1
|
Chen S, Du K, Zou C. Current progress in stem cell therapy for type 1 diabetes mellitus. Stem Cell Res Ther 2020; 11:275. [PMID: 32641151 PMCID: PMC7346484 DOI: 10.1186/s13287-020-01793-6] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 06/19/2020] [Accepted: 06/29/2020] [Indexed: 02/06/2023] Open
Abstract
Type 1 diabetes mellitus (T1DM) is the most common chronic autoimmune disease in young patients and is characterized by the loss of pancreatic β cells; as a result, the body becomes insulin deficient and hyperglycemic. Administration or injection of exogenous insulin cannot mimic the endogenous insulin secreted by a healthy pancreas. Pancreas and islet transplantation have emerged as promising treatments for reconstructing the normal regulation of blood glucose in T1DM patients. However, a critical shortage of pancreases and islets derived from human organ donors, complications associated with transplantations, high cost, and limited procedural availability remain bottlenecks in the widespread application of these strategies. Attempts have been directed to accommodate the increasing population of patients with T1DM. Stem cell therapy holds great potential for curing patients with T1DM. With the advent of research on stem cell therapy for various diseases, breakthroughs in stem cell-based therapy for T1DM have been reported. However, many unsolved issues need to be addressed before stem cell therapy will be clinically feasible for diabetic patients. In this review, we discuss the current research advances in strategies to obtain insulin-producing cells (IPCs) from different precursor cells and in stem cell-based therapies for diabetes.
Collapse
Affiliation(s)
- Shuai Chen
- Key Laboratory of Longevity and Ageing-Related Disease of Chinese Ministry of Education, Center for Translational Medicine and School of Preclinical Medicine, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Kechen Du
- Key Laboratory of Longevity and Ageing-Related Disease of Chinese Ministry of Education, Center for Translational Medicine and School of Preclinical Medicine, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Chunlin Zou
- Key Laboratory of Longevity and Ageing-Related Disease of Chinese Ministry of Education, Center for Translational Medicine and School of Preclinical Medicine, Guangxi Medical University, Nanning, 530021, Guangxi, China.
| |
Collapse
|
2
|
Zhang Q, Yan L, Chen M, Gui M, Lu L, Deng F, Ren Z. IgA1 isolated from Henoch-Schönlein purpura children promotes proliferation of human mesangial cells in vitro. Cell Biol Int 2019; 43:760-769. [PMID: 30958627 DOI: 10.1002/cbin.11142] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 03/23/2019] [Indexed: 01/31/2023]
Abstract
Previous studies show that the proliferation of human mesangial cells (HMCs) played a significant part in the pathogenesis of Henoch-Schönlein purpura nephritis (HSPN). The aim of this study was to explore the proliferation of HMCs induced by IgA1 isolated from the sera of HSP patients. HMCs were cultured in three different types of media, including IgA1 from patients with HSP (HSP IgA1 group), healthy children (healthy IgA1 group) and medium (control group). The proliferation of HMCs incubated with IgA1 was determined by cell counting kit-8 assay and bromodeoxyuridine incorporation. The expression of ERK1/2 and phosphatidylinositol 3 kinase/protein kinase B/mammalian targets of the rapamycin (PI3K/AKt/mTOR) signals and transferrin receptor (TfR/CD71) was detected with the methods of immunoblotting. The results indicated that the proliferation of HMCs significantly increased in the HSP IgA1 group compared with that in the control group or the healthy IgA1 group (P < 0.001). Moreover, we found that IgA1 isolated from HSP patients activated ERK and PI3K/AKt/mTOR signals, and markedly increased TfR/CD71 expression in HMCs. These effects induced by IgA1 isolated from patients with HSP were inhibited by human TfR polyclonal antibody (hTfR pAb) and soluble human transferrin receptor (sTfR), indicating that IgA1-induced HMC proliferation and ERK1/2 and PI3K/AKt/mTOR activation were dependent on TfR/CD71 engagement. Altogether, these data suggested that TfR/CD71 overexpression and ERK1/2 and PI3K/AKt/mTOR activation were engaged in HMC proliferation induced by IgA1 from HSP patients, which might be related to the mesangial injury of HSPN.
Collapse
Affiliation(s)
- Qin Zhang
- Department of Pediatrics, First Affiliated Hospital of Anhui Medical University, Heifei, Anhui, China
| | - Lili Yan
- Department of Anatomy, Anhui Medical University, Hefei, Anhui, China
| | - Mingyu Chen
- Department of Anatomy, Anhui Medical University, Hefei, Anhui, China
| | - Ming Gui
- Department of Pediatrics, First Affiliated Hospital of Anhui Medical University, Heifei, Anhui, China
| | - Ling Lu
- Department of Pediatrics, First Affiliated Hospital of Anhui Medical University, Heifei, Anhui, China
| | - Fang Deng
- Department of Pediatrics, First Affiliated Hospital of Anhui Medical University, Heifei, Anhui, China
| | - Zhenhua Ren
- Department of Anatomy, Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
3
|
Abstract
PURPOSE OF REVIEW Inadequate insulin-producing pancreatic β-cell mass is a key feature of both type 1 and type 2 diabetes. Efforts to regenerate β-cell mass from pancreatic precursors may thus ameliorate absolute or relative insulin deficiency, thereby improving glucose homeostasis. A clear understanding of the processes that govern the generation of new β-cells in the mature pancreas will be fundamental to success in this effort. This review discusses the current state of knowledge regarding β-cell regeneration and emphasizes recent studies of significance. RECENT FINDINGS Recent reports demonstrate regenerative potential in the adult human pancreas. Further, they build on the strong existing evidence that proliferation of preexisting β-cells is the predominant source of new β-cells in adulthood by dissecting the cell cycle machinery components and critical signaling pathways required for β-cell proliferation. Finally, β-cell trophic peptides have demonstrated preclinical potential as pharmacologic regenerative agents and may form the basis for clinical interventions in the future. SUMMARY Efforts to augment β-cell regeneration by enhancing β-cell viability and proliferation may lead to novel therapeutic approaches for type 1 and type 2 diabetes. An intimate understanding of the molecular mechanisms underlying the regulation of β-cell proliferation and survival will be fundamental to the optimization of endogenous β-cell regeneration.
Collapse
|
4
|
MRI tracking of autologous pancreatic progenitor-derived insulin-producing cells in monkeys. Sci Rep 2017; 7:2505. [PMID: 28566744 PMCID: PMC5451407 DOI: 10.1038/s41598-017-02775-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 04/19/2017] [Indexed: 12/04/2022] Open
Abstract
Insulin-producing cells (IPCs) derived from a patient’s own stem cells offer great potential for autologous transplantation in diabetic patients. However, the limited survival of engrafted cells remains a bottleneck in the application of this strategy. The present study aimed to investigate whether nanoparticle-based magnetic resonance (MR) tracking can be used to detect the loss of grafted stem cell-derived IPCs in a sensitive and timely manner in a diabetic monkey model. Pancreatic progenitor cells (PPCs) were isolated from diabetic monkeys and labeled with superparamagnetic iron oxide nanoparticles (SPIONs). The SPION-labeled cells presented as hypointense signals on MR imaging (MRI). The labeling procedure did not affect the viability or IPC differentiation of PPCs. Importantly, the total area of the hypointense signal caused by SPION-labeled IPCs on liver MRI decreased before the decline in C-peptide levels after autotransplantation. Histological analysis revealed no detectable immune response to the grafts and many surviving insulin- and Prussian blue-positive cell clusters on liver sections at one year post-transplantation. Collectively, this study demonstrates that SPIO nanoparticles can be used to label stem cells for noninvasive, sensitive, longitudinal monitoring of stem cell-derived IPCs in large animal models using a conventional MR imager.
Collapse
|
5
|
Reversible immortalization of Nestin-positive precursor cells from pancreas and differentiation into insulin-secreting cells. Biochem Biophys Res Commun 2012; 418:330-5. [PMID: 22266322 DOI: 10.1016/j.bbrc.2012.01.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2011] [Accepted: 01/06/2012] [Indexed: 12/18/2022]
Abstract
Pancreatic stem cells or progenitor cells posses the ability of directed differentiation into pancreatic β cells. However, these cells usually have limited proliferative capacity and finite lifespan in vitro. In the present study, Nestin-positive progenitor cells (NPPCs) from mouse pancreas that expressed the pancreatic stem cells or progenitor cell marker Nestin were isolated to obtain a sufficient number of differentiated pancreatic β cells. Tet-on system for SV40 large T-antigen expression in NPPCs was used to achieve reversible immortalization. The reversible immortal Nestin-positive progenitor cells (RINPPCs) can undergo at least 80 population doublings without senescence in vitro while maintaining their biological and genetic characteristics. RINPPCs can be efficiently induced to differentiate into insulin-producing cells that contain a combination of glucagon-like peptide-1 (GLP-1) and sodium butyrate. The results of the present study can be used to explore transplantation therapy of type I diabetes mellitus.
Collapse
|
6
|
Insulin-producing cells from human pancreatic islet-derived progenitor cells following transplantation in mice. Cell Biol Int 2011; 35:483-90. [PMID: 21080910 DOI: 10.1042/cbi20100152] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Stem/progenitor cells hold promise for alleviating/curing type 1 diabetes due to the capacity to differentiate into functional insulin-producing cells. The current study aims to assess the differentiation potential of human pancreatic IPCs (islet-derived progenitor cells). IPCs were derived from four human donors and subjected to more than 2000-fold expansion before turning into ICCs (islet-like cell clusters). The ICCs expressed ISL-1 Glut2, PDX-1, ngn3, insulin, glucagon and somatostatin at the mRNA level and stained positive for insulin and glucagon by immunofluorescence. Following glucose challenge in vitro, C-peptide was detected in the sonicated ICCs, instead of in the conditioned medium. To examine the function of the cells in vivo, IPCs or ICCs were transplanted under the renal capsule of immunodeficient mice. One month later, 19 of 28 mice transplanted with ICCs and 4 of 14 mice with IPCs produced human C-peptide detectable in blood, indicating that the in vivo environment further facilitated the maturation of ICCs. However, among the hormone-positive mice, only 9 of 19 mice with ICCs and two of four mice with IPCs were able to secrete C-peptide in response to glucose.
Collapse
|
7
|
Abstract
Stem cells can supply sufficient islet cells for cell replacement therapy in patients with diabetes. Many types of stem cells, including embryonic stem (ES) cells, induced pluripotent stem (iPS) cells, and somatic stem cells, have been shown to be able to differentiate into insulin-producing cells either in vitro or in vivo, which could ameliorate hyperglycemia in diabetic animal models. Furthermore, several small-scale pilot clinical studies have demonstrated the potential efficacy of autologous hematopoietic stem cell transplantation in treating diabetes. Great progress has been made in basic research on the differentiation of insulin-producing cells from human ES cells, in which the ethical debate and immunological rejection are unavoidable. Use of human iPS cells and autologous somatic stem cells can avoid such problems. However, the safety of iPS cells in future clinical application and the amplification, identification and differentiation of somatic stem cells deserve further investigation. This paper aims to present an overview of different types of stem cells, strategies for differentiation into islet cells, and the problems and prospects of stem cell therapy for diabetes.
Collapse
|
8
|
Oestrogen regulates proliferation and differentiation of human islet-derived precursor cells through oestrogen receptor alpha. Cell Biol Int 2010; 34:523-30. [DOI: 10.1042/cbi20090390] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
9
|
Persistent circulating human insulin in sheep transplanted in utero with human mesenchymal stem cells. Exp Hematol 2010; 38:311-20. [PMID: 20170708 DOI: 10.1016/j.exphem.2010.02.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2009] [Revised: 02/07/2010] [Accepted: 02/09/2010] [Indexed: 01/01/2023]
Abstract
OBJECTIVE To determine if mesenchymal stem cells (MSC) derived from human fetal pancreatic tissue (pMSC) would engraft and differentiate in sheep pancreas following transplantation in utero. MATERIALS AND METHODS A three-step culture system was established for generating human fetal pMSC. Sheep fetuses were transplanted during the fetal transplant receptivity period with human pMSC and evaluated for in situ and functional engraftment in their pancreas, liver, and bone marrow. RESULTS Isolation and expansion of adherent cells from the human fetal pancreas yielded a cell population with morphologic and phenotypic characteristics similar to MSC derived from bone marrow. This putative stem cell population could undergo multilineage differentiation in vitro. Three to 27 months after fetal transplantation, the pancreatic engraftment frequency (chimeric index) was 79%, while functional engraftment was noted in 50% of transplanted sheep. Hepatic and marrow engraftment and expression was noted as well. CONCLUSION We have established a procedure for isolation of human fetal pMSC that display characteristics similar to bone marrow-derived MSC. In vivo results suggest the pMSC engraft, differentiate, and secrete human insulin from the sheep pancreas.
Collapse
|
10
|
Wu D, Zou C, Yue F, Li X, Li S, Zhang Y. The effect of long-term streptozotocin-induced diabetes mellitus (STZ-DM) on cynomolgus (Macaca Fascicularis) monkeys. J Med Primatol 2009; 38:15-22. [DOI: 10.1111/j.1600-0684.2008.00300.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
11
|
Puglisi MA, Giuliani L, Fierabracci A. Identification and characterization of a novel expandable adult stem/progenitor cell population in the human exocrine pancreas. J Endocrinol Invest 2008; 31:563-572. [PMID: 18591892 DOI: 10.1007/bf03346409] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
It is a general opinion that tissue-specific stem cells are present in adult tissues but their specific properties remain elusive. They are rare in tissues and heterogeneous; in addition, their identification and the characterization of their progeny has encountered technical difficulties. In particular, the existence of pancreatic stem cells remains elusive because specific markers for their identification are not available. We established a method for the isolation of a population of stem/progenitor cells from the human exocrine pancreas, and propose it as a model for other human compact organs. We also used markers that identified and finally characterized these cells. Spheroids with self-replicative potential were obtained from all specimens. The isolated population contained a subset of CD34+ CD45- cells and was able to generate, in appropriate conditions, colonies that produce insulin. We obtained evidence that most freshly isolated spheroids, when co-cultured with the c-kit positive neuroblastoma cell line LAN 5, produced a c-kit positive progeny of cells larger in their cytoplasmic content than the original spheroid population, with elongated morphology resembling the neuronal phenotype. We identified a novel predominant functional type of stem/progenitor cell within the human exocrine pancreas, able to generate insulin-producing cells and potentially non-pancreatic cells.
Collapse
Affiliation(s)
- M A Puglisi
- Autoimmunity and Organ Regeneration Laboratory, Bambino Gesù Research Institute, 00165 Rome, Italy
| | | | | |
Collapse
|
12
|
PDZ-domain containing-2 (PDZD2) is a novel factor that affects the growth and differentiation of human fetal pancreatic progenitor cells. Int J Biochem Cell Biol 2008; 40:789-803. [DOI: 10.1016/j.biocel.2007.10.020] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2007] [Revised: 10/12/2007] [Accepted: 10/17/2007] [Indexed: 01/29/2023]
|