Accepted: 06/07/2012] [Indexed: 01/30/2023]
Abstract
Hypersecretion of mucin plays an important role in the pathophysiology of many inflammatory airway diseases, including asthma, chronic bronchitis, and cystic fibrosis. Myristoylated alanine-rich C-kinase substrate (MARCKS) protein has been shown to play an important role in regulation of airway mucin secretion, as peptides analogous to the amino (N)-terminus of MARCKS attenuate mucin secretion by airway epithelium in vitro and in vivo. Here, we investigated a potential role for the protease Calpain, a calcium-dependent cysteine protease that can cleave MARCKS, in the MARCKS-related secretory mechanism. We theorized that Calpain might cleave MARCKS near the N-terminus, thereby attenuating the ability of MARCKS to bind to membranes and/or creating a small N-terminal peptide that could act as a competitive intracellular inhibitor to remaining endogenous full-length MARCKS molecules. Primary normal human bronchial epithelial (NHBE) cells and the virally-transformed human bronchial epithelial HBE1 cell line were exposed to phorbol-12-myristate-13-acetate (PMA) to stimulate the Protein Kinase C (PKC) pathway, leading to enhanced mucin secretion, and Calpain activity within the cells was measured with a fluorescent cleavage assay. Calpain activity was increased by PMA, and pretreatment of the cells with Calpain inhibitors reduced both Calpain activity and mucin secretion in a concentration-dependent manner. Thus, as opposed to the original hypothesis, inactivating Calpain caused a decrease rather than an increase in secretion. HBE1 cells transfected with DNA constructs encoding a MARCKS-YFP fusion protein showed cleavage at a putative site near the N-terminus in response to PMA. Cleavage of MARCKS by Calpain may have an important role in regulation of the PKC/MARCKS pathway regulating airway mucin secretion.
Collapse
Affiliation(s)
- W Randall Lampe
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, 1060 William Moore Drive, Raleigh, NC 27607, USA.
| | | | | | | | | |
Collapse
|
9
|
Park JJ, Rubio MV, Zhang Z, Um T, Xie Y, Knoepp SM, Snider AJ, Gibbs TC, Meier KE. Effects of lysophosphatidic acid on calpain-mediated proteolysis of focal adhesion kinase in human prostate cancer cells. Prostate 2012; 72:1595-610. [PMID: 22473839 DOI: 10.1002/pros.22513] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2011] [Accepted: 02/17/2012] [Indexed: 11/05/2022]
Abstract
BACKGROUND Calcium-mediated proteolysis plays an important role in cell migration. Lysophosphatidic acid (LPA), a lipid mediator present in serum, enhances migration of carcinoma cells. The effects of LPA on calpain-mediated proteolysis were, therefore, examined in PC-3, a human prostate cancer cell line. METHODS Cultured PC-3 cells were used in studies utilizing pharmacologic interventions, immunoblotting, and confocal immunolocalization. RESULTS Focal adhesion kinase (FAK), a tyrosine kinase involved in cell adhesion, is rapidly proteolyzed in serum-starved PC-3 cells exposed to the calcium ionophore, ionomycin; Nck, p130CAS, PKCα, and Ras-GAP are also degraded. Thapsigargin, which causes more moderate increases in intracellular calcium, induces partial proteolysis of these proteins. Calpain inhibitors block the proteolytic responses to ionomycin and thapsigargin. Ionomycin does not induce proteolysis in cells maintained in serum, suggesting a protective role for growth factors contained in serum. LPA causes minor FAK proteolysis when added alone, but protects against ionomycin-induced proteolysis in a time-dependent manner. LPA also protects against the cell detachment that eventually follows ionomycin treatment. The response to LPA is blocked by an LPA receptor antagonist. A similar effect of LPA is observed in ionomycin-treated Rat-1 fibroblasts. In PC-3 cells, the protective effects of LPA and serum are correlated with phosphorylation and redistribution of paxillin, suggesting roles for phosphorylation-mediated protein-protein interactions. CONCLUSIONS The complex effects of LPA on calpain-mediated proteolysis of FAK and other adhesion proteins are likely to play a role in the ability of LPA to promote attachment, migration, and survival of prostate cancer cells.
Collapse
Affiliation(s)
- Joshua J Park
- Department of Pharmacology, Medical University of South Carolina, Charleston, South Carolina, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Abstract
The calpains are a conserved family of cysteine proteinases that catalyse the controlled proteolysis of many specific substrates. Calpain activity is implicated in several fundamental physiological processes, including cytoskeletal remodelling, cellular signalling, apoptosis and cell survival. Calpain expression is altered during tumorigenesis, and the proteolysis of numerous substrates, such as inhibitors of nuclear factor-κB (IκB), focal adhesion proteins (including, focal adhesion kinase and talin) and proto-oncogenes (for example, MYC), has been implicated in tumour pathogenesis. Recent evidence indicates that the increased expression of certain family members might influence the response to cancer therapies, providing justification for the development of novel calpain inhibitors.
Collapse
Affiliation(s)
- Sarah J Storr
- University of Nottingham, School of Molecular Medical Sciences, Nottingham NG5 1PB, UK
| | | | | | | | | |
Collapse
|
11
|
Brulé C, Dargelos E, Diallo R, Listrat A, Béchet D, Cottin P, Poussard S. Proteomic study of calpain interacting proteins during skeletal muscle aging. Biochimie 2010; 92:1923-33. [DOI: 10.1016/j.biochi.2010.09.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2010] [Accepted: 09/03/2010] [Indexed: 01/08/2023]
|
12
|
Shaikh S, Samanta K, Kar P, Roy S, Chakraborti T, Chakraborti S. m-Calpain-mediated cleavage of Na+/Ca2+ exchanger-1 in caveolae vesicles isolated from pulmonary artery smooth muscle. Mol Cell Biochem 2010; 341:167-80. [PMID: 20372982 DOI: 10.1007/s11010-010-0448-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2009] [Accepted: 03/17/2010] [Indexed: 01/30/2023]
Abstract
Using m-calpain antibody, we have identified two major bands corresponding to the 80 kDa large and the 28 kDa small subunit of m-calpain in caveolae vesicles isolated from bovine pulmonary artery smooth muscle plasma membrane. In addition, 78, 35, and 18 kDa immunoreactive bands of m-calpain have also been detected. Casein zymogram studies also revealed the presence of m-calpain in the caveolae vesicles. We have also identified Na(+)/Ca(2+) exchanger-1 (NCX1) in the caveolae vesicles. Purification and N-terminal sequence analyses of these two proteins confirmed their identities as m-calpain and NCX1, respectively. We further sought to determine the role of m-calpain on calcium-dependent proteolytic cleavage of NCX1 in the caveolae vesicles. Treatment of the caveolae vesicles with the calcium ionophore, A23187 (1 microM) in presence of CaCl(2) (1 mM) appears to cleave NCX1 (120 kDa) to an 82 kDa fragment as revealed by immunoblot study using NCX1 monoclonal antibody; while pretreatment with the calpain inhibitors, calpeptin or MDL28170; or the Ca(2+) chelator, BAPTA-AM did not cause a discernible change in the NCX protein profile. In vitro cleavage of the purified NCX1 by the purified m-calpain supports this finding. The cleavage of NCX1 by m-calpain in the caveolae vesicles may be interpreted as an important mechanism of Ca(2+) overload, which could arise due to inhibition of Ca(2+) efflux by the forward-mode NCX and that could lead to sustained Ca(2+) overload in the smooth muscle leading to pulmonary hypertension.
Collapse
Affiliation(s)
- Soni Shaikh
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani, 741235 West Bengal, India
| | | | | | | | | | | |
Collapse
|
13
|
Hernando V, Inserte J, Sartório CL, Parra VM, Poncelas-Nozal M, Garcia-Dorado D. Calpain translocation and activation as pharmacological targets during myocardial ischemia/reperfusion. J Mol Cell Cardiol 2010; 49:271-9. [PMID: 20211186 DOI: 10.1016/j.yjmcc.2010.02.024] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2009] [Revised: 02/09/2010] [Accepted: 02/28/2010] [Indexed: 12/13/2022]
Abstract
Calpains contribute to reperfusion-induced myocardial cell death. However, it remains controversial whether its activation occurs during ischemia or reperfusion. We investigated the regulation and time-course of calpain activation secondary to transient ischemia and the efficacy of its inhibition at reperfusion as a therapeutic strategy to limit infarct size. In isolated rat hearts (Sprague-Dawley), ischemia induced a time-dependent translocation of m-calpain to the membrane that was not associated with calpain activation as assessed by proteolysis of its substrate alpha-fodrin. Translocation of calpain was dependent on Ca(2+) entry through reverse mode Na(+)/Ca(2+)-exchange and was independent of acidosis. Calpain activation occurred during reperfusion, but only after intracellular pH (pHi) normalization, and was not prevented by inhibiting its translocation during ischemia with methyl-beta-cyclodextrin. The intravenous infusion of MDL-28170 in an in vivo rat model with transient coronary occlusion during the first minutes of reperfusion resulted in a reduction of infarct size (43.9+/-3.9% vs. 60.2+/-4.7, P=0.046, n=18) and alpha-fodrin degradation. These results suggest that (1) Ca(2+)-induced calpain translocation to the membrane during ischemia is independent of its activation, (2) intracellular acidosis inhibits calpain activation during ischemia and pHi normalization allows activation upon reperfusion, and (3) calpain inhibition at the time of reperfusion appears as a potentially useful strategy to limit infarct size.
Collapse
Affiliation(s)
- Víctor Hernando
- Servei de Cardiologia, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
14
|
Matsunaga T, Yamamoto G, Tachikawa T. Expression of typical calpains in mouse molar. Arch Oral Biol 2009; 54:885-92. [DOI: 10.1016/j.archoralbio.2009.07.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2009] [Revised: 07/03/2009] [Accepted: 07/16/2009] [Indexed: 12/15/2022]
|
15
|
Up-regulation of calcium-dependent proteolysis in human myoblasts under acute oxidative stress. Exp Cell Res 2009; 316:115-25. [PMID: 19651121 DOI: 10.1016/j.yexcr.2009.07.025] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2009] [Revised: 07/24/2009] [Accepted: 07/27/2009] [Indexed: 12/30/2022]
Abstract
The reduced regenerative potential of muscle fibres, most likely due to a decreased number and/or function of satellite cells, could play a significant role in the progression of muscle ageing. Accumulation of reactive oxygen species has been clearly correlated to sarcopenia and could contribute to the impairment of satellite cell function. In this work we have investigated the effect of oxidative stress generated by hydrogen peroxide in cultured human skeletal muscle satellite cells. We specifically focused on the activity and regulation of calpains. These calcium-dependent proteases are known to regulate many transduction pathways including apoptosis and play a critical role in satellite cell function. In our experimental conditions, which induce an increase in calcium concentration, protein oxidation and apoptotic cell death, a significant up-regulation of calpain expression and activity were observed and ATP synthase, a major component of the respiratory chain, was identified as a calpain target. Interestingly we were able to protect the cells from these H(2)O(2)-induced effects and prevent calpain up-regulation with a natural antioxidant extracted from pine bark (Oligopin). These data strongly suggest that oxidative stress could impair satellite cell functionality via calpain-dependent pathways and that an antioxidant such as Oligopin could prevent apoptosis and calpain activation.
Collapse
|
16
|
Averna M, Stifanese R, De Tullio R, Beccaria F, Salamino F, Pontremoli S, Melloni E. Calpain-mediated activation of NO synthase in human neuroblastoma SK-N-BE cells. J Neurochem 2009; 110:412-21. [DOI: 10.1111/j.1471-4159.2009.06149.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
17
|
Chun KR, Bae EM, Kim JK, Suk K, Lee WH. Suppression of the lipopolysaccharide-induced expression of MARCKS-related protein (MRP) affects transmigration in activated RAW264.7 cells. Cell Immunol 2009; 256:92-8. [PMID: 19246034 DOI: 10.1016/j.cellimm.2009.01.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2008] [Revised: 01/14/2009] [Accepted: 01/25/2009] [Indexed: 01/01/2023]
Abstract
The molecular action mechanism of MRP, one of the protein kinase C (PKC) substrates, has been under intense investigation, but reports on its role in macrophage function remain controversial. The treatment of macrophage cell lines with bacterial lipopolysaccharide (LPS) induced a high level of MRP expression suggesting that MRP plays a role in the function of activated macrophages. In order to investigate the role of MRP in activated RAW264.7 cells, we stably transfected MRP-specific shRNA expression constructs and tested for alterations in macrophage-related functions. The down-regulation of MRP expression resulted in a marked reduction in chemotaxis toward MCP-1 or extracellular matrix proteins. Furthermore, pharmacological inhibitors of PKC significantly inhibited the chemotaxis in RAW264.7 cells. These data reveals the pivotal role of MRP in the transmigration of activated RAW264.7 cells.
Collapse
Affiliation(s)
- Kwang-Rok Chun
- Department of Genetic Engineering, Kyungpook National University, Daegu, Republic of Korea
| | | | | | | | | |
Collapse
|
18
|
Louis M, Zanou N, Van Schoor M, Gailly P. TRPC1 regulates skeletal myoblast migration and differentiation. J Cell Sci 2008; 121:3951-9. [PMID: 19001499 DOI: 10.1242/jcs.037218] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Myoblast migration is a key step in myogenesis and regeneration. It allows myoblast alignment and their fusion into myotubes. The process has been shown to involve m-calpain or mu-calpain, two Ca(2+)-dependent cysteine proteases. Here we measure calpain activity in cultured cells and show a peak of activity at the beginning of the differentiation process. We also observed a concomitant and transient increase of the influx of Ca(2+) and expression of TRPC1 protein. Calpains are specifically activated by a store-operated entry of Ca(2+) in adult skeletal muscle fibres. We therefore repressed the expression of TRPC1 in myoblasts and studied the effects on Ca(2+) fluxes and on differentiation. TRPC1-depleted myoblasts presented a largely reduced store-operated entry of Ca(2+) and a significantly diminished transient influx of Ca(2+) at the beginning of differentiation. The concomitant peak of calpain activity was abolished. TRPC1-knockdown myoblasts also accumulated myristoylated alanine-rich C-kinase substrate (MARCKS), an actin-binding protein and substrate of calpain. Their fusion into myotubes was significantly slowed down as a result of the reduced speed of cell migration. Accordingly, migration of control myoblasts was inhibited by 2-5 microM GsMTx4 toxin, an inhibitor of TRP channels or by 50 microM Z-Leu-Leu, an inhibitor of calpain. By contrast, stimulation of control myoblasts with IGF-1 increased the basal influx of Ca(2+), activated calpain and accelerated migration. These effects were not observed in TRPC1-knockdown cells. We therefore suggest that entry of Ca(2+) through TRPC1 channels induces a transient activation of calpain and subsequent proteolysis of MARCKS, which allows in turn, myoblast migration and fusion.
Collapse
Affiliation(s)
- Magali Louis
- Université catholique de Louvain, Institute of Neuroscience, Laboratory of Cell Physiology, 55/40 avenue Hippocrate, 1200 Brussels, Belgium
| | | | | | | |
Collapse
|
19
|
Goudenege S, Dargelos E, Claverol S, Bonneu M, Cottin P, Poussard S. Comparative proteomic analysis of myotube caveolae after milli-calpain deregulation. Proteomics 2007; 7:3289-98. [PMID: 17849407 DOI: 10.1002/pmic.200700124] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Caveolae are specialised RAFTs (detergent-resistant membrane microdomains enriched in cholesterol and glycosphingolipids). Caveolin, the main caveolae protein, is essential to the organisation of proteins and lipids, and interacts with numerous mediating proteins through a 'Caveolin Scalfolding Domain'. Consequently, caveolae play a major role in signal transduction and appear to be veritable signalling platforms. In muscle cells, caveolae are essential for fusion and differentiation, and are also implicated in a type of muscular dystrophy (LGMD1C). In a preceding work, we demonstrated the presence of active milli-calpain (m-calpain) in myotube caveolae. Calpains are calcium-dependent proteases involved in several cellular processes, including myoblast fusion and migration, PKC-mediated intracellular signalling and remodelling of the cytoskeleton. For the first time, we have proved the cholesterol-dependent localisation of m-calpain in the caveolae of C(2)C(12) myotubes. Calpain-dependent caveolae involvement in myoblast fusion was also strongly suggested. Furthermore, eight differentially expressed caveolae associated proteins were identified by 2-DE and LC-MS/MS analyses using an m-calpain antisense strategy. This proteomic study also demonstrates the action of m-calpain on vimentin, desmin and vinculin in myotube caveolae and suggests m-calpain's role in several mitochondrial pathways.
Collapse
Affiliation(s)
- Sébastien Goudenege
- Université Bordeaux I, USC-INRA 2009, Unité Protéolyse, Croissance et Développement Musculaire, ISTAB, Talence, France
| | | | | | | | | | | |
Collapse
|
20
|
Kopitar-Jerala N, Turk B. Cleavage of the myristoylated alanine-rich C kinase substrate (MARCKS) by cysteine cathepsins in cells and tissues of stefin B-deficient mice. Biol Chem 2007; 388:847-52. [PMID: 17655504 DOI: 10.1515/bc.2007.092] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The myristoylated alanine-rich C kinase substrate (MARCKS) is a substrate of protein kinase C (PKC). Besides regulation at the level of gene transcription, MARCKS concentrations within the cell are also regulated by proteolytic cleavage by cathepsins and calpains, which are cysteine proteinases. Stefin B (cystatin B) is an endogenous inhibitor of lysosomal cysteine cathepsins, but not calpains. We have observed increased cleavage of MARCKS in brain and macrophages, but not in liver and kidney extracts of stefin B-deficient mice compared to wild-type mice. Processing of cathepsin B was unaltered in the brain of stefin B-deficient mice and we conclude that increased cleavage of MARCKS could be attributed to the lack of inhibitor.
Collapse
Affiliation(s)
- Natasa Kopitar-Jerala
- Department of Biochemistry, Molecular and Structural Biology, Jozef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia.
| | | |
Collapse
|
21
|
Dargelos E, Poussard S, Brulé C, Daury L, Cottin P. Calcium-dependent proteolytic system and muscle dysfunctions: a possible role of calpains in sarcopenia. Biochimie 2007; 90:359-68. [PMID: 17881114 DOI: 10.1016/j.biochi.2007.07.018] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2007] [Accepted: 07/20/2007] [Indexed: 02/02/2023]
Abstract
The calcium-dependent proteolytic system is composed of cysteine proteases named calpains. They are ubiquitous or tissue-specific enzymes. The two best characterised isoforms are the ubiquitously expressed mu- and m-calpains. Besides its regulation by calcium, calpain activity is tightly controlled by calpastatin, the specific endogenous inhibitor, binding to phospholipids, autoproteolysis and phosphorylation. Calpains are responsible for limited proteolytic events. Among the multitude of substrates identified so far are cytoskeletal and membrane proteins, enzymes and transcription factors. Calpain activity is involved in a large number of physiological and pathological processes. In this review, we will particularly focus on the implication of the calcium-dependent proteolytic system in relation to muscle physiology. Because of their ability to remodel cytoskeletal anchorage complexes, calpains play a major role in the regulation of cell adhesion, migration and fusion, three key steps of myogenesis. Calcium-dependent proteolysis is also involved in the control of cell cycle. In muscle tissue, in particular, calpains intervene in the regeneration process. Another important class of calpain substrates belongs to apoptosis regulating factors. The proteases may thus play a role in muscle cell death, and as a consequence in muscle atrophy. The relationships between calcium-dependent proteolysis and muscle dysfunctions are being further developed in this review with a particular emphasis on sarcopenia.
Collapse
Affiliation(s)
- E Dargelos
- Université Bordeaux I, INRA USC-2009, Unité Protéolyse Croissance et Développement Musculaire, ISTAB, avenue des facultés, 33405 Talence cedex, France.
| | | | | | | | | |
Collapse
|
22
|
Boyan BD, Wong KL, Wang L, Yao H, Guldberg RE, Drab M, Jo H, Schwartz Z. Regulation of growth plate chondrocytes by 1,25-dihydroxyvitamin D3 requires caveolae and caveolin-1. J Bone Miner Res 2006; 21:1637-47. [PMID: 16995819 DOI: 10.1359/jbmr.060713] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
UNLABELLED We examined the role of caveolae and caveolin-1 in the mechanism of 1alpha,25(OH)(2)D(3) action in growth plate chondrocytes. We found that caveolae are required for rapid 1alpha,25(OH)(2)D(3)-dependent PKC signaling, and caveolin-1 must be present based on studies using chondrocytes from Cav-1(-/-) mice. INTRODUCTION 1,25-dihydroxyvitamin D(3) [1alpha,25(OH)(2)D(3)] regulates endochondral ossification in part through membrane-associated mechanisms, including protein kinase C (PKC) signaling activated by a membrane-associated 1alpha,25(OH)(2)D(3)-binding protein, ERp60. We tested the hypothesis that caveolae are required for 1alpha,25(OH)(2)D(3) action and play an important role in regulating chondrocyte biology and growth plate physiology. MATERIALS AND METHODS Rat costochondral chondrocytes were examined for caveolae by transmission electron microscopy of cultured cells and of cells in situ. Western blots and confocal microscopy were used to detect caveolae proteins including caveolin-1 (Cav-1) and 1alpha,25(OH)(2)D(3) receptors. Caveolae cholesterol was depleted with beta-cyclodextrin (CD) and effects of 1alpha,25(OH)(2)D(3) on PKC, DNA synthesis, alkaline phosphatase, and proteoglycan production determined. Chondrocytes from Cav-1(-/-) and C57BL/6 wildtype mice were also treated with 1alpha,25(OH)(2)D(3). Epiphyses and costochondral junctions of 8-week-old male Cav-1(-/-) and wildtype mice (N = 8) were compared by histomorphometry and microCT. Data were analyzed by ANOVA and Bonferroni for posthoc comparisons. RESULTS Growth zone chondrocytes had caveolae and Cav-1, -2, and -3. Resting zone chondrocytes, which do not exhibit a rapid 1alpha,25(OH)(2)D(3)-dependent increase in PKC activity, also had these caveolins, but caveolae were larger and fewer in number. ERp60 but not VDR co-localized with Cav-1 in plasma membranes and in lipid rafts. CD-treatment blocked 1alpha,25(OH)(2)D(3) effects on all parameters tested. The Cav-1(-/-) cells did not respond to 1alpha,25(OH)(2)D(3), although 1alpha,25(OH)(2)D(3) increased PKC, alkaline phosphatase, and [(35)S]-sulfate incorporation in wildtype C57BL/6 cells. Histology and microCT showed that Cav-1(-/-) growth plates were longer and had more hypertrophic cells in each column. Growth plate changes were reflected in the metaphysis. CONCLUSIONS The membrane-mediated effects of 1alpha,25(OH)(2)D(3) require caveolae and Cav-1, and Cav-1 deficiency results in altered growth plate physiology.
Collapse
Affiliation(s)
- Barbara D Boyan
- Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0363, USA.
| | | | | | | | | | | | | | | |
Collapse
|